/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include "kmem.h" #include "leaky_impl.h" /* * This file defines the genunix target for leaky.c. There are three types * of buffers in the kernel's heap: TYPE_VMEM, for kmem_oversize allocations, * TYPE_KMEM, for kmem_cache_alloc() allocations bufctl_audit_ts, and * TYPE_CACHE, for kmem_cache_alloc() allocation without bufctl_audit_ts. * * See "leaky_impl.h" for the target interface definition. */ #define TYPE_VMEM 0 /* lkb_data is the vmem_seg's size */ #define TYPE_CACHE 1 /* lkb_cid is the bufctl's cache */ #define TYPE_KMEM 2 /* lkb_cid is the bufctl's cache */ #define LKM_CTL_BUFCTL 0 /* normal allocation, PTR is bufctl */ #define LKM_CTL_VMSEG 1 /* oversize allocation, PTR is vmem_seg_t */ #define LKM_CTL_CACHE 2 /* normal alloc, non-debug, PTR is cache */ #define LKM_CTL_MASK 3L #define LKM_CTL(ptr, type) (LKM_CTLPTR(ptr) | (type)) #define LKM_CTLPTR(ctl) ((uintptr_t)(ctl) & ~(LKM_CTL_MASK)) #define LKM_CTLTYPE(ctl) ((uintptr_t)(ctl) & (LKM_CTL_MASK)) static int kmem_lite_count = 0; /* cache of the kernel's version */ /*ARGSUSED*/ static int leaky_mtab(uintptr_t addr, const kmem_bufctl_audit_t *bcp, leak_mtab_t **lmp) { leak_mtab_t *lm = (*lmp)++; lm->lkm_base = (uintptr_t)bcp->bc_addr; lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_BUFCTL); return (WALK_NEXT); } /*ARGSUSED*/ static int leaky_mtab_addr(uintptr_t addr, void *ignored, leak_mtab_t **lmp) { leak_mtab_t *lm = (*lmp)++; lm->lkm_base = addr; return (WALK_NEXT); } static int leaky_seg(uintptr_t addr, const vmem_seg_t *seg, leak_mtab_t **lmp) { leak_mtab_t *lm = (*lmp)++; lm->lkm_base = seg->vs_start; lm->lkm_limit = seg->vs_end; lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_VMSEG); return (WALK_NEXT); } static int leaky_vmem_interested(const vmem_t *vmem) { if (strcmp(vmem->vm_name, "kmem_oversize") != 0 && strcmp(vmem->vm_name, "static_alloc") != 0) return (0); return (1); } static int leaky_vmem(uintptr_t addr, const vmem_t *vmem, leak_mtab_t **lmp) { if (!leaky_vmem_interested(vmem)) return (WALK_NEXT); if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_seg, lmp, addr) == -1) mdb_warn("can't walk vmem_alloc for kmem_oversize (%p)", addr); return (WALK_NEXT); } /*ARGSUSED*/ static int leaky_estimate_vmem(uintptr_t addr, const vmem_t *vmem, size_t *est) { if (!leaky_vmem_interested(vmem)) return (WALK_NEXT); *est += (int)(vmem->vm_kstat.vk_alloc.value.ui64 - vmem->vm_kstat.vk_free.value.ui64); return (WALK_NEXT); } static int leaky_interested(const kmem_cache_t *c) { vmem_t vmem; /* * ignore HAT-related caches that happen to derive from kmem_default */ if (strcmp(c->cache_name, "sfmmu1_cache") == 0 || strcmp(c->cache_name, "sf_hment_cache") == 0 || strcmp(c->cache_name, "pa_hment_cache") == 0) return (0); if (mdb_vread(&vmem, sizeof (vmem), (uintptr_t)c->cache_arena) == -1) { mdb_warn("cannot read arena %p for cache '%s'", (uintptr_t)c->cache_arena, c->cache_name); return (0); } /* * If this cache isn't allocating from the kmem_default, * kmem_firewall, or static vmem arenas, we're not interested. */ if (strcmp(vmem.vm_name, "kmem_default") != 0 && strcmp(vmem.vm_name, "kmem_firewall") != 0 && strcmp(vmem.vm_name, "static") != 0) return (0); return (1); } static int leaky_estimate(uintptr_t addr, const kmem_cache_t *c, size_t *est) { if (!leaky_interested(c)) return (WALK_NEXT); *est += kmem_estimate_allocated(addr, c); return (WALK_NEXT); } /*ARGSUSED*/ static int leaky_cache(uintptr_t addr, const kmem_cache_t *c, leak_mtab_t **lmp) { leak_mtab_t *lm = *lmp; mdb_walk_cb_t cb; const char *walk; int audit = (c->cache_flags & KMF_AUDIT); if (!leaky_interested(c)) return (WALK_NEXT); if (audit) { walk = "bufctl"; cb = (mdb_walk_cb_t)leaky_mtab; } else { walk = "kmem"; cb = (mdb_walk_cb_t)leaky_mtab_addr; } if (mdb_pwalk(walk, cb, lmp, addr) == -1) { mdb_warn("can't walk kmem for cache %p (%s)", addr, c->cache_name); return (WALK_DONE); } for (; lm < *lmp; lm++) { lm->lkm_limit = lm->lkm_base + c->cache_bufsize; if (!audit) lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_CACHE); } return (WALK_NEXT); } /*ARGSUSED*/ static int leaky_scan_buffer(uintptr_t addr, const void *ignored, const kmem_cache_t *c) { leaky_grep(addr, c->cache_bufsize); /* * free, constructed KMF_LITE buffers keep their first uint64_t in * their buftag's redzone. */ if (c->cache_flags & KMF_LITE) { /* LINTED alignment */ kmem_buftag_t *btp = KMEM_BUFTAG(c, addr); leaky_grep((uintptr_t)&btp->bt_redzone, sizeof (btp->bt_redzone)); } return (WALK_NEXT); } /*ARGSUSED*/ static int leaky_scan_cache(uintptr_t addr, const kmem_cache_t *c, void *ignored) { if (!leaky_interested(c)) return (WALK_NEXT); /* * Scan all of the free, constructed buffers, since they may have * pointers to allocated objects. */ if (mdb_pwalk("freemem_constructed", (mdb_walk_cb_t)leaky_scan_buffer, (void *)c, addr) == -1) { mdb_warn("can't walk freemem_constructed for cache %p (%s)", addr, c->cache_name); return (WALK_DONE); } return (WALK_NEXT); } /*ARGSUSED*/ static int leaky_modctl(uintptr_t addr, const struct modctl *m, int *ignored) { struct module mod; char name[MODMAXNAMELEN]; if (m->mod_mp == NULL) return (WALK_NEXT); if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) { mdb_warn("couldn't read modctl %p's module", addr); return (WALK_NEXT); } if (mdb_readstr(name, sizeof (name), (uintptr_t)m->mod_modname) == -1) (void) mdb_snprintf(name, sizeof (name), "0x%p", addr); leaky_grep((uintptr_t)m->mod_mp, sizeof (struct module)); leaky_grep((uintptr_t)mod.data, mod.data_size); leaky_grep((uintptr_t)mod.bss, mod.bss_size); return (WALK_NEXT); } static int leaky_thread(uintptr_t addr, const kthread_t *t, unsigned long *pagesize) { uintptr_t size, base = (uintptr_t)t->t_stkbase; uintptr_t stk = (uintptr_t)t->t_stk; /* * If this thread isn't in memory, we can't look at its stack. This * may result in false positives, so we print a warning. */ if (!(t->t_schedflag & TS_LOAD)) { mdb_printf("findleaks: thread %p's stack swapped out; " "false positives possible\n", addr); return (WALK_NEXT); } if (t->t_state != TS_FREE) leaky_grep(base, stk - base); /* * There is always gunk hanging out between t_stk and the page * boundary. If this thread structure wasn't kmem allocated, * this will include the thread structure itself. If the thread * _is_ kmem allocated, we'll be able to get to it via allthreads. */ size = *pagesize - (stk & (*pagesize - 1)); leaky_grep(stk, size); return (WALK_NEXT); } /*ARGSUSED*/ static int leaky_kstat(uintptr_t addr, vmem_seg_t *seg, void *ignored) { leaky_grep(seg->vs_start, seg->vs_end - seg->vs_start); return (WALK_NEXT); } static void leaky_kludge(void) { GElf_Sym sym; mdb_ctf_id_t id, rid; int max_mem_nodes; uintptr_t *counters; size_t ncounters; ssize_t hwpm_size; int idx; /* * Because of DR, the page counters (which live in the kmem64 segment) * can point into kmem_alloc()ed memory. The "page_counters" array * is multi-dimensional, and each entry points to an array of * "hw_page_map_t"s which is "max_mem_nodes" in length. * * To keep this from having too much grotty knowledge of internals, * we use CTF data to get the size of the structure. For simplicity, * we treat the page_counters array as a flat array of pointers, and * use its size to determine how much to scan. Unused entries will * be NULL. */ if (mdb_lookup_by_name("page_counters", &sym) == -1) { mdb_warn("unable to lookup page_counters"); return; } if (mdb_readvar(&max_mem_nodes, "max_mem_nodes") == -1) { mdb_warn("unable to read max_mem_nodes"); return; } if (mdb_ctf_lookup_by_name("unix`hw_page_map_t", &id) == -1 || mdb_ctf_type_resolve(id, &rid) == -1 || (hwpm_size = mdb_ctf_type_size(rid)) < 0) { mdb_warn("unable to lookup unix`hw_page_map_t"); return; } counters = mdb_alloc(sym.st_size, UM_SLEEP | UM_GC); if (mdb_vread(counters, sym.st_size, (uintptr_t)sym.st_value) == -1) { mdb_warn("unable to read page_counters"); return; } ncounters = sym.st_size / sizeof (counters); for (idx = 0; idx < ncounters; idx++) { uintptr_t addr = counters[idx]; if (addr != 0) leaky_grep(addr, hwpm_size * max_mem_nodes); } } int leaky_subr_estimate(size_t *estp) { uintptr_t panicstr; int state; if ((state = mdb_get_state()) == MDB_STATE_RUNNING) { mdb_warn("findleaks: can only be run on a system " "dump or under kmdb; see dumpadm(1M)\n"); return (DCMD_ERR); } if (mdb_readvar(&panicstr, "panicstr") == -1) { mdb_warn("can't read variable 'panicstr'"); return (DCMD_ERR); } if (state != MDB_STATE_STOPPED && panicstr == NULL) { mdb_warn("findleaks: cannot be run on a live dump.\n"); return (DCMD_ERR); } if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_estimate, estp) == -1) { mdb_warn("couldn't walk 'kmem_cache'"); return (DCMD_ERR); } if (*estp == 0) { mdb_warn("findleaks: no buffers found\n"); return (DCMD_ERR); } if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_estimate_vmem, estp) == -1) { mdb_warn("couldn't walk 'vmem'"); return (DCMD_ERR); } return (DCMD_OK); } int leaky_subr_fill(leak_mtab_t **lmpp) { if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_vmem, lmpp) == -1) { mdb_warn("couldn't walk 'vmem'"); return (DCMD_ERR); } if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_cache, lmpp) == -1) { mdb_warn("couldn't walk 'kmem_cache'"); return (DCMD_ERR); } if (mdb_readvar(&kmem_lite_count, "kmem_lite_count") == -1) { mdb_warn("couldn't read 'kmem_lite_count'"); kmem_lite_count = 0; } else if (kmem_lite_count > 16) { mdb_warn("kmem_lite_count nonsensical, ignored\n"); kmem_lite_count = 0; } return (DCMD_OK); } int leaky_subr_run(void) { unsigned long ps = PAGESIZE; uintptr_t kstat_arena; uintptr_t dmods; leaky_kludge(); if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_scan_cache, NULL) == -1) { mdb_warn("couldn't walk 'kmem_cache'"); return (DCMD_ERR); } if (mdb_walk("modctl", (mdb_walk_cb_t)leaky_modctl, NULL) == -1) { mdb_warn("couldn't walk 'modctl'"); return (DCMD_ERR); } /* * If kmdb is loaded, we need to walk it's module list, since kmdb * modctl structures can reference kmem allocations. */ if ((mdb_readvar(&dmods, "kdi_dmods") != -1) && (dmods != NULL)) (void) mdb_pwalk("modctl", (mdb_walk_cb_t)leaky_modctl, NULL, dmods); if (mdb_walk("thread", (mdb_walk_cb_t)leaky_thread, &ps) == -1) { mdb_warn("couldn't walk 'thread'"); return (DCMD_ERR); } if (mdb_walk("deathrow", (mdb_walk_cb_t)leaky_thread, &ps) == -1) { mdb_warn("couldn't walk 'deathrow'"); return (DCMD_ERR); } if (mdb_readvar(&kstat_arena, "kstat_arena") == -1) { mdb_warn("couldn't read 'kstat_arena'"); return (DCMD_ERR); } if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_kstat, NULL, kstat_arena) == -1) { mdb_warn("couldn't walk kstat vmem arena"); return (DCMD_ERR); } return (DCMD_OK); } void leaky_subr_add_leak(leak_mtab_t *lmp) { uintptr_t addr = LKM_CTLPTR(lmp->lkm_bufctl); size_t depth; switch (LKM_CTLTYPE(lmp->lkm_bufctl)) { case LKM_CTL_VMSEG: { vmem_seg_t vs; if (mdb_vread(&vs, sizeof (vs), addr) == -1) { mdb_warn("couldn't read leaked vmem_seg at addr %p", addr); return; } depth = MIN(vs.vs_depth, VMEM_STACK_DEPTH); leaky_add_leak(TYPE_VMEM, addr, vs.vs_start, vs.vs_timestamp, vs.vs_stack, depth, 0, (vs.vs_end - vs.vs_start)); break; } case LKM_CTL_BUFCTL: { kmem_bufctl_audit_t bc; if (mdb_vread(&bc, sizeof (bc), addr) == -1) { mdb_warn("couldn't read leaked bufctl at addr %p", addr); return; } depth = MIN(bc.bc_depth, KMEM_STACK_DEPTH); /* * The top of the stack will be kmem_cache_alloc+offset. * Since the offset in kmem_cache_alloc() isn't interesting * we skip that frame for the purposes of uniquifying stacks. * * We also use the cache pointer as the leaks's cid, to * prevent the coalescing of leaks from different caches. */ if (depth > 0) depth--; leaky_add_leak(TYPE_KMEM, addr, (uintptr_t)bc.bc_addr, bc.bc_timestamp, bc.bc_stack + 1, depth, (uintptr_t)bc.bc_cache, 0); break; } case LKM_CTL_CACHE: { kmem_cache_t cache; kmem_buftag_lite_t bt; pc_t caller; int depth = 0; /* * For KMF_LITE caches, we can get the allocation PC * out of the buftag structure. */ if (mdb_vread(&cache, sizeof (cache), addr) != -1 && (cache.cache_flags & KMF_LITE) && kmem_lite_count > 0 && mdb_vread(&bt, sizeof (bt), /* LINTED alignment */ (uintptr_t)KMEM_BUFTAG(&cache, lmp->lkm_base)) != -1) { caller = bt.bt_history[0]; depth = 1; } leaky_add_leak(TYPE_CACHE, lmp->lkm_base, lmp->lkm_base, 0, &caller, depth, addr, addr); break; } default: mdb_warn("internal error: invalid leak_bufctl_t\n"); break; } } static void leaky_subr_caller(const pc_t *stack, uint_t depth, char *buf, uintptr_t *pcp) { int i; GElf_Sym sym; uintptr_t pc = 0; buf[0] = 0; for (i = 0; i < depth; i++) { pc = stack[i]; if (mdb_lookup_by_addr(pc, MDB_SYM_FUZZY, buf, MDB_SYM_NAMLEN, &sym) == -1) continue; if (strncmp(buf, "kmem_", 5) == 0) continue; if (strncmp(buf, "vmem_", 5) == 0) continue; *pcp = pc; return; } /* * We're only here if the entire call chain begins with "kmem_"; * this shouldn't happen, but we'll just use the last caller. */ *pcp = pc; } int leaky_subr_bufctl_cmp(const leak_bufctl_t *lhs, const leak_bufctl_t *rhs) { char lbuf[MDB_SYM_NAMLEN], rbuf[MDB_SYM_NAMLEN]; uintptr_t lcaller, rcaller; int rval; leaky_subr_caller(lhs->lkb_stack, lhs->lkb_depth, lbuf, &lcaller); leaky_subr_caller(rhs->lkb_stack, lhs->lkb_depth, rbuf, &rcaller); if (rval = strcmp(lbuf, rbuf)) return (rval); if (lcaller < rcaller) return (-1); if (lcaller > rcaller) return (1); if (lhs->lkb_data < rhs->lkb_data) return (-1); if (lhs->lkb_data > rhs->lkb_data) return (1); return (0); } /* * Global state variables used by the leaky_subr_dump_* routines. Note that * they are carefully cleared before use. */ static int lk_vmem_seen; static int lk_cache_seen; static int lk_kmem_seen; static size_t lk_ttl; static size_t lk_bytes; void leaky_subr_dump_start(int type) { switch (type) { case TYPE_VMEM: lk_vmem_seen = 0; break; case TYPE_CACHE: lk_cache_seen = 0; break; case TYPE_KMEM: lk_kmem_seen = 0; break; default: break; } lk_ttl = 0; lk_bytes = 0; } void leaky_subr_dump(const leak_bufctl_t *lkb, int verbose) { const leak_bufctl_t *cur; kmem_cache_t cache; size_t min, max, size; char sz[30]; char c[MDB_SYM_NAMLEN]; uintptr_t caller; if (verbose) { lk_ttl = 0; lk_bytes = 0; } switch (lkb->lkb_type) { case TYPE_VMEM: if (!verbose && !lk_vmem_seen) { lk_vmem_seen = 1; mdb_printf("%-16s %7s %?s %s\n", "BYTES", "LEAKED", "VMEM_SEG", "CALLER"); } min = max = lkb->lkb_data; for (cur = lkb; cur != NULL; cur = cur->lkb_next) { size = cur->lkb_data; if (size < min) min = size; if (size > max) max = size; lk_ttl++; lk_bytes += size; } if (min == max) (void) mdb_snprintf(sz, sizeof (sz), "%ld", min); else (void) mdb_snprintf(sz, sizeof (sz), "%ld-%ld", min, max); if (!verbose) { leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth, c, &caller); if (caller != 0) { (void) mdb_snprintf(c, sizeof (c), "%a", caller); } else { (void) mdb_snprintf(c, sizeof (c), "%s", "?"); } mdb_printf("%-16s %7d %?p %s\n", sz, lkb->lkb_dups + 1, lkb->lkb_addr, c); } else { mdb_arg_t v; if (lk_ttl == 1) mdb_printf("kmem_oversize leak: 1 vmem_seg, " "%ld bytes\n", lk_bytes); else mdb_printf("kmem_oversize leak: %d vmem_segs, " "%s bytes each, %ld bytes total\n", lk_ttl, sz, lk_bytes); v.a_type = MDB_TYPE_STRING; v.a_un.a_str = "-v"; if (mdb_call_dcmd("vmem_seg", lkb->lkb_addr, DCMD_ADDRSPEC, 1, &v) == -1) { mdb_warn("'%p::vmem_seg -v' failed", lkb->lkb_addr); } } return; case TYPE_CACHE: if (!verbose && !lk_cache_seen) { lk_cache_seen = 1; if (lk_vmem_seen) mdb_printf("\n"); mdb_printf("%-?s %7s %?s %s\n", "CACHE", "LEAKED", "BUFFER", "CALLER"); } if (mdb_vread(&cache, sizeof (cache), lkb->lkb_data) == -1) { /* * This _really_ shouldn't happen; we shouldn't * have been able to get this far if this * cache wasn't readable. */ mdb_warn("can't read cache %p for leaked " "buffer %p", lkb->lkb_data, lkb->lkb_addr); return; } lk_ttl += lkb->lkb_dups + 1; lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize; caller = (lkb->lkb_depth == 0) ? 0 : lkb->lkb_stack[0]; if (caller != 0) { (void) mdb_snprintf(c, sizeof (c), "%a", caller); } else { (void) mdb_snprintf(c, sizeof (c), "%s", (verbose) ? "" : "?"); } if (!verbose) { mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid, lkb->lkb_dups + 1, lkb->lkb_addr, c); } else { if (lk_ttl == 1) mdb_printf("%s leak: 1 buffer, %ld bytes,\n", cache.cache_name, lk_bytes); else mdb_printf("%s leak: %d buffers, " "%ld bytes each, %ld bytes total,\n", cache.cache_name, lk_ttl, cache.cache_bufsize, lk_bytes); mdb_printf(" sample addr %p%s%s\n", lkb->lkb_addr, (caller == 0) ? "" : ", caller ", c); } return; case TYPE_KMEM: if (!verbose && !lk_kmem_seen) { lk_kmem_seen = 1; if (lk_vmem_seen || lk_cache_seen) mdb_printf("\n"); mdb_printf("%-?s %7s %?s %s\n", "CACHE", "LEAKED", "BUFCTL", "CALLER"); } if (mdb_vread(&cache, sizeof (cache), lkb->lkb_cid) == -1) { /* * This _really_ shouldn't happen; we shouldn't * have been able to get this far if this * cache wasn't readable. */ mdb_warn("can't read cache %p for leaked " "bufctl %p", lkb->lkb_cid, lkb->lkb_addr); return; } lk_ttl += lkb->lkb_dups + 1; lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize; if (!verbose) { leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth, c, &caller); if (caller != 0) { (void) mdb_snprintf(c, sizeof (c), "%a", caller); } else { (void) mdb_snprintf(c, sizeof (c), "%s", "?"); } mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid, lkb->lkb_dups + 1, lkb->lkb_addr, c); } else { mdb_arg_t v; if (lk_ttl == 1) mdb_printf("%s leak: 1 buffer, %ld bytes\n", cache.cache_name, lk_bytes); else mdb_printf("%s leak: %d buffers, " "%ld bytes each, %ld bytes total\n", cache.cache_name, lk_ttl, cache.cache_bufsize, lk_bytes); v.a_type = MDB_TYPE_STRING; v.a_un.a_str = "-v"; if (mdb_call_dcmd("bufctl", lkb->lkb_addr, DCMD_ADDRSPEC, 1, &v) == -1) { mdb_warn("'%p::bufctl -v' failed", lkb->lkb_addr); } } return; default: return; } } void leaky_subr_dump_end(int type) { int i; int width; const char *leaks; switch (type) { case TYPE_VMEM: if (!lk_vmem_seen) return; width = 16; leaks = "kmem_oversize leak"; break; case TYPE_CACHE: if (!lk_cache_seen) return; width = sizeof (uintptr_t) * 2; leaks = "buffer"; break; case TYPE_KMEM: if (!lk_kmem_seen) return; width = sizeof (uintptr_t) * 2; leaks = "buffer"; break; default: return; } for (i = 0; i < 72; i++) mdb_printf("-"); mdb_printf("\n%*s %7ld %s%s, %ld byte%s\n", width, "Total", lk_ttl, leaks, (lk_ttl == 1) ? "" : "s", lk_bytes, (lk_bytes == 1) ? "" : "s"); } int leaky_subr_invoke_callback(const leak_bufctl_t *lkb, mdb_walk_cb_t cb, void *cbdata) { kmem_bufctl_audit_t bc; vmem_seg_t vs; switch (lkb->lkb_type) { case TYPE_VMEM: if (mdb_vread(&vs, sizeof (vs), lkb->lkb_addr) == -1) { mdb_warn("unable to read vmem_seg at %p", lkb->lkb_addr); return (WALK_NEXT); } return (cb(lkb->lkb_addr, &vs, cbdata)); case TYPE_CACHE: return (cb(lkb->lkb_addr, NULL, cbdata)); case TYPE_KMEM: if (mdb_vread(&bc, sizeof (bc), lkb->lkb_addr) == -1) { mdb_warn("unable to read bufctl at %p", lkb->lkb_addr); return (WALK_NEXT); } return (cb(lkb->lkb_addr, &bc, cbdata)); default: return (WALK_NEXT); } }