/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #ifndef _VDSK_COMMON_H #define _VDSK_COMMON_H #pragma ident "%Z%%M% %I% %E% SMI" #ifdef __cplusplus extern "C" { #endif /* * This header file contains the private LDoms Virtual Disk (vDisk) definitions * common to both the server (vds) and the client (vdc) */ #include #include #include #include #include #include /* * vDisk definitions */ /* * The number of Descriptor Ring entries * * Constraints: * - overall DRing size must be greater than 8K (MMU_PAGESIZE) * - overall DRing size should be 8K aligned (desirable but not enforced) * - DRing entry must be 8 byte aligned */ #define VD_DRING_LEN 512 /* * */ #define VD_DRING_ENTRY_SZ (sizeof (vd_dring_entry_t) + \ (sizeof (ldc_mem_cookie_t) * (VD_MAX_COOKIES - 1))) /* * The maximum block size we can transmit using one Descriptor Ring entry * * Currently no FS uses more than 128K and it doesn't look like they * will either as there is no perf gain to be had by larger values. * ( see ZFS comment at definition of SPA_MAXBLOCKSIZE ). * * We choose 256K to give us some headroom. */ #define VD_MAX_BLOCK_SIZE (256 * 1024) #define VD_MAX_COOKIES ((VD_MAX_BLOCK_SIZE / PAGESIZE) + 1) #define VD_USEC_TIMEOUT 20000 #define VD_LDC_IDS_PROP "ldc-ids" #define VD_LDC_MTU 256 /* * Flags used by ioctl routines to indicate if a copyin/copyout is needed */ #define VD_COPYOUT 0x1 #define VD_COPYIN 0x2 /* * vDisk operations on physical devices */ #define VD_OP_BREAD 0x01 /* Block Read */ #define VD_OP_BWRITE 0x02 /* Block Write */ #define VD_OP_FLUSH 0x03 /* Flush disk write cache contents */ #define VD_OP_GET_WCE 0x04 /* Get disk W$ status */ #define VD_OP_SET_WCE 0x05 /* Enable/Disable disk W$ */ #define VD_OP_GET_VTOC 0x06 /* Get VTOC */ #define VD_OP_SET_VTOC 0x07 /* Set VTOC */ #define VD_OP_GET_DISKGEOM 0x08 /* Get disk geometry */ #define VD_OP_SET_DISKGEOM 0x09 /* Set disk geometry */ #define VD_OP_SCSICMD 0x0a /* SCSI control command */ #define VD_OP_GET_DEVID 0x0b /* Get device id */ #define VD_OP_GET_EFI 0x0c /* Get EFI */ #define VD_OP_SET_EFI 0x0d /* Set EFI */ #define VD_OP_MASK 0xFF /* mask of all possible operations */ #define VD_OP_COUNT 13 /* Number of operations */ /* * This is a mask of all the basic operations supported by all * disk types (v1.0). */ #define VD_OP_MASK_READ \ ((1 << VD_OP_BREAD) | \ (1 << VD_OP_GET_WCE) | \ (1 << VD_OP_GET_VTOC) | \ (1 << VD_OP_GET_DISKGEOM) | \ (1 << VD_OP_GET_DEVID) | \ (1 << VD_OP_GET_EFI)) #define VD_OP_MASK_WRITE \ ((1 << VD_OP_BWRITE) | \ (1 << VD_OP_FLUSH) | \ (1 << VD_OP_SET_WCE) | \ (1 << VD_OP_SET_VTOC) | \ (1 << VD_OP_SET_DISKGEOM) | \ (1 << VD_OP_SET_EFI)) /* * macro to check if the operation 'op' is supported by checking the list * of operations supported which is exported by the vDisk server. */ #define VD_OP_SUPPORTED(ops_bitmask, op) ((ops_bitmask) & (1 << (op))) /* * Slice for absolute disk transaction. */ #define VD_SLICE_NONE 0xFF /* * EFI disks do not have a slice 7. Actually that slice is used to represent * the whole disk. */ #define VD_EFI_WD_SLICE 7 /* * Definitions of the various ways vds can export disk support to vdc. */ typedef enum vd_disk_type { VD_DISK_TYPE_UNK = 0, /* Unknown device type */ VD_DISK_TYPE_SLICE, /* slice in block device */ VD_DISK_TYPE_DISK /* entire disk (slice 2) */ } vd_disk_type_t; /* * Definitions of the various disk label that vDisk supports. */ typedef enum vd_disk_label { VD_DISK_LABEL_UNK = 0, /* Unknown disk label */ VD_DISK_LABEL_VTOC, /* VTOC disk label */ VD_DISK_LABEL_EFI /* EFI disk label */ } vd_disk_label_t; /* * vDisk Descriptor payload */ typedef struct vd_dring_payload { uint64_t req_id; /* The request ID being processed */ uint8_t operation; /* operation for server to perform */ uint8_t slice; /* The disk slice being accessed */ uint16_t resv1; /* padding */ uint32_t status; /* "errno" of server operation */ uint64_t addr; /* LP64 diskaddr_t (block I/O) */ uint64_t nbytes; /* LP64 size_t */ uint32_t ncookies; /* Number of cookies used */ uint32_t resv2; /* padding */ ldc_mem_cookie_t cookie[1]; /* variable sized array */ } vd_dring_payload_t; /* * vDisk Descriptor entry */ typedef struct vd_dring_entry { vio_dring_entry_hdr_t hdr; /* common header */ vd_dring_payload_t payload; /* disk specific data */ } vd_dring_entry_t; /* * vDisk control operation structures */ /* * vDisk geometry definition (VD_OP_GET_DISKGEOM and VD_OP_SET_DISKGEOM) */ typedef struct vd_geom { uint16_t ncyl; /* number of data cylinders */ uint16_t acyl; /* number of alternate cylinders */ uint16_t bcyl; /* cyl offset for fixed head area */ uint16_t nhead; /* number of heads */ uint16_t nsect; /* number of data sectors per track */ uint16_t intrlv; /* interleave factor */ uint16_t apc; /* alternates per cyl (SCSI only) */ uint16_t rpm; /* revolutions per minute */ uint16_t pcyl; /* number of physical cylinders */ uint16_t write_reinstruct; /* # sectors to skip, writes */ uint16_t read_reinstruct; /* # sectors to skip, reads */ } vd_geom_t; /* * vDisk partition definition */ typedef struct vd_partition { uint16_t id_tag; /* ID tag of partition */ uint16_t perm; /* permission flags for partition */ uint32_t reserved; /* padding */ uint64_t start; /* block number of partition start */ uint64_t nblocks; /* number of blocks in partition */ } vd_partition_t; /* * vDisk VTOC definition (VD_OP_GET_VTOC and VD_OP_SET_VTOC) */ #define VD_VOLNAME_LEN 8 /* length of volume_name field */ #define VD_ASCIILABEL_LEN 128 /* length of ascii_label field */ typedef struct vd_vtoc { char volume_name[VD_VOLNAME_LEN]; /* volume name */ uint16_t sector_size; /* sector size in bytes */ uint16_t num_partitions; /* number of partitions */ char ascii_label[VD_ASCIILABEL_LEN]; /* ASCII label */ vd_partition_t partition[V_NUMPAR]; /* partition headers */ } vd_vtoc_t; /* * vDisk EFI definition (VD_OP_GET_EFI and VD_OP_SET_EFI) */ typedef struct vd_efi { uint64_t lba; /* lba of the request */ uint64_t length; /* length of data */ char data[1]; /* data of the request */ } vd_efi_t; /* * vDisk DEVID definition (VD_OP_GET_DEVID) */ #define VD_DEVID_SIZE(l) (sizeof (vd_devid_t) - 1 + l) #define VD_DEVID_DEFAULT_LEN 128 typedef struct vd_devid { uint16_t reserved; /* padding */ uint16_t type; /* type of device id */ uint32_t length; /* length the device id */ char id[1]; /* device id */ } vd_devid_t; /* * Copy the contents of a vd_geom_t to the contents of a dk_geom struct */ #define VD_GEOM2DK_GEOM(vd_geom, dk_geom) \ { \ bzero((dk_geom), sizeof (*(dk_geom))); \ (dk_geom)->dkg_ncyl = (vd_geom)->ncyl; \ (dk_geom)->dkg_acyl = (vd_geom)->acyl; \ (dk_geom)->dkg_bcyl = (vd_geom)->bcyl; \ (dk_geom)->dkg_nhead = (vd_geom)->nhead; \ (dk_geom)->dkg_nsect = (vd_geom)->nsect; \ (dk_geom)->dkg_intrlv = (vd_geom)->intrlv; \ (dk_geom)->dkg_apc = (vd_geom)->apc; \ (dk_geom)->dkg_rpm = (vd_geom)->rpm; \ (dk_geom)->dkg_pcyl = (vd_geom)->pcyl; \ (dk_geom)->dkg_write_reinstruct = (vd_geom)->write_reinstruct; \ (dk_geom)->dkg_read_reinstruct = (vd_geom)->read_reinstruct; \ } /* * Copy the contents of a vd_vtoc_t to the contents of a vtoc struct */ #define VD_VTOC2VTOC(vd_vtoc, vtoc) \ { \ bzero((vtoc), sizeof (*(vtoc))); \ bcopy((vd_vtoc)->volume_name, (vtoc)->v_volume, \ MIN(sizeof ((vd_vtoc)->volume_name), \ sizeof ((vtoc)->v_volume))); \ bcopy((vd_vtoc)->ascii_label, (vtoc)->v_asciilabel, \ MIN(sizeof ((vd_vtoc)->ascii_label), \ sizeof ((vtoc)->v_asciilabel))); \ (vtoc)->v_sanity = VTOC_SANE; \ (vtoc)->v_version = V_VERSION; \ (vtoc)->v_sectorsz = (vd_vtoc)->sector_size; \ (vtoc)->v_nparts = (vd_vtoc)->num_partitions; \ for (int i = 0; i < (vd_vtoc)->num_partitions; i++) { \ (vtoc)->v_part[i].p_tag = (vd_vtoc)->partition[i].id_tag; \ (vtoc)->v_part[i].p_flag = (vd_vtoc)->partition[i].perm; \ (vtoc)->v_part[i].p_start = (vd_vtoc)->partition[i].start; \ (vtoc)->v_part[i].p_size = (vd_vtoc)->partition[i].nblocks; \ } \ } /* * Copy the contents of a dk_geom struct to the contents of a vd_geom_t */ #define DK_GEOM2VD_GEOM(dk_geom, vd_geom) \ { \ bzero((vd_geom), sizeof (*(vd_geom))); \ (vd_geom)->ncyl = (dk_geom)->dkg_ncyl; \ (vd_geom)->acyl = (dk_geom)->dkg_acyl; \ (vd_geom)->bcyl = (dk_geom)->dkg_bcyl; \ (vd_geom)->nhead = (dk_geom)->dkg_nhead; \ (vd_geom)->nsect = (dk_geom)->dkg_nsect; \ (vd_geom)->intrlv = (dk_geom)->dkg_intrlv; \ (vd_geom)->apc = (dk_geom)->dkg_apc; \ (vd_geom)->rpm = (dk_geom)->dkg_rpm; \ (vd_geom)->pcyl = (dk_geom)->dkg_pcyl; \ (vd_geom)->write_reinstruct = (dk_geom)->dkg_write_reinstruct; \ (vd_geom)->read_reinstruct = (dk_geom)->dkg_read_reinstruct; \ } /* * Copy the contents of a vtoc struct to the contents of a vd_vtoc_t */ #define VTOC2VD_VTOC(vtoc, vd_vtoc) \ { \ bzero((vd_vtoc), sizeof (*(vd_vtoc))); \ bcopy((vtoc)->v_volume, (vd_vtoc)->volume_name, \ MIN(sizeof ((vtoc)->v_volume), \ sizeof ((vd_vtoc)->volume_name))); \ bcopy((vtoc)->v_asciilabel, (vd_vtoc)->ascii_label, \ MIN(sizeof ((vtoc)->v_asciilabel), \ sizeof ((vd_vtoc)->ascii_label))); \ (vd_vtoc)->sector_size = (vtoc)->v_sectorsz; \ (vd_vtoc)->num_partitions = (vtoc)->v_nparts; \ for (int i = 0; i < (vtoc)->v_nparts; i++) { \ (vd_vtoc)->partition[i].id_tag = (vtoc)->v_part[i].p_tag; \ (vd_vtoc)->partition[i].perm = (vtoc)->v_part[i].p_flag; \ (vd_vtoc)->partition[i].start = (vtoc)->v_part[i].p_start; \ (vd_vtoc)->partition[i].nblocks = (vtoc)->v_part[i].p_size; \ } \ } /* * Copy the contents of a vd_efi_t to the contents of a dk_efi_t. * Note that (dk_efi)->dki_data and (vd_efi)->data should be correctly * initialized prior to using this macro. */ #define VD_EFI2DK_EFI(vd_efi, dk_efi) \ { \ (dk_efi)->dki_lba = (vd_efi)->lba; \ (dk_efi)->dki_length = (vd_efi)->length; \ bcopy((vd_efi)->data, (dk_efi)->dki_data, (dk_efi)->dki_length); \ } /* * Copy the contents of dk_efi_t to the contents of vd_efi_t. * Note that (dk_efi)->dki_data and (vd_efi)->data should be correctly * initialized prior to using this macro. */ #define DK_EFI2VD_EFI(dk_efi, vd_efi) \ { \ (vd_efi)->lba = (dk_efi)->dki_lba; \ (vd_efi)->length = (dk_efi)->dki_length; \ bcopy((dk_efi)->dki_data, (vd_efi)->data, (vd_efi)->length); \ } #define VD_MEDIATYPE2DK_MEDIATYPE(mt) \ ((mt) == VD_MEDIA_FIXED ? DK_FIXED_DISK : \ (mt) == VD_MEDIA_CD ? DK_CDROM : \ (mt) == VD_MEDIA_DVD ? DK_DVDROM : \ DK_UNKNOWN) #define DK_MEDIATYPE2VD_MEDIATYPE(mt) \ ((mt) == DK_REMOVABLE_DISK ? VD_MEDIA_FIXED : \ (mt) == DK_MO_ERASABLE ? VD_MEDIA_FIXED : \ (mt) == DK_MO_WRITEONCE ? VD_MEDIA_FIXED : \ (mt) == DK_AS_MO ? VD_MEDIA_FIXED : \ (mt) == DK_CDROM ? VD_MEDIA_CD : \ (mt) == DK_CDR ? VD_MEDIA_CD : \ (mt) == DK_CDRW ? VD_MEDIA_CD : \ (mt) == DK_DVDROM ? VD_MEDIA_DVD : \ (mt) == DK_DVDR ? VD_MEDIA_DVD : \ (mt) == DK_DVDRAM ? VD_MEDIA_DVD : \ (mt) == DK_FIXED_DISK ? VD_MEDIA_FIXED : \ (mt) == DK_FLOPPY ? VD_MEDIA_FIXED : \ (mt) == DK_ZIP ? VD_MEDIA_FIXED : \ (mt) == DK_JAZ ? VD_MEDIA_FIXED : \ VD_MEDIA_FIXED) /* * Hooks for EFI support */ /* * The EFI alloc_and_read() function will use some ioctls to get EFI data * but the device reference we will use is different depending if the command * is issued from the vDisk server side (vds) or from the vDisk client side * (vdc). From the server side (vds), we will have a layered device reference * (ldi_handle_t) while on the client side (vdc) we will have a regular device * reference (dev_t). */ #ifdef _SUN4V_VDS int vds_efi_alloc_and_read(ldi_handle_t dev, struct dk_gpt **vtoc, size_t *vtoc_len); #else void vdc_efi_init(int (*func)(dev_t, int, caddr_t, int)); void vdc_efi_fini(void); int vdc_efi_alloc_and_read(dev_t dev, struct dk_gpt **vtoc, size_t *vtoc_len); #endif void vd_efi_free(struct dk_gpt *ptr, size_t length); void vd_efi_to_vtoc(struct dk_gpt *efi, struct vtoc *vtoc); #ifdef __cplusplus } #endif #endif /* _VDSK_COMMON_H */