/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include kmutex_t soft_iv_lock; /* protect software interrupt vector table */ /* Global locks which protect the interrupt distribution lists */ static kmutex_t intr_dist_lock; static kmutex_t intr_dist_cpu_lock; /* Head of the interrupt distribution lists */ static struct intr_dist *intr_dist_head = NULL; static struct intr_dist *intr_dist_whead = NULL; uint_t swinum_base; uint_t maxswinum; uint_t siron_inum; uint_t poke_cpu_inum; int siron_pending; int intr_policy = INTR_WEIGHTED_DIST; /* interrupt distribution policy */ int intr_dist_debug = 0; int32_t intr_dist_weight_max = 1; int32_t intr_dist_weight_maxmax = 1000; int intr_dist_weight_maxfactor = 2; #define INTR_DEBUG(args) if (intr_dist_debug) cmn_err args static void sw_ivintr_init(cpu_t *); /* * intr_init() - interrupt initialization * Initialize the system's software interrupt vector table and * CPU's interrupt free list */ void intr_init(cpu_t *cp) { init_ivintr(); sw_ivintr_init(cp); init_intr_pool(cp); mutex_init(&intr_dist_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&intr_dist_cpu_lock, NULL, MUTEX_DEFAULT, NULL); /* * A soft interrupt may have been requested prior to the initialization * of soft interrupts. Soft interrupts can't be dispatched until after * init_intr_pool, so we have to wait until now before we can dispatch * the pending soft interrupt (if any). */ if (siron_pending) setsoftint(siron_inum); } /* * poke_cpu_intr - fall through when poke_cpu calls */ /* ARGSUSED */ uint_t poke_cpu_intr(caddr_t arg1, caddr_t arg2) { CPU->cpu_m.poke_cpu_outstanding = B_FALSE; membar_stld_stst(); return (1); } /* * sw_ivintr_init() - software interrupt vector initialization * called after CPU is active * the software interrupt vector table is part of the intr_vector[] */ static void sw_ivintr_init(cpu_t *cp) { extern uint_t softlevel1(); mutex_init(&soft_iv_lock, NULL, MUTEX_DEFAULT, NULL); swinum_base = SOFTIVNUM; /* * the maximum software interrupt == MAX_SOFT_INO */ maxswinum = swinum_base + MAX_SOFT_INO; REGISTER_BBUS_INTR(); siron_inum = add_softintr(PIL_1, softlevel1, 0); poke_cpu_inum = add_softintr(PIL_13, poke_cpu_intr, 0); cp->cpu_m.poke_cpu_outstanding = B_FALSE; } cpuset_t intr_add_pools_inuse; /* * cleanup_intr_pool() * Free up the extra intr request pool for this cpu. */ void cleanup_intr_pool(cpu_t *cp) { extern struct intr_req *intr_add_head; int poolno; struct intr_req *pool; poolno = cp->cpu_m.intr_pool_added; if (poolno >= 0) { cp->cpu_m.intr_pool_added = -1; pool = (poolno * INTR_PENDING_MAX * intr_add_pools) + intr_add_head; /* not byte arithmetic */ bzero(pool, INTR_PENDING_MAX * intr_add_pools * sizeof (struct intr_req)); CPUSET_DEL(intr_add_pools_inuse, poolno); } } /* * init_intr_pool() * initialize the intr request pool for the cpu * should be called for each cpu */ void init_intr_pool(cpu_t *cp) { extern struct intr_req *intr_add_head; #ifdef DEBUG extern struct intr_req *intr_add_tail; #endif /* DEBUG */ int i, pool; cp->cpu_m.intr_pool_added = -1; for (i = 0; i < INTR_PENDING_MAX-1; i++) { cp->cpu_m.intr_pool[i].intr_next = &cp->cpu_m.intr_pool[i+1]; } cp->cpu_m.intr_pool[INTR_PENDING_MAX-1].intr_next = NULL; cp->cpu_m.intr_head[0] = &cp->cpu_m.intr_pool[0]; cp->cpu_m.intr_tail[0] = &cp->cpu_m.intr_pool[INTR_PENDING_MAX-1]; if (intr_add_pools != 0) { /* * If additional interrupt pools have been allocated, * initialize those too and add them to the free list. */ struct intr_req *trace; for (pool = 0; pool < max_ncpus; pool++) { if (!(CPU_IN_SET(intr_add_pools_inuse, pool))) break; } if (pool >= max_ncpus) { /* * XXX - intr pools are alloc'd, just not as * much as we would like. */ cmn_err(CE_WARN, "Failed to alloc all requested intr " "pools for cpu%d", cp->cpu_id); return; } CPUSET_ADD(intr_add_pools_inuse, pool); cp->cpu_m.intr_pool_added = pool; trace = (pool * INTR_PENDING_MAX * intr_add_pools) + intr_add_head; /* not byte arithmetic */ cp->cpu_m.intr_pool[INTR_PENDING_MAX-1].intr_next = trace; for (i = 1; i < intr_add_pools * INTR_PENDING_MAX; i++, trace++) trace->intr_next = trace + 1; trace->intr_next = NULL; ASSERT(trace >= intr_add_head && trace <= intr_add_tail); cp->cpu_m.intr_tail[0] = trace; } } /* * siron - primitive for sun/os/softint.c */ void siron(void) { if (!siron_pending) { siron_pending = 1; if (siron_inum != 0) setsoftint(siron_inum); } } /* * no_ivintr() * called by vec_interrupt() through sys_trap() * vector interrupt received but not valid or not * registered in intr_vector[] * considered as a spurious mondo interrupt */ /* ARGSUSED */ void no_ivintr(struct regs *rp, int inum, int pil) { cmn_err(CE_WARN, "invalid vector intr: number 0x%x, pil 0x%x", inum, pil); #ifdef DEBUG_VEC_INTR prom_enter_mon(); #endif /* DEBUG_VEC_INTR */ } /* * no_intr_pool() * called by vec_interrupt() through sys_trap() * vector interrupt received but no intr_req entries */ /* ARGSUSED */ void no_intr_pool(struct regs *rp, int inum, int pil) { #ifdef DEBUG_VEC_INTR cmn_err(CE_WARN, "intr_req pool empty: num 0x%x, pil 0x%x", inum, pil); prom_enter_mon(); #else cmn_err(CE_PANIC, "intr_req pool empty: num 0x%x, pil 0x%x", inum, pil); #endif /* DEBUG_VEC_INTR */ } void intr_dequeue_req(uint_t pil, uint32_t inum) { struct intr_req *ir, *prev; struct machcpu *mcpu; uint32_t clr; extern uint_t getpstate(void); ASSERT((getpstate() & PSTATE_IE) == 0); mcpu = &CPU->cpu_m; /* Find a matching entry in the list */ prev = NULL; ir = mcpu->intr_head[pil]; while (ir != NULL) { if (ir->intr_number == inum) break; prev = ir; ir = ir->intr_next; } if (ir != NULL) { /* * Remove entry from list */ if (prev != NULL) prev->intr_next = ir->intr_next; /* non-head */ else mcpu->intr_head[pil] = ir->intr_next; /* head */ if (ir->intr_next == NULL) mcpu->intr_tail[pil] = prev; /* tail */ /* * Place on free list */ ir->intr_next = mcpu->intr_head[0]; mcpu->intr_head[0] = ir; } /* * clear pending interrupts at this level if the list is empty */ if (mcpu->intr_head[pil] == NULL) { clr = 1 << pil; if (pil == PIL_14) clr |= (TICK_INT_MASK | STICK_INT_MASK); wr_clr_softint(clr); } } /* * Send a directed interrupt of specified interrupt number id to a cpu. */ void send_dirint( int cpuix, /* cpu to be interrupted */ int intr_id) /* interrupt number id */ { xt_one(cpuix, setsoftint_tl1, intr_id, 0); } void init_intr_threads(struct cpu *cp) { int i; for (i = 0; i < NINTR_THREADS; i++) thread_create_intr(cp); cp->cpu_intr_stack = (caddr_t)segkp_get(segkp, INTR_STACK_SIZE, KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED) + INTR_STACK_SIZE - SA(MINFRAME); } /* * Take the specified CPU out of participation in interrupts. * Called by p_online(2) when a processor is being taken off-line. * This allows interrupt threads being handled on the processor to * complete before the processor is idled. */ int cpu_disable_intr(struct cpu *cp) { ASSERT(MUTEX_HELD(&cpu_lock)); /* * Turn off the CPU_ENABLE flag before calling the redistribution * function, since it checks for this in the cpu flags. */ cp->cpu_flags &= ~CPU_ENABLE; intr_redist_all_cpus(); return (0); } /* * Allow the specified CPU to participate in interrupts. * Called by p_online(2) if a processor could not be taken off-line * because of bound threads, in order to resume processing interrupts. * Also called after starting a processor. */ void cpu_enable_intr(struct cpu *cp) { ASSERT(MUTEX_HELD(&cpu_lock)); cp->cpu_flags |= CPU_ENABLE; intr_redist_all_cpus(); } /* * Add function to callback list for intr_redist_all_cpus. We keep two lists, * one for weighted callbacks and one for normal callbacks. Weighted callbacks * are issued to redirect interrupts of a specified weight, from heavy to * light. This allows all the interrupts of a given weight to be redistributed * for all weighted nexus drivers prior to those of less weight. */ static void intr_dist_add_list(struct intr_dist **phead, void (*func)(void *), void *arg) { struct intr_dist *new = kmem_alloc(sizeof (*new), KM_SLEEP); struct intr_dist *iptr; struct intr_dist **pptr; ASSERT(func); new->func = func; new->arg = arg; new->next = NULL; /* Add to tail so that redistribution occurs in original order. */ mutex_enter(&intr_dist_lock); for (iptr = *phead, pptr = phead; iptr != NULL; pptr = &iptr->next, iptr = iptr->next) { /* check for problems as we locate the tail */ if ((iptr->func == func) && (iptr->arg == arg)) { cmn_err(CE_PANIC, "intr_dist_add_list(): duplicate"); /*NOTREACHED*/ } } *pptr = new; mutex_exit(&intr_dist_lock); } void intr_dist_add(void (*func)(void *), void *arg) { intr_dist_add_list(&intr_dist_head, (void (*)(void *))func, arg); } void intr_dist_add_weighted(void (*func)(void *, int32_t, int32_t), void *arg) { intr_dist_add_list(&intr_dist_whead, (void (*)(void *))func, arg); } /* * Search for the interrupt distribution structure with the specified * mondo vec reg in the interrupt distribution list. If a match is found, * then delete the entry from the list. The caller is responsible for * modifying the mondo vector registers. */ static void intr_dist_rem_list(struct intr_dist **headp, void (*func)(void *), void *arg) { struct intr_dist *iptr; struct intr_dist **vect; mutex_enter(&intr_dist_lock); for (iptr = *headp, vect = headp; iptr != NULL; vect = &iptr->next, iptr = iptr->next) { if ((iptr->func == func) && (iptr->arg == arg)) { *vect = iptr->next; kmem_free(iptr, sizeof (struct intr_dist)); mutex_exit(&intr_dist_lock); return; } } if (!panicstr) cmn_err(CE_PANIC, "intr_dist_rem_list: not found"); mutex_exit(&intr_dist_lock); } void intr_dist_rem(void (*func)(void *), void *arg) { intr_dist_rem_list(&intr_dist_head, (void (*)(void *))func, arg); } void intr_dist_rem_weighted(void (*func)(void *, int32_t, int32_t), void *arg) { intr_dist_rem_list(&intr_dist_whead, (void (*)(void *))func, arg); } /* * Initiate interrupt redistribution. Redistribution improves the isolation * associated with interrupt weights by ordering operations from heavy weight * to light weight. When a CPUs orientation changes relative to interrupts, * there is *always* a redistribution to accommodate this change (call to * intr_redist_all_cpus()). As devices (not CPUs) attach/detach it is possible * that a redistribution could improve the quality of an initialization. For * example, if you are not using a NIC it may not be attached with s10 (devfs). * If you then configure the NIC (ifconfig), this may cause the NIC to attach * and plumb interrupts. The CPU assignment for the NIC's interrupts is * occurring late, so optimal "isolation" relative to weight is not occurring. * The same applies to detach, although in this case doing the redistribution * might improve "spread" for medium weight devices since the "isolation" of * a higher weight device may no longer be present. * * NB: We should provide a utility to trigger redistribution (ala "intradm -r"). * * NB: There is risk associated with automatically triggering execution of the * redistribution code at arbitrary times. The risk comes from the fact that * there is a lot of low-level hardware interaction associated with a * redistribution. At some point we may want this code to perform automatic * redistribution (redistribution thread; trigger timeout when add/remove * weight delta is large enough, and call cv_signal from timeout - causing * thead to call i_ddi_intr_redist_all_cpus()) but this is considered too * risky at this time. */ void i_ddi_intr_redist_all_cpus() { mutex_enter(&cpu_lock); INTR_DEBUG((CE_CONT, "intr_dist: i_ddi_intr_redist_all_cpus\n")); intr_redist_all_cpus(); mutex_exit(&cpu_lock); } /* * Redistribute all interrupts * * This function redistributes all interrupting devices, running the * parent callback functions for each node. */ void intr_redist_all_cpus(void) { struct cpu *cp; struct intr_dist *iptr; int32_t weight, max_weight; ASSERT(MUTEX_HELD(&cpu_lock)); mutex_enter(&intr_dist_lock); /* * zero cpu_intr_weight on all cpus - it is safe to traverse * cpu_list since we hold cpu_lock. */ cp = cpu_list; do { cp->cpu_intr_weight = 0; } while ((cp = cp->cpu_next) != cpu_list); /* * Assume that this redistribution may encounter a device weight * via driver.conf tuning of "ddi-intr-weight" that is at most * intr_dist_weight_maxfactor times larger. */ max_weight = intr_dist_weight_max * intr_dist_weight_maxfactor; if (max_weight > intr_dist_weight_maxmax) max_weight = intr_dist_weight_maxmax; intr_dist_weight_max = 1; INTR_DEBUG((CE_CONT, "intr_dist: " "intr_redist_all_cpus: %d-0\n", max_weight)); /* * Redistribute weighted, from heavy to light. The callback that * specifies a weight equal to weight_max should redirect all * interrupts of weight weight_max or greater [weight_max, inf.). * Interrupts of lesser weight should be processed on the call with * the matching weight. This allows all the heaver weight interrupts * on all weighted busses (multiple pci busses) to be redirected prior * to any lesser weight interrupts. */ for (weight = max_weight; weight >= 0; weight--) for (iptr = intr_dist_whead; iptr != NULL; iptr = iptr->next) ((void (*)(void *, int32_t, int32_t))iptr->func) (iptr->arg, max_weight, weight); /* redistribute normal (non-weighted) interrupts */ for (iptr = intr_dist_head; iptr != NULL; iptr = iptr->next) ((void (*)(void *))iptr->func)(iptr->arg); mutex_exit(&intr_dist_lock); } void intr_redist_all_cpus_shutdown(void) { intr_policy = INTR_CURRENT_CPU; intr_redist_all_cpus(); } /* * Determine what CPU to target, based on interrupt policy. * * INTR_FLAT_DIST: hold a current CPU pointer in a static variable and * advance through interrupt enabled cpus (round-robin). * * INTR_WEIGHTED_DIST: search for an enabled CPU with the lowest * cpu_intr_weight, round robin when all equal. * * Weighted interrupt distribution provides two things: "spread" of weight * (associated with algorithm itself) and "isolation" (associated with a * particular device weight). A redistribution is what provides optimal * "isolation" of heavy weight interrupts, optimal "spread" of weight * (relative to what came before) is always occurring. * * An interrupt weight is a subjective number that represents the * percentage of a CPU required to service a device's interrupts: the * default weight is 0% (however the algorithm still maintains * round-robin), a network interface controller (NIC) may have a large * weight (35%). Interrupt weight only has meaning relative to the * interrupt weight of other devices: a CPU can be weighted more than * 100%, and a single device might consume more than 100% of a CPU. * * A coarse interrupt weight can be defined by the parent nexus driver * based on bus specific information, like pci class codes. A nexus * driver that supports device interrupt weighting for its children * should call intr_dist_cpuid_add/rem_device_weight(), which adds * and removes the weight of a device from the CPU that an interrupt * is directed at. The quality of initialization improves when the * device interrupt weights more accuracy reflect actual run-time weights, * and as the assignments are ordered from is heavy to light. * * The implementation also supports interrupt weight being specified in * driver.conf files via the property "ddi-intr-weight", which takes * precedence over the nexus supplied weight. This support is added to * permit possible tweaking in the product in response to customer * problems. This is not a formal or committed interface. * * While a weighted approach chooses the CPU providing the best spread * given past weights, less than optimal isolation can result in cases * where heavy weight devices show up last. The nexus driver's interrupt * redistribution logic should use intr_dist_add/rem_weighted so that * interrupts can be redistributed heavy first for optimal isolation. */ uint32_t intr_dist_cpuid(void) { static struct cpu *curr_cpu; struct cpu *start_cpu; struct cpu *new_cpu; struct cpu *cp; int cpuid = -1; /* Establish exclusion for curr_cpu and cpu_intr_weight manipulation */ mutex_enter(&intr_dist_cpu_lock); switch (intr_policy) { case INTR_CURRENT_CPU: cpuid = CPU->cpu_id; break; case INTR_BOOT_CPU: panic("INTR_BOOT_CPU no longer supported."); /*NOTREACHED*/ case INTR_FLAT_DIST: case INTR_WEIGHTED_DIST: default: /* * Ensure that curr_cpu is valid - cpu_next will be NULL if * the cpu has been deleted (cpu structs are never freed). */ if (curr_cpu == NULL || curr_cpu->cpu_next == NULL) curr_cpu = CPU; /* * Advance to online CPU after curr_cpu (round-robin). For * INTR_WEIGHTED_DIST we choose the cpu with the lightest * weight. For a nexus that does not support weight the * default weight of zero is used. We degrade to round-robin * behavior among equal weightes. The default weight is zero * and round-robin behavior continues. * * Disable preemption while traversing cpu_next_onln to * ensure the list does not change. This works because * modifiers of this list and other lists in a struct cpu * call pause_cpus() before making changes. */ kpreempt_disable(); cp = start_cpu = curr_cpu->cpu_next_onln; new_cpu = NULL; do { /* Skip CPUs with interrupts disabled */ if ((cp->cpu_flags & CPU_ENABLE) == 0) continue; if (intr_policy == INTR_FLAT_DIST) { /* select CPU */ new_cpu = cp; break; } else if ((new_cpu == NULL) || (cp->cpu_intr_weight < new_cpu->cpu_intr_weight)) { /* Choose if lighter weight */ new_cpu = cp; } } while ((cp = cp->cpu_next_onln) != start_cpu); ASSERT(new_cpu); cpuid = new_cpu->cpu_id; INTR_DEBUG((CE_CONT, "intr_dist: cpu %2d weight %3d: " "targeted\n", cpuid, new_cpu->cpu_intr_weight)); /* update static pointer for next round-robin */ curr_cpu = new_cpu; kpreempt_enable(); break; } mutex_exit(&intr_dist_cpu_lock); return (cpuid); } /* * Add or remove the the weight of a device from a CPUs interrupt weight. * * We expect nexus drivers to call intr_dist_cpuid_add/rem_device_weight for * their children to improve the overall quality of interrupt initialization. * * If a nexues shares the CPU returned by a single intr_dist_cpuid() call * among multiple devices (sharing ino) then the nexus should call * intr_dist_cpuid_add/rem_device_weight for each device separately. Devices * that share must specify the same cpuid. * * If a nexus driver is unable to determine the cpu at remove_intr time * for some of its interrupts, then it should not call add_device_weight - * intr_dist_cpuid will still provide round-robin. * * An established device weight (from dev_info node) takes precedence over * the weight passed in. If a device weight is not already established * then the passed in nexus weight is established. */ void intr_dist_cpuid_add_device_weight(uint32_t cpuid, dev_info_t *dip, int32_t nweight) { int32_t eweight; /* * For non-weighted policy everything has weight of zero (and we get * round-robin distribution from intr_dist_cpuid). * NB: intr_policy is limited to this file. A weighted nexus driver is * calls this rouitne even if intr_policy has been patched to * INTR_FLAG_DIST. */ ASSERT(dip); if (intr_policy != INTR_WEIGHTED_DIST) return; eweight = i_ddi_get_intr_weight(dip); INTR_DEBUG((CE_CONT, "intr_dist: cpu %2d weight %3d: +%2d/%2d for " "%s#%d/%s#%d\n", cpuid, cpu[cpuid]->cpu_intr_weight, nweight, eweight, ddi_driver_name(ddi_get_parent(dip)), ddi_get_instance(ddi_get_parent(dip)), ddi_driver_name(dip), ddi_get_instance(dip))); /* if no establish weight, establish nexus weight */ if (eweight < 0) { if (nweight > 0) (void) i_ddi_set_intr_weight(dip, nweight); else nweight = 0; } else nweight = eweight; /* use established weight */ /* Establish exclusion for cpu_intr_weight manipulation */ mutex_enter(&intr_dist_cpu_lock); cpu[cpuid]->cpu_intr_weight += nweight; /* update intr_dist_weight_max */ if (nweight > intr_dist_weight_max) intr_dist_weight_max = nweight; mutex_exit(&intr_dist_cpu_lock); } void intr_dist_cpuid_rem_device_weight(uint32_t cpuid, dev_info_t *dip) { struct cpu *cp; int32_t weight; ASSERT(dip); if (intr_policy != INTR_WEIGHTED_DIST) return; /* remove weight of device from cpu */ weight = i_ddi_get_intr_weight(dip); if (weight < 0) weight = 0; INTR_DEBUG((CE_CONT, "intr_dist: cpu %2d weight %3d: -%2d for " "%s#%d/%s#%d\n", cpuid, cpu[cpuid]->cpu_intr_weight, weight, ddi_driver_name(ddi_get_parent(dip)), ddi_get_instance(ddi_get_parent(dip)), ddi_driver_name(dip), ddi_get_instance(dip))); /* Establish exclusion for cpu_intr_weight manipulation */ mutex_enter(&intr_dist_cpu_lock); cp = cpu[cpuid]; cp->cpu_intr_weight -= weight; if (cp->cpu_intr_weight < 0) cp->cpu_intr_weight = 0; /* sanity */ mutex_exit(&intr_dist_cpu_lock); }