/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * Portions of this source code were derived from Berkeley 4.3 BSD * under license from the Regents of the University of California. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * VM - segment for non-faulting loads. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Private seg op routines. */ static int segnf_dup(struct seg *seg, struct seg *newseg); static int segnf_unmap(struct seg *seg, caddr_t addr, size_t len); static void segnf_free(struct seg *seg); static faultcode_t segnf_nomap(void); static int segnf_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot); static int segnf_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot); static void segnf_badop(void); static int segnf_nop(void); static int segnf_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv); static u_offset_t segnf_getoffset(struct seg *seg, caddr_t addr); static int segnf_gettype(struct seg *seg, caddr_t addr); static int segnf_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp); static void segnf_dump(struct seg *seg); static int segnf_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp, enum lock_type type, enum seg_rw rw); static int segnf_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc); static int segnf_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp); static lgrp_mem_policy_info_t *segnf_getpolicy(struct seg *seg, caddr_t addr); struct seg_ops segnf_ops = { segnf_dup, segnf_unmap, segnf_free, (faultcode_t (*)(struct hat *, struct seg *, caddr_t, size_t, enum fault_type, enum seg_rw)) segnf_nomap, /* fault */ (faultcode_t (*)(struct seg *, caddr_t)) segnf_nomap, /* faulta */ segnf_setprot, segnf_checkprot, (int (*)())segnf_badop, /* kluster */ (size_t (*)(struct seg *))NULL, /* swapout */ (int (*)(struct seg *, caddr_t, size_t, int, uint_t)) segnf_nop, /* sync */ (size_t (*)(struct seg *, caddr_t, size_t, char *)) segnf_nop, /* incore */ (int (*)(struct seg *, caddr_t, size_t, int, int, ulong_t *, size_t)) segnf_nop, /* lockop */ segnf_getprot, segnf_getoffset, segnf_gettype, segnf_getvp, (int (*)(struct seg *, caddr_t, size_t, uint_t)) segnf_nop, /* advise */ segnf_dump, segnf_pagelock, segnf_setpagesize, segnf_getmemid, segnf_getpolicy, }; /* * vnode and page for the page of zeros we use for the nf mappings. */ static kmutex_t segnf_lock; static struct vnode zvp; static struct page **zpp; #define addr_to_vcolor(addr) \ (shm_alignment) ? \ ((int)(((uintptr_t)(addr) & (shm_alignment - 1)) >> PAGESHIFT)) : 0 /* * We try to limit the number of Non-fault segments created. * Non fault segments are created to optimize sparc V9 code which uses * the sparc nonfaulting load ASI (ASI_PRIMARY_NOFAULT). * * There are several reasons why creating too many non-fault segments * could cause problems. * * First, excessive allocation of kernel resources for the seg * structures and the HAT data to map the zero pages. * * Secondly, creating nofault segments actually uses up user virtual * address space. This makes it unavailable for subsequent mmap(0, ...) * calls which use as_gap() to find empty va regions. Creation of too * many nofault segments could thus interfere with the ability of the * runtime linker to load a shared object. */ #define MAXSEGFORNF (10000) #define MAXNFSEARCH (5) /* * Must be called from startup() */ void segnf_init() { mutex_init(&segnf_lock, NULL, MUTEX_DEFAULT, NULL); } /* * Create a no-fault segment. * * The no-fault segment is not technically necessary, as the code in * nfload() in trap.c will emulate the SPARC instruction and load * a value of zero in the destination register. * * However, this code tries to put a page of zero's at the nofault address * so that subsequent non-faulting loads to the same page will not * trap with a tlb miss. * * In order to help limit the number of segments we merge adjacent nofault * segments into a single segment. If we get a large number of segments * we'll also try to delete a random other nf segment. */ /* ARGSUSED */ int segnf_create(struct seg *seg, void *argsp) { uint_t prot; pgcnt_t vacpgs; u_offset_t off = 0; caddr_t vaddr = NULL; int i, color; struct seg *s1; struct seg *s2; size_t size; struct as *as = seg->s_as; ASSERT(as && AS_WRITE_HELD(as, &as->a_lock)); /* * Need a page per virtual color or just 1 if no vac. */ mutex_enter(&segnf_lock); if (zpp == NULL) { struct seg kseg; vacpgs = 1; if (shm_alignment > PAGESIZE) { vacpgs = shm_alignment >> PAGESHIFT; } zpp = kmem_alloc(sizeof (*zpp) * vacpgs, KM_SLEEP); kseg.s_as = &kas; for (i = 0; i < vacpgs; i++, off += PAGESIZE, vaddr += PAGESIZE) { zpp[i] = page_create_va(&zvp, off, PAGESIZE, PG_WAIT | PG_NORELOC, &kseg, vaddr); page_io_unlock(zpp[i]); page_downgrade(zpp[i]); pagezero(zpp[i], 0, PAGESIZE); } } mutex_exit(&segnf_lock); hat_map(as->a_hat, seg->s_base, seg->s_size, HAT_MAP); /* * s_data can't be NULL because of ASSERTS in the common vm code. */ seg->s_ops = &segnf_ops; seg->s_data = seg; seg->s_flags |= S_PURGE; mutex_enter(&as->a_contents); as->a_flags |= AS_NEEDSPURGE; mutex_exit(&as->a_contents); prot = PROT_READ; color = addr_to_vcolor(seg->s_base); if (as != &kas) prot |= PROT_USER; hat_memload(as->a_hat, seg->s_base, zpp[color], prot | HAT_NOFAULT, HAT_LOAD); /* * At this point see if we can concatenate a segment to * a non-fault segment immediately before and/or after it. */ if ((s1 = AS_SEGPREV(as, seg)) != NULL && s1->s_ops == &segnf_ops && s1->s_base + s1->s_size == seg->s_base) { size = s1->s_size; seg_free(s1); seg->s_base -= size; seg->s_size += size; } if ((s2 = AS_SEGNEXT(as, seg)) != NULL && s2->s_ops == &segnf_ops && seg->s_base + seg->s_size == s2->s_base) { size = s2->s_size; seg_free(s2); seg->s_size += size; } /* * if we already have a lot of segments, try to delete some other * nofault segment to reduce the probability of uncontrolled segment * creation. * * the code looks around quickly (no more than MAXNFSEARCH segments * each way) for another NF segment and then deletes it. */ if (avl_numnodes(&as->a_segtree) > MAXSEGFORNF) { size = 0; s2 = NULL; s1 = AS_SEGPREV(as, seg); while (size++ < MAXNFSEARCH && s1 != NULL) { if (s1->s_ops == &segnf_ops) s2 = s1; s1 = AS_SEGPREV(s1->s_as, seg); } if (s2 == NULL) { s1 = AS_SEGNEXT(as, seg); while (size-- > 0 && s1 != NULL) { if (s1->s_ops == &segnf_ops) s2 = s1; s1 = AS_SEGNEXT(as, seg); } } if (s2 != NULL) seg_unmap(s2); } return (0); } /* * Never really need "No fault" segments, so they aren't dup'd. */ /* ARGSUSED */ static int segnf_dup(struct seg *seg, struct seg *newseg) { panic("segnf_dup"); return (0); } /* * Split a segment at addr for length len. */ static int segnf_unmap(struct seg *seg, caddr_t addr, size_t len) { ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock)); /* * Check for bad sizes. */ if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size || (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) { cmn_err(CE_PANIC, "segnf_unmap: bad unmap size"); } /* * Unload any hardware translations in the range to be taken out. */ hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD_UNMAP); if (addr == seg->s_base && len == seg->s_size) { /* * Freeing entire segment. */ seg_free(seg); } else if (addr == seg->s_base) { /* * Freeing the beginning of the segment. */ seg->s_base += len; seg->s_size -= len; } else if (addr + len == seg->s_base + seg->s_size) { /* * Freeing the end of the segment. */ seg->s_size -= len; } else { /* * The section to go is in the middle of the segment, so we * have to cut it into two segments. We shrink the existing * "seg" at the low end, and create "nseg" for the high end. */ caddr_t nbase = addr + len; size_t nsize = (seg->s_base + seg->s_size) - nbase; struct seg *nseg; /* * Trim down "seg" before trying to stick "nseg" into the as. */ seg->s_size = addr - seg->s_base; nseg = seg_alloc(seg->s_as, nbase, nsize); if (nseg == NULL) cmn_err(CE_PANIC, "segnf_unmap: seg_alloc failed"); /* * s_data can't be NULL because of ASSERTs in common VM code. */ nseg->s_ops = seg->s_ops; nseg->s_data = nseg; nseg->s_flags |= S_PURGE; mutex_enter(&seg->s_as->a_contents); seg->s_as->a_flags |= AS_NEEDSPURGE; mutex_exit(&seg->s_as->a_contents); } return (0); } /* * Free a segment. */ static void segnf_free(struct seg *seg) { ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock)); } /* * No faults allowed on segnf. */ static faultcode_t segnf_nomap(void) { return (FC_NOMAP); } /* ARGSUSED */ static int segnf_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot) { ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); return (EACCES); } /* ARGSUSED */ static int segnf_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot) { uint_t sprot; ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); sprot = seg->s_as == &kas ? PROT_READ : PROT_READ|PROT_USER; return ((prot & sprot) == prot ? 0 : EACCES); } static void segnf_badop(void) { panic("segnf_badop"); /*NOTREACHED*/ } static int segnf_nop(void) { return (0); } static int segnf_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv) { size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1; size_t p; ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); for (p = 0; p < pgno; ++p) protv[p] = PROT_READ; return (0); } /* ARGSUSED */ static u_offset_t segnf_getoffset(struct seg *seg, caddr_t addr) { ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); return ((u_offset_t)0); } /* ARGSUSED */ static int segnf_gettype(struct seg *seg, caddr_t addr) { ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); return (MAP_SHARED); } /* ARGSUSED */ static int segnf_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp) { ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); *vpp = &zvp; return (0); } /* * segnf pages are not dumped, so we just return */ /* ARGSUSED */ static void segnf_dump(struct seg *seg) {} /*ARGSUSED*/ static int segnf_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp, enum lock_type type, enum seg_rw rw) { return (ENOTSUP); } /*ARGSUSED*/ static int segnf_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc) { return (ENOTSUP); } /*ARGSUSED*/ static int segnf_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) { return (ENODEV); } /*ARGSUSED*/ static lgrp_mem_policy_info_t * segnf_getpolicy(struct seg *seg, caddr_t addr) { return (NULL); }