/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. * Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T * All Rights Reserved */ #pragma ident "%Z%%M% %I% %E% SMI" /* * General assembly language routines. * It is the intent of this file to contain routines that are * independent of the specific kernel architecture, and those that are * common across kernel architectures. * As architectures diverge, and implementations of specific * architecture-dependent routines change, the routines should be moved * from this file into the respective ../`arch -k`/subr.s file. */ #include #include #include #include #include #include #include #include #include #if defined(__lint) #include #include #include #include #include #include #include #else /* __lint */ #include "assym.h" #endif /* __lint */ #include /* * on_fault() * Catch lofault faults. Like setjmp except it returns one * if code following causes uncorrectable fault. Turned off * by calling no_fault(). */ #if defined(__lint) /* ARGSUSED */ int on_fault(label_t *ljb) { return (0); } void no_fault(void) {} #else /* __lint */ #if defined(__amd64) ENTRY(on_fault) movq %gs:CPU_THREAD, %rsi leaq catch_fault(%rip), %rdx movq %rdi, T_ONFAULT(%rsi) /* jumpbuf in t_onfault */ movq %rdx, T_LOFAULT(%rsi) /* catch_fault in t_lofault */ jmp setjmp /* let setjmp do the rest */ catch_fault: movq %gs:CPU_THREAD, %rsi movq T_ONFAULT(%rsi), %rdi /* address of save area */ xorl %eax, %eax movq %rax, T_ONFAULT(%rsi) /* turn off onfault */ movq %rax, T_LOFAULT(%rsi) /* turn off lofault */ jmp longjmp /* let longjmp do the rest */ SET_SIZE(on_fault) ENTRY(no_fault) movq %gs:CPU_THREAD, %rsi xorl %eax, %eax movq %rax, T_ONFAULT(%rsi) /* turn off onfault */ movq %rax, T_LOFAULT(%rsi) /* turn off lofault */ ret SET_SIZE(no_fault) #elif defined(__i386) ENTRY(on_fault) movl %gs:CPU_THREAD, %edx movl 4(%esp), %eax /* jumpbuf address */ leal catch_fault, %ecx movl %eax, T_ONFAULT(%edx) /* jumpbuf in t_onfault */ movl %ecx, T_LOFAULT(%edx) /* catch_fault in t_lofault */ jmp setjmp /* let setjmp do the rest */ catch_fault: movl %gs:CPU_THREAD, %edx xorl %eax, %eax movl T_ONFAULT(%edx), %ecx /* address of save area */ movl %eax, T_ONFAULT(%edx) /* turn off onfault */ movl %eax, T_LOFAULT(%edx) /* turn off lofault */ pushl %ecx call longjmp /* let longjmp do the rest */ SET_SIZE(on_fault) ENTRY(no_fault) movl %gs:CPU_THREAD, %edx xorl %eax, %eax movl %eax, T_ONFAULT(%edx) /* turn off onfault */ movl %eax, T_LOFAULT(%edx) /* turn off lofault */ ret SET_SIZE(no_fault) #endif /* __i386 */ #endif /* __lint */ /* * Default trampoline code for on_trap() (see ). We just * do a longjmp(&curthread->t_ontrap->ot_jmpbuf) if this is ever called. */ #if defined(lint) void on_trap_trampoline(void) {} #else /* __lint */ #if defined(__amd64) ENTRY(on_trap_trampoline) movq %gs:CPU_THREAD, %rsi movq T_ONTRAP(%rsi), %rdi addq $OT_JMPBUF, %rdi jmp longjmp SET_SIZE(on_trap_trampoline) #elif defined(__i386) ENTRY(on_trap_trampoline) movl %gs:CPU_THREAD, %eax movl T_ONTRAP(%eax), %eax addl $OT_JMPBUF, %eax pushl %eax call longjmp SET_SIZE(on_trap_trampoline) #endif /* __i386 */ #endif /* __lint */ /* * Push a new element on to the t_ontrap stack. Refer to for * more information about the on_trap() mechanism. If the on_trap_data is the * same as the topmost stack element, we just modify that element. */ #if defined(lint) /*ARGSUSED*/ int on_trap(on_trap_data_t *otp, uint_t prot) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(on_trap) movw %si, OT_PROT(%rdi) /* ot_prot = prot */ movw $0, OT_TRAP(%rdi) /* ot_trap = 0 */ leaq on_trap_trampoline(%rip), %rdx /* rdx = &on_trap_trampoline */ movq %rdx, OT_TRAMPOLINE(%rdi) /* ot_trampoline = rdx */ xorl %ecx, %ecx movq %rcx, OT_HANDLE(%rdi) /* ot_handle = NULL */ movq %rcx, OT_PAD1(%rdi) /* ot_pad1 = NULL */ movq %gs:CPU_THREAD, %rdx /* rdx = curthread */ movq T_ONTRAP(%rdx), %rcx /* rcx = curthread->t_ontrap */ cmpq %rdi, %rcx /* if (otp == %rcx) */ je 0f /* don't modify t_ontrap */ movq %rcx, OT_PREV(%rdi) /* ot_prev = t_ontrap */ movq %rdi, T_ONTRAP(%rdx) /* curthread->t_ontrap = otp */ 0: addq $OT_JMPBUF, %rdi /* &ot_jmpbuf */ jmp setjmp SET_SIZE(on_trap) #elif defined(__i386) ENTRY(on_trap) movl 4(%esp), %eax /* %eax = otp */ movl 8(%esp), %edx /* %edx = prot */ movw %dx, OT_PROT(%eax) /* ot_prot = prot */ movw $0, OT_TRAP(%eax) /* ot_trap = 0 */ leal on_trap_trampoline, %edx /* %edx = &on_trap_trampoline */ movl %edx, OT_TRAMPOLINE(%eax) /* ot_trampoline = %edx */ movl $0, OT_HANDLE(%eax) /* ot_handle = NULL */ movl $0, OT_PAD1(%eax) /* ot_pad1 = NULL */ movl %gs:CPU_THREAD, %edx /* %edx = curthread */ movl T_ONTRAP(%edx), %ecx /* %ecx = curthread->t_ontrap */ cmpl %eax, %ecx /* if (otp == %ecx) */ je 0f /* don't modify t_ontrap */ movl %ecx, OT_PREV(%eax) /* ot_prev = t_ontrap */ movl %eax, T_ONTRAP(%edx) /* curthread->t_ontrap = otp */ 0: addl $OT_JMPBUF, %eax /* %eax = &ot_jmpbuf */ movl %eax, 4(%esp) /* put %eax back on the stack */ jmp setjmp /* let setjmp do the rest */ SET_SIZE(on_trap) #endif /* __i386 */ #endif /* __lint */ /* * Setjmp and longjmp implement non-local gotos using state vectors * type label_t. */ #if defined(__lint) /* ARGSUSED */ int setjmp(label_t *lp) { return (0); } /* ARGSUSED */ void longjmp(label_t *lp) {} #else /* __lint */ #if LABEL_PC != 0 #error LABEL_PC MUST be defined as 0 for setjmp/longjmp to work as coded #endif /* LABEL_PC != 0 */ #if defined(__amd64) ENTRY(setjmp) movq %rsp, LABEL_SP(%rdi) movq %rbp, LABEL_RBP(%rdi) movq %rbx, LABEL_RBX(%rdi) movq %r12, LABEL_R12(%rdi) movq %r13, LABEL_R13(%rdi) movq %r14, LABEL_R14(%rdi) movq %r15, LABEL_R15(%rdi) movq (%rsp), %rdx /* return address */ movq %rdx, (%rdi) /* LABEL_PC is 0 */ xorl %eax, %eax /* return 0 */ ret SET_SIZE(setjmp) ENTRY(longjmp) movq LABEL_SP(%rdi), %rsp movq LABEL_RBP(%rdi), %rbp movq LABEL_RBX(%rdi), %rbx movq LABEL_R12(%rdi), %r12 movq LABEL_R13(%rdi), %r13 movq LABEL_R14(%rdi), %r14 movq LABEL_R15(%rdi), %r15 movq (%rdi), %rdx /* return address; LABEL_PC is 0 */ movq %rdx, (%rsp) xorl %eax, %eax incl %eax /* return 1 */ ret SET_SIZE(longjmp) #elif defined(__i386) ENTRY(setjmp) movl 4(%esp), %edx /* address of save area */ movl %ebp, LABEL_EBP(%edx) movl %ebx, LABEL_EBX(%edx) movl %esi, LABEL_ESI(%edx) movl %edi, LABEL_EDI(%edx) movl %esp, 4(%edx) movl (%esp), %ecx /* %eip (return address) */ movl %ecx, (%edx) /* LABEL_PC is 0 */ subl %eax, %eax /* return 0 */ ret SET_SIZE(setjmp) ENTRY(longjmp) movl 4(%esp), %edx /* address of save area */ movl LABEL_EBP(%edx), %ebp movl LABEL_EBX(%edx), %ebx movl LABEL_ESI(%edx), %esi movl LABEL_EDI(%edx), %edi movl 4(%edx), %esp movl (%edx), %ecx /* %eip (return addr); LABEL_PC is 0 */ movl $1, %eax addl $4, %esp /* pop ret adr */ jmp *%ecx /* indirect */ SET_SIZE(longjmp) #endif /* __i386 */ #endif /* __lint */ /* * if a() calls b() calls caller(), * caller() returns return address in a(). * (Note: We assume a() and b() are C routines which do the normal entry/exit * sequence.) */ #if defined(__lint) caddr_t caller(void) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(caller) movq 8(%rbp), %rax /* b()'s return pc, in a() */ ret SET_SIZE(caller) #elif defined(__i386) ENTRY(caller) movl 4(%ebp), %eax /* b()'s return pc, in a() */ ret SET_SIZE(caller) #endif /* __i386 */ #endif /* __lint */ /* * if a() calls callee(), callee() returns the * return address in a(); */ #if defined(__lint) caddr_t callee(void) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(callee) movq (%rsp), %rax /* callee()'s return pc, in a() */ ret SET_SIZE(callee) #elif defined(__i386) ENTRY(callee) movl (%esp), %eax /* callee()'s return pc, in a() */ ret SET_SIZE(callee) #endif /* __i386 */ #endif /* __lint */ /* * return the current frame pointer */ #if defined(__lint) greg_t getfp(void) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(getfp) movq %rbp, %rax ret SET_SIZE(getfp) #elif defined(__i386) ENTRY(getfp) movl %ebp, %eax ret SET_SIZE(getfp) #endif /* __i386 */ #endif /* __lint */ /* * Invalidate a single page table entry in the TLB */ #if defined(__lint) /* ARGSUSED */ void mmu_tlbflush_entry(caddr_t m) {} #else /* __lint */ #if defined(__amd64) ENTRY(mmu_tlbflush_entry) invlpg (%rdi) ret SET_SIZE(mmu_tlbflush_entry) #elif defined(__i386) ENTRY(mmu_tlbflush_entry) movl 4(%esp), %eax invlpg (%eax) ret SET_SIZE(mmu_tlbflush_entry) #endif /* __i386 */ #endif /* __lint */ /* * Get/Set the value of various control registers */ #if defined(__lint) ulong_t getcr0(void) { return (0); } /* ARGSUSED */ void setcr0(ulong_t value) {} ulong_t getcr2(void) { return (0); } ulong_t getcr3(void) { return (0); } #if !defined(__xpv) /* ARGSUSED */ void setcr3(ulong_t val) {} void reload_cr3(void) {} #endif ulong_t getcr4(void) { return (0); } /* ARGSUSED */ void setcr4(ulong_t val) {} #if defined(__amd64) ulong_t getcr8(void) { return (0); } /* ARGSUSED */ void setcr8(ulong_t val) {} #endif /* __amd64 */ #else /* __lint */ #if defined(__amd64) ENTRY(getcr0) movq %cr0, %rax ret SET_SIZE(getcr0) ENTRY(setcr0) movq %rdi, %cr0 ret SET_SIZE(setcr0) ENTRY(getcr2) #if defined(__xpv) movq %gs:CPU_VCPU_INFO, %rax movq VCPU_INFO_ARCH_CR2(%rax), %rax #else movq %cr2, %rax #endif ret SET_SIZE(getcr2) ENTRY(getcr3) movq %cr3, %rax ret SET_SIZE(getcr3) #if !defined(__xpv) ENTRY(setcr3) movq %rdi, %cr3 ret SET_SIZE(setcr3) ENTRY(reload_cr3) movq %cr3, %rdi movq %rdi, %cr3 ret SET_SIZE(reload_cr3) #endif /* __xpv */ ENTRY(getcr4) movq %cr4, %rax ret SET_SIZE(getcr4) ENTRY(setcr4) movq %rdi, %cr4 ret SET_SIZE(setcr4) ENTRY(getcr8) movq %cr8, %rax ret SET_SIZE(getcr8) ENTRY(setcr8) movq %rdi, %cr8 ret SET_SIZE(setcr8) #elif defined(__i386) ENTRY(getcr0) movl %cr0, %eax ret SET_SIZE(getcr0) ENTRY(setcr0) movl 4(%esp), %eax movl %eax, %cr0 ret SET_SIZE(setcr0) ENTRY(getcr2) #if defined(__xpv) movl %gs:CPU_VCPU_INFO, %eax movl VCPU_INFO_ARCH_CR2(%eax), %eax #else movl %cr2, %eax #endif ret SET_SIZE(getcr2) ENTRY(getcr3) movl %cr3, %eax ret SET_SIZE(getcr3) #if !defined(__xpv) ENTRY(setcr3) movl 4(%esp), %eax movl %eax, %cr3 ret SET_SIZE(setcr3) ENTRY(reload_cr3) movl %cr3, %eax movl %eax, %cr3 ret SET_SIZE(reload_cr3) #endif /* __xpv */ ENTRY(getcr4) movl %cr4, %eax ret SET_SIZE(getcr4) ENTRY(setcr4) movl 4(%esp), %eax movl %eax, %cr4 ret SET_SIZE(setcr4) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /*ARGSUSED*/ uint32_t __cpuid_insn(struct cpuid_regs *regs) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(__cpuid_insn) movq %rbx, %r8 movq %rcx, %r9 movq %rdx, %r11 movl (%rdi), %eax /* %eax = regs->cp_eax */ movl 0x4(%rdi), %ebx /* %ebx = regs->cp_ebx */ movl 0x8(%rdi), %ecx /* %ecx = regs->cp_ecx */ movl 0xc(%rdi), %edx /* %edx = regs->cp_edx */ cpuid movl %eax, (%rdi) /* regs->cp_eax = %eax */ movl %ebx, 0x4(%rdi) /* regs->cp_ebx = %ebx */ movl %ecx, 0x8(%rdi) /* regs->cp_ecx = %ecx */ movl %edx, 0xc(%rdi) /* regs->cp_edx = %edx */ movq %r8, %rbx movq %r9, %rcx movq %r11, %rdx ret SET_SIZE(__cpuid_insn) #elif defined(__i386) ENTRY(__cpuid_insn) pushl %ebp movl 0x8(%esp), %ebp /* %ebp = regs */ pushl %ebx pushl %ecx pushl %edx movl (%ebp), %eax /* %eax = regs->cp_eax */ movl 0x4(%ebp), %ebx /* %ebx = regs->cp_ebx */ movl 0x8(%ebp), %ecx /* %ecx = regs->cp_ecx */ movl 0xc(%ebp), %edx /* %edx = regs->cp_edx */ cpuid movl %eax, (%ebp) /* regs->cp_eax = %eax */ movl %ebx, 0x4(%ebp) /* regs->cp_ebx = %ebx */ movl %ecx, 0x8(%ebp) /* regs->cp_ecx = %ecx */ movl %edx, 0xc(%ebp) /* regs->cp_edx = %edx */ popl %edx popl %ecx popl %ebx popl %ebp ret SET_SIZE(__cpuid_insn) #endif /* __i386 */ #endif /* __lint */ #if defined(__xpv) /* * Defined in C */ #else #if defined(__lint) /*ARGSUSED*/ void i86_monitor(volatile uint32_t *addr, uint32_t extensions, uint32_t hints) { return; } #else /* __lint */ #if defined(__amd64) ENTRY_NP(i86_monitor) pushq %rbp movq %rsp, %rbp movq %rdi, %rax /* addr */ movq %rsi, %rcx /* extensions */ /* rdx contains input arg3: hints */ .byte 0x0f, 0x01, 0xc8 /* monitor */ leave ret SET_SIZE(i86_monitor) #elif defined(__i386) ENTRY_NP(i86_monitor) pushl %ebp movl %esp, %ebp movl 0x8(%ebp),%eax /* addr */ movl 0xc(%ebp),%ecx /* extensions */ movl 0x10(%ebp),%edx /* hints */ .byte 0x0f, 0x01, 0xc8 /* monitor */ leave ret SET_SIZE(i86_monitor) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /*ARGSUSED*/ void i86_mwait(uint32_t data, uint32_t extensions) { return; } #else /* __lint */ #if defined(__amd64) ENTRY_NP(i86_mwait) pushq %rbp movq %rsp, %rbp movq %rdi, %rax /* data */ movq %rsi, %rcx /* extensions */ .byte 0x0f, 0x01, 0xc9 /* mwait */ leave ret SET_SIZE(i86_mwait) #elif defined(__i386) ENTRY_NP(i86_mwait) pushl %ebp movl %esp, %ebp movl 0x8(%ebp),%eax /* data */ movl 0xc(%ebp),%ecx /* extensions */ .byte 0x0f, 0x01, 0xc9 /* mwait */ leave ret SET_SIZE(i86_mwait) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) hrtime_t tsc_read(void) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY_NP(tsc_read) movq %rbx, %r11 movl $0, %eax cpuid rdtsc movq %r11, %rbx shlq $32, %rdx orq %rdx, %rax ret .globl _tsc_mfence_start _tsc_mfence_start: mfence rdtsc shlq $32, %rdx orq %rdx, %rax ret .globl _tsc_mfence_end _tsc_mfence_end: .globl _tscp_start _tscp_start: .byte 0x0f, 0x01, 0xf9 /* rdtscp instruction */ shlq $32, %rdx orq %rdx, %rax ret .globl _tscp_end _tscp_end: .globl _no_rdtsc_start _no_rdtsc_start: xorl %edx, %edx xorl %eax, %eax ret .globl _no_rdtsc_end _no_rdtsc_end: .globl _tsc_lfence_start _tsc_lfence_start: lfence rdtsc shlq $32, %rdx orq %rdx, %rax ret .globl _tsc_lfence_end _tsc_lfence_end: SET_SIZE(tsc_read) #else /* __i386 */ ENTRY_NP(tsc_read) pushl %ebx movl $0, %eax cpuid rdtsc popl %ebx ret .globl _tsc_mfence_start _tsc_mfence_start: mfence rdtsc ret .globl _tsc_mfence_end _tsc_mfence_end: .globl _tscp_start _tscp_start: .byte 0x0f, 0x01, 0xf9 /* rdtscp instruction */ ret .globl _tscp_end _tscp_end: .globl _no_rdtsc_start _no_rdtsc_start: xorl %edx, %edx xorl %eax, %eax ret .globl _no_rdtsc_end _no_rdtsc_end: .globl _tsc_lfence_start _tsc_lfence_start: lfence rdtsc ret .globl _tsc_lfence_end _tsc_lfence_end: SET_SIZE(tsc_read) #endif /* __i386 */ #endif /* __lint */ #endif /* __xpv */ #ifdef __lint /* * Do not use this function for obtaining clock tick. This * is called by callers who do not need to have a guarenteed * correct tick value. The proper routine to use is tsc_read(). */ hrtime_t randtick(void) { return (0); } #else #if defined(__amd64) ENTRY_NP(randtick) rdtsc shlq $32, %rdx orq %rdx, %rax ret SET_SIZE(randtick) #else ENTRY_NP(randtick) rdtsc ret SET_SIZE(randtick) #endif /* __i386 */ #endif /* __lint */ /* * Insert entryp after predp in a doubly linked list. */ #if defined(__lint) /*ARGSUSED*/ void _insque(caddr_t entryp, caddr_t predp) {} #else /* __lint */ #if defined(__amd64) ENTRY(_insque) movq (%rsi), %rax /* predp->forw */ movq %rsi, CPTRSIZE(%rdi) /* entryp->back = predp */ movq %rax, (%rdi) /* entryp->forw = predp->forw */ movq %rdi, (%rsi) /* predp->forw = entryp */ movq %rdi, CPTRSIZE(%rax) /* predp->forw->back = entryp */ ret SET_SIZE(_insque) #elif defined(__i386) ENTRY(_insque) movl 8(%esp), %edx movl 4(%esp), %ecx movl (%edx), %eax /* predp->forw */ movl %edx, CPTRSIZE(%ecx) /* entryp->back = predp */ movl %eax, (%ecx) /* entryp->forw = predp->forw */ movl %ecx, (%edx) /* predp->forw = entryp */ movl %ecx, CPTRSIZE(%eax) /* predp->forw->back = entryp */ ret SET_SIZE(_insque) #endif /* __i386 */ #endif /* __lint */ /* * Remove entryp from a doubly linked list */ #if defined(__lint) /*ARGSUSED*/ void _remque(caddr_t entryp) {} #else /* __lint */ #if defined(__amd64) ENTRY(_remque) movq (%rdi), %rax /* entry->forw */ movq CPTRSIZE(%rdi), %rdx /* entry->back */ movq %rax, (%rdx) /* entry->back->forw = entry->forw */ movq %rdx, CPTRSIZE(%rax) /* entry->forw->back = entry->back */ ret SET_SIZE(_remque) #elif defined(__i386) ENTRY(_remque) movl 4(%esp), %ecx movl (%ecx), %eax /* entry->forw */ movl CPTRSIZE(%ecx), %edx /* entry->back */ movl %eax, (%edx) /* entry->back->forw = entry->forw */ movl %edx, CPTRSIZE(%eax) /* entry->forw->back = entry->back */ ret SET_SIZE(_remque) #endif /* __i386 */ #endif /* __lint */ /* * Returns the number of * non-NULL bytes in string argument. */ #if defined(__lint) /* ARGSUSED */ size_t strlen(const char *str) { return (0); } #else /* __lint */ #if defined(__amd64) /* * This is close to a simple transliteration of a C version of this * routine. We should either just -make- this be a C version, or * justify having it in assembler by making it significantly faster. * * size_t * strlen(const char *s) * { * const char *s0; * #if defined(DEBUG) * if ((uintptr_t)s < KERNELBASE) * panic(.str_panic_msg); * #endif * for (s0 = s; *s; s++) * ; * return (s - s0); * } */ ENTRY(strlen) #ifdef DEBUG movq postbootkernelbase(%rip), %rax cmpq %rax, %rdi jae str_valid pushq %rbp movq %rsp, %rbp leaq .str_panic_msg(%rip), %rdi xorl %eax, %eax call panic #endif /* DEBUG */ str_valid: cmpb $0, (%rdi) movq %rdi, %rax je .null_found .align 4 .strlen_loop: incq %rdi cmpb $0, (%rdi) jne .strlen_loop .null_found: subq %rax, %rdi movq %rdi, %rax ret SET_SIZE(strlen) #elif defined(__i386) ENTRY(strlen) #ifdef DEBUG movl postbootkernelbase, %eax cmpl %eax, 4(%esp) jae str_valid pushl %ebp movl %esp, %ebp pushl $.str_panic_msg call panic #endif /* DEBUG */ str_valid: movl 4(%esp), %eax /* %eax = string address */ testl $3, %eax /* if %eax not word aligned */ jnz .not_word_aligned /* goto .not_word_aligned */ .align 4 .word_aligned: movl (%eax), %edx /* move 1 word from (%eax) to %edx */ movl $0x7f7f7f7f, %ecx andl %edx, %ecx /* %ecx = %edx & 0x7f7f7f7f */ addl $4, %eax /* next word */ addl $0x7f7f7f7f, %ecx /* %ecx += 0x7f7f7f7f */ orl %edx, %ecx /* %ecx |= %edx */ andl $0x80808080, %ecx /* %ecx &= 0x80808080 */ cmpl $0x80808080, %ecx /* if no null byte in this word */ je .word_aligned /* goto .word_aligned */ subl $4, %eax /* post-incremented */ .not_word_aligned: cmpb $0, (%eax) /* if a byte in (%eax) is null */ je .null_found /* goto .null_found */ incl %eax /* next byte */ testl $3, %eax /* if %eax not word aligned */ jnz .not_word_aligned /* goto .not_word_aligned */ jmp .word_aligned /* goto .word_aligned */ .align 4 .null_found: subl 4(%esp), %eax /* %eax -= string address */ ret SET_SIZE(strlen) #endif /* __i386 */ #ifdef DEBUG .text .str_panic_msg: .string "strlen: argument below kernelbase" #endif /* DEBUG */ #endif /* __lint */ /* * Berkley 4.3 introduced symbolically named interrupt levels * as a way deal with priority in a machine independent fashion. * Numbered priorities are machine specific, and should be * discouraged where possible. * * Note, for the machine specific priorities there are * examples listed for devices that use a particular priority. * It should not be construed that all devices of that * type should be at that priority. It is currently were * the current devices fit into the priority scheme based * upon time criticalness. * * The underlying assumption of these assignments is that * IPL 10 is the highest level from which a device * routine can call wakeup. Devices that interrupt from higher * levels are restricted in what they can do. If they need * kernels services they should schedule a routine at a lower * level (via software interrupt) to do the required * processing. * * Examples of this higher usage: * Level Usage * 14 Profiling clock (and PROM uart polling clock) * 12 Serial ports * * The serial ports request lower level processing on level 6. * * Also, almost all splN routines (where N is a number or a * mnemonic) will do a RAISE(), on the assumption that they are * never used to lower our priority. * The exceptions are: * spl8() Because you can't be above 15 to begin with! * splzs() Because this is used at boot time to lower our * priority, to allow the PROM to poll the uart. * spl0() Used to lower priority to 0. */ #if defined(__lint) int spl0(void) { return (0); } int spl6(void) { return (0); } int spl7(void) { return (0); } int spl8(void) { return (0); } int splhigh(void) { return (0); } int splhi(void) { return (0); } int splzs(void) { return (0); } /* ARGSUSED */ void splx(int level) {} #else /* __lint */ #if defined(__amd64) #define SETPRI(level) \ movl $/**/level, %edi; /* new priority */ \ jmp do_splx /* redirect to do_splx */ #define RAISE(level) \ movl $/**/level, %edi; /* new priority */ \ jmp splr /* redirect to splr */ #elif defined(__i386) #define SETPRI(level) \ pushl $/**/level; /* new priority */ \ call do_splx; /* invoke common splx code */ \ addl $4, %esp; /* unstack arg */ \ ret #define RAISE(level) \ pushl $/**/level; /* new priority */ \ call splr; /* invoke common splr code */ \ addl $4, %esp; /* unstack args */ \ ret #endif /* __i386 */ /* locks out all interrupts, including memory errors */ ENTRY(spl8) SETPRI(15) SET_SIZE(spl8) /* just below the level that profiling runs */ ENTRY(spl7) RAISE(13) SET_SIZE(spl7) /* sun specific - highest priority onboard serial i/o asy ports */ ENTRY(splzs) SETPRI(12) /* Can't be a RAISE, as it's used to lower us */ SET_SIZE(splzs) ENTRY(splhi) ALTENTRY(splhigh) ALTENTRY(spl6) ALTENTRY(i_ddi_splhigh) RAISE(DISP_LEVEL) SET_SIZE(i_ddi_splhigh) SET_SIZE(spl6) SET_SIZE(splhigh) SET_SIZE(splhi) /* allow all interrupts */ ENTRY(spl0) SETPRI(0) SET_SIZE(spl0) /* splx implentation */ ENTRY(splx) jmp do_splx /* redirect to common splx code */ SET_SIZE(splx) #endif /* __lint */ #if defined(__i386) /* * Read and write the %gs register */ #if defined(__lint) /*ARGSUSED*/ uint16_t getgs(void) { return (0); } /*ARGSUSED*/ void setgs(uint16_t sel) {} #else /* __lint */ ENTRY(getgs) clr %eax movw %gs, %ax ret SET_SIZE(getgs) ENTRY(setgs) movw 4(%esp), %gs ret SET_SIZE(setgs) #endif /* __lint */ #endif /* __i386 */ #if defined(__lint) void pc_reset(void) {} void efi_reset(void) {} #else /* __lint */ ENTRY(wait_500ms) push %ebx movl $50000, %ebx 1: call tenmicrosec decl %ebx jnz 1b pop %ebx ret SET_SIZE(wait_500ms) #define RESET_METHOD_KBC 1 #define RESET_METHOD_PORT92 2 #define RESET_METHOD_PCI 4 DGDEF3(pc_reset_methods, 4, 8) .long RESET_METHOD_KBC|RESET_METHOD_PORT92|RESET_METHOD_PCI; ENTRY(pc_reset) #if defined(__i386) testl $RESET_METHOD_KBC, pc_reset_methods #elif defined(__amd64) testl $RESET_METHOD_KBC, pc_reset_methods(%rip) #endif jz 1f / / Try the classic keyboard controller-triggered reset. / movw $0x64, %dx movb $0xfe, %al outb (%dx) / Wait up to 500 milliseconds here for the keyboard controller / to pull the reset line. On some systems where the keyboard / controller is slow to pull the reset line, the next reset method / may be executed (which may be bad if those systems hang when the / next reset method is used, e.g. Ferrari 3400 (doesn't like port 92), / and Ferrari 4000 (doesn't like the cf9 reset method)) call wait_500ms 1: #if defined(__i386) testl $RESET_METHOD_PORT92, pc_reset_methods #elif defined(__amd64) testl $RESET_METHOD_PORT92, pc_reset_methods(%rip) #endif jz 3f / / Try port 0x92 fast reset / movw $0x92, %dx inb (%dx) cmpb $0xff, %al / If port's not there, we should get back 0xFF je 1f testb $1, %al / If bit 0 jz 2f / is clear, jump to perform the reset andb $0xfe, %al / otherwise, outb (%dx) / clear bit 0 first, then 2: orb $1, %al / Set bit 0 outb (%dx) / and reset the system 1: call wait_500ms 3: #if defined(__i386) testl $RESET_METHOD_PCI, pc_reset_methods #elif defined(__amd64) testl $RESET_METHOD_PCI, pc_reset_methods(%rip) #endif jz 4f / Try the PCI (soft) reset vector (should work on all modern systems, / but has been shown to cause problems on 450NX systems, and some newer / systems (e.g. ATI IXP400-equipped systems)) / When resetting via this method, 2 writes are required. The first / targets bit 1 (0=hard reset without power cycle, 1=hard reset with / power cycle). / The reset occurs on the second write, during bit 2's transition from / 0->1. movw $0xcf9, %dx movb $0x2, %al / Reset mode = hard, no power cycle outb (%dx) movb $0x6, %al outb (%dx) call wait_500ms 4: / / port 0xcf9 failed also. Last-ditch effort is to / triple-fault the CPU. / Also, use triple fault for EFI firmware / ENTRY(efi_reset) #if defined(__amd64) pushq $0x0 pushq $0x0 / IDT base of 0, limit of 0 + 2 unused bytes lidt (%rsp) #elif defined(__i386) pushl $0x0 pushl $0x0 / IDT base of 0, limit of 0 + 2 unused bytes lidt (%esp) #endif int $0x0 / Trigger interrupt, generate triple-fault cli hlt / Wait forever /*NOTREACHED*/ SET_SIZE(efi_reset) SET_SIZE(pc_reset) #endif /* __lint */ /* * C callable in and out routines */ #if defined(__lint) /* ARGSUSED */ void outl(int port_address, uint32_t val) {} #else /* __lint */ #if defined(__amd64) ENTRY(outl) movw %di, %dx movl %esi, %eax outl (%dx) ret SET_SIZE(outl) #elif defined(__i386) .set PORT, 4 .set VAL, 8 ENTRY(outl) movw PORT(%esp), %dx movl VAL(%esp), %eax outl (%dx) ret SET_SIZE(outl) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /* ARGSUSED */ void outw(int port_address, uint16_t val) {} #else /* __lint */ #if defined(__amd64) ENTRY(outw) movw %di, %dx movw %si, %ax D16 outl (%dx) /* XX64 why not outw? */ ret SET_SIZE(outw) #elif defined(__i386) ENTRY(outw) movw PORT(%esp), %dx movw VAL(%esp), %ax D16 outl (%dx) ret SET_SIZE(outw) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /* ARGSUSED */ void outb(int port_address, uint8_t val) {} #else /* __lint */ #if defined(__amd64) ENTRY(outb) movw %di, %dx movb %sil, %al outb (%dx) ret SET_SIZE(outb) #elif defined(__i386) ENTRY(outb) movw PORT(%esp), %dx movb VAL(%esp), %al outb (%dx) ret SET_SIZE(outb) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /* ARGSUSED */ uint32_t inl(int port_address) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(inl) xorl %eax, %eax movw %di, %dx inl (%dx) ret SET_SIZE(inl) #elif defined(__i386) ENTRY(inl) movw PORT(%esp), %dx inl (%dx) ret SET_SIZE(inl) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /* ARGSUSED */ uint16_t inw(int port_address) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(inw) xorl %eax, %eax movw %di, %dx D16 inl (%dx) ret SET_SIZE(inw) #elif defined(__i386) ENTRY(inw) subl %eax, %eax movw PORT(%esp), %dx D16 inl (%dx) ret SET_SIZE(inw) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /* ARGSUSED */ uint8_t inb(int port_address) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(inb) xorl %eax, %eax movw %di, %dx inb (%dx) ret SET_SIZE(inb) #elif defined(__i386) ENTRY(inb) subl %eax, %eax movw PORT(%esp), %dx inb (%dx) ret SET_SIZE(inb) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /* ARGSUSED */ void repoutsw(int port, uint16_t *addr, int cnt) {} #else /* __lint */ #if defined(__amd64) ENTRY(repoutsw) movl %edx, %ecx movw %di, %dx rep D16 outsl ret SET_SIZE(repoutsw) #elif defined(__i386) /* * The arguments and saved registers are on the stack in the * following order: * | cnt | +16 * | *addr | +12 * | port | +8 * | eip | +4 * | esi | <-- %esp * If additional values are pushed onto the stack, make sure * to adjust the following constants accordingly. */ .set PORT, 8 .set ADDR, 12 .set COUNT, 16 ENTRY(repoutsw) pushl %esi movl PORT(%esp), %edx movl ADDR(%esp), %esi movl COUNT(%esp), %ecx rep D16 outsl popl %esi ret SET_SIZE(repoutsw) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /* ARGSUSED */ void repinsw(int port_addr, uint16_t *addr, int cnt) {} #else /* __lint */ #if defined(__amd64) ENTRY(repinsw) movl %edx, %ecx movw %di, %dx rep D16 insl ret SET_SIZE(repinsw) #elif defined(__i386) ENTRY(repinsw) pushl %edi movl PORT(%esp), %edx movl ADDR(%esp), %edi movl COUNT(%esp), %ecx rep D16 insl popl %edi ret SET_SIZE(repinsw) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /* ARGSUSED */ void repinsb(int port, uint8_t *addr, int count) {} #else /* __lint */ #if defined(__amd64) ENTRY(repinsb) movl %edx, %ecx movw %di, %dx movq %rsi, %rdi rep insb ret SET_SIZE(repinsb) #elif defined(__i386) /* * The arguments and saved registers are on the stack in the * following order: * | cnt | +16 * | *addr | +12 * | port | +8 * | eip | +4 * | esi | <-- %esp * If additional values are pushed onto the stack, make sure * to adjust the following constants accordingly. */ .set IO_PORT, 8 .set IO_ADDR, 12 .set IO_COUNT, 16 ENTRY(repinsb) pushl %edi movl IO_ADDR(%esp), %edi movl IO_COUNT(%esp), %ecx movl IO_PORT(%esp), %edx rep insb popl %edi ret SET_SIZE(repinsb) #endif /* __i386 */ #endif /* __lint */ /* * Input a stream of 32-bit words. * NOTE: count is a DWORD count. */ #if defined(__lint) /* ARGSUSED */ void repinsd(int port, uint32_t *addr, int count) {} #else /* __lint */ #if defined(__amd64) ENTRY(repinsd) movl %edx, %ecx movw %di, %dx movq %rsi, %rdi rep insl ret SET_SIZE(repinsd) #elif defined(__i386) ENTRY(repinsd) pushl %edi movl IO_ADDR(%esp), %edi movl IO_COUNT(%esp), %ecx movl IO_PORT(%esp), %edx rep insl popl %edi ret SET_SIZE(repinsd) #endif /* __i386 */ #endif /* __lint */ /* * Output a stream of bytes * NOTE: count is a byte count */ #if defined(__lint) /* ARGSUSED */ void repoutsb(int port, uint8_t *addr, int count) {} #else /* __lint */ #if defined(__amd64) ENTRY(repoutsb) movl %edx, %ecx movw %di, %dx rep outsb ret SET_SIZE(repoutsb) #elif defined(__i386) ENTRY(repoutsb) pushl %esi movl IO_ADDR(%esp), %esi movl IO_COUNT(%esp), %ecx movl IO_PORT(%esp), %edx rep outsb popl %esi ret SET_SIZE(repoutsb) #endif /* __i386 */ #endif /* __lint */ /* * Output a stream of 32-bit words * NOTE: count is a DWORD count */ #if defined(__lint) /* ARGSUSED */ void repoutsd(int port, uint32_t *addr, int count) {} #else /* __lint */ #if defined(__amd64) ENTRY(repoutsd) movl %edx, %ecx movw %di, %dx rep outsl ret SET_SIZE(repoutsd) #elif defined(__i386) ENTRY(repoutsd) pushl %esi movl IO_ADDR(%esp), %esi movl IO_COUNT(%esp), %ecx movl IO_PORT(%esp), %edx rep outsl popl %esi ret SET_SIZE(repoutsd) #endif /* __i386 */ #endif /* __lint */ /* * void int3(void) * void int18(void) * void int20(void) */ #if defined(__lint) void int3(void) {} void int18(void) {} void int20(void) {} #else /* __lint */ ENTRY(int3) int $T_BPTFLT ret SET_SIZE(int3) ENTRY(int18) int $T_MCE ret SET_SIZE(int18) ENTRY(int20) movl boothowto, %eax andl $RB_DEBUG, %eax jz 1f int $T_DBGENTR 1: rep; ret /* use 2 byte return instruction when branch target */ /* AMD Software Optimization Guide - Section 6.2 */ SET_SIZE(int20) #endif /* __lint */ #if defined(__lint) /* ARGSUSED */ int scanc(size_t size, uchar_t *cp, uchar_t *table, uchar_t mask) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(scanc) /* rdi == size */ /* rsi == cp */ /* rdx == table */ /* rcx == mask */ addq %rsi, %rdi /* end = &cp[size] */ .scanloop: cmpq %rdi, %rsi /* while (cp < end */ jnb .scandone movzbq (%rsi), %r8 /* %r8 = *cp */ incq %rsi /* cp++ */ testb %cl, (%r8, %rdx) jz .scanloop /* && (table[*cp] & mask) == 0) */ decq %rsi /* (fix post-increment) */ .scandone: movl %edi, %eax subl %esi, %eax /* return (end - cp) */ ret SET_SIZE(scanc) #elif defined(__i386) ENTRY(scanc) pushl %edi pushl %esi movb 24(%esp), %cl /* mask = %cl */ movl 16(%esp), %esi /* cp = %esi */ movl 20(%esp), %edx /* table = %edx */ movl %esi, %edi addl 12(%esp), %edi /* end = &cp[size]; */ .scanloop: cmpl %edi, %esi /* while (cp < end */ jnb .scandone movzbl (%esi), %eax /* %al = *cp */ incl %esi /* cp++ */ movb (%edx, %eax), %al /* %al = table[*cp] */ testb %al, %cl jz .scanloop /* && (table[*cp] & mask) == 0) */ dec %esi /* post-incremented */ .scandone: movl %edi, %eax subl %esi, %eax /* return (end - cp) */ popl %esi popl %edi ret SET_SIZE(scanc) #endif /* __i386 */ #endif /* __lint */ /* * Replacement functions for ones that are normally inlined. * In addition to the copy in i86.il, they are defined here just in case. */ #if defined(__lint) ulong_t intr_clear(void) { return (0); } ulong_t clear_int_flag(void) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(intr_clear) ENTRY(clear_int_flag) pushfq popq %rax #if defined(__xpv) leaq xpv_panicking, %rdi movl (%rdi), %edi cmpl $0, %edi jne 2f CLIRET(%rdi, %dl) /* returns event mask in %dl */ /* * Synthesize the PS_IE bit from the event mask bit */ andq $_BITNOT(PS_IE), %rax testb $1, %dl jnz 1f orq $PS_IE, %rax 1: ret 2: #endif CLI(%rdi) ret SET_SIZE(clear_int_flag) SET_SIZE(intr_clear) #elif defined(__i386) ENTRY(intr_clear) ENTRY(clear_int_flag) pushfl popl %eax #if defined(__xpv) leal xpv_panicking, %edx movl (%edx), %edx cmpl $0, %edx jne 2f CLIRET(%edx, %cl) /* returns event mask in %cl */ /* * Synthesize the PS_IE bit from the event mask bit */ andl $_BITNOT(PS_IE), %eax testb $1, %cl jnz 1f orl $PS_IE, %eax 1: ret 2: #endif CLI(%edx) ret SET_SIZE(clear_int_flag) SET_SIZE(intr_clear) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) struct cpu * curcpup(void) { return 0; } #else /* __lint */ #if defined(__amd64) ENTRY(curcpup) movq %gs:CPU_SELF, %rax ret SET_SIZE(curcpup) #elif defined(__i386) ENTRY(curcpup) movl %gs:CPU_SELF, %eax ret SET_SIZE(curcpup) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /* ARGSUSED */ uint32_t htonl(uint32_t i) { return (0); } /* ARGSUSED */ uint32_t ntohl(uint32_t i) { return (0); } #else /* __lint */ #if defined(__amd64) /* XX64 there must be shorter sequences for this */ ENTRY(htonl) ALTENTRY(ntohl) movl %edi, %eax bswap %eax ret SET_SIZE(ntohl) SET_SIZE(htonl) #elif defined(__i386) ENTRY(htonl) ALTENTRY(ntohl) movl 4(%esp), %eax bswap %eax ret SET_SIZE(ntohl) SET_SIZE(htonl) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /* ARGSUSED */ uint16_t htons(uint16_t i) { return (0); } /* ARGSUSED */ uint16_t ntohs(uint16_t i) { return (0); } #else /* __lint */ #if defined(__amd64) /* XX64 there must be better sequences for this */ ENTRY(htons) ALTENTRY(ntohs) movl %edi, %eax bswap %eax shrl $16, %eax ret SET_SIZE(ntohs) SET_SIZE(htons) #elif defined(__i386) ENTRY(htons) ALTENTRY(ntohs) movl 4(%esp), %eax bswap %eax shrl $16, %eax ret SET_SIZE(ntohs) SET_SIZE(htons) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /* ARGSUSED */ void intr_restore(ulong_t i) { return; } /* ARGSUSED */ void restore_int_flag(ulong_t i) { return; } #else /* __lint */ #if defined(__amd64) ENTRY(intr_restore) ENTRY(restore_int_flag) testq $PS_IE, %rdi jz 1f #if defined(__xpv) leaq xpv_panicking, %rsi movl (%rsi), %esi cmpl $0, %esi jne 1f /* * Since we're -really- running unprivileged, our attempt * to change the state of the IF bit will be ignored. * The virtual IF bit is tweaked by CLI and STI. */ IE_TO_EVENT_MASK(%rsi, %rdi) #else sti #endif 1: ret SET_SIZE(restore_int_flag) SET_SIZE(intr_restore) #elif defined(__i386) ENTRY(intr_restore) ENTRY(restore_int_flag) testl $PS_IE, 4(%esp) jz 1f #if defined(__xpv) leal xpv_panicking, %edx movl (%edx), %edx cmpl $0, %edx jne 1f /* * Since we're -really- running unprivileged, our attempt * to change the state of the IF bit will be ignored. * The virtual IF bit is tweaked by CLI and STI. */ IE_TO_EVENT_MASK(%edx, 4(%esp)) #else sti #endif 1: ret SET_SIZE(restore_int_flag) SET_SIZE(intr_restore) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) void sti(void) {} void cli(void) {} #else /* __lint */ ENTRY(sti) STI ret SET_SIZE(sti) ENTRY(cli) #if defined(__amd64) CLI(%rax) #elif defined(__i386) CLI(%eax) #endif /* __i386 */ ret SET_SIZE(cli) #endif /* __lint */ #if defined(__lint) dtrace_icookie_t dtrace_interrupt_disable(void) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(dtrace_interrupt_disable) pushfq popq %rax #if defined(__xpv) leaq xpv_panicking, %rdi movl (%rdi), %edi cmpl $0, %edi jne 1f CLIRET(%rdi, %dl) /* returns event mask in %dl */ /* * Synthesize the PS_IE bit from the event mask bit */ andq $_BITNOT(PS_IE), %rax testb $1, %dl jnz 1f orq $PS_IE, %rax 1: #else CLI(%rdx) #endif ret SET_SIZE(dtrace_interrupt_disable) #elif defined(__i386) ENTRY(dtrace_interrupt_disable) pushfl popl %eax #if defined(__xpv) leal xpv_panicking, %edx movl (%edx), %edx cmpl $0, %edx jne 1f CLIRET(%edx, %cl) /* returns event mask in %cl */ /* * Synthesize the PS_IE bit from the event mask bit */ andl $_BITNOT(PS_IE), %eax testb $1, %cl jnz 1f orl $PS_IE, %eax 1: #else CLI(%edx) #endif ret SET_SIZE(dtrace_interrupt_disable) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /*ARGSUSED*/ void dtrace_interrupt_enable(dtrace_icookie_t cookie) {} #else /* __lint */ #if defined(__amd64) ENTRY(dtrace_interrupt_enable) pushq %rdi popfq #if defined(__xpv) leaq xpv_panicking, %rdx movl (%rdx), %edx cmpl $0, %edx jne 1f /* * Since we're -really- running unprivileged, our attempt * to change the state of the IF bit will be ignored. The * virtual IF bit is tweaked by CLI and STI. */ IE_TO_EVENT_MASK(%rdx, %rdi) #endif ret SET_SIZE(dtrace_interrupt_enable) #elif defined(__i386) ENTRY(dtrace_interrupt_enable) movl 4(%esp), %eax pushl %eax popfl #if defined(__xpv) leal xpv_panicking, %edx movl (%edx), %edx cmpl $0, %edx jne 1f /* * Since we're -really- running unprivileged, our attempt * to change the state of the IF bit will be ignored. The * virtual IF bit is tweaked by CLI and STI. */ IE_TO_EVENT_MASK(%edx, %eax) #endif ret SET_SIZE(dtrace_interrupt_enable) #endif /* __i386 */ #endif /* __lint */ #if defined(lint) void dtrace_membar_producer(void) {} void dtrace_membar_consumer(void) {} #else /* __lint */ ENTRY(dtrace_membar_producer) rep; ret /* use 2 byte return instruction when branch target */ /* AMD Software Optimization Guide - Section 6.2 */ SET_SIZE(dtrace_membar_producer) ENTRY(dtrace_membar_consumer) rep; ret /* use 2 byte return instruction when branch target */ /* AMD Software Optimization Guide - Section 6.2 */ SET_SIZE(dtrace_membar_consumer) #endif /* __lint */ #if defined(__lint) kthread_id_t threadp(void) { return ((kthread_id_t)0); } #else /* __lint */ #if defined(__amd64) ENTRY(threadp) movq %gs:CPU_THREAD, %rax ret SET_SIZE(threadp) #elif defined(__i386) ENTRY(threadp) movl %gs:CPU_THREAD, %eax ret SET_SIZE(threadp) #endif /* __i386 */ #endif /* __lint */ /* * Checksum routine for Internet Protocol Headers */ #if defined(__lint) /* ARGSUSED */ unsigned int ip_ocsum( ushort_t *address, /* ptr to 1st message buffer */ int halfword_count, /* length of data */ unsigned int sum) /* partial checksum */ { int i; unsigned int psum = 0; /* partial sum */ for (i = 0; i < halfword_count; i++, address++) { psum += *address; } while ((psum >> 16) != 0) { psum = (psum & 0xffff) + (psum >> 16); } psum += sum; while ((psum >> 16) != 0) { psum = (psum & 0xffff) + (psum >> 16); } return (psum); } #else /* __lint */ #if defined(__amd64) ENTRY(ip_ocsum) pushq %rbp movq %rsp, %rbp #ifdef DEBUG movq postbootkernelbase(%rip), %rax cmpq %rax, %rdi jnb 1f xorl %eax, %eax movq %rdi, %rsi leaq .ip_ocsum_panic_msg(%rip), %rdi call panic /*NOTREACHED*/ .ip_ocsum_panic_msg: .string "ip_ocsum: address 0x%p below kernelbase\n" 1: #endif movl %esi, %ecx /* halfword_count */ movq %rdi, %rsi /* address */ /* partial sum in %edx */ xorl %eax, %eax testl %ecx, %ecx jz .ip_ocsum_done testq $3, %rsi jnz .ip_csum_notaligned .ip_csum_aligned: /* XX64 opportunities for 8-byte operations? */ .next_iter: /* XX64 opportunities for prefetch? */ /* XX64 compute csum with 64 bit quantities? */ subl $32, %ecx jl .less_than_32 addl 0(%rsi), %edx .only60: adcl 4(%rsi), %eax .only56: adcl 8(%rsi), %edx .only52: adcl 12(%rsi), %eax .only48: adcl 16(%rsi), %edx .only44: adcl 20(%rsi), %eax .only40: adcl 24(%rsi), %edx .only36: adcl 28(%rsi), %eax .only32: adcl 32(%rsi), %edx .only28: adcl 36(%rsi), %eax .only24: adcl 40(%rsi), %edx .only20: adcl 44(%rsi), %eax .only16: adcl 48(%rsi), %edx .only12: adcl 52(%rsi), %eax .only8: adcl 56(%rsi), %edx .only4: adcl 60(%rsi), %eax /* could be adding -1 and -1 with a carry */ .only0: adcl $0, %eax /* could be adding -1 in eax with a carry */ adcl $0, %eax addq $64, %rsi testl %ecx, %ecx jnz .next_iter .ip_ocsum_done: addl %eax, %edx adcl $0, %edx movl %edx, %eax /* form a 16 bit checksum by */ shrl $16, %eax /* adding two halves of 32 bit checksum */ addw %dx, %ax adcw $0, %ax andl $0xffff, %eax leave ret .ip_csum_notaligned: xorl %edi, %edi movw (%rsi), %di addl %edi, %edx adcl $0, %edx addq $2, %rsi decl %ecx jmp .ip_csum_aligned .less_than_32: addl $32, %ecx testl $1, %ecx jz .size_aligned andl $0xfe, %ecx movzwl (%rsi, %rcx, 2), %edi addl %edi, %edx adcl $0, %edx .size_aligned: movl %ecx, %edi shrl $1, %ecx shl $1, %edi subq $64, %rdi addq %rdi, %rsi leaq .ip_ocsum_jmptbl(%rip), %rdi leaq (%rdi, %rcx, 8), %rdi xorl %ecx, %ecx clc jmp *(%rdi) .align 8 .ip_ocsum_jmptbl: .quad .only0, .only4, .only8, .only12, .only16, .only20 .quad .only24, .only28, .only32, .only36, .only40, .only44 .quad .only48, .only52, .only56, .only60 SET_SIZE(ip_ocsum) #elif defined(__i386) ENTRY(ip_ocsum) pushl %ebp movl %esp, %ebp pushl %ebx pushl %esi pushl %edi movl 12(%ebp), %ecx /* count of half words */ movl 16(%ebp), %edx /* partial checksum */ movl 8(%ebp), %esi xorl %eax, %eax testl %ecx, %ecx jz .ip_ocsum_done testl $3, %esi jnz .ip_csum_notaligned .ip_csum_aligned: .next_iter: subl $32, %ecx jl .less_than_32 addl 0(%esi), %edx .only60: adcl 4(%esi), %eax .only56: adcl 8(%esi), %edx .only52: adcl 12(%esi), %eax .only48: adcl 16(%esi), %edx .only44: adcl 20(%esi), %eax .only40: adcl 24(%esi), %edx .only36: adcl 28(%esi), %eax .only32: adcl 32(%esi), %edx .only28: adcl 36(%esi), %eax .only24: adcl 40(%esi), %edx .only20: adcl 44(%esi), %eax .only16: adcl 48(%esi), %edx .only12: adcl 52(%esi), %eax .only8: adcl 56(%esi), %edx .only4: adcl 60(%esi), %eax /* We could be adding -1 and -1 with a carry */ .only0: adcl $0, %eax /* we could be adding -1 in eax with a carry */ adcl $0, %eax addl $64, %esi andl %ecx, %ecx jnz .next_iter .ip_ocsum_done: addl %eax, %edx adcl $0, %edx movl %edx, %eax /* form a 16 bit checksum by */ shrl $16, %eax /* adding two halves of 32 bit checksum */ addw %dx, %ax adcw $0, %ax andl $0xffff, %eax popl %edi /* restore registers */ popl %esi popl %ebx leave ret .ip_csum_notaligned: xorl %edi, %edi movw (%esi), %di addl %edi, %edx adcl $0, %edx addl $2, %esi decl %ecx jmp .ip_csum_aligned .less_than_32: addl $32, %ecx testl $1, %ecx jz .size_aligned andl $0xfe, %ecx movzwl (%esi, %ecx, 2), %edi addl %edi, %edx adcl $0, %edx .size_aligned: movl %ecx, %edi shrl $1, %ecx shl $1, %edi subl $64, %edi addl %edi, %esi movl $.ip_ocsum_jmptbl, %edi lea (%edi, %ecx, 4), %edi xorl %ecx, %ecx clc jmp *(%edi) SET_SIZE(ip_ocsum) .data .align 4 .ip_ocsum_jmptbl: .long .only0, .only4, .only8, .only12, .only16, .only20 .long .only24, .only28, .only32, .only36, .only40, .only44 .long .only48, .only52, .only56, .only60 #endif /* __i386 */ #endif /* __lint */ /* * multiply two long numbers and yield a u_longlong_t result, callable from C. * Provided to manipulate hrtime_t values. */ #if defined(__lint) /* result = a * b; */ /* ARGSUSED */ unsigned long long mul32(uint_t a, uint_t b) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(mul32) xorl %edx, %edx /* XX64 joe, paranoia? */ movl %edi, %eax mull %esi shlq $32, %rdx orq %rdx, %rax ret SET_SIZE(mul32) #elif defined(__i386) ENTRY(mul32) movl 8(%esp), %eax movl 4(%esp), %ecx mull %ecx ret SET_SIZE(mul32) #endif /* __i386 */ #endif /* __lint */ #if defined(notused) #if defined(__lint) /* ARGSUSED */ void load_pte64(uint64_t *pte, uint64_t pte_value) {} #else /* __lint */ .globl load_pte64 load_pte64: movl 4(%esp), %eax movl 8(%esp), %ecx movl 12(%esp), %edx movl %edx, 4(%eax) movl %ecx, (%eax) ret #endif /* __lint */ #endif /* notused */ #if defined(__lint) /*ARGSUSED*/ void scan_memory(caddr_t addr, size_t size) {} #else /* __lint */ #if defined(__amd64) ENTRY(scan_memory) shrq $3, %rsi /* convert %rsi from byte to quadword count */ jz .scanm_done movq %rsi, %rcx /* move count into rep control register */ movq %rdi, %rsi /* move addr into lodsq control reg. */ rep lodsq /* scan the memory range */ .scanm_done: rep; ret /* use 2 byte return instruction when branch target */ /* AMD Software Optimization Guide - Section 6.2 */ SET_SIZE(scan_memory) #elif defined(__i386) ENTRY(scan_memory) pushl %ecx pushl %esi movl 16(%esp), %ecx /* move 2nd arg into rep control register */ shrl $2, %ecx /* convert from byte count to word count */ jz .scanm_done movl 12(%esp), %esi /* move 1st arg into lodsw control register */ .byte 0xf3 /* rep prefix. lame assembler. sigh. */ lodsl .scanm_done: popl %esi popl %ecx ret SET_SIZE(scan_memory) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /*ARGSUSED */ int lowbit(ulong_t i) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(lowbit) movl $-1, %eax bsfq %rdi, %rax incl %eax ret SET_SIZE(lowbit) #elif defined(__i386) ENTRY(lowbit) movl $-1, %eax bsfl 4(%esp), %eax incl %eax ret SET_SIZE(lowbit) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /*ARGSUSED*/ int highbit(ulong_t i) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(highbit) movl $-1, %eax bsrq %rdi, %rax incl %eax ret SET_SIZE(highbit) #elif defined(__i386) ENTRY(highbit) movl $-1, %eax bsrl 4(%esp), %eax incl %eax ret SET_SIZE(highbit) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /*ARGSUSED*/ uint64_t rdmsr(uint_t r) { return (0); } /*ARGSUSED*/ void wrmsr(uint_t r, const uint64_t val) {} /*ARGSUSED*/ uint64_t xrdmsr(uint_t r) { return (0); } /*ARGSUSED*/ void xwrmsr(uint_t r, const uint64_t val) {} void invalidate_cache(void) {} #else /* __lint */ #define XMSR_ACCESS_VAL $0x9c5a203a #if defined(__amd64) ENTRY(rdmsr) movl %edi, %ecx rdmsr shlq $32, %rdx orq %rdx, %rax ret SET_SIZE(rdmsr) ENTRY(wrmsr) movq %rsi, %rdx shrq $32, %rdx movl %esi, %eax movl %edi, %ecx wrmsr ret SET_SIZE(wrmsr) ENTRY(xrdmsr) pushq %rbp movq %rsp, %rbp movl %edi, %ecx movl XMSR_ACCESS_VAL, %edi /* this value is needed to access MSR */ rdmsr shlq $32, %rdx orq %rdx, %rax leave ret SET_SIZE(xrdmsr) ENTRY(xwrmsr) pushq %rbp movq %rsp, %rbp movl %edi, %ecx movl XMSR_ACCESS_VAL, %edi /* this value is needed to access MSR */ movq %rsi, %rdx shrq $32, %rdx movl %esi, %eax wrmsr leave ret SET_SIZE(xwrmsr) #elif defined(__i386) ENTRY(rdmsr) movl 4(%esp), %ecx rdmsr ret SET_SIZE(rdmsr) ENTRY(wrmsr) movl 4(%esp), %ecx movl 8(%esp), %eax movl 12(%esp), %edx wrmsr ret SET_SIZE(wrmsr) ENTRY(xrdmsr) pushl %ebp movl %esp, %ebp movl 8(%esp), %ecx pushl %edi movl XMSR_ACCESS_VAL, %edi /* this value is needed to access MSR */ rdmsr popl %edi leave ret SET_SIZE(xrdmsr) ENTRY(xwrmsr) pushl %ebp movl %esp, %ebp movl 8(%esp), %ecx movl 12(%esp), %eax movl 16(%esp), %edx pushl %edi movl XMSR_ACCESS_VAL, %edi /* this value is needed to access MSR */ wrmsr popl %edi leave ret SET_SIZE(xwrmsr) #endif /* __i386 */ ENTRY(invalidate_cache) wbinvd ret SET_SIZE(invalidate_cache) #endif /* __lint */ #if defined(__lint) /*ARGSUSED*/ void getcregs(struct cregs *crp) {} #else /* __lint */ #if defined(__amd64) ENTRY_NP(getcregs) #if defined(__xpv) /* * Only a few of the hardware control registers or descriptor tables * are directly accessible to us, so just zero the structure. * * XXPV Perhaps it would be helpful for the hypervisor to return * virtualized versions of these for post-mortem use. * (Need to reevaluate - perhaps it already does!) */ pushq %rdi /* save *crp */ movq $CREGSZ, %rsi call bzero popq %rdi /* * Dump what limited information we can */ movq %cr0, %rax movq %rax, CREG_CR0(%rdi) /* cr0 */ movq %cr2, %rax movq %rax, CREG_CR2(%rdi) /* cr2 */ movq %cr3, %rax movq %rax, CREG_CR3(%rdi) /* cr3 */ movq %cr4, %rax movq %rax, CREG_CR4(%rdi) /* cr4 */ #else /* __xpv */ #define GETMSR(r, off, d) \ movl $r, %ecx; \ rdmsr; \ movl %eax, off(d); \ movl %edx, off+4(d) xorl %eax, %eax movq %rax, CREG_GDT+8(%rdi) sgdt CREG_GDT(%rdi) /* 10 bytes */ movq %rax, CREG_IDT+8(%rdi) sidt CREG_IDT(%rdi) /* 10 bytes */ movq %rax, CREG_LDT(%rdi) sldt CREG_LDT(%rdi) /* 2 bytes */ movq %rax, CREG_TASKR(%rdi) str CREG_TASKR(%rdi) /* 2 bytes */ movq %cr0, %rax movq %rax, CREG_CR0(%rdi) /* cr0 */ movq %cr2, %rax movq %rax, CREG_CR2(%rdi) /* cr2 */ movq %cr3, %rax movq %rax, CREG_CR3(%rdi) /* cr3 */ movq %cr4, %rax movq %rax, CREG_CR4(%rdi) /* cr4 */ movq %cr8, %rax movq %rax, CREG_CR8(%rdi) /* cr8 */ GETMSR(MSR_AMD_KGSBASE, CREG_KGSBASE, %rdi) GETMSR(MSR_AMD_EFER, CREG_EFER, %rdi) #endif /* __xpv */ ret SET_SIZE(getcregs) #undef GETMSR #elif defined(__i386) ENTRY_NP(getcregs) #if defined(__xpv) /* * Only a few of the hardware control registers or descriptor tables * are directly accessible to us, so just zero the structure. * * XXPV Perhaps it would be helpful for the hypervisor to return * virtualized versions of these for post-mortem use. * (Need to reevaluate - perhaps it already does!) */ movl 4(%esp), %edx pushl $CREGSZ pushl %edx call bzero addl $8, %esp movl 4(%esp), %edx /* * Dump what limited information we can */ movl %cr0, %eax movl %eax, CREG_CR0(%edx) /* cr0 */ movl %cr2, %eax movl %eax, CREG_CR2(%edx) /* cr2 */ movl %cr3, %eax movl %eax, CREG_CR3(%edx) /* cr3 */ movl %cr4, %eax movl %eax, CREG_CR4(%edx) /* cr4 */ #else /* __xpv */ movl 4(%esp), %edx movw $0, CREG_GDT+6(%edx) movw $0, CREG_IDT+6(%edx) sgdt CREG_GDT(%edx) /* gdt */ sidt CREG_IDT(%edx) /* idt */ sldt CREG_LDT(%edx) /* ldt */ str CREG_TASKR(%edx) /* task */ movl %cr0, %eax movl %eax, CREG_CR0(%edx) /* cr0 */ movl %cr2, %eax movl %eax, CREG_CR2(%edx) /* cr2 */ movl %cr3, %eax movl %eax, CREG_CR3(%edx) /* cr3 */ testl $X86_LARGEPAGE, x86_feature jz .nocr4 movl %cr4, %eax movl %eax, CREG_CR4(%edx) /* cr4 */ jmp .skip .nocr4: movl $0, CREG_CR4(%edx) .skip: #endif ret SET_SIZE(getcregs) #endif /* __i386 */ #endif /* __lint */ /* * A panic trigger is a word which is updated atomically and can only be set * once. We atomically store 0xDEFACEDD and load the old value. If the * previous value was 0, we succeed and return 1; otherwise return 0. * This allows a partially corrupt trigger to still trigger correctly. DTrace * has its own version of this function to allow it to panic correctly from * probe context. */ #if defined(__lint) /*ARGSUSED*/ int panic_trigger(int *tp) { return (0); } /*ARGSUSED*/ int dtrace_panic_trigger(int *tp) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY_NP(panic_trigger) xorl %eax, %eax movl $0xdefacedd, %edx lock xchgl %edx, (%rdi) cmpl $0, %edx je 0f movl $0, %eax ret 0: movl $1, %eax ret SET_SIZE(panic_trigger) ENTRY_NP(dtrace_panic_trigger) xorl %eax, %eax movl $0xdefacedd, %edx lock xchgl %edx, (%rdi) cmpl $0, %edx je 0f movl $0, %eax ret 0: movl $1, %eax ret SET_SIZE(dtrace_panic_trigger) #elif defined(__i386) ENTRY_NP(panic_trigger) movl 4(%esp), %edx / %edx = address of trigger movl $0xdefacedd, %eax / %eax = 0xdefacedd lock / assert lock xchgl %eax, (%edx) / exchange %eax and the trigger cmpl $0, %eax / if (%eax == 0x0) je 0f / return (1); movl $0, %eax / else ret / return (0); 0: movl $1, %eax ret SET_SIZE(panic_trigger) ENTRY_NP(dtrace_panic_trigger) movl 4(%esp), %edx / %edx = address of trigger movl $0xdefacedd, %eax / %eax = 0xdefacedd lock / assert lock xchgl %eax, (%edx) / exchange %eax and the trigger cmpl $0, %eax / if (%eax == 0x0) je 0f / return (1); movl $0, %eax / else ret / return (0); 0: movl $1, %eax ret SET_SIZE(dtrace_panic_trigger) #endif /* __i386 */ #endif /* __lint */ /* * The panic() and cmn_err() functions invoke vpanic() as a common entry point * into the panic code implemented in panicsys(). vpanic() is responsible * for passing through the format string and arguments, and constructing a * regs structure on the stack into which it saves the current register * values. If we are not dying due to a fatal trap, these registers will * then be preserved in panicbuf as the current processor state. Before * invoking panicsys(), vpanic() activates the first panic trigger (see * common/os/panic.c) and switches to the panic_stack if successful. Note that * DTrace takes a slightly different panic path if it must panic from probe * context. Instead of calling panic, it calls into dtrace_vpanic(), which * sets up the initial stack as vpanic does, calls dtrace_panic_trigger(), and * branches back into vpanic(). */ #if defined(__lint) /*ARGSUSED*/ void vpanic(const char *format, va_list alist) {} /*ARGSUSED*/ void dtrace_vpanic(const char *format, va_list alist) {} #else /* __lint */ #if defined(__amd64) ENTRY_NP(vpanic) /* Initial stack layout: */ pushq %rbp /* | %rip | 0x60 */ movq %rsp, %rbp /* | %rbp | 0x58 */ pushfq /* | rfl | 0x50 */ pushq %r11 /* | %r11 | 0x48 */ pushq %r10 /* | %r10 | 0x40 */ pushq %rbx /* | %rbx | 0x38 */ pushq %rax /* | %rax | 0x30 */ pushq %r9 /* | %r9 | 0x28 */ pushq %r8 /* | %r8 | 0x20 */ pushq %rcx /* | %rcx | 0x18 */ pushq %rdx /* | %rdx | 0x10 */ pushq %rsi /* | %rsi | 0x8 alist */ pushq %rdi /* | %rdi | 0x0 format */ movq %rsp, %rbx /* %rbx = current %rsp */ leaq panic_quiesce(%rip), %rdi /* %rdi = &panic_quiesce */ call panic_trigger /* %eax = panic_trigger() */ vpanic_common: /* * The panic_trigger result is in %eax from the call above, and * dtrace_panic places it in %eax before branching here. * The rdmsr instructions that follow below will clobber %eax so * we stash the panic_trigger result in %r11d. */ movl %eax, %r11d cmpl $0, %r11d je 0f /* * If panic_trigger() was successful, we are the first to initiate a * panic: we now switch to the reserved panic_stack before continuing. */ leaq panic_stack(%rip), %rsp addq $PANICSTKSIZE, %rsp 0: subq $REGSIZE, %rsp /* * Now that we've got everything set up, store the register values as * they were when we entered vpanic() to the designated location in * the regs structure we allocated on the stack. */ movq 0x0(%rbx), %rcx movq %rcx, REGOFF_RDI(%rsp) movq 0x8(%rbx), %rcx movq %rcx, REGOFF_RSI(%rsp) movq 0x10(%rbx), %rcx movq %rcx, REGOFF_RDX(%rsp) movq 0x18(%rbx), %rcx movq %rcx, REGOFF_RCX(%rsp) movq 0x20(%rbx), %rcx movq %rcx, REGOFF_R8(%rsp) movq 0x28(%rbx), %rcx movq %rcx, REGOFF_R9(%rsp) movq 0x30(%rbx), %rcx movq %rcx, REGOFF_RAX(%rsp) movq 0x38(%rbx), %rcx movq %rcx, REGOFF_RBX(%rsp) movq 0x58(%rbx), %rcx movq %rcx, REGOFF_RBP(%rsp) movq 0x40(%rbx), %rcx movq %rcx, REGOFF_R10(%rsp) movq 0x48(%rbx), %rcx movq %rcx, REGOFF_R11(%rsp) movq %r12, REGOFF_R12(%rsp) movq %r13, REGOFF_R13(%rsp) movq %r14, REGOFF_R14(%rsp) movq %r15, REGOFF_R15(%rsp) xorl %ecx, %ecx movw %ds, %cx movq %rcx, REGOFF_DS(%rsp) movw %es, %cx movq %rcx, REGOFF_ES(%rsp) movw %fs, %cx movq %rcx, REGOFF_FS(%rsp) movw %gs, %cx movq %rcx, REGOFF_GS(%rsp) movq $0, REGOFF_TRAPNO(%rsp) movq $0, REGOFF_ERR(%rsp) leaq vpanic(%rip), %rcx movq %rcx, REGOFF_RIP(%rsp) movw %cs, %cx movzwq %cx, %rcx movq %rcx, REGOFF_CS(%rsp) movq 0x50(%rbx), %rcx movq %rcx, REGOFF_RFL(%rsp) movq %rbx, %rcx addq $0x60, %rcx movq %rcx, REGOFF_RSP(%rsp) movw %ss, %cx movzwq %cx, %rcx movq %rcx, REGOFF_SS(%rsp) /* * panicsys(format, alist, rp, on_panic_stack) */ movq REGOFF_RDI(%rsp), %rdi /* format */ movq REGOFF_RSI(%rsp), %rsi /* alist */ movq %rsp, %rdx /* struct regs */ movl %r11d, %ecx /* on_panic_stack */ call panicsys addq $REGSIZE, %rsp popq %rdi popq %rsi popq %rdx popq %rcx popq %r8 popq %r9 popq %rax popq %rbx popq %r10 popq %r11 popfq leave ret SET_SIZE(vpanic) ENTRY_NP(dtrace_vpanic) /* Initial stack layout: */ pushq %rbp /* | %rip | 0x60 */ movq %rsp, %rbp /* | %rbp | 0x58 */ pushfq /* | rfl | 0x50 */ pushq %r11 /* | %r11 | 0x48 */ pushq %r10 /* | %r10 | 0x40 */ pushq %rbx /* | %rbx | 0x38 */ pushq %rax /* | %rax | 0x30 */ pushq %r9 /* | %r9 | 0x28 */ pushq %r8 /* | %r8 | 0x20 */ pushq %rcx /* | %rcx | 0x18 */ pushq %rdx /* | %rdx | 0x10 */ pushq %rsi /* | %rsi | 0x8 alist */ pushq %rdi /* | %rdi | 0x0 format */ movq %rsp, %rbx /* %rbx = current %rsp */ leaq panic_quiesce(%rip), %rdi /* %rdi = &panic_quiesce */ call dtrace_panic_trigger /* %eax = dtrace_panic_trigger() */ jmp vpanic_common SET_SIZE(dtrace_vpanic) #elif defined(__i386) ENTRY_NP(vpanic) / Initial stack layout: pushl %ebp / | %eip | 20 movl %esp, %ebp / | %ebp | 16 pushl %eax / | %eax | 12 pushl %ebx / | %ebx | 8 pushl %ecx / | %ecx | 4 pushl %edx / | %edx | 0 movl %esp, %ebx / %ebx = current stack pointer lea panic_quiesce, %eax / %eax = &panic_quiesce pushl %eax / push &panic_quiesce call panic_trigger / %eax = panic_trigger() addl $4, %esp / reset stack pointer vpanic_common: cmpl $0, %eax / if (%eax == 0) je 0f / goto 0f; /* * If panic_trigger() was successful, we are the first to initiate a * panic: we now switch to the reserved panic_stack before continuing. */ lea panic_stack, %esp / %esp = panic_stack addl $PANICSTKSIZE, %esp / %esp += PANICSTKSIZE 0: subl $REGSIZE, %esp / allocate struct regs /* * Now that we've got everything set up, store the register values as * they were when we entered vpanic() to the designated location in * the regs structure we allocated on the stack. */ #if !defined(__GNUC_AS__) movw %gs, %edx movl %edx, REGOFF_GS(%esp) movw %fs, %edx movl %edx, REGOFF_FS(%esp) movw %es, %edx movl %edx, REGOFF_ES(%esp) movw %ds, %edx movl %edx, REGOFF_DS(%esp) #else /* __GNUC_AS__ */ mov %gs, %edx mov %edx, REGOFF_GS(%esp) mov %fs, %edx mov %edx, REGOFF_FS(%esp) mov %es, %edx mov %edx, REGOFF_ES(%esp) mov %ds, %edx mov %edx, REGOFF_DS(%esp) #endif /* __GNUC_AS__ */ movl %edi, REGOFF_EDI(%esp) movl %esi, REGOFF_ESI(%esp) movl 16(%ebx), %ecx movl %ecx, REGOFF_EBP(%esp) movl %ebx, %ecx addl $20, %ecx movl %ecx, REGOFF_ESP(%esp) movl 8(%ebx), %ecx movl %ecx, REGOFF_EBX(%esp) movl 0(%ebx), %ecx movl %ecx, REGOFF_EDX(%esp) movl 4(%ebx), %ecx movl %ecx, REGOFF_ECX(%esp) movl 12(%ebx), %ecx movl %ecx, REGOFF_EAX(%esp) movl $0, REGOFF_TRAPNO(%esp) movl $0, REGOFF_ERR(%esp) lea vpanic, %ecx movl %ecx, REGOFF_EIP(%esp) #if !defined(__GNUC_AS__) movw %cs, %edx #else /* __GNUC_AS__ */ mov %cs, %edx #endif /* __GNUC_AS__ */ movl %edx, REGOFF_CS(%esp) pushfl popl %ecx #if defined(__xpv) /* * Synthesize the PS_IE bit from the event mask bit */ CURTHREAD(%edx) KPREEMPT_DISABLE(%edx) EVENT_MASK_TO_IE(%edx, %ecx) CURTHREAD(%edx) KPREEMPT_ENABLE_NOKP(%edx) #endif movl %ecx, REGOFF_EFL(%esp) movl $0, REGOFF_UESP(%esp) #if !defined(__GNUC_AS__) movw %ss, %edx #else /* __GNUC_AS__ */ mov %ss, %edx #endif /* __GNUC_AS__ */ movl %edx, REGOFF_SS(%esp) movl %esp, %ecx / %ecx = ®s pushl %eax / push on_panic_stack pushl %ecx / push ®s movl 12(%ebp), %ecx / %ecx = alist pushl %ecx / push alist movl 8(%ebp), %ecx / %ecx = format pushl %ecx / push format call panicsys / panicsys(); addl $16, %esp / pop arguments addl $REGSIZE, %esp popl %edx popl %ecx popl %ebx popl %eax leave ret SET_SIZE(vpanic) ENTRY_NP(dtrace_vpanic) / Initial stack layout: pushl %ebp / | %eip | 20 movl %esp, %ebp / | %ebp | 16 pushl %eax / | %eax | 12 pushl %ebx / | %ebx | 8 pushl %ecx / | %ecx | 4 pushl %edx / | %edx | 0 movl %esp, %ebx / %ebx = current stack pointer lea panic_quiesce, %eax / %eax = &panic_quiesce pushl %eax / push &panic_quiesce call dtrace_panic_trigger / %eax = dtrace_panic_trigger() addl $4, %esp / reset stack pointer jmp vpanic_common / jump back to common code SET_SIZE(dtrace_vpanic) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) void hres_tick(void) {} int64_t timedelta; hrtime_t hres_last_tick; volatile timestruc_t hrestime; int64_t hrestime_adj; volatile int hres_lock; hrtime_t hrtime_base; #else /* __lint */ DGDEF3(hrestime, _MUL(2, CLONGSIZE), 8) .NWORD 0, 0 DGDEF3(hrestime_adj, 8, 8) .long 0, 0 DGDEF3(hres_last_tick, 8, 8) .long 0, 0 DGDEF3(timedelta, 8, 8) .long 0, 0 DGDEF3(hres_lock, 4, 8) .long 0 /* * initialized to a non zero value to make pc_gethrtime() * work correctly even before clock is initialized */ DGDEF3(hrtime_base, 8, 8) .long _MUL(NSEC_PER_CLOCK_TICK, 6), 0 DGDEF3(adj_shift, 4, 4) .long ADJ_SHIFT #if defined(__amd64) ENTRY_NP(hres_tick) pushq %rbp movq %rsp, %rbp /* * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously, * hres_last_tick can only be modified while holding CLOCK_LOCK). * At worst, performing this now instead of under CLOCK_LOCK may * introduce some jitter in pc_gethrestime(). */ call *gethrtimef(%rip) movq %rax, %r8 leaq hres_lock(%rip), %rax movb $-1, %dl .CL1: xchgb %dl, (%rax) testb %dl, %dl jz .CL3 /* got it */ .CL2: cmpb $0, (%rax) /* possible to get lock? */ pause jne .CL2 jmp .CL1 /* yes, try again */ .CL3: /* * compute the interval since last time hres_tick was called * and adjust hrtime_base and hrestime accordingly * hrtime_base is an 8 byte value (in nsec), hrestime is * a timestruc_t (sec, nsec) */ leaq hres_last_tick(%rip), %rax movq %r8, %r11 subq (%rax), %r8 addq %r8, hrtime_base(%rip) /* add interval to hrtime_base */ addq %r8, hrestime+8(%rip) /* add interval to hrestime.tv_nsec */ /* * Now that we have CLOCK_LOCK, we can update hres_last_tick */ movq %r11, (%rax) call __adj_hrestime /* * release the hres_lock */ incl hres_lock(%rip) leave ret SET_SIZE(hres_tick) #elif defined(__i386) ENTRY_NP(hres_tick) pushl %ebp movl %esp, %ebp pushl %esi pushl %ebx /* * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously, * hres_last_tick can only be modified while holding CLOCK_LOCK). * At worst, performing this now instead of under CLOCK_LOCK may * introduce some jitter in pc_gethrestime(). */ call *gethrtimef movl %eax, %ebx movl %edx, %esi movl $hres_lock, %eax movl $-1, %edx .CL1: xchgb %dl, (%eax) testb %dl, %dl jz .CL3 / got it .CL2: cmpb $0, (%eax) / possible to get lock? pause jne .CL2 jmp .CL1 / yes, try again .CL3: /* * compute the interval since last time hres_tick was called * and adjust hrtime_base and hrestime accordingly * hrtime_base is an 8 byte value (in nsec), hrestime is * timestruc_t (sec, nsec) */ lea hres_last_tick, %eax movl %ebx, %edx movl %esi, %ecx subl (%eax), %edx sbbl 4(%eax), %ecx addl %edx, hrtime_base / add interval to hrtime_base adcl %ecx, hrtime_base+4 addl %edx, hrestime+4 / add interval to hrestime.tv_nsec / / Now that we have CLOCK_LOCK, we can update hres_last_tick. / movl %ebx, (%eax) movl %esi, 4(%eax) / get hrestime at this moment. used as base for pc_gethrestime / / Apply adjustment, if any / / #define HRES_ADJ (NSEC_PER_CLOCK_TICK >> ADJ_SHIFT) / (max_hres_adj) / / void / adj_hrestime() / { / long long adj; / / if (hrestime_adj == 0) / adj = 0; / else if (hrestime_adj > 0) { / if (hrestime_adj < HRES_ADJ) / adj = hrestime_adj; / else / adj = HRES_ADJ; / } / else { / if (hrestime_adj < -(HRES_ADJ)) / adj = -(HRES_ADJ); / else / adj = hrestime_adj; / } / / timedelta -= adj; / hrestime_adj = timedelta; / hrestime.tv_nsec += adj; / / while (hrestime.tv_nsec >= NANOSEC) { / one_sec++; / hrestime.tv_sec++; / hrestime.tv_nsec -= NANOSEC; / } / } __adj_hrestime: movl hrestime_adj, %esi / if (hrestime_adj == 0) movl hrestime_adj+4, %edx andl %esi, %esi jne .CL4 / no andl %edx, %edx jne .CL4 / no subl %ecx, %ecx / yes, adj = 0; subl %edx, %edx jmp .CL5 .CL4: subl %ecx, %ecx subl %eax, %eax subl %esi, %ecx sbbl %edx, %eax andl %eax, %eax / if (hrestime_adj > 0) jge .CL6 / In the following comments, HRES_ADJ is used, while in the code / max_hres_adj is used. / / The test for "hrestime_adj < HRES_ADJ" is complicated because / hrestime_adj is 64-bits, while HRES_ADJ is 32-bits. We rely / on the logical equivalence of: / / !(hrestime_adj < HRES_ADJ) / / and the two step sequence: / / (HRES_ADJ - lsw(hrestime_adj)) generates a Borrow/Carry / / which computes whether or not the least significant 32-bits / of hrestime_adj is greater than HRES_ADJ, followed by: / / Previous Borrow/Carry + -1 + msw(hrestime_adj) generates a Carry / / which generates a carry whenever step 1 is true or the most / significant long of the longlong hrestime_adj is non-zero. movl max_hres_adj, %ecx / hrestime_adj is positive subl %esi, %ecx movl %edx, %eax adcl $-1, %eax jnc .CL7 movl max_hres_adj, %ecx / adj = HRES_ADJ; subl %edx, %edx jmp .CL5 / The following computation is similar to the one above. / / The test for "hrestime_adj < -(HRES_ADJ)" is complicated because / hrestime_adj is 64-bits, while HRES_ADJ is 32-bits. We rely / on the logical equivalence of: / / (hrestime_adj > -HRES_ADJ) / / and the two step sequence: / / (HRES_ADJ + lsw(hrestime_adj)) generates a Carry / / which means the least significant 32-bits of hrestime_adj is / greater than -HRES_ADJ, followed by: / / Previous Carry + 0 + msw(hrestime_adj) generates a Carry / / which generates a carry only when step 1 is true and the most / significant long of the longlong hrestime_adj is -1. .CL6: / hrestime_adj is negative movl %esi, %ecx addl max_hres_adj, %ecx movl %edx, %eax adcl $0, %eax jc .CL7 xor %ecx, %ecx subl max_hres_adj, %ecx / adj = -(HRES_ADJ); movl $-1, %edx jmp .CL5 .CL7: movl %esi, %ecx / adj = hrestime_adj; .CL5: movl timedelta, %esi subl %ecx, %esi movl timedelta+4, %eax sbbl %edx, %eax movl %esi, timedelta movl %eax, timedelta+4 / timedelta -= adj; movl %esi, hrestime_adj movl %eax, hrestime_adj+4 / hrestime_adj = timedelta; addl hrestime+4, %ecx movl %ecx, %eax / eax = tv_nsec 1: cmpl $NANOSEC, %eax / if ((unsigned long)tv_nsec >= NANOSEC) jb .CL8 / no incl one_sec / yes, one_sec++; incl hrestime / hrestime.tv_sec++; addl $-NANOSEC, %eax / tv_nsec -= NANOSEC jmp 1b / check for more seconds .CL8: movl %eax, hrestime+4 / store final into hrestime.tv_nsec incl hres_lock / release the hres_lock popl %ebx popl %esi leave ret SET_SIZE(hres_tick) #endif /* __i386 */ #endif /* __lint */ /* * void prefetch_smap_w(void *) * * Prefetch ahead within a linear list of smap structures. * Not implemented for ia32. Stub for compatibility. */ #if defined(__lint) /*ARGSUSED*/ void prefetch_smap_w(void *smp) {} #else /* __lint */ ENTRY(prefetch_smap_w) rep; ret /* use 2 byte return instruction when branch target */ /* AMD Software Optimization Guide - Section 6.2 */ SET_SIZE(prefetch_smap_w) #endif /* __lint */ /* * prefetch_page_r(page_t *) * issue prefetch instructions for a page_t */ #if defined(__lint) /*ARGSUSED*/ void prefetch_page_r(void *pp) {} #else /* __lint */ ENTRY(prefetch_page_r) rep; ret /* use 2 byte return instruction when branch target */ /* AMD Software Optimization Guide - Section 6.2 */ SET_SIZE(prefetch_page_r) #endif /* __lint */ #if defined(__lint) /*ARGSUSED*/ int bcmp(const void *s1, const void *s2, size_t count) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(bcmp) pushq %rbp movq %rsp, %rbp #ifdef DEBUG movq postbootkernelbase(%rip), %r11 cmpq %r11, %rdi jb 0f cmpq %r11, %rsi jnb 1f 0: leaq .bcmp_panic_msg(%rip), %rdi xorl %eax, %eax call panic 1: #endif /* DEBUG */ call memcmp testl %eax, %eax setne %dl leave movzbl %dl, %eax ret SET_SIZE(bcmp) #elif defined(__i386) #define ARG_S1 8 #define ARG_S2 12 #define ARG_LENGTH 16 ENTRY(bcmp) pushl %ebp movl %esp, %ebp / create new stack frame #ifdef DEBUG movl postbootkernelbase, %eax cmpl %eax, ARG_S1(%ebp) jb 0f cmpl %eax, ARG_S2(%ebp) jnb 1f 0: pushl $.bcmp_panic_msg call panic 1: #endif /* DEBUG */ pushl %edi / save register variable movl ARG_S1(%ebp), %eax / %eax = address of string 1 movl ARG_S2(%ebp), %ecx / %ecx = address of string 2 cmpl %eax, %ecx / if the same string je .equal / goto .equal movl ARG_LENGTH(%ebp), %edi / %edi = length in bytes cmpl $4, %edi / if %edi < 4 jb .byte_check / goto .byte_check .align 4 .word_loop: movl (%ecx), %edx / move 1 word from (%ecx) to %edx leal -4(%edi), %edi / %edi -= 4 cmpl (%eax), %edx / compare 1 word from (%eax) with %edx jne .word_not_equal / if not equal, goto .word_not_equal leal 4(%ecx), %ecx / %ecx += 4 (next word) leal 4(%eax), %eax / %eax += 4 (next word) cmpl $4, %edi / if %edi >= 4 jae .word_loop / goto .word_loop .byte_check: cmpl $0, %edi / if %edi == 0 je .equal / goto .equal jmp .byte_loop / goto .byte_loop (checks in bytes) .word_not_equal: leal 4(%edi), %edi / %edi += 4 (post-decremented) .align 4 .byte_loop: movb (%ecx), %dl / move 1 byte from (%ecx) to %dl cmpb %dl, (%eax) / compare %dl with 1 byte from (%eax) jne .not_equal / if not equal, goto .not_equal incl %ecx / %ecx++ (next byte) incl %eax / %eax++ (next byte) decl %edi / %edi-- jnz .byte_loop / if not zero, goto .byte_loop .equal: xorl %eax, %eax / %eax = 0 popl %edi / restore register variable leave / restore old stack frame ret / return (NULL) .align 4 .not_equal: movl $1, %eax / return 1 popl %edi / restore register variable leave / restore old stack frame ret / return (NULL) SET_SIZE(bcmp) #endif /* __i386 */ #ifdef DEBUG .text .bcmp_panic_msg: .string "bcmp: arguments below kernelbase" #endif /* DEBUG */ #endif /* __lint */ #if defined(__lint) uint_t bsrw_insn(uint16_t mask) { uint_t index = sizeof (mask) * NBBY - 1; while ((mask & (1 << index)) == 0) index--; return (index); } #else /* __lint */ #if defined(__amd64) ENTRY_NP(bsrw_insn) xorl %eax, %eax bsrw %di, %ax ret SET_SIZE(bsrw_insn) #elif defined(__i386) ENTRY_NP(bsrw_insn) movw 4(%esp), %cx xorl %eax, %eax bsrw %cx, %ax ret SET_SIZE(bsrw_insn) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) uint_t atomic_btr32(uint32_t *pending, uint_t pil) { return (*pending &= ~(1 << pil)); } #else /* __lint */ #if defined(__i386) ENTRY_NP(atomic_btr32) movl 4(%esp), %ecx movl 8(%esp), %edx xorl %eax, %eax lock btrl %edx, (%ecx) setc %al ret SET_SIZE(atomic_btr32) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /*ARGSUSED*/ void switch_sp_and_call(void *newsp, void (*func)(uint_t, uint_t), uint_t arg1, uint_t arg2) {} #else /* __lint */ #if defined(__amd64) ENTRY_NP(switch_sp_and_call) pushq %rbp movq %rsp, %rbp /* set up stack frame */ movq %rdi, %rsp /* switch stack pointer */ movq %rdx, %rdi /* pass func arg 1 */ movq %rsi, %r11 /* save function to call */ movq %rcx, %rsi /* pass func arg 2 */ call *%r11 /* call function */ leave /* restore stack */ ret SET_SIZE(switch_sp_and_call) #elif defined(__i386) ENTRY_NP(switch_sp_and_call) pushl %ebp mov %esp, %ebp /* set up stack frame */ movl 8(%ebp), %esp /* switch stack pointer */ pushl 20(%ebp) /* push func arg 2 */ pushl 16(%ebp) /* push func arg 1 */ call *12(%ebp) /* call function */ addl $8, %esp /* pop arguments */ leave /* restore stack */ ret SET_SIZE(switch_sp_and_call) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) void kmdb_enter(void) {} #else /* __lint */ #if defined(__amd64) ENTRY_NP(kmdb_enter) pushq %rbp movq %rsp, %rbp /* * Save flags, do a 'cli' then return the saved flags */ call intr_clear int $T_DBGENTR /* * Restore the saved flags */ movq %rax, %rdi call intr_restore leave ret SET_SIZE(kmdb_enter) #elif defined(__i386) ENTRY_NP(kmdb_enter) pushl %ebp movl %esp, %ebp /* * Save flags, do a 'cli' then return the saved flags */ call intr_clear int $T_DBGENTR /* * Restore the saved flags */ pushl %eax call intr_restore addl $4, %esp leave ret SET_SIZE(kmdb_enter) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) void return_instr(void) {} #else /* __lint */ ENTRY_NP(return_instr) rep; ret /* use 2 byte instruction when branch target */ /* AMD Software Optimization Guide - Section 6.2 */ SET_SIZE(return_instr) #endif /* __lint */ #if defined(__lint) ulong_t getflags(void) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(getflags) pushfq popq %rax #if defined(__xpv) CURTHREAD(%rdi) KPREEMPT_DISABLE(%rdi) /* * Synthesize the PS_IE bit from the event mask bit */ CURVCPU(%r11) andq $_BITNOT(PS_IE), %rax XEN_TEST_UPCALL_MASK(%r11) jnz 1f orq $PS_IE, %rax 1: KPREEMPT_ENABLE_NOKP(%rdi) #endif ret SET_SIZE(getflags) #elif defined(__i386) ENTRY(getflags) pushfl popl %eax #if defined(__xpv) CURTHREAD(%ecx) KPREEMPT_DISABLE(%ecx) /* * Synthesize the PS_IE bit from the event mask bit */ CURVCPU(%edx) andl $_BITNOT(PS_IE), %eax XEN_TEST_UPCALL_MASK(%edx) jnz 1f orl $PS_IE, %eax 1: KPREEMPT_ENABLE_NOKP(%ecx) #endif ret SET_SIZE(getflags) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) ftrace_icookie_t ftrace_interrupt_disable(void) { return (0); } #else /* __lint */ #if defined(__amd64) ENTRY(ftrace_interrupt_disable) pushfq popq %rax CLI(%rdx) ret SET_SIZE(ftrace_interrupt_disable) #elif defined(__i386) ENTRY(ftrace_interrupt_disable) pushfl popl %eax CLI(%edx) ret SET_SIZE(ftrace_interrupt_disable) #endif /* __i386 */ #endif /* __lint */ #if defined(__lint) /*ARGSUSED*/ void ftrace_interrupt_enable(ftrace_icookie_t cookie) {} #else /* __lint */ #if defined(__amd64) ENTRY(ftrace_interrupt_enable) pushq %rdi popfq ret SET_SIZE(ftrace_interrupt_enable) #elif defined(__i386) ENTRY(ftrace_interrupt_enable) movl 4(%esp), %eax pushl %eax popfl ret SET_SIZE(ftrace_interrupt_enable) #endif /* __i386 */ #endif /* __lint */