/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #ifndef _VM_HAT_PTE_H #define _VM_HAT_PTE_H #pragma ident "%Z%%M% %I% %E% SMI" #ifdef __cplusplus extern "C" { #endif #include #include /* * macros to get/set/clear the PTE fields */ #define PTE_SET(p, f) ((p) |= (f)) #define PTE_CLR(p, f) ((p) &= ~(x86pte_t)(f)) #define PTE_GET(p, f) ((p) & (f)) /* * Handy macro to check if a pagetable entry or pointer is valid */ #define PTE_ISVALID(p) PTE_GET(p, PT_VALID) /* * Does a PTE map a large page. */ #define PTE_IS_LGPG(p, l) ((l) > 0 && PTE_GET((p), PT_PAGESIZE)) /* * does this PTE represent a page (not a pointer to another page table)? */ #define PTE_ISPAGE(p, l) \ (PTE_ISVALID(p) && ((l) == 0 || PTE_GET(p, PT_PAGESIZE))) /* * Handy macro to check if 2 PTE's are the same - ignores REF/MOD bits */ #define PTE_EQUIV(a, b) (((a) | PT_REF | PT_MOD) == ((b) | PT_REF | PT_MOD)) /* * Shorthand for converting a PTE to it's pfn. */ #define PTE2MFN(p, l) \ mmu_btop(PTE_GET((p), PTE_IS_LGPG((p), (l)) ? PT_PADDR_LGPG : PT_PADDR)) #define PTE2PFN(p, l) PTE2MFN(p, l) #define PT_NX (0x8000000000000000ull) #define PT_PADDR (0x000ffffffffff000ull) #define PT_PADDR_LGPG (0x000fffffffffe000ull) /* phys addr for large pages */ /* * Macros to create a PTP or PTE from the pfn and level */ #define MAKEPTP(pfn, l) \ (pfn_to_pa(pfn) | mmu.ptp_bits[(l) + 1]) #define MAKEPTE(pfn, l) \ (pfn_to_pa(pfn) | mmu.pte_bits[l]) /* * The idea of "level" refers to the level where the page table is used in the * the hardware address translation steps. The level values correspond to the * following names of tables used in AMD/Intel architecture documents: * * AMD/INTEL name Level # * ---------------------- ------- * Page Map Level 4 3 * Page Directory Pointer 2 * Page Directory 1 * Page Table 0 * * The numbering scheme is such that the values of 0 and 1 can correspond to * the pagesize codes used for MPSS support. For now the Maximum level at * which you can have a large page is a constant, that may change in * future processors. * * The type of "level_t" is signed so that it can be used like: * level_t l; * ... * while (--l >= 0) * ... */ #define MAX_NUM_LEVEL 4 #define MAX_PAGE_LEVEL 1 /* for now.. sigh */ typedef int8_t level_t; #define LEVEL_SHIFT(l) (mmu.level_shift[l]) #define LEVEL_SIZE(l) (mmu.level_size[l]) #define LEVEL_OFFSET(l) (mmu.level_offset[l]) #define LEVEL_MASK(l) (mmu.level_mask[l]) /* * Macros to: * Check for a PFN above 4Gig and 64Gig for 32 bit PAE support */ #define PFN_4G (4ull * (1024 * 1024 * 1024 / MMU_PAGESIZE)) #define PFN_64G (64ull * (1024 * 1024 * 1024 / MMU_PAGESIZE)) #define PFN_ABOVE4G(pfn) ((pfn) >= PFN_4G) #define PFN_ABOVE64G(pfn) ((pfn) >= PFN_64G) /* * The CR3 register holds the physical address of the top level page table. */ #define MAKECR3(pfn) mmu_ptob(pfn) /* * HAT/MMU parameters that depend on kernel mode and/or processor type */ struct htable; struct hat_mmu_info { x86pte_t pt_nx; /* either 0 or PT_NX */ x86pte_t pt_global; /* either 0 or PT_GLOBAL */ pfn_t highest_pfn; uint_t num_level; /* number of page table levels in use */ uint_t max_level; /* just num_level - 1 */ uint_t max_page_level; /* maximum level at which we can map a page */ uint_t ptes_per_table; /* # of entries in lower level page tables */ uint_t top_level_count; /* # of entries in top most level page table */ uint_t inval_nonleaf; /* invlpg after invalidates in inner tables */ uint_t hash_cnt; /* cnt of entries in htable_hash_cache */ uint_t vlp_hash_cnt; /* cnt of entries in vlp htable_hash_cache */ uint_t pae_hat; /* either 0 or 1 */ uintptr_t hole_start; /* start of VA hole (or -1 if none) */ uintptr_t hole_end; /* end of VA hole (or 0 if none) */ struct htable **kmap_htables; /* htables for segmap + 32 bit heap */ x86pte_t *kmap_ptes; /* mapping of pagetables that map kmap */ uintptr_t kmap_addr; /* start addr of kmap */ uintptr_t kmap_eaddr; /* end addr of kmap */ uint_t pte_size; /* either 4 or 8 */ uint_t pte_size_shift; /* either 2 or 3 */ x86pte_t ptp_bits[MAX_NUM_LEVEL]; /* bits set for interior PTP */ x86pte_t pte_bits[MAX_NUM_LEVEL]; /* bits set for leaf PTE */ /* * A range of VA used to window pages in the i86pc/vm code. * See PWIN_XXX macros. */ caddr_t pwin_base; caddr_t pwin_pte_va; paddr_t pwin_pte_pa; /* * The following tables are equivalent to PAGEXXXXX at different levels * in the page table hierarchy. */ uint_t level_shift[MAX_NUM_LEVEL]; /* PAGESHIFT for given level */ uintptr_t level_size[MAX_NUM_LEVEL]; /* PAGESIZE for given level */ uintptr_t level_offset[MAX_NUM_LEVEL]; /* PAGEOFFSET for given level */ uintptr_t level_mask[MAX_NUM_LEVEL]; /* PAGEMASK for given level */ }; #if defined(_KERNEL) /* * Macros to access the HAT's private page windows. They're used for * accessing pagetables, ppcopy() and page_zero(). * The 1st two macros are used to get an index for the particular use. * The next three give you: * - the virtual address of the window * - the virtual address of the pte that maps the window * - the physical address of the pte that map the window */ #define PWIN_TABLE(cpuid) ((cpuid) * 2) #define PWIN_SRC(cpuid) ((cpuid) * 2 + 1) /* for x86pte_copy() */ #define PWIN_VA(x) (mmu.pwin_base + ((x) << MMU_PAGESHIFT)) #define PWIN_PTE_VA(x) (mmu.pwin_pte_va + ((x) << mmu.pte_size_shift)) #define PWIN_PTE_PA(x) (mmu.pwin_pte_pa + ((x) << mmu.pte_size_shift)) /* * The concept of a VA hole exists in AMD64. This might need to be made * model specific eventually. * * In the 64 bit kernel PTE loads are atomic, but need cas64 on 32 bit kernel. */ #if defined(__amd64) #ifdef lint #define IN_VA_HOLE(va) (__lintzero) #else #define IN_VA_HOLE(va) (mmu.hole_start <= (va) && (va) < mmu.hole_end) #endif #define FMT_PTE "0x%lx" #define GET_PTE(ptr) (*(x86pte_t *)(ptr)) #define SET_PTE(ptr, pte) (*(x86pte_t *)(ptr) = pte) #define CAS_PTE(ptr, x, y) cas64(ptr, x, y) #elif defined(__i386) #define IN_VA_HOLE(va) (__lintzero) #define FMT_PTE "0x%llx" /* on 32 bit kernels, 64 bit loads aren't atomic, use get_pte64() */ extern x86pte_t get_pte64(x86pte_t *ptr); #define GET_PTE(ptr) (mmu.pae_hat ? get_pte64(ptr) : *(x86pte32_t *)(ptr)) #define SET_PTE(ptr, pte) \ ((mmu.pae_hat ? ((x86pte32_t *)(ptr))[1] = (pte >> 32) : 0), \ *(x86pte32_t *)(ptr) = pte) #define CAS_PTE(ptr, x, y) \ (mmu.pae_hat ? cas64(ptr, x, y) : \ cas32((uint32_t *)(ptr), (uint32_t)(x), (uint32_t)(y))) #endif /* __i386 */ /* * Return a pointer to the pte entry at the given index within a page table. */ #define PT_INDEX_PTR(p, x) \ ((x86pte_t *)((uintptr_t)(p) + ((x) << mmu.pte_size_shift))) /* * Return the physical address of the pte entry at the given index within a * page table. */ #define PT_INDEX_PHYSADDR(p, x) \ ((paddr_t)(p) + ((x) << mmu.pte_size_shift)) /* * From pfn to bytes, careful not to lose bits on PAE. */ #define pfn_to_pa(pfn) (mmu_ptob((paddr_t)(pfn))) extern struct hat_mmu_info mmu; #endif /* _KERNEL */ #ifdef __cplusplus } #endif #endif /* _VM_HAT_PTE_H */