/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for create_prom_prop */ #include /* for "procfs" hack */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void debug_enter(char *); extern void progressbar_init(void); extern void progressbar_start(void); /* * XXX make declaration below "static" when drivers no longer use this * interface. */ extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ /* * segkp */ extern int segkp_fromheap; static void kvm_init(void); static void startup_init(void); static void startup_memlist(void); static void startup_modules(void); static void startup_bop_gone(void); static void startup_vm(void); static void startup_end(void); /* * Declare these as initialized data so we can patch them. */ pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ char *kobj_file_buf; int kobj_file_bufsize; /* set in /etc/system */ /* Global variables for MP support. Used in mp_startup */ caddr_t rm_platter_va; uint32_t rm_platter_pa; /* * Some CPUs have holes in the middle of the 64-bit virtual address range. */ uintptr_t hole_start, hole_end; /* * kpm mapping window */ caddr_t kpm_vbase; size_t kpm_size; static int kpm_desired = 0; /* Do we want to try to use segkpm? */ /* * VA range that must be preserved for boot until we release all of its * mappings. */ #if defined(__amd64) static void *kmem_setaside; #endif /* * Configuration parameters set at boot time. */ caddr_t econtig; /* end of first block of contiguous kernel */ struct bootops *bootops = 0; /* passed in from boot */ struct bootops **bootopsp; struct boot_syscalls *sysp; /* passed in from boot */ char bootblock_fstype[16]; char kern_bootargs[OBP_MAXPATHLEN]; /* * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this * depends on number of BOP_ALLOC calls made and requested size, memory size * combination and whether boot.bin memory needs to be freed. */ #define POSS_NEW_FRAGMENTS 12 /* * VM data structures */ long page_hashsz; /* Size of page hash table (power of two) */ struct page *pp_base; /* Base of initial system page struct array */ struct page **page_hash; /* Page hash table */ struct seg ktextseg; /* Segment used for kernel executable image */ struct seg kvalloc; /* Segment used for "valloc" mapping */ struct seg kpseg; /* Segment used for pageable kernel virt mem */ struct seg kmapseg; /* Segment used for generic kernel mappings */ struct seg kdebugseg; /* Segment used for the kernel debugger */ struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ #if defined(__amd64) struct seg kvseg_core; /* Segment used for the core heap */ struct seg kpmseg; /* Segment used for physical mapping */ struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ #else struct seg *segkpm = NULL; /* Unused on IA32 */ #endif caddr_t segkp_base; /* Base address of segkp */ #if defined(__amd64) pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ #else pgcnt_t segkpsize = 0; #endif struct memseg *memseg_base; struct vnode unused_pages_vp; #define FOURGB 0x100000000LL struct memlist *memlist; caddr_t s_text; /* start of kernel text segment */ caddr_t e_text; /* end of kernel text segment */ caddr_t s_data; /* start of kernel data segment */ caddr_t e_data; /* end of kernel data segment */ caddr_t modtext; /* start of loadable module text reserved */ caddr_t e_modtext; /* end of loadable module text reserved */ caddr_t moddata; /* start of loadable module data reserved */ caddr_t e_moddata; /* end of loadable module data reserved */ struct memlist *phys_install; /* Total installed physical memory */ struct memlist *phys_avail; /* Total available physical memory */ static void memlist_add(uint64_t, uint64_t, struct memlist *, struct memlist **); /* * kphysm_init returns the number of pages that were processed */ static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t); #define IO_PROP_SIZE 64 /* device property size */ /* * a couple useful roundup macros */ #define ROUND_UP_PAGE(x) \ ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) #define ROUND_UP_LPAGE(x) \ ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) #define ROUND_UP_4MEG(x) \ ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE)) #define ROUND_UP_TOPLEVEL(x) \ ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) /* * 32-bit Kernel's Virtual memory layout. * +-----------------------+ * | psm 1-1 map | * | exec args area | * 0xFFC00000 -|-----------------------|- ARGSBASE * | debugger | * 0xFF800000 -|-----------------------|- SEGDEBUGBASE * | Kernel Data | * 0xFEC00000 -|-----------------------| * | Kernel Text | * 0xFE800000 -|-----------------------|- KERNEL_TEXT * | LUFS sinkhole | * 0xFE000000 -|-----------------------|- lufs_addr * --- -|-----------------------|- valloc_base + valloc_sz * | early pp structures | * | memsegs, memlists, | * | page hash, etc. | * --- -|-----------------------|- valloc_base (floating) * | ptable_va | * 0xFDFFE000 -|-----------------------|- ekernelheap, ptable_va * | | (segkp is an arena under the heap) * | | * | kvseg | * | | * | | * --- -|-----------------------|- kernelheap (floating) * | Segkmap | * 0xC3002000 -|-----------------------|- segkmap_start (floating) * | Red Zone | * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) * | | || * | Shared objects | \/ * | | * : : * | user data | * |-----------------------| * | user text | * 0x08048000 -|-----------------------| * | user stack | * : : * | invalid | * 0x00000000 +-----------------------+ * * * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) * +-----------------------+ * | psm 1-1 map | * | exec args area | * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE * | debugger (?) | * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE * | unused | * +-----------------------+ * | Kernel Data | * 0xFFFFFFFF.FBC00000 |-----------------------| * | Kernel Text | * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT * | LUFS sinkhole | * 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr * --- |-----------------------|- valloc_base + valloc_sz * | early pp structures | * | memsegs, memlists, | * | page hash, etc. | * --- |-----------------------|- valloc_base * | ptable_va | * --- |-----------------------|- ptable_va * | Core heap | (used for loadable modules) * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap * | Kernel | * | heap | * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) * | segkmap | * 0xFFFFFXXX.XXX00000 |-----------------------|- segkmap_start (floating) * | device mappings | * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) * | segkp | * --- |-----------------------|- segkp_base * | segkpm | * 0xFFFFFE00.00000000 |-----------------------| * | Red Zone | * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE * | User stack |- User space memory * | | * | shared objects, etc | (grows downwards) * : : * | | * 0xFFFF8000.00000000 |-----------------------| * | | * | VA Hole / unused | * | | * 0x00008000.00000000 |-----------------------| * | | * | | * : : * | user heap | (grows upwards) * | | * | user data | * |-----------------------| * | user text | * 0x00000000.04000000 |-----------------------| * | invalid | * 0x00000000.00000000 +-----------------------+ * * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit * kernel, except that userlimit is raised to 0xfe000000 * * Floating values: * * valloc_base: start of the kernel's memory management/tracking data * structures. This region contains page_t structures for the lowest 4GB * of physical memory, memsegs, memlists, and the page hash. * * core_base: start of the kernel's "core" heap area on 64-bit systems. * This area is intended to be used for global data as well as for module * text/data that does not fit into the nucleus pages. The core heap is * restricted to a 2GB range, allowing every address within it to be * accessed using rip-relative addressing * * ekernelheap: end of kernelheap and start of segmap. * * kernelheap: start of kernel heap. On 32-bit systems, this starts right * above a red zone that separates the user's address space from the * kernel's. On 64-bit systems, it sits above segkp and segkpm. * * segkmap_start: start of segmap. The length of segmap can be modified * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. * * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be * decreased by 2X the size required for page_t. This allows the kernel * heap to grow in size with physical memory. With sizeof(page_t) == 80 * bytes, the following shows the values of kernelbase and kernel heap * sizes for different memory configurations (assuming default segmap and * segkp sizes). * * mem size for kernelbase kernel heap * size page_t's size * ---- --------- ---------- ----------- * 1gb 0x01400000 0xd1800000 684MB * 2gb 0x02800000 0xcf000000 704MB * 4gb 0x05000000 0xca000000 744MB * 6gb 0x07800000 0xc5000000 784MB * 8gb 0x0a000000 0xc0000000 824MB * 16gb 0x14000000 0xac000000 984MB * 32gb 0x28000000 0x84000000 1304MB * 64gb 0x50000000 0x34000000 1944MB (*) * * kernelbase is less than the abi minimum of 0xc0000000 for memory * configurations above 8gb. * * (*) support for memory configurations above 32gb will require manual tuning * of kernelbase to balance out the need of user applications. */ void init_intr_threads(struct cpu *); /* * Dummy spl priority masks */ static unsigned char dummy_cpu_pri[MAXIPL + 1] = { 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf }; /* real-time-clock initialization parameters */ long gmt_lag; /* offset in seconds of gmt to local time */ extern long process_rtc_config_file(void); char *final_kernelheap; char *boot_kernelheap; uintptr_t kernelbase; uintptr_t eprom_kernelbase; size_t segmapsize; static uintptr_t segmap_reserved; uintptr_t segkmap_start; int segmapfreelists; pgcnt_t boot_npages; pgcnt_t npages; size_t core_size; /* size of "core" heap */ uintptr_t core_base; /* base address of "core" heap */ /* * List of bootstrap pages. We mark these as allocated in startup. * release_bootstrap() will free them when we're completely done with * the bootstrap. */ static page_t *bootpages, *rd_pages; struct system_hardware system_hardware; /* * Enable some debugging messages concerning memory usage... * * XX64 There should only be one print routine once memlist usage between * vmx and the kernel is cleaned up and there is a single memlist structure * shared between kernel and boot. */ static void print_boot_memlist(char *title, struct memlist *mp) { prom_printf("MEMLIST: %s:\n", title); while (mp != NULL) { prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", mp->address, mp->size); mp = mp->next; } } static void print_kernel_memlist(char *title, struct memlist *mp) { prom_printf("MEMLIST: %s:\n", title); while (mp != NULL) { prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", mp->address, mp->size); mp = mp->next; } } /* * XX64 need a comment here.. are these just default values, surely * we read the "cpuid" type information to figure this out. */ int l2cache_sz = 0x80000; int l2cache_linesz = 0x40; int l2cache_assoc = 1; /* * on 64 bit we use a predifined VA range for mapping devices in the kernel * on 32 bit the mappings are intermixed in the heap, so we use a bit map */ #ifdef __amd64 vmem_t *device_arena; uintptr_t toxic_addr = (uintptr_t)NULL; size_t toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ #else /* __i386 */ ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ size_t toxic_bit_map_len = 0; /* in bits */ #endif /* __i386 */ /* * Simple boot time debug facilities */ static char *prm_dbg_str[] = { "%s:%d: '%s' is 0x%x\n", "%s:%d: '%s' is 0x%llx\n" }; int prom_debug; #define PRM_DEBUG(q) if (prom_debug) \ prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); #define PRM_POINT(q) if (prom_debug) \ prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); /* * This structure is used to keep track of the intial allocations * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. */ #define NUM_ALLOCATIONS 7 int num_allocations = 0; struct { void **al_ptr; size_t al_size; } allocations[NUM_ALLOCATIONS]; size_t valloc_sz = 0; uintptr_t valloc_base; extern uintptr_t ptable_va; extern size_t ptable_sz; #define ADD_TO_ALLOCATIONS(ptr, size) { \ size = ROUND_UP_PAGE(size); \ if (num_allocations == NUM_ALLOCATIONS) \ panic("too many ADD_TO_ALLOCATIONS()"); \ allocations[num_allocations].al_ptr = (void**)&ptr; \ allocations[num_allocations].al_size = size; \ valloc_sz += size; \ ++num_allocations; \ } static void perform_allocations(void) { caddr_t mem; int i; mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN); if (mem != (caddr_t)valloc_base) panic("BOP_ALLOC() failed"); bzero(mem, valloc_sz); for (i = 0; i < num_allocations; ++i) { *allocations[i].al_ptr = (void *)mem; mem += allocations[i].al_size; } } /* * Our world looks like this at startup time. * * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those * addresses are fixed in the binary at link time. * * On the text page: * unix/genunix/krtld/module text loads. * * On the data page: * unix/genunix/krtld/module data loads and space for page_t's. */ /* * Machine-dependent startup code */ void startup(void) { extern void startup_bios_disk(); /* * Make sure that nobody tries to use sekpm until we have * initialized it properly. */ #if defined(__amd64) kpm_desired = kpm_enable; #endif kpm_enable = 0; progressbar_init(); startup_init(); startup_memlist(); startup_modules(); startup_bios_disk(); startup_bop_gone(); startup_vm(); startup_end(); progressbar_start(); } static void startup_init() { PRM_POINT("startup_init() starting..."); /* * Complete the extraction of cpuid data */ cpuid_pass2(CPU); (void) check_boot_version(BOP_GETVERSION(bootops)); /* * Check for prom_debug in boot environment */ if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { ++prom_debug; PRM_POINT("prom_debug found in boot enviroment"); } /* * Collect node, cpu and memory configuration information. */ get_system_configuration(); /* * Halt if this is an unsupported processor. */ if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { printf("\n486 processor (\"%s\") detected.\n", CPU->cpu_brandstr); halt("This processor is not supported by this release " "of Solaris."); } /* * Set up dummy values till psm spl code installed */ CPU->cpu_pri_data = dummy_cpu_pri; PRM_POINT("startup_init() done"); } /* * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it * also filters out physical page zero. There is some reliance on the * boot loader allocating only a few contiguous physical memory chunks. */ static void avail_filter(uint64_t *addr, uint64_t *size) { uintptr_t va; uintptr_t next_va; pfn_t pfn; uint64_t pfn_addr; uint64_t pfn_eaddr; uint_t prot; size_t len; uint_t change; if (prom_debug) prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", *addr, *size); /* * page zero is required for BIOS.. never make it available */ if (*addr == 0) { *addr += MMU_PAGESIZE; *size -= MMU_PAGESIZE; } /* * First we trim from the front of the range. Since hat_boot_probe() * walks ranges in virtual order, but addr/size are physical, we need * to the list until no changes are seen. This deals with the case * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w * but w < v. */ do { change = 0; for (va = KERNEL_TEXT; *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; va = next_va) { next_va = va + len; pfn_addr = ptob((uint64_t)pfn); pfn_eaddr = pfn_addr + len; if (pfn_addr <= *addr && pfn_eaddr > *addr) { change = 1; while (*size > 0 && len > 0) { *addr += MMU_PAGESIZE; *size -= MMU_PAGESIZE; len -= MMU_PAGESIZE; } } } if (change && prom_debug) prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", *addr, *size); } while (change); /* * Trim pages from the end of the range. */ for (va = KERNEL_TEXT; *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; va = next_va) { next_va = va + len; pfn_addr = ptob((uint64_t)pfn); if (pfn_addr >= *addr && pfn_addr < *addr + *size) *size = pfn_addr - *addr; } if (prom_debug) prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", *addr, *size); } static void kpm_init() { struct segkpm_crargs b; uintptr_t start, end; struct memlist *pmem; /* * These variables were all designed for sfmmu in which segkpm is * mapped using a single pagesize - either 8KB or 4MB. On x86, we * might use 2+ page sizes on a single machine, so none of these * variables have a single correct value. They are set up as if we * always use a 4KB pagesize, which should do no harm. In the long * run, we should get rid of KPM's assumption that only a single * pagesize is used. */ kpm_pgshft = MMU_PAGESHIFT; kpm_pgsz = MMU_PAGESIZE; kpm_pgoff = MMU_PAGEOFFSET; kpmp2pshft = 0; kpmpnpgs = 1; ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); PRM_POINT("about to create segkpm"); rw_enter(&kas.a_lock, RW_WRITER); if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) panic("cannot attach segkpm"); b.prot = PROT_READ | PROT_WRITE; b.nvcolors = 1; if (segkpm_create(segkpm, (caddr_t)&b) != 0) panic("segkpm_create segkpm"); rw_exit(&kas.a_lock); /* * Map each of the memsegs into the kpm segment, coalesing adjacent * memsegs to allow mapping with the largest possible pages. */ pmem = phys_install; start = pmem->address; end = start + pmem->size; for (;;) { if (pmem == NULL || pmem->address > end) { hat_devload(kas.a_hat, kpm_vbase + start, end - start, mmu_btop(start), PROT_READ | PROT_WRITE, HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); if (pmem == NULL) break; start = pmem->address; } end = pmem->address + pmem->size; pmem = pmem->next; } } /* * The purpose of startup memlist is to get the system to the * point where it can use kmem_alloc()'s that operate correctly * relying on BOP_ALLOC(). This includes allocating page_ts, * page hash table, vmem initialized, etc. * * Boot's versions of physinstalled and physavail are insufficient for * the kernel's purposes. Specifically we don't know which pages that * are not in physavail can be reclaimed after boot is gone. * * This code solves the problem by dividing the address space * into 3 regions as it takes over the MMU from the booter. * * 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT * can not be used by the kernel. * * 2) Any free page that happens to be mapped below kernelbase * is protected until the boot loader is released, but will then be reclaimed. * * 3) Boot shouldn't use any address in the remaining area between kernelbase * and KERNEL_TEXT. * * In the case of multiple mappings to the same page, region 1 has precedence * over region 2. */ static void startup_memlist(void) { size_t memlist_sz; size_t memseg_sz; size_t pagehash_sz; size_t pp_sz; uintptr_t va; size_t len; uint_t prot; pfn_t pfn; int memblocks; caddr_t pagecolor_mem; size_t pagecolor_memsz; caddr_t page_ctrs_mem; size_t page_ctrs_size; struct memlist *current; extern void startup_build_mem_nodes(struct memlist *); /* XX64 fix these - they should be in include files */ extern ulong_t cr4_value; extern size_t page_coloring_init(uint_t, int, int); extern void page_coloring_setup(caddr_t); PRM_POINT("startup_memlist() starting..."); /* * Take the most current snapshot we can by calling mem-update. * For this to work properly, we first have to ask boot for its * end address. */ if (BOP_GETPROPLEN(bootops, "memory-update") == 0) (void) BOP_GETPROP(bootops, "memory-update", NULL); /* * find if the kernel is mapped on a large page */ va = KERNEL_TEXT; if (hat_boot_probe(&va, &len, &pfn, &prot) == 0) panic("Couldn't find kernel text boot mapping"); /* * Use leftover large page nucleus text/data space for loadable modules. * Use at most MODTEXT/MODDATA. */ if (len > MMU_PAGESIZE) { moddata = (caddr_t)ROUND_UP_PAGE(e_data); e_moddata = (caddr_t)ROUND_UP_4MEG(e_data); if (e_moddata - moddata > MODDATA) e_moddata = moddata + MODDATA; modtext = (caddr_t)ROUND_UP_PAGE(e_text); e_modtext = (caddr_t)ROUND_UP_4MEG(e_text); if (e_modtext - modtext > MODTEXT) e_modtext = modtext + MODTEXT; } else { PRM_POINT("Kernel NOT loaded on Large Page!"); e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data); e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text); } econtig = e_moddata; PRM_DEBUG(modtext); PRM_DEBUG(e_modtext); PRM_DEBUG(moddata); PRM_DEBUG(e_moddata); PRM_DEBUG(econtig); /* * For MP machines cr4_value must be set or the non-boot * CPUs will not be able to start. */ if (x86_feature & X86_LARGEPAGE) cr4_value = getcr4(); PRM_DEBUG(cr4_value); /* * Examine the boot loaders physical memory map to find out: * - total memory in system - physinstalled * - the max physical address - physmax * - the number of segments the intsalled memory comes in */ if (prom_debug) print_boot_memlist("boot physinstalled", bootops->boot_mem->physinstalled); installed_top_size(bootops->boot_mem->physinstalled, &physmax, &physinstalled, &memblocks); PRM_DEBUG(physmax); PRM_DEBUG(physinstalled); PRM_DEBUG(memblocks); if (prom_debug) print_boot_memlist("boot physavail", bootops->boot_mem->physavail); /* * Initialize hat's mmu parameters. * Check for enforce-prot-exec in boot environment. It's used to * enable/disable support for the page table entry NX bit. * The default is to enforce PROT_EXEC on processors that support NX. * Boot seems to round up the "len", but 8 seems to be big enough. */ mmu_init(); #ifdef __i386 /* * physmax is lowered if there is more memory than can be * physically addressed in 32 bit (PAE/non-PAE) modes. */ if (mmu.pae_hat) { if (PFN_ABOVE64G(physmax)) { physinstalled -= (physmax - (PFN_64G - 1)); physmax = PFN_64G - 1; } } else { if (PFN_ABOVE4G(physmax)) { physinstalled -= (physmax - (PFN_4G - 1)); physmax = PFN_4G - 1; } } #endif startup_build_mem_nodes(bootops->boot_mem->physinstalled); if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); char value[8]; if (len < 8) (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); else (void) strcpy(value, ""); if (strcmp(value, "off") == 0) mmu.pt_nx = 0; } PRM_DEBUG(mmu.pt_nx); /* * We will need page_t's for every page in the system, except for * memory mapped at or above above the start of the kernel text segment. * * pages above e_modtext are attributed to kernel debugger (obp_pages) */ npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ obp_pages = 0; va = KERNEL_TEXT; while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) { npages -= len >> MMU_PAGESHIFT; if (va >= (uintptr_t)e_moddata) obp_pages += len >> MMU_PAGESHIFT; va += len; } PRM_DEBUG(npages); PRM_DEBUG(obp_pages); /* * If physmem is patched to be non-zero, use it instead of * the computed value unless it is larger than the real * amount of memory on hand. */ if (physmem == 0 || physmem > npages) physmem = npages; else npages = physmem; PRM_DEBUG(physmem); /* * We now compute the sizes of all the initial allocations for * structures the kernel needs in order do kmem_alloc(). These * include: * memsegs * memlists * page hash table * page_t's * page coloring data structs */ memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); PRM_DEBUG(memseg_sz); /* * Reserve space for phys_avail/phys_install memlists. * There's no real good way to know exactly how much room we'll need, * but this should be a good upper bound. */ memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * (memblocks + POSS_NEW_FRAGMENTS)); ADD_TO_ALLOCATIONS(memlist, memlist_sz); PRM_DEBUG(memlist_sz); /* * The page structure hash table size is a power of 2 * such that the average hash chain length is PAGE_HASHAVELEN. */ page_hashsz = npages / PAGE_HASHAVELEN; page_hashsz = 1 << highbit(page_hashsz); pagehash_sz = sizeof (struct page *) * page_hashsz; ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); PRM_DEBUG(pagehash_sz); /* * Set aside room for the page structures themselves. Note: on * 64-bit systems we don't allocate page_t's for every page here. * We just allocate enough to map the lowest 4GB of physical * memory, minus those pages that are used for the "nucleus" kernel * text and data. The remaining pages are allocated once we can * map around boot. * * boot_npages is used to allocate an area big enough for our * initial page_t's. kphym_init may use less than that. */ boot_npages = npages; #if defined(__amd64) if (npages > mmu_btop(FOURGB - (econtig - s_text))) boot_npages = mmu_btop(FOURGB - (econtig - s_text)); #endif PRM_DEBUG(boot_npages); pp_sz = sizeof (struct page) * boot_npages; ADD_TO_ALLOCATIONS(pp_base, pp_sz); PRM_DEBUG(pp_sz); /* * determine l2 cache info and memory size for page coloring */ (void) getl2cacheinfo(CPU, &l2cache_sz, &l2cache_linesz, &l2cache_assoc); pagecolor_memsz = page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); PRM_DEBUG(pagecolor_memsz); page_ctrs_size = page_ctrs_sz(); ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); PRM_DEBUG(page_ctrs_size); /* * valloc_base will be below kernel text * The extra pages are for the HAT and kmdb to map page tables. */ valloc_sz = ROUND_UP_LPAGE(valloc_sz); valloc_base = KERNEL_TEXT - valloc_sz; PRM_DEBUG(valloc_base); ptable_va = valloc_base - ptable_sz; #if defined(__amd64) if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " "systems."); kernelbase = (uintptr_t)KERNELBASE; core_base = (uintptr_t)COREHEAP_BASE; core_size = ptable_va - core_base; #else /* __i386 */ /* * We configure kernelbase based on: * * 1. user specified kernelbase via eeprom command. Value cannot exceed * KERNELBASE_MAX. we large page align eprom_kernelbase * * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. * On large memory systems we must lower kernelbase to allow * enough room for page_t's for all of memory. * * The value set here, might be changed a little later. */ if (eprom_kernelbase) { kernelbase = eprom_kernelbase & mmu.level_mask[1]; if (kernelbase > KERNELBASE_MAX) kernelbase = KERNELBASE_MAX; } else { kernelbase = (uintptr_t)KERNELBASE; kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); } ASSERT((kernelbase & mmu.level_offset[1]) == 0); core_base = ptable_va; core_size = 0; #endif PRM_DEBUG(kernelbase); PRM_DEBUG(core_base); PRM_DEBUG(core_size); /* * At this point, we can only use a portion of the kernelheap that * will be available after we boot. Both 32-bit and 64-bit systems * have this limitation, although the reasons are completely * different. * * On 64-bit systems, the booter only supports allocations in the * upper 4GB of memory, so we have to work with a reduced kernel * heap until we take over all allocations. The booter also sits * in the lower portion of that 4GB range, so we have to raise the * bottom of the heap even further. * * On 32-bit systems we have to leave room to place segmap below * the heap. We don't yet know how large segmap will be, so we * have to be very conservative. */ #if defined(__amd64) /* * XX64: For now, we let boot have the lower 2GB of the top 4GB * address range. In the long run, that should be fixed. It's * insane for a booter to need 2 2GB address ranges. */ boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); segmap_reserved = 0; #else /* __i386 */ segkp_fromheap = 1; segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX)); boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) + segmap_reserved); #endif PRM_DEBUG(boot_kernelheap); kernelheap = boot_kernelheap; ekernelheap = (char *)core_base; /* * If segmap is too large we can push the bottom of the kernel heap * higher than the base. Or worse, it could exceed the top of the * VA space entirely, causing it to wrap around. */ if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) panic("too little memory available for kernelheap," " use a different kernelbase"); /* * Now that we know the real value of kernelbase, * update variables that were initialized with a value of * KERNELBASE (in common/conf/param.c). * * XXX The problem with this sort of hackery is that the * compiler just may feel like putting the const declarations * (in param.c) into the .text section. Perhaps they should * just be declared as variables there? */ #if defined(__amd64) ASSERT(_kernelbase == KERNELBASE); ASSERT(_userlimit == USERLIMIT); /* * As one final sanity check, verify that the "red zone" between * kernel and userspace is exactly the size we expected. */ ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024))); #else *(uintptr_t *)&_kernelbase = kernelbase; *(uintptr_t *)&_userlimit = kernelbase; *(uintptr_t *)&_userlimit32 = _userlimit; #endif PRM_DEBUG(_kernelbase); PRM_DEBUG(_userlimit); PRM_DEBUG(_userlimit32); /* * do all the initial allocations */ perform_allocations(); /* * Initialize the kernel heap. Note 3rd argument must be > 1st. */ kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE, (void *)core_base, (void *)ptable_va); /* * Build phys_install and phys_avail in kernel memspace. * - phys_install should be all memory in the system. * - phys_avail is phys_install minus any memory mapped before this * point above KERNEL_TEXT. */ current = phys_install = memlist; copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); if ((caddr_t)current > (caddr_t)memlist + memlist_sz) panic("physinstalled was too big!"); if (prom_debug) print_kernel_memlist("phys_install", phys_install); phys_avail = current; PRM_POINT("Building phys_avail:\n"); copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, avail_filter); if ((caddr_t)current > (caddr_t)memlist + memlist_sz) panic("physavail was too big!"); if (prom_debug) print_kernel_memlist("phys_avail", phys_avail); /* * setup page coloring */ page_coloring_setup(pagecolor_mem); page_lock_init(); /* currently a no-op */ /* * free page list counters */ (void) page_ctrs_alloc(page_ctrs_mem); /* * Initialize the page structures from the memory lists. */ availrmem_initial = availrmem = freemem = 0; PRM_POINT("Calling kphysm_init()..."); boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages); PRM_POINT("kphysm_init() done"); PRM_DEBUG(boot_npages); /* * Now that page_t's have been initialized, remove all the * initial allocation pages from the kernel free page lists. */ boot_mapin((caddr_t)valloc_base, valloc_sz); /* * Initialize kernel memory allocator. */ kmem_init(); /* * print this out early so that we know what's going on */ cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); /* * Initialize bp_mapin(). */ bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); #if defined(__i386) if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " "System using 0x%lx", (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); #endif #ifdef KERNELBASE_ABI_MIN if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " "i386 ABI compliant.", (uintptr_t)kernelbase); } #endif PRM_POINT("startup_memlist() done"); } static void startup_modules(void) { unsigned int i; extern void impl_setup_ddi(void); extern void prom_setup(void); PRM_POINT("startup_modules() starting..."); /* * Initialize ten-micro second timer so that drivers will * not get short changed in their init phase. This was * not getting called until clkinit which, on fast cpu's * caused the drv_usecwait to be way too short. */ microfind(); /* * Read the GMT lag from /etc/rtc_config. */ gmt_lag = process_rtc_config_file(); /* * Calculate default settings of system parameters based upon * maxusers, yet allow to be overridden via the /etc/system file. */ param_calc(0); mod_setup(); /* * Setup machine check architecture on P6 */ setup_mca(); /* * Initialize system parameters. */ param_init(); /* * maxmem is the amount of physical memory we're playing with. */ maxmem = physmem; /* * Initialize the hat layer. */ hat_init(); /* * Initialize segment management stuff. */ seg_init(); if (modload("fs", "specfs") == -1) halt("Can't load specfs"); if (modload("fs", "devfs") == -1) halt("Can't load devfs"); dispinit(); /* * This is needed here to initialize hw_serial[] for cluster booting. */ if ((i = modload("misc", "sysinit")) != (unsigned int)-1) (void) modunload(i); else cmn_err(CE_CONT, "sysinit load failed"); /* Read cluster configuration data. */ clconf_init(); /* * Create a kernel device tree. First, create rootnex and * then invoke bus specific code to probe devices. */ setup_ddi(); impl_setup_ddi(); /* * Fake a prom tree such that /dev/openprom continues to work */ prom_setup(); /* * Load all platform specific modules */ psm_modload(); PRM_POINT("startup_modules() done"); } static void startup_bop_gone(void) { PRM_POINT("startup_bop_gone() starting..."); /* * Do final allocations of HAT data structures that need to * be allocated before quiescing the boot loader. */ PRM_POINT("Calling hat_kern_alloc()..."); hat_kern_alloc(); PRM_POINT("hat_kern_alloc() done"); /* * Setup MTRR (Memory type range registers) */ setup_mtrr(); PRM_POINT("startup_bop_gone() done"); } /* * Walk through the pagetables looking for pages mapped in by boot. If the * setaside flag is set the pages are expected to be returned to the * kernel later in boot, so we add them to the bootpages list. */ static void protect_boot_range(uintptr_t low, uintptr_t high, int setaside) { uintptr_t va = low; size_t len; uint_t prot; pfn_t pfn; page_t *pp; pgcnt_t boot_protect_cnt = 0; while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) { if (va + len >= high) panic("0x%lx byte mapping at 0x%p exceeds boot's " "legal range.", len, (void *)va); while (len > 0) { pp = page_numtopp_alloc(pfn); if (pp != NULL) { if (setaside == 0) panic("Unexpected mapping by boot. " "addr=%p pfn=%lx\n", (void *)va, pfn); pp->p_next = bootpages; bootpages = pp; ++boot_protect_cnt; } ++pfn; len -= MMU_PAGESIZE; va += MMU_PAGESIZE; } } PRM_DEBUG(boot_protect_cnt); } static void startup_vm(void) { struct segmap_crargs a; extern void hat_kern_setup(void); pgcnt_t pages_left; extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg; extern pgcnt_t auto_lpg_min_physmem; PRM_POINT("startup_vm() starting..."); /* * The next two loops are done in distinct steps in order * to be sure that any page that is doubly mapped (both above * KERNEL_TEXT and below kernelbase) is dealt with correctly. * Note this may never happen, but it might someday. */ bootpages = NULL; PRM_POINT("Protecting boot pages"); /* * Protect any pages mapped above KERNEL_TEXT that somehow have * page_t's. This can only happen if something weird allocated * in this range (like kadb/kmdb). */ protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); /* * Before we can take over memory allocation/mapping from the boot * loader we must remove from our free page lists any boot pages that * will stay mapped until release_bootstrap(). */ protect_boot_range(0, kernelbase, 1); #if defined(__amd64) protect_boot_range(BOOT_DOUBLEMAP_BASE, BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0); #endif /* * Copy in boot's page tables, set up extra page tables for the kernel, * and switch to the kernel's context. */ PRM_POINT("Calling hat_kern_setup()..."); hat_kern_setup(); /* * It is no longer safe to call BOP_ALLOC(), so make sure we don't. */ bootops->bsys_alloc = NULL; PRM_POINT("hat_kern_setup() done"); hat_cpu_online(CPU); /* * Before we call kvm_init(), we need to establish the final size * of the kernel's heap. So, we need to figure out how much space * to set aside for segkp, segkpm, and segmap. */ final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase); #if defined(__amd64) if (kpm_desired) { /* * Segkpm appears at the bottom of the kernel's address * range. To detect accidental overruns of the user * address space, we leave a "red zone" of unmapped memory * between kernelbase and the beginning of segkpm. */ kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE; kpm_size = mmu_ptob(physmax); PRM_DEBUG(kpm_vbase); PRM_DEBUG(kpm_size); final_kernelheap = (caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size); } if (!segkp_fromheap) { size_t sz = mmu_ptob(segkpsize); /* * determine size of segkp and adjust the bottom of the * kernel's heap. */ if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { sz = SEGKPDEFSIZE; cmn_err(CE_WARN, "!Illegal value for segkpsize. " "segkpsize has been reset to %ld pages", mmu_btop(sz)); } sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); segkp_base = final_kernelheap; PRM_DEBUG(segkpsize); PRM_DEBUG(segkp_base); final_kernelheap = segkp_base + mmu_ptob(segkpsize); PRM_DEBUG(final_kernelheap); } /* * put the range of VA for device mappings next */ toxic_addr = (uintptr_t)final_kernelheap; PRM_DEBUG(toxic_addr); final_kernelheap = (char *)toxic_addr + toxic_size; #endif PRM_DEBUG(final_kernelheap); ASSERT(final_kernelheap < boot_kernelheap); /* * Users can change segmapsize through eeprom or /etc/system. * If the variable is tuned through eeprom, there is no upper * bound on the size of segmap. If it is tuned through * /etc/system on 32-bit systems, it must be no larger than we * planned for in startup_memlist(). */ segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap); #if defined(__i386) if (segmapsize > segmap_reserved) { cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in " "/etc/system. Use eeprom.", (long)SEGMAPMAX); segmapsize = segmap_reserved; } /* * 32-bit systems don't have segkpm or segkp, so segmap appears at * the bottom of the kernel's address range. Set aside space for a * red zone just below the start of segmap. */ segkmap_start += KERNEL_REDZONE_SIZE; segmapsize -= KERNEL_REDZONE_SIZE; #endif final_kernelheap = (char *)(segkmap_start + segmapsize); PRM_DEBUG(segkmap_start); PRM_DEBUG(segmapsize); PRM_DEBUG(final_kernelheap); /* * Initialize VM system */ PRM_POINT("Calling kvm_init()..."); kvm_init(); PRM_POINT("kvm_init() done"); /* * Tell kmdb that the VM system is now working */ if (boothowto & RB_DEBUG) kdi_dvec_vmready(); /* * Mangle the brand string etc. */ cpuid_pass3(CPU); PRM_DEBUG(final_kernelheap); /* * Now that we can use memory outside the top 4GB (on 64-bit * systems) and we know the size of segmap, we can set the final * size of the kernel's heap. Note: on 64-bit systems we still * can't touch anything in the bottom half of the top 4GB range * because boot still has pages mapped there. */ if (final_kernelheap < boot_kernelheap) { kernelheap_extend(final_kernelheap, boot_kernelheap); #if defined(__amd64) kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE, MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE), (void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE), VM_NOSLEEP | VM_BESTFIT | VM_PANIC); PRM_DEBUG(kmem_setaside); if (kmem_setaside == NULL) panic("Could not protect boot's memory"); #endif } /* * Now that the kernel heap may have grown significantly, we need * to make all the remaining page_t's available to back that memory. * * XX64 this should probably wait till after release boot-strap too. */ pages_left = npages - boot_npages; if (pages_left > 0) { PRM_DEBUG(pages_left); (void) kphysm_init(NULL, memseg_base, boot_npages, pages_left); } #if defined(__amd64) /* * Create the device arena for toxic (to dtrace/kmdb) mappings. */ device_arena = vmem_create("device", (void *)toxic_addr, toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); #else /* __i386 */ /* * allocate the bit map that tracks toxic pages */ toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase)); PRM_DEBUG(toxic_bit_map_len); toxic_bit_map = kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); ASSERT(toxic_bit_map != NULL); PRM_DEBUG(toxic_bit_map); #endif /* __i386 */ /* * Now that we've got more VA, as well as the ability to allocate from * it, tell the debugger. */ if (boothowto & RB_DEBUG) kdi_dvec_memavail(); /* * The following code installs a special page fault handler (#pf) * to work around a pentium bug. */ #if !defined(__amd64) if (x86_type == X86_TYPE_P5) { gate_desc_t *newidt; desctbr_t newidt_r; if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) panic("failed to install pentium_pftrap"); bcopy(idt0, newidt, sizeof (idt0)); set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, KCS_SEL, 0, SDT_SYSIGT, SEL_KPL); (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, PROT_READ|PROT_EXEC); newidt_r.dtr_limit = sizeof (idt0) - 1; newidt_r.dtr_base = (uintptr_t)newidt; CPU->cpu_idt = newidt; wr_idtr(&newidt_r); } #endif /* !__amd64 */ /* * Map page pfn=0 for drivers, such as kd, that need to pick up * parameters left there by controllers/BIOS. */ PRM_POINT("setup up p0_va"); p0_va = i86devmap(0, 1, PROT_READ); PRM_DEBUG(p0_va); /* * If the following is true, someone has patched phsymem to be less * than the number of pages that the system actually has. Remove * pages until system memory is limited to the requested amount. * Since we have allocated page structures for all pages, we * correct the amount of memory we want to remove by the size of * the memory used to hold page structures for the non-used pages. */ if (physmem < npages) { uint_t diff; offset_t off; struct page *pp; caddr_t rand_vaddr; struct seg kseg; cmn_err(CE_WARN, "limiting physmem to %lu pages", physmem); off = 0; diff = npages - physmem; diff -= mmu_btopr(diff * sizeof (struct page)); kseg.s_as = &kas; while (diff--) { rand_vaddr = (caddr_t) (((uintptr_t)&unused_pages_vp >> 7) ^ (uintptr_t)((u_offset_t)off >> MMU_PAGESHIFT)); pp = page_create_va(&unused_pages_vp, off, MMU_PAGESIZE, PG_WAIT | PG_EXCL, &kseg, rand_vaddr); if (pp == NULL) { panic("limited physmem too much!"); /*NOTREACHED*/ } page_io_unlock(pp); page_downgrade(pp); availrmem--; off += MMU_PAGESIZE; } } cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); /* For small memory systems disable automatic large pages. */ if (physmem < auto_lpg_min_physmem) { exec_lpg_disable = 1; use_brk_lpg = 0; use_stk_lpg = 0; use_zmap_lpg = 0; } PRM_POINT("Calling hat_init_finish()..."); hat_init_finish(); PRM_POINT("hat_init_finish() done"); /* * Initialize the segkp segment type. */ rw_enter(&kas.a_lock, RW_WRITER); if (!segkp_fromheap) { if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), segkp) < 0) { panic("startup: cannot attach segkp"); /*NOTREACHED*/ } } else { /* * For 32 bit x86 systems, we will have segkp under the heap. * There will not be a segkp segment. We do, however, need * to fill in the seg structure. */ segkp->s_as = &kas; } if (segkp_create(segkp) != 0) { panic("startup: segkp_create failed"); /*NOTREACHED*/ } PRM_DEBUG(segkp); rw_exit(&kas.a_lock); /* * kpm segment */ segmap_kpm = 0; if (kpm_desired) { kpm_init(); kpm_enable = 1; } /* * Now create segmap segment. */ rw_enter(&kas.a_lock, RW_WRITER); if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) { panic("cannot attach segkmap"); /*NOTREACHED*/ } PRM_DEBUG(segkmap); /* * The 64 bit HAT permanently maps only segmap's page tables. * The 32 bit HAT maps the heap's page tables too. */ #if defined(__amd64) hat_kmap_init(segkmap_start, segmapsize); #else /* __i386 */ ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap); hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start); #endif /* __i386 */ a.prot = PROT_READ | PROT_WRITE; a.shmsize = 0; a.nfreelist = segmapfreelists; if (segmap_create(segkmap, (caddr_t)&a) != 0) panic("segmap_create segkmap"); rw_exit(&kas.a_lock); setup_vaddr_for_ppcopy(CPU); segdev_init(); pmem_init(); PRM_POINT("startup_vm() done"); } static void startup_end(void) { extern void setx86isalist(void); PRM_POINT("startup_end() starting..."); /* * Perform tasks that get done after most of the VM * initialization has been done but before the clock * and other devices get started. */ kern_setup1(); /* * Perform CPC initialization for this CPU. */ kcpc_hw_init(CPU); #if defined(__amd64) /* * Validate support for syscall/sysret * XX64 -- include SSE, SSE2, etc. here too? */ if ((x86_feature & X86_ASYSC) == 0) { cmn_err(CE_WARN, "cpu%d does not support syscall/sysret", CPU->cpu_id); } #endif /* * Configure the system. */ PRM_POINT("Calling configure()..."); configure(); /* set up devices */ PRM_POINT("configure() done"); /* * Set the isa_list string to the defined instruction sets we * support. */ setx86isalist(); init_intr_threads(CPU); psm_install(); /* * We're done with bootops. We don't unmap the bootstrap yet because * we're still using bootsvcs. */ PRM_POINT("zeroing out bootops"); *bootopsp = (struct bootops *)0; bootops = (struct bootops *)NULL; PRM_POINT("Enabling interrupts"); (*picinitf)(); sti(); (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, "softlevel1", NULL, NULL); /* XXX to be moved later */ PRM_POINT("startup_end() done"); } extern char hw_serial[]; char *_hs1107 = hw_serial; ulong_t _bdhs34; void post_startup(void) { extern void memscrub_init(void); /* * Set the system wide, processor-specific flags to be passed * to userland via the aux vector for performance hints and * instruction set extensions. */ bind_hwcap(); /* * Startup memory scrubber. */ (void) memscrub_init(); /* * Perform forceloading tasks for /etc/system. */ (void) mod_sysctl(SYS_FORCELOAD, NULL); /* * complete mmu initialization, now that kernel and critical * modules have been loaded. */ (void) post_startup_mmu_initialization(); /* * ON4.0: Force /proc module in until clock interrupt handle fixed * ON4.0: This must be fixed or restated in /etc/systems. */ (void) modload("fs", "procfs"); #if defined(__i386) /* * Check for required functional Floating Point hardware, * unless FP hardware explicitly disabled. */ if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) halt("No working FP hardware found"); #endif maxmem = freemem; add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); /* * Perform the formal initialization of the boot chip, * and associate the boot cpu with it. * This must be done after the cpu node for CPU has been * added to the device tree, when the necessary probing to * know the chip type and chip "id" is performed. */ chip_cpu_init(CPU); chip_cpu_assign(CPU); } static int pp_in_ramdisk(page_t *pp) { extern uint64_t ramdisk_start, ramdisk_end; return ((pp->p_pagenum >= btop(ramdisk_start)) && (pp->p_pagenum < btopr(ramdisk_end))); } void release_bootstrap(void) { int root_is_ramdisk; pfn_t pfn; page_t *pp; extern void kobj_boot_unmountroot(void); extern dev_t rootdev; /* unmount boot ramdisk and release kmem usage */ kobj_boot_unmountroot(); /* * We're finished using the boot loader so free its pages. */ PRM_POINT("Unmapping lower boot pages"); clear_boot_mappings(0, kernelbase); #if defined(__amd64) PRM_POINT("Unmapping upper boot pages"); clear_boot_mappings(BOOT_DOUBLEMAP_BASE, BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); #endif /* * If root isn't on ramdisk, destroy the hardcoded * ramdisk node now and release the memory. Else, * ramdisk memory is kept in rd_pages. */ root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); if (!root_is_ramdisk) { dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); ndi_rele_devi(dip); /* held from ddi_find_devinfo */ (void) ddi_remove_child(dip, 0); } PRM_POINT("Releasing boot pages"); while (bootpages) { pp = bootpages; bootpages = pp->p_next; if (root_is_ramdisk && pp_in_ramdisk(pp)) { pp->p_next = rd_pages; rd_pages = pp; continue; } pp->p_next = (struct page *)0; page_free(pp, 1); } /* * Find 1 page below 1 MB so that other processors can boot up. * Make sure it has a kernel VA as well as a 1:1 mapping. * We should have just free'd one up. */ if (use_mp) { for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { if (page_numtopp_alloc(pfn) == NULL) continue; rm_platter_va = i86devmap(pfn, 1, PROT_READ | PROT_WRITE | PROT_EXEC); rm_platter_pa = ptob(pfn); hat_devload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, pfn, PROT_READ | PROT_WRITE | PROT_EXEC, HAT_LOAD_NOCONSIST); break; } if (pfn == btop(1*1024*1024)) panic("No page available for starting " "other processors"); } #if defined(__amd64) PRM_POINT("Returning boot's VA space to kernel heap"); if (kmem_setaside != NULL) vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE); #endif } /* * Initialize the platform-specific parts of a page_t. */ void add_physmem_cb(page_t *pp, pfn_t pnum) { pp->p_pagenum = pnum; pp->p_mapping = NULL; pp->p_embed = 0; pp->p_share = 0; pp->p_mlentry = 0; } /* * kphysm_init() initializes physical memory. */ static pgcnt_t kphysm_init( page_t *inpp, struct memseg *memsegp, pgcnt_t start, pgcnt_t npages) { struct memlist *pmem; struct memseg *cur_memseg; struct memseg **memsegpp; pfn_t base_pfn; pgcnt_t num; pgcnt_t total_skipped = 0; pgcnt_t skipping = 0; pgcnt_t pages_done = 0; pgcnt_t largepgcnt; uint64_t addr; uint64_t size; page_t *pp = inpp; int dobreak = 0; extern pfn_t ddiphysmin; ASSERT(page_hash != NULL && page_hashsz != 0); for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++); ASSERT(cur_memseg == memsegp || start > 0); for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { /* * In a 32 bit kernel can't use higher memory if we're * not booting in PAE mode. This check takes care of that. */ addr = pmem->address; size = pmem->size; if (btop(addr) > physmax) continue; /* * align addr and size - they may not be at page boundaries */ if ((addr & MMU_PAGEOFFSET) != 0) { addr += MMU_PAGEOFFSET; addr &= ~(uint64_t)MMU_PAGEOFFSET; size -= addr - pmem->address; } /* only process pages below physmax */ if (btop(addr + size) > physmax) size = ptob(physmax - btop(addr)); num = btop(size); if (num == 0) continue; if (total_skipped < start) { if (start - total_skipped > num) { total_skipped += num; continue; } skipping = start - total_skipped; num -= skipping; addr += (MMU_PAGESIZE * skipping); total_skipped = start; } if (num == 0) continue; if (num > npages) num = npages; npages -= num; pages_done += num; base_pfn = btop(addr); /* * If the caller didn't provide space for the page * structures, carve them out of the memseg they will * represent. */ if (pp == NULL) { pgcnt_t pp_pgs; if (num <= 1) continue; /* * Compute how many of the pages we need to use for * page_ts */ pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1; while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >= num - pp_pgs + 1) --pp_pgs; PRM_DEBUG(pp_pgs); pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs), VM_NOSLEEP); if (pp == NULL) { cmn_err(CE_WARN, "Unable to add %ld pages to " "the system.", num); continue; } hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs), base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK, HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); bzero(pp, mmu_ptob(pp_pgs)); num -= pp_pgs; base_pfn += pp_pgs; } if (prom_debug) prom_printf("MEMSEG addr=0x%" PRIx64 " pgs=0x%lx pfn 0x%lx-0x%lx\n", addr, num, base_pfn, base_pfn + num); /* * drop pages below ddiphysmin to simplify ddi memory * allocation with non-zero addr_lo requests. */ if (base_pfn < ddiphysmin) { if (base_pfn + num <= ddiphysmin) { /* drop entire range below ddiphysmin */ continue; } /* adjust range to ddiphysmin */ pp += (ddiphysmin - base_pfn); num -= (ddiphysmin - base_pfn); base_pfn = ddiphysmin; } /* * Build the memsegs entry */ cur_memseg->pages = pp; cur_memseg->epages = pp + num; cur_memseg->pages_base = base_pfn; cur_memseg->pages_end = base_pfn + num; /* * insert in memseg list in decreasing pfn range order. * Low memory is typically more fragmented such that this * ordering keeps the larger ranges at the front of the list * for code that searches memseg. */ memsegpp = &memsegs; for (;;) { if (*memsegpp == NULL) { /* empty memsegs */ memsegs = cur_memseg; break; } /* check for continuity with start of memsegpp */ if (cur_memseg->pages_end == (*memsegpp)->pages_base) { if (cur_memseg->epages == (*memsegpp)->pages) { /* * contiguous pfn and page_t's. Merge * cur_memseg into *memsegpp. Drop * cur_memseg */ (*memsegpp)->pages_base = cur_memseg->pages_base; (*memsegpp)->pages = cur_memseg->pages; /* * check if contiguous with the end of * the next memseg. */ if ((*memsegpp)->next && ((*memsegpp)->pages_base == (*memsegpp)->next->pages_end)) { cur_memseg = *memsegpp; memsegpp = &((*memsegpp)->next); dobreak = 1; } else { break; } } else { /* * contiguous pfn but not page_t's. * drop last pfn/page_t in cur_memseg * to prevent creation of large pages * with noncontiguous page_t's if not * aligned to largest page boundary. */ largepgcnt = page_get_pagecnt( page_num_pagesizes() - 1); if (cur_memseg->pages_end & (largepgcnt - 1)) { num--; cur_memseg->epages--; cur_memseg->pages_end--; } } } /* check for continuity with end of memsegpp */ if (cur_memseg->pages_base == (*memsegpp)->pages_end) { if (cur_memseg->pages == (*memsegpp)->epages) { /* * contiguous pfn and page_t's. Merge * cur_memseg into *memsegpp. Drop * cur_memseg. */ if (dobreak) { /* merge previously done */ cur_memseg->pages = (*memsegpp)->pages; cur_memseg->pages_base = (*memsegpp)->pages_base; cur_memseg->next = (*memsegpp)->next; } else { (*memsegpp)->pages_end = cur_memseg->pages_end; (*memsegpp)->epages = cur_memseg->epages; } break; } /* * contiguous pfn but not page_t's. * drop first pfn/page_t in cur_memseg * to prevent creation of large pages * with noncontiguous page_t's if not * aligned to largest page boundary. */ largepgcnt = page_get_pagecnt( page_num_pagesizes() - 1); if (base_pfn & (largepgcnt - 1)) { num--; base_pfn++; cur_memseg->pages++; cur_memseg->pages_base++; pp = cur_memseg->pages; } if (dobreak) break; } if (cur_memseg->pages_base >= (*memsegpp)->pages_end) { cur_memseg->next = *memsegpp; *memsegpp = cur_memseg; break; } if ((*memsegpp)->next == NULL) { cur_memseg->next = NULL; (*memsegpp)->next = cur_memseg; break; } memsegpp = &((*memsegpp)->next); ASSERT(*memsegpp != NULL); } /* * add_physmem() initializes the PSM part of the page * struct by calling the PSM back with add_physmem_cb(). * In addition it coalesces pages into larger pages as * it initializes them. */ add_physmem(pp, num, base_pfn); cur_memseg++; availrmem_initial += num; availrmem += num; /* * If the caller provided the page frames to us, then * advance in that list. Otherwise, prepare to allocate * our own page frames for the next memseg. */ pp = (inpp == NULL) ? NULL : pp + num; } PRM_DEBUG(availrmem_initial); PRM_DEBUG(availrmem); PRM_DEBUG(freemem); build_pfn_hash(); return (pages_done); } /* * Kernel VM initialization. */ static void kvm_init(void) { #ifdef DEBUG extern void _start(); ASSERT((caddr_t)_start == s_text); #endif ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); /* * Put the kernel segments in kernel address space. */ rw_enter(&kas.a_lock, RW_WRITER); as_avlinit(&kas); (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); (void) segkmem_create(&ktextseg); (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); (void) segkmem_create(&kvalloc); /* * We're about to map out /boot. This is the beginning of the * system resource management transition. We can no longer * call into /boot for I/O or memory allocations. * * XX64 - Is this still correct with kernelheap_extend() being called * later than this???? */ (void) seg_attach(&kas, final_kernelheap, ekernelheap - final_kernelheap, &kvseg); (void) segkmem_create(&kvseg); #if defined(__amd64) (void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core); (void) segkmem_create(&kvseg_core); #endif (void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE, &kdebugseg); (void) segkmem_create(&kdebugseg); rw_exit(&kas.a_lock); /* * Ensure that the red zone at kernelbase is never accessible. */ (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); /* * Make the text writable so that it can be hot patched by DTrace. */ (void) as_setprot(&kas, s_text, e_modtext - s_text, PROT_READ | PROT_WRITE | PROT_EXEC); /* * Make data writable until end. */ (void) as_setprot(&kas, s_data, e_moddata - s_data, PROT_READ | PROT_WRITE | PROT_EXEC); } /* * These are MTTR registers supported by P6 */ static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; static uint64_t mtrr64k, mtrr16k1, mtrr16k2; static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; static uint64_t mtrr4k7, mtrr4k8, mtrrcap; uint64_t mtrrdef, pat_attr_reg; /* * Disable reprogramming of MTRRs by default. */ int enable_relaxed_mtrr = 0; /* * These must serve for Pentium, Pentium Pro (P6/Pentium II/Pentium III) * and Pentium 4, and yes, they are named 0, 1, 2, 4, 3 in ascending * address order (starting from 0x400). The Pentium 4 only implements * 4 sets, and while they are named 0-3 in the doc, the corresponding * names for P6 are 0,1,2,4. So define these arrays in address order * so that they work for both pre-Pentium4 and Pentium 4 processors. */ static uint_t mci_ctl[] = {REG_MC0_CTL, REG_MC1_CTL, REG_MC2_CTL, REG_MC4_CTL, REG_MC3_CTL}; static uint_t mci_status[] = {REG_MC0_STATUS, REG_MC1_STATUS, REG_MC2_STATUS, REG_MC4_STATUS, REG_MC3_STATUS}; static uint_t mci_addr[] = {REG_MC0_ADDR, REG_MC1_ADDR, REG_MC2_ADDR, REG_MC4_ADDR, REG_MC3_ADDR}; static int mca_cnt; void setup_mca() { int i; uint64_t allzeros; uint64_t allones; uint64_t mca_cap; if (!(x86_feature & X86_MCA)) return; (void) rdmsr(REG_MCG_CAP, &mca_cap); allones = 0xffffffffffffffffULL; if (mca_cap & MCG_CAP_CTL_P) (void) wrmsr(REG_MCG_CTL, &allones); mca_cnt = mca_cap & MCG_CAP_COUNT_MASK; if (mca_cnt > P6_MCG_CAP_COUNT) mca_cnt = P6_MCG_CAP_COUNT; for (i = 1; i < mca_cnt; i++) (void) wrmsr(mci_ctl[i], &allones); allzeros = 0; for (i = 0; i < mca_cnt; i++) (void) wrmsr(mci_status[i], &allzeros); setcr4(getcr4() | CR4_MCE); } int mca_exception(struct regs *rp) { uint64_t status, addr; uint64_t allzeros; uint64_t buf; int i, ret = 1, errcode, mserrcode; allzeros = 0; (void) rdmsr(REG_MCG_STATUS, &buf); status = buf; if (status & MCG_STATUS_RIPV) ret = 0; if (status & MCG_STATUS_EIPV) cmn_err(CE_WARN, "MCE at 0x%lx", rp->r_pc); (void) wrmsr(REG_MCG_STATUS, &allzeros); for (i = 0; i < mca_cnt; i++) { (void) rdmsr(mci_status[i], &buf); status = buf; /* * If status register not valid skip this bank */ if (!(status & MCI_STATUS_VAL)) continue; errcode = status & MCI_STATUS_ERRCODE; mserrcode = (status >> MSERRCODE_SHFT) & MCI_STATUS_ERRCODE; if (status & MCI_STATUS_ADDRV) { /* * If mci_addr contains the address where * error occurred, display the address */ (void) rdmsr(mci_addr[i], &buf); addr = buf; cmn_err(CE_WARN, "MCE: Bank %d: error code 0x%x:"\ "addr = 0x%" PRIx64 ", model errcode = 0x%x", i, errcode, addr, mserrcode); } else { cmn_err(CE_WARN, "MCE: Bank %d: error code 0x%x, mserrcode = 0x%x", i, errcode, mserrcode); } (void) wrmsr(mci_status[i], &allzeros); } return (ret); } void setup_mtrr() { int i, ecx; int vcnt; struct mtrrvar *mtrrphys; if (!(x86_feature & X86_MTRR)) return; (void) rdmsr(REG_MTRRCAP, &mtrrcap); (void) rdmsr(REG_MTRRDEF, &mtrrdef); if (mtrrcap & MTRRCAP_FIX) { (void) rdmsr(REG_MTRR64K, &mtrr64k); (void) rdmsr(REG_MTRR16K1, &mtrr16k1); (void) rdmsr(REG_MTRR16K2, &mtrr16k2); (void) rdmsr(REG_MTRR4K1, &mtrr4k1); (void) rdmsr(REG_MTRR4K2, &mtrr4k2); (void) rdmsr(REG_MTRR4K3, &mtrr4k3); (void) rdmsr(REG_MTRR4K4, &mtrr4k4); (void) rdmsr(REG_MTRR4K5, &mtrr4k5); (void) rdmsr(REG_MTRR4K6, &mtrr4k6); (void) rdmsr(REG_MTRR4K7, &mtrr4k7); (void) rdmsr(REG_MTRR4K8, &mtrr4k8); } if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) vcnt = MAX_MTRRVAR; for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; i < vcnt - 1; i++, ecx += 2, mtrrphys++) { (void) rdmsr(ecx, &mtrrphys->mtrrphys_base); (void) rdmsr(ecx + 1, &mtrrphys->mtrrphys_mask); if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; } } if (x86_feature & X86_PAT) { if (enable_relaxed_mtrr) mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; } mtrr_sync(); } /* * Sync current cpu mtrr with the incore copy of mtrr. * This function has to be invoked with interrupts disabled * Currently we do not capture other cpu's. This is invoked on cpu0 * just after reading /etc/system. * On other cpu's its invoked from mp_startup(). */ void mtrr_sync() { uint64_t my_mtrrdef; uint_t crvalue, cr0_orig; int vcnt, i, ecx; struct mtrrvar *mtrrphys; cr0_orig = crvalue = getcr0(); crvalue |= CR0_CD; crvalue &= ~CR0_NW; setcr0(crvalue); invalidate_cache(); setcr3(getcr3()); if (x86_feature & X86_PAT) { (void) wrmsr(REG_MTRRPAT, &pat_attr_reg); } (void) rdmsr(REG_MTRRDEF, &my_mtrrdef); my_mtrrdef &= ~MTRRDEF_E; (void) wrmsr(REG_MTRRDEF, &my_mtrrdef); if (mtrrcap & MTRRCAP_FIX) { (void) wrmsr(REG_MTRR64K, &mtrr64k); (void) wrmsr(REG_MTRR16K1, &mtrr16k1); (void) wrmsr(REG_MTRR16K2, &mtrr16k2); (void) wrmsr(REG_MTRR4K1, &mtrr4k1); (void) wrmsr(REG_MTRR4K2, &mtrr4k2); (void) wrmsr(REG_MTRR4K3, &mtrr4k3); (void) wrmsr(REG_MTRR4K4, &mtrr4k4); (void) wrmsr(REG_MTRR4K5, &mtrr4k5); (void) wrmsr(REG_MTRR4K6, &mtrr4k6); (void) wrmsr(REG_MTRR4K7, &mtrr4k7); (void) wrmsr(REG_MTRR4K8, &mtrr4k8); } if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) vcnt = MAX_MTRRVAR; for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; i < vcnt - 1; i++, ecx += 2, mtrrphys++) { (void) wrmsr(ecx, &mtrrphys->mtrrphys_base); (void) wrmsr(ecx + 1, &mtrrphys->mtrrphys_mask); } (void) wrmsr(REG_MTRRDEF, &mtrrdef); setcr3(getcr3()); invalidate_cache(); setcr0(cr0_orig); } /* * resync mtrr so that BIOS is happy. Called from mdboot */ void mtrr_resync() { if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { /* * We could have changed the default mtrr definition. * Put it back to uncached which is what it is at power on */ mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; mtrr_sync(); } } void get_system_configuration() { char prop[32]; u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) || (BOP_GETPROP(bootops, "nodes", prop) < 0) || (kobj_getvalue(prop, &nodes_ll) == -1) || (nodes_ll > MAXNODES)) || ((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) || (BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) || (kobj_getvalue(prop, &cpus_pernode_ll) == -1))) { system_hardware.hd_nodes = 1; system_hardware.hd_cpus_per_node = 0; } else { system_hardware.hd_nodes = (int)nodes_ll; system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; } if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) || (BOP_GETPROP(bootops, "kernelbase", prop) < 0) || (kobj_getvalue(prop, &lvalue) == -1)) eprom_kernelbase = NULL; else eprom_kernelbase = (uintptr_t)lvalue; if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) || (BOP_GETPROP(bootops, "segmapsize", prop) < 0) || (kobj_getvalue(prop, &lvalue) == -1)) { segmapsize = SEGMAPDEFAULT; } else { segmapsize = (uintptr_t)lvalue; } if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) || (BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) || (kobj_getvalue(prop, &lvalue) == -1)) { segmapfreelists = 0; /* use segmap driver default */ } else { segmapfreelists = (int)lvalue; } } /* * Add to a memory list. * start = start of new memory segment * len = length of new memory segment in bytes * new = pointer to a new struct memlist * memlistp = memory list to which to add segment. */ static void memlist_add( uint64_t start, uint64_t len, struct memlist *new, struct memlist **memlistp) { struct memlist *cur; uint64_t end = start + len; new->address = start; new->size = len; cur = *memlistp; while (cur) { if (cur->address >= end) { new->next = cur; *memlistp = new; new->prev = cur->prev; cur->prev = new; return; } ASSERT(cur->address + cur->size <= start); if (cur->next == NULL) { cur->next = new; new->prev = cur; new->next = NULL; return; } memlistp = &cur->next; cur = cur->next; } } void kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) { size_t tsize = e_modtext - modtext; size_t dsize = e_moddata - moddata; *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); } caddr_t kobj_text_alloc(vmem_t *arena, size_t size) { return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); } /*ARGSUSED*/ caddr_t kobj_texthole_alloc(caddr_t addr, size_t size) { panic("unexpected call to kobj_texthole_alloc()"); /*NOTREACHED*/ return (0); } /*ARGSUSED*/ void kobj_texthole_free(caddr_t addr, size_t size) { panic("unexpected call to kobj_texthole_free()"); } /* * This is called just after configure() in startup(). * * The ISALIST concept is a bit hopeless on Intel, because * there's no guarantee of an ever-more-capable processor * given that various parts of the instruction set may appear * and disappear between different implementations. * * While it would be possible to correct it and even enhance * it somewhat, the explicit hardware capability bitmask allows * more flexibility. * * So, we just leave this alone. */ void setx86isalist(void) { char *tp; size_t len; extern char *isa_list; #define TBUFSIZE 1024 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); *tp = '\0'; #if defined(__amd64) (void) strcpy(tp, "amd64 "); #endif switch (x86_vendor) { case X86_VENDOR_Intel: case X86_VENDOR_AMD: case X86_VENDOR_TM: if (x86_feature & X86_CMOV) { /* * Pentium Pro or later */ (void) strcat(tp, "pentium_pro"); (void) strcat(tp, x86_feature & X86_MMX ? "+mmx pentium_pro " : " "); } /*FALLTHROUGH*/ case X86_VENDOR_Cyrix: /* * The Cyrix 6x86 does not have any Pentium features * accessible while not at privilege level 0. */ if (x86_feature & X86_CPUID) { (void) strcat(tp, "pentium"); (void) strcat(tp, x86_feature & X86_MMX ? "+mmx pentium " : " "); } break; default: break; } (void) strcat(tp, "i486 i386 i86"); len = strlen(tp) + 1; /* account for NULL at end of string */ isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); kmem_free(tp, TBUFSIZE); #undef TBUFSIZE } #ifdef __amd64 void * device_arena_alloc(size_t size, int vm_flag) { return (vmem_alloc(device_arena, size, vm_flag)); } void device_arena_free(void *vaddr, size_t size) { vmem_free(device_arena, vaddr, size); } #else void * device_arena_alloc(size_t size, int vm_flag) { caddr_t vaddr; uintptr_t v; size_t start; size_t end; vaddr = vmem_alloc(heap_arena, size, vm_flag); if (vaddr == NULL) return (NULL); v = (uintptr_t)vaddr; ASSERT(v >= kernelbase); ASSERT(v + size <= ptable_va); start = btop(v - kernelbase); end = btop(v + size - 1 - kernelbase); ASSERT(start < toxic_bit_map_len); ASSERT(end < toxic_bit_map_len); while (start <= end) { BT_ATOMIC_SET(toxic_bit_map, start); ++start; } return (vaddr); } void device_arena_free(void *vaddr, size_t size) { uintptr_t v = (uintptr_t)vaddr; size_t start; size_t end; ASSERT(v >= kernelbase); ASSERT(v + size <= ptable_va); start = btop(v - kernelbase); end = btop(v + size - 1 - kernelbase); ASSERT(start < toxic_bit_map_len); ASSERT(end < toxic_bit_map_len); while (start <= end) { ASSERT(BT_TEST(toxic_bit_map, start) != 0); BT_ATOMIC_CLEAR(toxic_bit_map, start); ++start; } vmem_free(heap_arena, vaddr, size); } /* * returns 1st address in range that is in device arena, or NULL * if len is not NULL it returns the length of the toxic range */ void * device_arena_contains(void *vaddr, size_t size, size_t *len) { uintptr_t v = (uintptr_t)vaddr; uintptr_t eaddr = v + size; size_t start; size_t end; /* * if called very early by kmdb, just return NULL */ if (toxic_bit_map == NULL) return (NULL); /* * First check if we're completely outside the bitmap range. */ if (v >= ptable_va || eaddr < kernelbase) return (NULL); /* * Trim ends of search to look at only what the bitmap covers. */ if (v < kernelbase) v = kernelbase; start = btop(v - kernelbase); end = btop(eaddr - kernelbase); if (end >= toxic_bit_map_len) end = toxic_bit_map_len; if (bt_range(toxic_bit_map, &start, &end, end) == 0) return (NULL); v = kernelbase + ptob(start); if (len != NULL) *len = ptob(end - start); return ((void *)v); } #endif