/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * CPU Module Interface - hardware abstraction. */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Outside of this file consumers use the opaque cmi_hdl_t. This * definition is duplicated in the generic_cpu mdb module, so keep * them in-sync when making changes. */ typedef struct cmi_hdl_impl { enum cmi_hdl_class cmih_class; /* Handle nature */ struct cmi_hdl_ops *cmih_ops; /* Operations vector */ uint_t cmih_chipid; /* Chipid of cpu resource */ uint_t cmih_coreid; /* Core within die */ uint_t cmih_strandid; /* Thread within core */ volatile uint32_t *cmih_refcntp; /* Reference count pointer */ uint64_t cmih_msrsrc; /* MSR data source flags */ void *cmih_hdlpriv; /* cmi_hw.c private data */ void *cmih_spec; /* cmi_hdl_{set,get}_specific */ void *cmih_cmi; /* cpu mod control structure */ void *cmih_cmidata; /* cpu mod private data */ const struct cmi_mc_ops *cmih_mcops; /* Memory-controller ops */ void *cmih_mcdata; /* Memory-controller data */ } cmi_hdl_impl_t; #define IMPLHDL(ophdl) ((cmi_hdl_impl_t *)ophdl) /* * Handles are looked up from contexts such as polling, injection etc * where the context is reasonably well defined (although a poller could * interrupt any old thread holding any old lock). They are also looked * up by machine check handlers, which may strike at inconvenient times * such as during handle initialization or destruction or during handle * lookup (which the #MC handler itself will also have to perform). * * So keeping handles in a linked list makes locking difficult when we * consider #MC handlers. Our solution is to have an array indexed * by that which uniquely identifies a handle - chip/core/strand id - * with each array member a structure including a pointer to a handle * structure for the resource, and a reference count for the handle. * Reference counts are modified atomically. The public cmi_hdl_hold * always succeeds because this can only be used after handle creation * and before the call to destruct, so the hold count it already at least one. * In other functions that lookup a handle (cmi_hdl_lookup, cmi_hdl_any) * we must be certain that the count has not already decrmented to zero * before applying our hold. * * This array is allocated when first we want to populate an entry. * When allocated it is maximal - ideally we should scale to the * actual number of chips, cores per chip and strand per core but * that info is not readily available if we are virtualized so * for now we stick with the dumb approach. */ #define CMI_MAX_CHIPS_NBITS 4 /* 16 chips packages max */ #define CMI_MAX_CORES_PER_CHIP_NBITS 3 /* 8 cores per chip max */ #define CMI_MAX_STRANDS_PER_CORE_NBITS 1 /* 2 strands per core max */ #define CMI_MAX_CHIPS (1 << CMI_MAX_CHIPS_NBITS) #define CMI_MAX_CORES_PER_CHIP (1 << CMI_MAX_CORES_PER_CHIP_NBITS) #define CMI_MAX_STRANDS_PER_CORE (1 << CMI_MAX_STRANDS_PER_CORE_NBITS) /* * Handle array indexing. * [7:4] = Chip package. * [3:1] = Core in package, * [0:0] = Strand in core, */ #define CMI_HDL_ARR_IDX_CHIP(chipid) \ (((chipid) & (CMI_MAX_CHIPS - 1)) << \ (CMI_MAX_STRANDS_PER_CORE_NBITS + CMI_MAX_CORES_PER_CHIP_NBITS)) #define CMI_HDL_ARR_IDX_CORE(coreid) \ (((coreid) & (CMI_MAX_CORES_PER_CHIP - 1)) << \ CMI_MAX_STRANDS_PER_CORE_NBITS) #define CMI_HDL_ARR_IDX_STRAND(strandid) \ (((strandid) & (CMI_MAX_STRANDS_PER_CORE - 1))) #define CMI_HDL_ARR_IDX(chipid, coreid, strandid) \ (CMI_HDL_ARR_IDX_CHIP(chipid) | CMI_HDL_ARR_IDX_CORE(coreid) | \ CMI_HDL_ARR_IDX_STRAND(strandid)) #define CMI_HDL_ARR_SZ (CMI_MAX_CHIPS * CMI_MAX_CORES_PER_CHIP * \ CMI_MAX_STRANDS_PER_CORE) struct cmi_hdl_arr_ent { volatile uint32_t cmae_refcnt; cmi_hdl_impl_t *cmae_hdlp; }; static struct cmi_hdl_arr_ent *cmi_hdl_arr; /* * Controls where we will source PCI config space data. */ #define CMI_PCICFG_FLAG_RD_HWOK 0x0001 #define CMI_PCICFG_FLAG_RD_INTERPOSEOK 0X0002 #define CMI_PCICFG_FLAG_WR_HWOK 0x0004 #define CMI_PCICFG_FLAG_WR_INTERPOSEOK 0X0008 static uint64_t cmi_pcicfg_flags = CMI_PCICFG_FLAG_RD_HWOK | CMI_PCICFG_FLAG_RD_INTERPOSEOK | CMI_PCICFG_FLAG_WR_HWOK | CMI_PCICFG_FLAG_WR_INTERPOSEOK; /* * The flags for individual cpus are kept in their per-cpu handle cmih_msrsrc */ #define CMI_MSR_FLAG_RD_HWOK 0x0001 #define CMI_MSR_FLAG_RD_INTERPOSEOK 0x0002 #define CMI_MSR_FLAG_WR_HWOK 0x0004 #define CMI_MSR_FLAG_WR_INTERPOSEOK 0x0008 int cmi_call_func_ntv_tries = 3; static cmi_errno_t call_func_ntv(int cpuid, xc_func_t func, xc_arg_t arg1, xc_arg_t arg2) { cmi_errno_t rc = -1; int i; kpreempt_disable(); if (CPU->cpu_id == cpuid) { (*func)(arg1, arg2, (xc_arg_t)&rc); } else { /* * This should not happen for a #MC trap or a poll, so * this is likely an error injection or similar. * We will try to cross call with xc_trycall - we * can't guarantee success with xc_call because * the interrupt code in the case of a #MC may * already hold the xc mutex. */ for (i = 0; i < cmi_call_func_ntv_tries; i++) { cpuset_t cpus; CPUSET_ONLY(cpus, cpuid); xc_trycall(arg1, arg2, (xc_arg_t)&rc, cpus, func); if (rc != -1) break; DELAY(1); } } kpreempt_enable(); return (rc != -1 ? rc : CMIERR_DEADLOCK); } /* * ======================================================= * | MSR Interposition | * | ----------------- | * | | * ------------------------------------------------------- */ #define CMI_MSRI_HASHSZ 16 #define CMI_MSRI_HASHIDX(hdl, msr) \ (((uintptr_t)(hdl) >> 3 + (msr)) % (CMI_MSRI_HASHSZ - 1)) struct cmi_msri_bkt { kmutex_t msrib_lock; struct cmi_msri_hashent *msrib_head; }; struct cmi_msri_hashent { struct cmi_msri_hashent *msrie_next; struct cmi_msri_hashent *msrie_prev; cmi_hdl_impl_t *msrie_hdl; uint_t msrie_msrnum; uint64_t msrie_msrval; }; #define CMI_MSRI_MATCH(ent, hdl, req_msr) \ ((ent)->msrie_hdl == (hdl) && (ent)->msrie_msrnum == (req_msr)) static struct cmi_msri_bkt msrihash[CMI_MSRI_HASHSZ]; static void msri_addent(cmi_hdl_impl_t *hdl, cmi_mca_regs_t *regp) { int idx = CMI_MSRI_HASHIDX(hdl, regp->cmr_msrnum); struct cmi_msri_bkt *hbp = &msrihash[idx]; struct cmi_msri_hashent *hep; mutex_enter(&hbp->msrib_lock); for (hep = hbp->msrib_head; hep != NULL; hep = hep->msrie_next) { if (CMI_MSRI_MATCH(hep, hdl, regp->cmr_msrnum)) break; } if (hep != NULL) { hep->msrie_msrval = regp->cmr_msrval; } else { hep = kmem_alloc(sizeof (*hep), KM_SLEEP); hep->msrie_hdl = hdl; hep->msrie_msrnum = regp->cmr_msrnum; hep->msrie_msrval = regp->cmr_msrval; if (hbp->msrib_head != NULL) hbp->msrib_head->msrie_prev = hep; hep->msrie_next = hbp->msrib_head; hep->msrie_prev = NULL; hbp->msrib_head = hep; } mutex_exit(&hbp->msrib_lock); } /* * Look for a match for the given hanlde and msr. Return 1 with valp * filled if a match is found, otherwise return 0 with valp untouched. */ static int msri_lookup(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t *valp) { int idx = CMI_MSRI_HASHIDX(hdl, msr); struct cmi_msri_bkt *hbp = &msrihash[idx]; struct cmi_msri_hashent *hep; /* * This function is called during #MC trap handling, so we should * consider the possibility that the hash mutex is held by the * interrupted thread. This should not happen because interposition * is an artificial injection mechanism and the #MC is requested * after adding entries, but just in case of a real #MC at an * unlucky moment we'll use mutex_tryenter here. */ if (!mutex_tryenter(&hbp->msrib_lock)) return (0); for (hep = hbp->msrib_head; hep != NULL; hep = hep->msrie_next) { if (CMI_MSRI_MATCH(hep, hdl, msr)) { *valp = hep->msrie_msrval; break; } } mutex_exit(&hbp->msrib_lock); return (hep != NULL); } /* * Remove any interposed value that matches. */ static void msri_rment(cmi_hdl_impl_t *hdl, uint_t msr) { int idx = CMI_MSRI_HASHIDX(hdl, msr); struct cmi_msri_bkt *hbp = &msrihash[idx]; struct cmi_msri_hashent *hep; if (!mutex_tryenter(&hbp->msrib_lock)) return; for (hep = hbp->msrib_head; hep != NULL; hep = hep->msrie_next) { if (CMI_MSRI_MATCH(hep, hdl, msr)) { if (hep->msrie_prev != NULL) hep->msrie_prev->msrie_next = hep->msrie_next; if (hep->msrie_next != NULL) hep->msrie_next->msrie_prev = hep->msrie_prev; if (hbp->msrib_head == hep) hbp->msrib_head = hep->msrie_next; kmem_free(hep, sizeof (*hep)); break; } } mutex_exit(&hbp->msrib_lock); } /* * ======================================================= * | PCI Config Space Interposition | * | ------------------------------ | * | | * ------------------------------------------------------- */ /* * Hash for interposed PCI config space values. We lookup on bus/dev/fun/offset * and then record whether the value stashed was made with a byte, word or * doubleword access; we will only return a hit for an access of the * same size. If you access say a 32-bit register using byte accesses * and then attempt to read the full 32-bit value back you will not obtain * any sort of merged result - you get a lookup miss. */ #define CMI_PCII_HASHSZ 16 #define CMI_PCII_HASHIDX(b, d, f, o) \ (((b) + (d) + (f) + (o)) % (CMI_PCII_HASHSZ - 1)) struct cmi_pcii_bkt { kmutex_t pciib_lock; struct cmi_pcii_hashent *pciib_head; }; struct cmi_pcii_hashent { struct cmi_pcii_hashent *pcii_next; struct cmi_pcii_hashent *pcii_prev; int pcii_bus; int pcii_dev; int pcii_func; int pcii_reg; int pcii_asize; uint32_t pcii_val; }; #define CMI_PCII_MATCH(ent, b, d, f, r, asz) \ ((ent)->pcii_bus == (b) && (ent)->pcii_dev == (d) && \ (ent)->pcii_func == (f) && (ent)->pcii_reg == (r) && \ (ent)->pcii_asize == (asz)) static struct cmi_pcii_bkt pciihash[CMI_PCII_HASHSZ]; /* * Add a new entry to the PCI interpose hash, overwriting any existing * entry that is found. */ static void pcii_addent(int bus, int dev, int func, int reg, uint32_t val, int asz) { int idx = CMI_PCII_HASHIDX(bus, dev, func, reg); struct cmi_pcii_bkt *hbp = &pciihash[idx]; struct cmi_pcii_hashent *hep; mutex_enter(&hbp->pciib_lock); for (hep = hbp->pciib_head; hep != NULL; hep = hep->pcii_next) { if (CMI_PCII_MATCH(hep, bus, dev, func, reg, asz)) break; } if (hep != NULL) { hep->pcii_val = val; } else { hep = kmem_alloc(sizeof (*hep), KM_SLEEP); hep->pcii_bus = bus; hep->pcii_dev = dev; hep->pcii_func = func; hep->pcii_reg = reg; hep->pcii_asize = asz; hep->pcii_val = val; if (hbp->pciib_head != NULL) hbp->pciib_head->pcii_prev = hep; hep->pcii_next = hbp->pciib_head; hep->pcii_prev = NULL; hbp->pciib_head = hep; } mutex_exit(&hbp->pciib_lock); } /* * Look for a match for the given bus/dev/func/reg; return 1 with valp * filled if a match is found, otherwise return 0 with valp untouched. */ static int pcii_lookup(int bus, int dev, int func, int reg, int asz, uint32_t *valp) { int idx = CMI_PCII_HASHIDX(bus, dev, func, reg); struct cmi_pcii_bkt *hbp = &pciihash[idx]; struct cmi_pcii_hashent *hep; if (!mutex_tryenter(&hbp->pciib_lock)) return (0); for (hep = hbp->pciib_head; hep != NULL; hep = hep->pcii_next) { if (CMI_PCII_MATCH(hep, bus, dev, func, reg, asz)) { *valp = hep->pcii_val; break; } } mutex_exit(&hbp->pciib_lock); return (hep != NULL); } static void pcii_rment(int bus, int dev, int func, int reg, int asz) { int idx = CMI_PCII_HASHIDX(bus, dev, func, reg); struct cmi_pcii_bkt *hbp = &pciihash[idx]; struct cmi_pcii_hashent *hep; mutex_enter(&hbp->pciib_lock); for (hep = hbp->pciib_head; hep != NULL; hep = hep->pcii_next) { if (CMI_PCII_MATCH(hep, bus, dev, func, reg, asz)) { if (hep->pcii_prev != NULL) hep->pcii_prev->pcii_next = hep->pcii_next; if (hep->pcii_next != NULL) hep->pcii_next->pcii_prev = hep->pcii_prev; if (hbp->pciib_head == hep) hbp->pciib_head = hep->pcii_next; kmem_free(hep, sizeof (*hep)); break; } } mutex_exit(&hbp->pciib_lock); } /* * ======================================================= * | Native methods | * | -------------- | * | | * | These are used when we are running native on bare- | * | metal, or simply don't know any better. | * --------------------------------------------------------- */ static uint_t ntv_vendor(cmi_hdl_impl_t *hdl) { return (cpuid_getvendor((cpu_t *)hdl->cmih_hdlpriv)); } static const char * ntv_vendorstr(cmi_hdl_impl_t *hdl) { return (cpuid_getvendorstr((cpu_t *)hdl->cmih_hdlpriv)); } static uint_t ntv_family(cmi_hdl_impl_t *hdl) { return (cpuid_getfamily((cpu_t *)hdl->cmih_hdlpriv)); } static uint_t ntv_model(cmi_hdl_impl_t *hdl) { return (cpuid_getmodel((cpu_t *)hdl->cmih_hdlpriv)); } static uint_t ntv_stepping(cmi_hdl_impl_t *hdl) { return (cpuid_getstep((cpu_t *)hdl->cmih_hdlpriv)); } static uint_t ntv_chipid(cmi_hdl_impl_t *hdl) { return (hdl->cmih_chipid); } static uint_t ntv_coreid(cmi_hdl_impl_t *hdl) { return (hdl->cmih_coreid); } static uint_t ntv_strandid(cmi_hdl_impl_t *hdl) { return (hdl->cmih_strandid); } static uint32_t ntv_chiprev(cmi_hdl_impl_t *hdl) { return (cpuid_getchiprev((cpu_t *)hdl->cmih_hdlpriv)); } static const char * ntv_chiprevstr(cmi_hdl_impl_t *hdl) { return (cpuid_getchiprevstr((cpu_t *)hdl->cmih_hdlpriv)); } static uint32_t ntv_getsockettype(cmi_hdl_impl_t *hdl) { return (cpuid_getsockettype((cpu_t *)hdl->cmih_hdlpriv)); } /*ARGSUSED*/ static int ntv_getcr4_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) { ulong_t *dest = (ulong_t *)arg1; cmi_errno_t *rcp = (cmi_errno_t *)arg3; *dest = getcr4(); *rcp = CMI_SUCCESS; return (0); } static ulong_t ntv_getcr4(cmi_hdl_impl_t *hdl) { cpu_t *cp = (cpu_t *)hdl->cmih_hdlpriv; ulong_t val; (void) call_func_ntv(cp->cpu_id, ntv_getcr4_xc, (xc_arg_t)&val, NULL); return (val); } /*ARGSUSED*/ static int ntv_setcr4_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) { ulong_t val = (ulong_t)arg1; cmi_errno_t *rcp = (cmi_errno_t *)arg3; setcr4(val); *rcp = CMI_SUCCESS; return (0); } static void ntv_setcr4(cmi_hdl_impl_t *hdl, ulong_t val) { cpu_t *cp = (cpu_t *)hdl->cmih_hdlpriv; (void) call_func_ntv(cp->cpu_id, ntv_setcr4_xc, (xc_arg_t)val, NULL); } volatile uint32_t cmi_trapped_rdmsr; /*ARGSUSED*/ static int ntv_rdmsr_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) { uint_t msr = (uint_t)arg1; uint64_t *valp = (uint64_t *)arg2; cmi_errno_t *rcp = (cmi_errno_t *)arg3; on_trap_data_t otd; if (on_trap(&otd, OT_DATA_ACCESS) == 0) { if (checked_rdmsr(msr, valp) == 0) *rcp = CMI_SUCCESS; else *rcp = CMIERR_NOTSUP; } else { *rcp = CMIERR_MSRGPF; atomic_inc_32(&cmi_trapped_rdmsr); } no_trap(); return (0); } static cmi_errno_t ntv_rdmsr(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t *valp) { cpu_t *cp = (cpu_t *)hdl->cmih_hdlpriv; return (call_func_ntv(cp->cpu_id, ntv_rdmsr_xc, (xc_arg_t)msr, (xc_arg_t)valp)); } volatile uint32_t cmi_trapped_wrmsr; /*ARGSUSED*/ static int ntv_wrmsr_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) { uint_t msr = (uint_t)arg1; uint64_t val = *((uint64_t *)arg2); cmi_errno_t *rcp = (cmi_errno_t *)arg3; on_trap_data_t otd; if (on_trap(&otd, OT_DATA_ACCESS) == 0) { if (checked_wrmsr(msr, val) == 0) *rcp = CMI_SUCCESS; else *rcp = CMIERR_NOTSUP; } else { *rcp = CMIERR_MSRGPF; atomic_inc_32(&cmi_trapped_wrmsr); } no_trap(); return (0); } static cmi_errno_t ntv_wrmsr(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t val) { cpu_t *cp = (cpu_t *)hdl->cmih_hdlpriv; return (call_func_ntv(cp->cpu_id, ntv_wrmsr_xc, (xc_arg_t)msr, (xc_arg_t)&val)); } /*ARGSUSED*/ static int ntv_mcheck_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) { cmi_errno_t *rcp = (cmi_errno_t *)arg3; int18(); *rcp = CMI_SUCCESS; return (0); } static void ntv_mcheck(cmi_hdl_impl_t *hdl) { cpu_t *cp = (cpu_t *)hdl->cmih_hdlpriv; (void) call_func_ntv(cp->cpu_id, ntv_mcheck_xc, NULL, NULL); } /* * Ops structure for handle operations. */ struct cmi_hdl_ops { uint_t (*cmio_vendor)(cmi_hdl_impl_t *); const char *(*cmio_vendorstr)(cmi_hdl_impl_t *); uint_t (*cmio_family)(cmi_hdl_impl_t *); uint_t (*cmio_model)(cmi_hdl_impl_t *); uint_t (*cmio_stepping)(cmi_hdl_impl_t *); uint_t (*cmio_chipid)(cmi_hdl_impl_t *); uint_t (*cmio_coreid)(cmi_hdl_impl_t *); uint_t (*cmio_strandid)(cmi_hdl_impl_t *); uint32_t (*cmio_chiprev)(cmi_hdl_impl_t *); const char *(*cmio_chiprevstr)(cmi_hdl_impl_t *); uint32_t (*cmio_getsockettype)(cmi_hdl_impl_t *); ulong_t (*cmio_getcr4)(cmi_hdl_impl_t *); void (*cmio_setcr4)(cmi_hdl_impl_t *, ulong_t); cmi_errno_t (*cmio_rdmsr)(cmi_hdl_impl_t *, uint_t, uint64_t *); cmi_errno_t (*cmio_wrmsr)(cmi_hdl_impl_t *, uint_t, uint64_t); void (*cmio_mcheck)(cmi_hdl_impl_t *); } cmi_hdl_ops[] = { /* * CMI_HDL_NATIVE - ops when apparently running on bare-metal */ { ntv_vendor, ntv_vendorstr, ntv_family, ntv_model, ntv_stepping, ntv_chipid, ntv_coreid, ntv_strandid, ntv_chiprev, ntv_chiprevstr, ntv_getsockettype, ntv_getcr4, ntv_setcr4, ntv_rdmsr, ntv_wrmsr, ntv_mcheck }, }; #ifndef __xpv static void * cpu_search(enum cmi_hdl_class class, uint_t chipid, uint_t coreid, uint_t strandid) { switch (class) { case CMI_HDL_NATIVE: { cpu_t *cp, *startcp; kpreempt_disable(); cp = startcp = CPU; do { if (cmi_ntv_hwchipid(cp) == chipid && cmi_ntv_hwcoreid(cp) == coreid && cmi_ntv_hwstrandid(cp) == strandid) { kpreempt_enable(); return ((void *)cp); } cp = cp->cpu_next; } while (cp != startcp); kpreempt_enable(); return (NULL); } default: return (NULL); } } #endif cmi_hdl_t cmi_hdl_create(enum cmi_hdl_class class, uint_t chipid, uint_t coreid, uint_t strandid) { cmi_hdl_impl_t *hdl; void *priv = NULL; int idx; if (chipid > CMI_MAX_CHIPS - 1 || coreid > CMI_MAX_CORES_PER_CHIP - 1 || strandid > CMI_MAX_STRANDS_PER_CORE - 1) return (NULL); #ifndef __xpv if ((priv = cpu_search(class, chipid, coreid, strandid)) == NULL) return (NULL); #endif hdl = kmem_zalloc(sizeof (*hdl), KM_SLEEP); hdl->cmih_class = class; hdl->cmih_ops = &cmi_hdl_ops[class]; hdl->cmih_chipid = chipid; hdl->cmih_coreid = coreid; hdl->cmih_strandid = strandid; hdl->cmih_hdlpriv = priv; hdl->cmih_msrsrc = CMI_MSR_FLAG_RD_HWOK | CMI_MSR_FLAG_RD_INTERPOSEOK | CMI_MSR_FLAG_WR_HWOK | CMI_MSR_FLAG_WR_INTERPOSEOK; if (cmi_hdl_arr == NULL) { size_t sz = CMI_HDL_ARR_SZ * sizeof (struct cmi_hdl_arr_ent); void *arr = kmem_zalloc(sz, KM_SLEEP); if (atomic_cas_ptr(&cmi_hdl_arr, NULL, arr) != NULL) kmem_free(arr, sz); /* someone beat us */ } idx = CMI_HDL_ARR_IDX(chipid, coreid, strandid); if (cmi_hdl_arr[idx].cmae_refcnt != 0 || cmi_hdl_arr[idx].cmae_hdlp != NULL) { /* * Somehow this (chipid, coreid, strandid) id tuple has * already been assigned! This indicates that the * callers logic in determining these values is busted, * or perhaps undermined by bad BIOS setup. Complain, * and refuse to initialize this tuple again as bad things * will happen. */ cmn_err(CE_NOTE, "cmi_hdl_create: chipid %d coreid %d " "strandid %d handle already allocated!", chipid, coreid, strandid); kmem_free(hdl, sizeof (*hdl)); return (NULL); } /* * Once we store a nonzero reference count others can find this * handle via cmi_hdl_lookup etc. This initial hold on the handle * is to be dropped only if some other part of cmi initialization * fails or, if it succeeds, at later cpu deconfigure. Note the * the module private data we hold in cmih_cmi and cmih_cmidata * is still NULL at this point (the caller will fill it with * cmi_hdl_setcmi if it initializes) so consumers of handles * should always be ready for that possibility. */ cmi_hdl_arr[idx].cmae_hdlp = hdl; hdl->cmih_refcntp = &cmi_hdl_arr[idx].cmae_refcnt; cmi_hdl_arr[idx].cmae_refcnt = 1; return ((cmi_hdl_t)hdl); } void cmi_hdl_hold(cmi_hdl_t ophdl) { cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); ASSERT(*hdl->cmih_refcntp != 0); /* must not be the initial hold */ atomic_inc_32(hdl->cmih_refcntp); } static int cmi_hdl_canref(int arridx) { volatile uint32_t *refcntp; uint32_t refcnt; if (cmi_hdl_arr == NULL) return (0); refcntp = &cmi_hdl_arr[arridx].cmae_refcnt; refcnt = *refcntp; if (refcnt == 0) { /* * Associated object never existed, is being destroyed, * or has been destroyed. */ return (0); } /* * We cannot use atomic increment here because once the reference * count reaches zero it must never be bumped up again. */ while (refcnt != 0) { if (atomic_cas_32(refcntp, refcnt, refcnt + 1) == refcnt) return (1); refcnt = *refcntp; } /* * Somebody dropped the reference count to 0 after our initial * check. */ return (0); } void cmi_hdl_rele(cmi_hdl_t ophdl) { cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); int idx; ASSERT(*hdl->cmih_refcntp > 0); if (atomic_dec_32_nv(hdl->cmih_refcntp) > 0) return; idx = CMI_HDL_ARR_IDX(hdl->cmih_chipid, hdl->cmih_coreid, hdl->cmih_strandid); cmi_hdl_arr[idx].cmae_hdlp = NULL; kmem_free(hdl, sizeof (*hdl)); } void cmi_hdl_setspecific(cmi_hdl_t ophdl, void *arg) { IMPLHDL(ophdl)->cmih_spec = arg; } void * cmi_hdl_getspecific(cmi_hdl_t ophdl) { return (IMPLHDL(ophdl)->cmih_spec); } void cmi_hdl_setmc(cmi_hdl_t ophdl, const struct cmi_mc_ops *mcops, void *mcdata) { cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); ASSERT(hdl->cmih_mcops == NULL && hdl->cmih_mcdata == NULL); hdl->cmih_mcops = mcops; hdl->cmih_mcdata = mcdata; } const struct cmi_mc_ops * cmi_hdl_getmcops(cmi_hdl_t ophdl) { return (IMPLHDL(ophdl)->cmih_mcops); } void * cmi_hdl_getmcdata(cmi_hdl_t ophdl) { return (IMPLHDL(ophdl)->cmih_mcdata); } cmi_hdl_t cmi_hdl_lookup(enum cmi_hdl_class class, uint_t chipid, uint_t coreid, uint_t strandid) { int idx = CMI_HDL_ARR_IDX(chipid, coreid, strandid); if (!cmi_hdl_canref(idx)) return (NULL); if (cmi_hdl_arr[idx].cmae_hdlp->cmih_class != class) { cmi_hdl_rele((cmi_hdl_t)cmi_hdl_arr[idx].cmae_hdlp); return (NULL); } return ((cmi_hdl_t)cmi_hdl_arr[idx].cmae_hdlp); } cmi_hdl_t cmi_hdl_any(void) { int i; for (i = 0; i < CMI_HDL_ARR_SZ; i++) { if (cmi_hdl_canref(i)) return ((cmi_hdl_t)cmi_hdl_arr[i].cmae_hdlp); } return (NULL); } void cmi_hdl_walk(int (*cbfunc)(cmi_hdl_t, void *, void *, void *), void *arg1, void *arg2, void *arg3) { int i; for (i = 0; i < CMI_HDL_ARR_SZ; i++) { if (cmi_hdl_canref(i)) { cmi_hdl_impl_t *hdl = cmi_hdl_arr[i].cmae_hdlp; if ((*cbfunc)((cmi_hdl_t)hdl, arg1, arg2, arg3) == CMI_HDL_WALK_DONE) { cmi_hdl_rele((cmi_hdl_t)hdl); break; } cmi_hdl_rele((cmi_hdl_t)hdl); } } } void cmi_hdl_setcmi(cmi_hdl_t ophdl, void *cmi, void *cmidata) { IMPLHDL(ophdl)->cmih_cmidata = cmidata; IMPLHDL(ophdl)->cmih_cmi = cmi; } void * cmi_hdl_getcmi(cmi_hdl_t ophdl) { return (IMPLHDL(ophdl)->cmih_cmi); } void * cmi_hdl_getcmidata(cmi_hdl_t ophdl) { return (IMPLHDL(ophdl)->cmih_cmidata); } enum cmi_hdl_class cmi_hdl_class(cmi_hdl_t ophdl) { return (IMPLHDL(ophdl)->cmih_class); } #define CMI_HDL_OPFUNC(what, type) \ type \ cmi_hdl_##what(cmi_hdl_t ophdl) \ { \ return (IMPLHDL(ophdl)->cmih_ops-> \ cmio_##what(IMPLHDL(ophdl))); \ } CMI_HDL_OPFUNC(vendor, uint_t) CMI_HDL_OPFUNC(vendorstr, const char *) CMI_HDL_OPFUNC(family, uint_t) CMI_HDL_OPFUNC(model, uint_t) CMI_HDL_OPFUNC(stepping, uint_t) CMI_HDL_OPFUNC(chipid, uint_t) CMI_HDL_OPFUNC(coreid, uint_t) CMI_HDL_OPFUNC(strandid, uint_t) CMI_HDL_OPFUNC(chiprev, uint32_t) CMI_HDL_OPFUNC(chiprevstr, const char *) CMI_HDL_OPFUNC(getsockettype, uint32_t) void cmi_hdl_mcheck(cmi_hdl_t ophdl) { IMPLHDL(ophdl)->cmih_ops->cmio_mcheck(IMPLHDL(ophdl)); } #ifndef __xpv /* * Return hardware chip instance; cpuid_get_chipid provides this directly. */ uint_t cmi_ntv_hwchipid(cpu_t *cp) { return (cpuid_get_chipid(cp)); } /* * Return core instance within a single chip. */ uint_t cmi_ntv_hwcoreid(cpu_t *cp) { return (cpuid_get_pkgcoreid(cp)); } /* * Return strand number within a single core. cpuid_get_clogid numbers * all execution units (strands, or cores in unstranded models) sequentially * within a single chip. */ uint_t cmi_ntv_hwstrandid(cpu_t *cp) { int strands_per_core = cpuid_get_ncpu_per_chip(cp) / cpuid_get_ncore_per_chip(cp); return (cpuid_get_clogid(cp) % strands_per_core); } #endif /* __xpv */ void cmi_hdlconf_rdmsr_nohw(cmi_hdl_t ophdl) { cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); hdl->cmih_msrsrc &= ~CMI_MSR_FLAG_RD_HWOK; } void cmi_hdlconf_wrmsr_nohw(cmi_hdl_t ophdl) { cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); hdl->cmih_msrsrc &= ~CMI_MSR_FLAG_WR_HWOK; } cmi_errno_t cmi_hdl_rdmsr(cmi_hdl_t ophdl, uint_t msr, uint64_t *valp) { cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); /* * Regardless of the handle class, we first check for am * interposed value. In the xVM case you probably want to * place interposed values within the hypervisor itself, but * we still allow interposing them in dom0 for test and bringup * purposes. */ if ((hdl->cmih_msrsrc & CMI_MSR_FLAG_RD_INTERPOSEOK) && msri_lookup(hdl, msr, valp)) return (CMI_SUCCESS); if (!(hdl->cmih_msrsrc & CMI_MSR_FLAG_RD_HWOK)) return (CMIERR_INTERPOSE); return (hdl->cmih_ops->cmio_rdmsr(hdl, msr, valp)); } cmi_errno_t cmi_hdl_wrmsr(cmi_hdl_t ophdl, uint_t msr, uint64_t val) { cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); /* Invalidate any interposed value */ msri_rment(hdl, msr); if (!(hdl->cmih_msrsrc & CMI_MSR_FLAG_WR_HWOK)) return (CMI_SUCCESS); return (hdl->cmih_ops->cmio_wrmsr(hdl, msr, val)); } void cmi_hdl_enable_mce(cmi_hdl_t ophdl) { cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); ulong_t cr4 = hdl->cmih_ops->cmio_getcr4(hdl); hdl->cmih_ops->cmio_setcr4(hdl, cr4 | CR4_MCE); } void cmi_hdl_msrinterpose(cmi_hdl_t ophdl, cmi_mca_regs_t *regs, uint_t nregs) { cmi_hdl_impl_t *hdl = IMPLHDL(ophdl); int i; for (i = 0; i < nregs; i++) msri_addent(hdl, regs++); } void cmi_pcird_nohw(void) { cmi_pcicfg_flags &= ~CMI_PCICFG_FLAG_RD_HWOK; } void cmi_pciwr_nohw(void) { cmi_pcicfg_flags &= ~CMI_PCICFG_FLAG_WR_HWOK; } static uint32_t cmi_pci_get_cmn(int bus, int dev, int func, int reg, int asz, int *interpose, ddi_acc_handle_t hdl) { uint32_t val; if (cmi_pcicfg_flags & CMI_PCICFG_FLAG_RD_INTERPOSEOK && pcii_lookup(bus, dev, func, reg, asz, &val)) { if (interpose) *interpose = 1; return (val); } if (interpose) *interpose = 0; if (!(cmi_pcicfg_flags & CMI_PCICFG_FLAG_RD_HWOK)) return (0); switch (asz) { case 1: if (hdl) val = pci_config_get8(hdl, (off_t)reg); else val = (*pci_getb_func)(bus, dev, func, reg); break; case 2: if (hdl) val = pci_config_get16(hdl, (off_t)reg); else val = (*pci_getw_func)(bus, dev, func, reg); break; case 4: if (hdl) val = pci_config_get32(hdl, (off_t)reg); else val = (*pci_getl_func)(bus, dev, func, reg); break; default: val = 0; } return (val); } uint8_t cmi_pci_getb(int bus, int dev, int func, int reg, int *interpose, ddi_acc_handle_t hdl) { return ((uint8_t)cmi_pci_get_cmn(bus, dev, func, reg, 1, interpose, hdl)); } uint16_t cmi_pci_getw(int bus, int dev, int func, int reg, int *interpose, ddi_acc_handle_t hdl) { return ((uint16_t)cmi_pci_get_cmn(bus, dev, func, reg, 2, interpose, hdl)); } uint32_t cmi_pci_getl(int bus, int dev, int func, int reg, int *interpose, ddi_acc_handle_t hdl) { return (cmi_pci_get_cmn(bus, dev, func, reg, 4, interpose, hdl)); } void cmi_pci_interposeb(int bus, int dev, int func, int reg, uint8_t val) { pcii_addent(bus, dev, func, reg, val, 1); } void cmi_pci_interposew(int bus, int dev, int func, int reg, uint16_t val) { pcii_addent(bus, dev, func, reg, val, 2); } void cmi_pci_interposel(int bus, int dev, int func, int reg, uint32_t val) { pcii_addent(bus, dev, func, reg, val, 4); } static void cmi_pci_put_cmn(int bus, int dev, int func, int reg, int asz, ddi_acc_handle_t hdl, uint32_t val) { /* * If there is an interposed value for this register invalidate it. */ pcii_rment(bus, dev, func, reg, asz); if (!(cmi_pcicfg_flags & CMI_PCICFG_FLAG_WR_HWOK)) return; switch (asz) { case 1: if (hdl) pci_config_put8(hdl, (off_t)reg, (uint8_t)val); else (*pci_putb_func)(bus, dev, func, reg, (uint8_t)val); break; case 2: if (hdl) pci_config_put16(hdl, (off_t)reg, (uint16_t)val); else (*pci_putw_func)(bus, dev, func, reg, (uint16_t)val); break; case 4: if (hdl) pci_config_put32(hdl, (off_t)reg, val); else (*pci_putl_func)(bus, dev, func, reg, val); break; default: break; } } extern void cmi_pci_putb(int bus, int dev, int func, int reg, ddi_acc_handle_t hdl, uint8_t val) { cmi_pci_put_cmn(bus, dev, func, reg, 1, hdl, val); } extern void cmi_pci_putw(int bus, int dev, int func, int reg, ddi_acc_handle_t hdl, uint16_t val) { cmi_pci_put_cmn(bus, dev, func, reg, 2, hdl, val); } extern void cmi_pci_putl(int bus, int dev, int func, int reg, ddi_acc_handle_t hdl, uint32_t val) { cmi_pci_put_cmn(bus, dev, func, reg, 4, hdl, val); }