/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #ifndef _SYS_SUNDDI_H #define _SYS_SUNDDI_H #pragma ident "%Z%%M% %I% %E% SMI" /* * Sun Specific DDI definitions */ #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__i386) || defined(__amd64) #include #endif #include #include #include #include #include #if defined(__GNUC__) && defined(_ASM_INLINES) && defined(_KERNEL) #include #endif #ifdef __cplusplus extern "C" { #endif /* * Generic Sun DDI definitions. */ #define DDI_SUCCESS (0) /* successful return */ #define DDI_FAILURE (-1) /* unsuccessful return */ #define DDI_NOT_WELL_FORMED (-2) /* A dev_info node is not valid */ #define DDI_EAGAIN (-3) /* not enough interrupt resources */ #define DDI_EINVAL (-4) /* invalid request or arguments */ #define DDI_ENOTSUP (-5) /* operation is not supported */ #define DDI_EPENDING (-6) /* operation or an event is pending */ /* * General-purpose DDI error return value definitions */ #define DDI_ENOMEM 1 /* memory not available */ #define DDI_EBUSY 2 /* busy */ #define DDI_ETRANSPORT 3 /* transport down */ #define DDI_ECONTEXT 4 /* context error */ /* * General DDI sleep/nosleep allocation flags */ #define DDI_SLEEP 0 #define DDI_NOSLEEP 1 /* * The following special nodeid values are reserved for use when creating * nodes ONLY. They specify the attributes of the DDI_NC_PSEUDO class node * being created: * * o DEVI_PSEUDO_NODEID specifics a node without persistence. * o DEVI_SID_NODEID specifies a node with persistence. * * A node with the 'persistent' attribute will not be automatically removed by * the framework in the current implementation - driver.conf nodes are without * persistence. * * The actual nodeid value may be assigned by the framework and may be * different than these special values. Drivers may not make assumptions * about the nodeid value that is actually assigned to the node. */ #define DEVI_PSEUDO_NODEID ((int)-1) #define DEVI_SID_NODEID ((int)-2) #define DEVI_PSEUDO_NEXNAME "pseudo" #define DEVI_ISA_NEXNAME "isa" #define DEVI_EISA_NEXNAME "eisa" /* * ddi_create_minor_node flags */ #define CLONE_DEV 1 /* device is a clone device */ #define PRIVONLY_DEV 0x10 /* policy-based permissions only */ /* * Historical values used for the flag field in ddi_create_minor_node. * Future use of flag bits should avoid these fields to keep binary * compatibility * #define GLOBAL_DEV 0x2 * #define NODEBOUND_DEV 0x4 * #define NODESPECIFIC_DEV 0x6 * #define ENUMERATED_DEV 0x8 */ /* * Device type defines which are used by the 'node_type' element of the * ddi_minor_data structure */ #define DDI_NT_SERIAL "ddi_serial" /* Serial port */ #define DDI_NT_SERIAL_MB "ddi_serial:mb" /* the 'built-in' serial */ /* ports (the old ttya, b */ /* (,c ,d)) */ #define DDI_NT_SERIAL_DO "ddi_serial:dialout" /* dialout ports */ #define DDI_NT_SERIAL_MB_DO "ddi_serial:dialout,mb" /* dialout for onboard */ /* ports */ #define DDI_NT_SERIAL_LOMCON "ddi_serial:lomcon" /* LOMlite2 console port */ /* * *_CHAN disk type devices have channel numbers or target numbers. * (i.e. ipi and scsi devices) */ #define DDI_NT_BLOCK "ddi_block" /* hard disks */ /* * The next define is for block type devices that can possible exist on * a sub-bus like the scsi bus or the ipi channel. The 'disks' program * will pick up on this and create logical names like c0t0d0s0 instead of * c0d0s0 */ #define DDI_NT_BLOCK_CHAN "ddi_block:channel" #define DDI_NT_BLOCK_WWN "ddi_block:wwn" #define DDI_NT_CD "ddi_block:cdrom" /* rom drives (cd-rom) */ #define DDI_NT_CD_CHAN "ddi_block:cdrom:channel" /* rom drives (scsi type) */ #define DDI_NT_FD "ddi_block:diskette" /* floppy disks */ #define DDI_NT_ENCLOSURE "ddi_enclosure" #define DDI_NT_SCSI_ENCLOSURE "ddi_enclosure:scsi" #define DDI_NT_TAPE "ddi_byte:tape" /* tape drives */ #define DDI_NT_NET "ddi_network" /* DLPI network devices */ #define DDI_NT_MAC "ddi_mac" /* MAC devices */ #define DDI_NT_DISPLAY "ddi_display" /* display devices */ #define DDI_PSEUDO "ddi_pseudo" /* general pseudo devices */ #define DDI_NT_AUDIO "ddi_audio" /* audio device */ #define DDI_NT_MOUSE "ddi_mouse" /* mouse device */ #define DDI_NT_KEYBOARD "ddi_keyboard" /* keyboard device */ #define DDI_NT_PARALLEL "ddi_parallel" /* parallel port */ #define DDI_NT_PRINTER "ddi_printer" /* printer device */ #define DDI_NT_UGEN "ddi_generic:usb" /* USB generic drv */ #define DDI_NT_NEXUS "ddi_ctl:devctl" /* nexus drivers */ #define DDI_NT_SCSI_NEXUS "ddi_ctl:devctl:scsi" /* nexus drivers */ #define DDI_NT_ATTACHMENT_POINT "ddi_ctl:attachment_point" /* attachment pt */ #define DDI_NT_SCSI_ATTACHMENT_POINT "ddi_ctl:attachment_point:scsi" /* scsi attachment pt */ #define DDI_NT_PCI_ATTACHMENT_POINT "ddi_ctl:attachment_point:pci" /* PCI attachment pt */ #define DDI_NT_SBD_ATTACHMENT_POINT "ddi_ctl:attachment_point:sbd" /* generic bd attachment pt */ #define DDI_NT_FC_ATTACHMENT_POINT "ddi_ctl:attachment_point:fc" /* FC attachment pt */ #define DDI_NT_USB_ATTACHMENT_POINT "ddi_ctl:attachment_point:usb" /* USB devices */ #define DDI_NT_BLOCK_FABRIC "ddi_block:fabric" /* Fabric Devices */ #define DDI_NT_IB_ATTACHMENT_POINT "ddi_ctl:attachment_point:ib" /* IB devices */ #define DDI_NT_SMARTCARD_READER "ddi_smartcard_reader" /* Smartcard reader */ #define DDI_NT_AV_ASYNC "ddi_av:async" /* asynchronous AV device */ #define DDI_NT_AV_ISOCH "ddi_av:isoch" /* isochronous AV device */ /* Device types used for agpgart driver related devices */ #define DDI_NT_AGP_PSEUDO "ddi_agp:pseudo" /* agpgart pseudo device */ #define DDI_NT_AGP_MASTER "ddi_agp:master" /* agp master device */ #define DDI_NT_AGP_TARGET "ddi_agp:target" /* agp target device */ #define DDI_NT_AGP_CPUGART "ddi_agp:cpugart" /* amd64 on-cpu gart device */ #define DDI_NT_REGACC "ddi_tool_reg" /* tool register access */ #define DDI_NT_INTRCTL "ddi_tool_intr" /* tool intr access */ /* * DDI event definitions */ #define EC_DEVFS "EC_devfs" /* Event class devfs */ #define EC_DDI "EC_ddi" /* Event class ddi */ /* Class devfs subclasses */ #define ESC_DEVFS_MINOR_CREATE "ESC_devfs_minor_create" #define ESC_DEVFS_MINOR_REMOVE "ESC_devfs_minor_remove" #define ESC_DEVFS_DEVI_ADD "ESC_devfs_devi_add" #define ESC_DEVFS_DEVI_REMOVE "ESC_devfs_devi_remove" #define ESC_DEVFS_INSTANCE_MOD "ESC_devfs_instance_mod" #define ESC_DEVFS_BRANCH_ADD "ESC_devfs_branch_add" #define ESC_DEVFS_BRANCH_REMOVE "ESC_devfs_branch_remove" /* Class ddi subclasses */ #define ESC_DDI_INITIATOR_REGISTER "ESC_ddi_initiator_register" #define ESC_DDI_INITIATOR_UNREGISTER "ESC_ddi_initiator_unregister" /* DDI/NDI event publisher */ #define EP_DDI SUNW_KERN_PUB"ddi" /* * devfs event class attributes * * The following attributes are private to EC_DEVFS event data. */ #define DEVFS_DRIVER_NAME "di.driver" #define DEVFS_INSTANCE "di.instance" #define DEVFS_PATHNAME "di.path" #define DEVFS_DEVI_CLASS "di.devi_class" #define DEVFS_BRANCH_EVENT "di.branch_event" #define DEVFS_MINOR_NAME "mi.name" #define DEVFS_MINOR_NODETYPE "mi.nodetype" #define DEVFS_MINOR_ISCLONE "mi.isclone" #define DEVFS_MINOR_MAJNUM "mi.majorno" #define DEVFS_MINOR_MINORNUM "mi.minorno" /* * ddi event class payload * * The following attributes are private to EC_DDI event data. */ #define DDI_DRIVER_NAME "ddi.driver" #define DDI_DRIVER_MAJOR "ddi.major" #define DDI_INSTANCE "ddi.instance" #define DDI_PATHNAME "ddi.path" #define DDI_CLASS "ddi.class" /* * Fault-related definitions * * The specific numeric values have been chosen to be ordered, but * not consecutive, to allow for future interpolation if required. */ typedef enum { DDI_SERVICE_LOST = -32, DDI_SERVICE_DEGRADED = -16, DDI_SERVICE_UNAFFECTED = 0, DDI_SERVICE_RESTORED = 16 } ddi_fault_impact_t; typedef enum { DDI_DATAPATH_FAULT = -32, DDI_DEVICE_FAULT = -16, DDI_EXTERNAL_FAULT = 0 } ddi_fault_location_t; typedef enum { DDI_DEVSTATE_OFFLINE = -32, DDI_DEVSTATE_DOWN = -16, DDI_DEVSTATE_QUIESCED = 0, DDI_DEVSTATE_DEGRADED = 16, DDI_DEVSTATE_UP = 32 } ddi_devstate_t; #ifdef _KERNEL /* * Common property definitions */ #define DDI_FORCEATTACH "ddi-forceattach" #define DDI_NO_AUTODETACH "ddi-no-autodetach" /* * Values that the function supplied to the dev_info * tree traversal functions defined below must return. */ /* * Continue search, if appropriate. */ #define DDI_WALK_CONTINUE 0 /* * Terminate current depth of traversal. That is, terminate * the current traversal of children nodes, but continue * traversing sibling nodes and their children (if any). */ #define DDI_WALK_PRUNECHILD -1 /* * Terminate current width of traversal. That is, terminate * the current traversal of sibling nodes, but continue with * traversing children nodes and their siblings (if appropriate). */ #define DDI_WALK_PRUNESIB -2 /* * Terminate the entire search. */ #define DDI_WALK_TERMINATE -3 /* * Terminate the entire search because an error occurred in function */ #define DDI_WALK_ERROR -4 /* * Drivers that are prepared to support full driver layering * should create and export a null-valued property of the following * name. * * Such drivers should be prepared to be called with FKLYR in * the 'flag' argument of their open(9E), close(9E) routines, and * with FKIOCTL in the 'mode' argument of their ioctl(9E) routines. * * See ioctl(9E) and ddi_copyin(9F) for details. */ #define DDI_KERNEL_IOCTL "ddi-kernel-ioctl" /* * Model definitions for ddi_mmap_get_model(9F) and ddi_model_convert_from(9F). */ #define DDI_MODEL_MASK DATAMODEL_MASK /* Note: 0x0FF00000 */ #define DDI_MODEL_ILP32 DATAMODEL_ILP32 #define DDI_MODEL_LP64 DATAMODEL_LP64 #define DDI_MODEL_NATIVE DATAMODEL_NATIVE #define DDI_MODEL_NONE DATAMODEL_NONE /* * Functions and data references which really should be in */ extern int maxphys; extern void minphys(struct buf *); extern int physio(int (*)(struct buf *), struct buf *, dev_t, int, void (*)(struct buf *), struct uio *); extern void disksort(struct diskhd *, struct buf *); extern long strtol(const char *, char **, int); extern unsigned long strtoul(const char *, char **, int); extern size_t strlen(const char *) __PURE; extern char *strcpy(char *, const char *); extern char *strncpy(char *, const char *, size_t); /* Need to be consistent with C++ definition for strchr() */ #if __cplusplus >= 199711L extern const char *strchr(const char *, int); #ifndef _STRCHR_INLINE #define _STRCHR_INLINE extern "C++" { inline char *strchr(char *__s, int __c) { return (char *)strchr((const char *)__s, __c); } } #endif /* _STRCHR_INLINE */ #else extern char *strchr(const char *, int); #endif /* __cplusplus >= 199711L */ #define DDI_STRSAME(s1, s2) ((*(s1) == *(s2)) && (strcmp((s1), (s2)) == 0)) extern int strcmp(const char *, const char *) __PURE; extern int strncmp(const char *, const char *, size_t) __PURE; extern char *strncat(char *, const char *, size_t); extern size_t strlcat(char *, const char *, size_t); extern size_t strlcpy(char *, const char *, size_t); extern size_t strspn(const char *, const char *); extern int bcmp(const void *, const void *, size_t) __PURE; extern int stoi(char **); extern void numtos(ulong_t, char *); extern void bcopy(const void *, void *, size_t); extern void bzero(void *, size_t); extern void *memcpy(void *, const void *, size_t); extern void *memset(void *, int, size_t); extern void *memmove(void *, const void *, size_t); extern int memcmp(const void *, const void *, size_t) __PURE; /* Need to be consistent with C++ definition for memchr() */ #if __cplusplus >= 199711L extern const void *memchr(const void *, int, size_t); #ifndef _MEMCHR_INLINE #define _MEMCHR_INLINE extern "C++" { inline void *memchr(void * __s, int __c, size_t __n) { return (void *)memchr((const void *)__s, __c, __n); } } #endif /* _MEMCHR_INLINE */ #else extern void *memchr(const void *, int, size_t); #endif /* __cplusplus >= 199711L */ extern int ddi_strtol(const char *, char **, int, long *); extern int ddi_strtoul(const char *, char **, int, unsigned long *); /* * ddi_map_regs * * Map in the register set given by rnumber. * The register number determine which register * set will be mapped if more than one exists. * The parent driver gets the information * from parent private data and sets up the * appropriate mappings and returns the kernel * virtual address of the register set in *kaddrp. * The offset specifies an offset into the register * space to start from and len indicates the size * of the area to map. If len and offset are 0 then * the entire space is mapped. It returns DDI_SUCCESS on * success or DDI_FAILURE otherwise. * */ int ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset, off_t len); /* * ddi_unmap_regs * * Undo mappings set up by ddi_map_regs. * The register number determines which register * set will be unmapped if more than one exists. * This is provided for drivers preparing * to detach themselves from the system to * allow them to release allocated mappings. * * The kaddrp and len specify the area to be * unmapped. *kaddrp was returned from ddi_map_regs * and len should match what ddi_map_regs was called * with. */ void ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset, off_t len); int ddi_map(dev_info_t *dp, ddi_map_req_t *mp, off_t offset, off_t len, caddr_t *addrp); int ddi_apply_range(dev_info_t *dip, dev_info_t *rdip, struct regspec *rp); /* * ddi_rnumber_to_regspec: Not for use by leaf drivers. */ struct regspec * ddi_rnumber_to_regspec(dev_info_t *dip, int rnumber); int ddi_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, off_t len, caddr_t *vaddrp); int nullbusmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, off_t len, caddr_t *vaddrp); #ifdef _LP64 int ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *val_p); int ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *val_p); int ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *val_p); int ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *val_p); int ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t val); int ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t val); int ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t val); int ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t val); #else /* _ILP32 */ int ddi_peekc(dev_info_t *dip, int8_t *addr, int8_t *val_p); #define ddi_peek8 ddi_peekc int ddi_peeks(dev_info_t *dip, int16_t *addr, int16_t *val_p); #define ddi_peek16 ddi_peeks int ddi_peekl(dev_info_t *dip, int32_t *addr, int32_t *val_p); #define ddi_peek32 ddi_peekl int ddi_peekd(dev_info_t *dip, int64_t *addr, int64_t *val_p); #define ddi_peek64 ddi_peekd int ddi_pokec(dev_info_t *dip, int8_t *addr, int8_t val); #define ddi_poke8 ddi_pokec int ddi_pokes(dev_info_t *dip, int16_t *addr, int16_t val); #define ddi_poke16 ddi_pokes int ddi_pokel(dev_info_t *dip, int32_t *addr, int32_t val); #define ddi_poke32 ddi_pokel int ddi_poked(dev_info_t *dip, int64_t *addr, int64_t val); #define ddi_poke64 ddi_poked #endif /* _LP64 */ /* * Peek and poke to and from a uio structure in xfersize pieces, * using the parent nexi. */ int ddi_peekpokeio(dev_info_t *devi, struct uio *uio, enum uio_rw rw, caddr_t addr, size_t len, uint_t xfersize); /* * Pagesize conversions using the parent nexi */ unsigned long ddi_btop(dev_info_t *dip, unsigned long bytes); unsigned long ddi_btopr(dev_info_t *dip, unsigned long bytes); unsigned long ddi_ptob(dev_info_t *dip, unsigned long pages); /* * There are no more "block" interrupt functions, per se. * All thread of control should be done with MP/MT lockings. * * However, there are certain times in which a driver needs * absolutely a critical guaranteed non-preemptable time * in which to execute a few instructions. * * The following pair of functions attempt to guarantee this, * but they are dangerous to use. That is, use them with * extreme care. They do not guarantee to stop other processors * from executing, but they do guarantee that the caller * of ddi_enter_critical will continue to run until the * caller calls ddi_exit_critical. No intervening DDI functions * may be called between an entry and an exit from a critical * region. * * ddi_enter_critical returns an integer identifier which must * be passed to ddi_exit_critical. * * Be very sparing in the use of these functions since it is * likely that absolutely nothing else can occur in the system * whilst in the critical region. */ unsigned int ddi_enter_critical(void); void ddi_exit_critical(unsigned int); /* * devmap functions */ int devmap_setup(dev_t dev, offset_t off, ddi_as_handle_t as, caddr_t *addrp, size_t len, uint_t prot, uint_t maxprot, uint_t flags, struct cred *cred); int ddi_devmap_segmap(dev_t dev, off_t off, ddi_as_handle_t as, caddr_t *addrp, off_t len, uint_t prot, uint_t maxprot, uint_t flags, struct cred *cred); int devmap_load(devmap_cookie_t dhp, offset_t offset, size_t len, uint_t type, uint_t rw); int devmap_unload(devmap_cookie_t dhp, offset_t offset, size_t len); int devmap_devmem_setup(devmap_cookie_t dhp, dev_info_t *dip, struct devmap_callback_ctl *callback_ops, uint_t rnumber, offset_t roff, size_t len, uint_t maxprot, uint_t flags, ddi_device_acc_attr_t *accattrp); int devmap_umem_setup(devmap_cookie_t dhp, dev_info_t *dip, struct devmap_callback_ctl *callback_ops, ddi_umem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot, uint_t flags, ddi_device_acc_attr_t *accattrp); int devmap_devmem_remap(devmap_cookie_t dhp, dev_info_t *dip, uint_t rnumber, offset_t roff, size_t len, uint_t maxprot, uint_t flags, ddi_device_acc_attr_t *accattrp); int devmap_umem_remap(devmap_cookie_t dhp, dev_info_t *dip, ddi_umem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot, uint_t flags, ddi_device_acc_attr_t *accattrp); void devmap_set_ctx_timeout(devmap_cookie_t dhp, clock_t ticks); int devmap_default_access(devmap_cookie_t dhp, void *pvtp, offset_t off, size_t len, uint_t type, uint_t rw); int devmap_do_ctxmgt(devmap_cookie_t dhp, void *pvtp, offset_t off, size_t len, uint_t type, uint_t rw, int (*ctxmgt)(devmap_cookie_t, void *, offset_t, size_t, uint_t, uint_t)); void *ddi_umem_alloc(size_t size, int flag, ddi_umem_cookie_t *cookiep); void ddi_umem_free(ddi_umem_cookie_t cookie); /* * Functions to lock user memory and do repeated I/O or do devmap_umem_setup */ int ddi_umem_lock(caddr_t addr, size_t size, int flags, ddi_umem_cookie_t *cookie); void ddi_umem_unlock(ddi_umem_cookie_t cookie); struct buf * ddi_umem_iosetup(ddi_umem_cookie_t cookie, off_t off, size_t len, int direction, dev_t dev, daddr_t blkno, int (*iodone)(struct buf *), int sleepflag); /* * Mapping functions */ int ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp); int ddi_segmap_setup(dev_t dev, off_t offset, struct as *as, caddr_t *addrp, off_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cred, ddi_device_acc_attr_t *accattrp, uint_t rnumber); int ddi_map_fault(dev_info_t *dip, struct hat *hat, struct seg *seg, caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock); int ddi_device_mapping_check(dev_t dev, ddi_device_acc_attr_t *accattrp, uint_t rnumber, uint_t *hat_flags); /* * Property functions: See also, ddipropdefs.h. * In general, the underlying driver MUST be held * to call it's property functions. */ /* * Used to create, modify, and lookup integer properties */ int ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name, int defvalue); int64_t ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name, int64_t defvalue); int ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name, int **data, uint_t *nelements); int ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name, int64_t **data, uint_t *nelements); int ddi_prop_update_int(dev_t match_dev, dev_info_t *dip, char *name, int data); int ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip, char *name, int64_t data); int ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip, char *name, int *data, uint_t nelements); int ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip, char *name, int64_t *data, uint_t nelements); /* * Used to create, modify, and lookup string properties */ int ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name, char **data); int ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name, char ***data, uint_t *nelements); int ddi_prop_update_string(dev_t match_dev, dev_info_t *dip, char *name, char *data); int ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip, char *name, char **data, uint_t nelements); /* * Used to create, modify, and lookup byte properties */ int ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name, uchar_t **data, uint_t *nelements); int ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip, char *name, uchar_t *data, uint_t nelements); /* * Used to verify the existence of a property or to see if a boolean * property exists. */ int ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name); /* * Used to free the data returned by the above property routines. */ void ddi_prop_free(void *data); /* * nopropop: For internal use in `dummy' cb_prop_op functions only */ int nopropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, char *name, caddr_t valuep, int *lengthp); /* * ddi_prop_op: The basic property operator for drivers. * * In ddi_prop_op, the type of valuep is interpreted based on prop_op: * * prop_op valuep * ------ ------ * * PROP_LEN * * PROP_LEN_AND_VAL_BUF Pointer to callers buffer * * PROP_LEN_AND_VAL_ALLOC Address of callers pointer (will be set to * address of allocated buffer, if successful) */ int ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, char *name, caddr_t valuep, int *lengthp); /* ddi_prop_op_size: for drivers that implement size in bytes */ int ddi_prop_op_size(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64); /* ddi_prop_op_nblocks: for drivers that implement size in DEV_BSIZE blocks */ int ddi_prop_op_nblocks(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t nblocks64); /* * Variable length props... */ /* * ddi_getlongprop: Get variable length property len+val into a buffer * allocated by property provider via kmem_alloc. Requester * is responsible for freeing returned property via kmem_free. * * Arguments: * * dev: Input: dev_t of property. * dip: Input: dev_info_t pointer of child. * flags: Input: Possible flag modifiers are: * DDI_PROP_DONTPASS: Don't pass to parent if prop not found. * DDI_PROP_CANSLEEP: Memory allocation may sleep. * name: Input: name of property. * valuep: Output: Addr of callers buffer pointer. * lengthp:Output: *lengthp will contain prop length on exit. * * Possible Returns: * * DDI_PROP_SUCCESS: Prop found and returned. * DDI_PROP_NOT_FOUND: Prop not found * DDI_PROP_UNDEFINED: Prop explicitly undefined. * DDI_PROP_NO_MEMORY: Prop found, but unable to alloc mem. */ int ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags, char *name, caddr_t valuep, int *lengthp); /* * * ddi_getlongprop_buf: Get long prop into pre-allocated callers * buffer. (no memory allocation by provider). * * dev: Input: dev_t of property. * dip: Input: dev_info_t pointer of child. * flags: Input: DDI_PROP_DONTPASS or NULL * name: Input: name of property * valuep: Input: ptr to callers buffer. * lengthp:I/O: ptr to length of callers buffer on entry, * actual length of property on exit. * * Possible returns: * * DDI_PROP_SUCCESS Prop found and returned * DDI_PROP_NOT_FOUND Prop not found * DDI_PROP_UNDEFINED Prop explicitly undefined. * DDI_PROP_BUF_TOO_SMALL Prop found, callers buf too small, * no value returned, but actual prop * length returned in *lengthp * */ int ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags, char *name, caddr_t valuep, int *lengthp); /* * Integer/boolean sized props. * * Call is value only... returns found boolean or int sized prop value or * defvalue if prop not found or is wrong length or is explicitly undefined. * Only flag is DDI_PROP_DONTPASS... * * By convention, this interface returns boolean (0) sized properties * as value (int)1. */ int ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue); /* * Get prop length interface: flags are 0 or DDI_PROP_DONTPASS * if returns DDI_PROP_SUCCESS, length returned in *lengthp. */ int ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp); /* * Interface to create/modify a managed property on child's behalf... * Only flag is DDI_PROP_CANSLEEP to allow memory allocation to sleep * if no memory available for internal prop structure. Long property * (non integer sized) value references are not copied. * * Define property with DDI_DEV_T_NONE dev_t for properties not associated * with any particular dev_t. Use the same dev_t when modifying or undefining * a property. * * No guarantee on order of property search, so don't mix the same * property name with wildcard and non-wildcard dev_t's. */ /* * ddi_prop_create: Define a managed property: */ int ddi_prop_create(dev_t dev, dev_info_t *dip, int flag, char *name, caddr_t value, int length); /* * ddi_prop_modify: Modify a managed property value */ int ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag, char *name, caddr_t value, int length); /* * ddi_prop_remove: Undefine a managed property: */ int ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name); /* * ddi_prop_remove_all: Used before unloading a driver to remove * all properties. (undefines all dev_t's props.) * Also removes `undefined' prop defs. */ void ddi_prop_remove_all(dev_info_t *dip); /* * ddi_prop_undefine: Explicitly undefine a property. Property * searches which match this property return * the error code DDI_PROP_UNDEFINED. * * Use ddi_prop_remove to negate effect of * ddi_prop_undefine */ int ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name); /* * The default ddi_bus_prop_op wrapper... */ int ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip, ddi_prop_op_t prop_op, int mod_flags, char *name, caddr_t valuep, int *lengthp); /* * Routines to traverse the tree of dev_info nodes. * The general idea of these functions is to provide * various tree traversal utilities. For each node * that the tree traversal function finds, a caller * supplied function is called with arguments of * the current node and a caller supplied argument. * The caller supplied function should return one * of the integer values defined below which will * indicate to the tree traversal function whether * the traversal should be continued, and if so, how, * or whether the traversal should terminate. */ /* * This general-purpose routine traverses the tree of dev_info nodes, * starting from the given node, and calls the given function for each * node that it finds with the current node and the pointer arg (which * can point to a structure of information that the function * needs) as arguments. * * It does the walk a layer at a time, not depth-first. * * The given function must return one of the values defined above. * */ void ddi_walk_devs(dev_info_t *, int (*)(dev_info_t *, void *), void *); /* * Routines to get at elements of the dev_info structure */ /* * ddi_node_name gets the device's 'name' from the device node. * * ddi_binding_name gets the string the OS used to bind the node to a driver, * in certain cases, the binding name may be different from the node name, * if the node name does not name a specific device driver. * * ddi_get_name is a synonym for ddi_binding_name(). */ char * ddi_get_name(dev_info_t *dip); char * ddi_binding_name(dev_info_t *dip); const char * ddi_driver_name(dev_info_t *dip); major_t ddi_driver_major(dev_info_t *dip); major_t ddi_compatible_driver_major(dev_info_t *dip, char **formp); char * ddi_node_name(dev_info_t *dip); int ddi_get_nodeid(dev_info_t *dip); int ddi_get_instance(dev_info_t *dip); struct dev_ops * ddi_get_driver(dev_info_t *dip); void ddi_set_driver(dev_info_t *dip, struct dev_ops *devo); void ddi_set_driver_private(dev_info_t *dip, void *data); void * ddi_get_driver_private(dev_info_t *dip); /* * ddi_dev_is_needed tells system that a device is about to use a * component. Returns when component is ready. */ int ddi_dev_is_needed(dev_info_t *dip, int cmpt, int level); /* * check if DDI_SUSPEND may result in power being removed from a device. */ int ddi_removing_power(dev_info_t *dip); /* * (Obsolete) power entry point */ int ddi_power(dev_info_t *dip, int cmpt, int level); /* * ddi_get_parent requires that the branch of the tree with the * node be held (ddi_hold_installed_driver) or that the devinfo tree * lock be held */ dev_info_t * ddi_get_parent(dev_info_t *dip); /* * ddi_get_child and ddi_get_next_sibling require that the devinfo * tree lock be held */ dev_info_t * ddi_get_child(dev_info_t *dip); dev_info_t * ddi_get_next_sibling(dev_info_t *dip); dev_info_t * ddi_get_next(dev_info_t *dip); void ddi_set_next(dev_info_t *dip, dev_info_t *nextdip); /* * dev_info manipulation functions */ /* * Add and remove child devices. These are part of the system framework. * * ddi_add_child creates a dev_info structure with the passed name, * nodeid and instance arguments and makes it a child of pdip. Devices * that are known directly by the hardware have real nodeids; devices * that are software constructs use the defined DEVI_PSEUDO_NODEID * for the node id. * * ddi_remove_node removes the node from the tree. This fails if this * child has children. Parent and driver private data should already * be released (freed) prior to calling this function. If flag is * non-zero, the child is removed from it's linked list of instances. */ dev_info_t * ddi_add_child(dev_info_t *pdip, char *name, uint_t nodeid, uint_t instance); int ddi_remove_child(dev_info_t *dip, int flag); /* * Given the major number for a driver, make sure that dev_info nodes * are created form the driver's hwconf file, the driver for the named * device is loaded and attached, as well as any drivers for parent devices. * Return a pointer to the driver's dev_ops struct with the dev_ops held. * Note - Callers must release the dev_ops with ddi_rele_driver. * * When a driver is held, the branch of the devinfo tree from any of the * drivers devinfos to the root node are automatically held. This only * applies to tree traversals up (and back down) the tree following the * parent pointers. * * Use of this interface is discouraged, it may be removed in a future release. */ struct dev_ops * ddi_hold_installed_driver(major_t major); void ddi_rele_driver(major_t major); /* * Attach and hold the specified instance of a driver. The flags argument * should be zero. */ dev_info_t * ddi_hold_devi_by_instance(major_t major, int instance, int flags); void ddi_release_devi(dev_info_t *); /* * Associate a streams queue with a devinfo node */ void ddi_assoc_queue_with_devi(queue_t *, dev_info_t *); /* * Given the identifier string passed, make sure that dev_info nodes * are created form the driver's hwconf file, the driver for the named * device is loaded and attached, as well as any drivers for parent devices. * * Note that the driver is not held and is subject to being removed the instant * this call completes. You probably really want ddi_hold_installed_driver. */ int ddi_install_driver(char *idstring); /* * Routines that return specific nodes */ dev_info_t * ddi_root_node(void); /* * Given a name and an instance number, find and return the * dev_info from the current state of the device tree. * * If instance number is -1, return the first named instance. * * If attached is 1, exclude all nodes that are < DS_ATTACHED * * Requires that the devinfo tree be locked. * If attached is 1, the driver must be held. */ dev_info_t * ddi_find_devinfo(char *name, int instance, int attached); /* * DMA Mapping Setup * * The basic interface function is ddi_dma_setup(). This function * is to designed to allow a DMA mapping to be established to a * memory object. This function returns DDI_DMA_MAPPED if the * request was successfully filled. If this occurs, then the * argument handlep is filled in. This value is the DMA handle * for the mapping, and is used in a variety of other functions. * The handle is an opaque handle on the mapping, and no further * information may be inferred from it by the caller. * * Specifics of arguments to ddi_dma_setup: * * dip - devinfo pointer, which identifies the base device that wishes * to establish a dma mapping. The device may either be a leaf device, * or a device which is both a leaf and a nexus (e.g., a device which * has a dma engine but no children devices). * * dmareqp - pointer to a dma request structure. This structure contains * all the info necessary to establish the mapping (see ). * This structure may be impermanent, as its information is copied and * saved, if necessary, by implementation specific functions. The caller * is responsible for filling in the dmar_flags, dmar_length, dmar_type, * dmar_addr_un, dmar_fp and dmar_arg fields. Any other elements of the * ddi_dma_req structure should neither be examined or modified by the * caller. * * handlep - this is a pointer to a ddi_dma_handle_t. It is the callers * responsibility to hang on to this handle, because it becomes the token * used in all other DDI dma functions. If the handle pointer is NULL, * then no mapping is made, and the call is being used by the caller * to simply determine whether such a mapping *could* be made. * * Discussion of DMA resource callback functions: * * If a request could not be filled, it was because either there were * not enough mapping resources available to satisfy the request, and the * dmar_fp field was not set to DDI_DMA_SLEEP, or the mapping could not * be established at all (DDI_DMA_NOMAPPING) due to a basic inability of * available hardware to map the object. Callers should be prepared to deal * with all possible returns. It is suggested that the appropriate system * error number for the DDI_DMA_NOMAPPING returns is EFAULT. * * If the caller does not care whether a DMA mapping can be set up now, * the caller should set the field dmar_fp to DDI_DMA_DONTWAIT. This * implies that the caller will appropriately deal with resource * exhaustion. * * If the caller either cannot or does not wish to sleep awaiting mapping * resources, the caller may specify, via the field dmar_fp, a function to * call with the argument specified in dmar_arg, when resources might have * become available. The callback function will be called from interrupt * context, but in such a fashion to guarantee that spl blocking (in systems * that use this method of data protection) by the caller will not be * bypassed. * * * When function specified via dmar_fp is called, it may attempt to try and get * the mapping again. If it succeeds in getting the mapping, or does not need * to get the mapping any more, it must return 1. If it tries to get the * mapping but fails to do so, and it wants to be called back later, it * must return 0. * * Failure to observe this protocol will have unpredictable results. * * The callback function must provide its own data structure integrity * when it is invoked. */ int ddi_dma_setup(dev_info_t *dip, struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep); /* * The following three functions are convenience wrappers for ddi_dma_setup(). */ int ddi_dma_addr_setup(dev_info_t *dip, struct as *as, caddr_t addr, size_t len, uint_t flags, int (*waitfp)(), caddr_t arg, ddi_dma_lim_t *limits, ddi_dma_handle_t *handlep); int ddi_dma_buf_setup(dev_info_t *dip, struct buf *bp, uint_t flags, int (*waitfp)(), caddr_t arg, ddi_dma_lim_t *limits, ddi_dma_handle_t *handlep); /* * Kernel addressability of the DMA object * * It might often be very useful to be able to get an IU mapping * to the object which has DMA active to/from it. In fact, it might * even really be a requirement. * * The cacheability of the object with respect to I/O and I/U caches * is affected by this function as follows: * * If a kernel virtual mapping to the object owned by the handle * existed already, and is IU cacheable, then the extant mapping * is locked and returned in kaddrp. By inference, kaddrp will * be an IU cacheable reference. * * If a kernel virtual mapping to the object owned by the handle * existed already, and is not IU cacheable, then the extant mapping * is locked and returned in kaddrp. By inference, kaddrp will * *not* be an IU cacheable reference. * * If a kernel virtual mapping to the object owned by the handle * does not exist already, a mapping will be created that will * *not* be an IU cacheable reference. * * The IO cacheability of the object owned by the handle is ignored * and unaffected. * * This function returns the mapping values as describe above. * * When the DMA object owned by handle is freed (by ddi_dma_free()- see * below), any mappings created by ddi_dma_kvaddrp() cease to be valid. * This will be the convention that drivers must follow, as it will be * impossible to enforce this programmatically. */ int ddi_dma_kvaddrp(ddi_dma_handle_t, off_t, size_t, caddr_t *); /* * Device addressability of the DMA object * * The handle that identifies an object mapped for DMA is an opaque entity. * When a device driver wishes to load its dma engine with the appropriate * values for transferring data to the mapped object, it has to get the * value. Since the exact shape and form of this address is device specific, * the value returned is a 'cookie' that each device may then interpret * as it needs to. See for the form of what the DMA cookie * looks like. * * Returns DDI_SUCCESS for successful cookie generation, * or DDI_FAILURE if it cannot generate the DMA cookie. */ int ddi_dma_htoc(ddi_dma_handle_t handle, off_t off, ddi_dma_cookie_t *cookiep); /* * Given a DMA cookie, return its offset within the object referred to * by the DMA handle. This is so at the end of a dma transfer, the device * may take its specific ending address and find out how far into the * memory object described by the handle the device got. */ int ddi_dma_coff(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep, off_t *offp); /* * DMA mapping manipulation * * It may be desirable or convenient for some devices to allow partial * mapping of an object for dma. This allows the mapping for DMA of * arbitrarily large objects since only a portion of the object may * be mapped for DMA at any point in time. * * In order to support this as well as other operations, the paradigm * of a 'mapping window' is defined here. The object to be mapped has * attributes of location and length. A window can be established upon * this object. The window has attributes of offset (from the base mapping * of the object) and length. It is assumed that length and offset are * positive with respect to the base of the mapped object. * * In order to get support for such a window, the flag DDI_DMA_PARTIAL * must be set in the request flags when the object is mapped for DMA. * Each implementation may elect whether or not to support such an * operation. Each implementation may also choose to ignore the request * for a PARTIAL mapping and either reject the mapping of the object * for being too big (DDI_DMA_TOOBIG) or may map the entire object. * The caller who asks the object to be mapped for DMA will know * whether a partial mapping has been made by receiving the qualified * return value of DDI_DMA_PARTIAL_MAP instead of DDI_DMA_MAPPED. * All dma window functions will return DDI_FAILURE if the object * is not mapped partially. * * All other DDI dma functions (except ddi_dma_Free) operate *only* on * the mapped portion of the object. That is, functions such as ddi_dma_sync, * ddi_dma_segtocookie, and so on, only operate on the currently mapped * window. */ #if defined(__sparc) /* * ddi_dma_movwin - Move window from current offset/length to new * offset/length. Returns DDI_SUCCESS if able to do so, else returns * DDI_FAILURE if unable to do so, or the new window would be out of bounds * or the object isn't set up for windows. If length is (off_t) -1, the * If the optional cp argument is specified, an implicit ddi_dma_htoc * is done to fill that in. The new offset and length will be returned * in the arguments *offp and *lenp (resp). * * In this implementation, only fixed width windows are used. It is * recommended that the windowsize should be retrieved via the function * ddi_dma_curwin (below) and that used to specify new offsets and lengths * since the window will be fixed at that size and will only move modulo * winsize. * * The caller must guarantee that their device's dma engine is quiescent * with respect to the current DMA window. * * The implementation will try to be rapid with respect to moving a window, * but since an appropriate ddi_dma_sync() is likely to be done, there * will be no guaranteed latency. In practice this should not be too * horrible, but don't depend upon any particular latency. */ int ddi_dma_movwin(ddi_dma_handle_t, off_t *offp, size_t *lenp, ddi_dma_cookie_t *); #endif /* * ddi_dma_curwin - report the current offset/length of the window. * * Returns DDI_SUCCESS if offset and length * successfully established, else DDI_FAILURE. */ int ddi_dma_curwin(ddi_dma_handle_t handle, off_t *offp, size_t *lenp); /* * Get next dma window * * ddi_dma_nextwin takes a handle and a window, and fills in a pointer to * the next window within the object. If win is "NULL", a pointer to the * first window within the object is filled in. * * Returns DDI_SUCCESS if successfully filled in the window pointer, * DDI_DMA_STALE if win does not refer to the currently active * window, * DDI_DMA_DONE else there is no next window. */ int ddi_dma_nextwin(ddi_dma_handle_t, ddi_dma_win_t, ddi_dma_win_t *); /* * Get next segment * * ddi_dma_nextseg takes a window and a segment and fills in a pointer to * the next segment within the window. If seg is "NULL", a pointer to the * first segment within the window is filled in. * * Returns DDI_SUCCESS if successfully filled in the segment pointer, * DDI_DMA_STALE if win does not refer to the currently active * window. * DDI_DMA_DONE else there is no next segment. */ int ddi_dma_nextseg(ddi_dma_win_t, ddi_dma_seg_t, ddi_dma_seg_t *); /* * Segment to cookie * * ddi_dma_segtocookie takes a segment and fills in the cookie pointed * to by cookiep with the appropriate address, length and bus type to be * used to program the DMA engine. ddi_dma_segtocookie also fills in the * range within the object (specified by ) this particular * segment is mapping. are filled in to give some control * where in the object the current dma transfer is active. * * Returns DDI_SUCCESS if successfully filled in all values, * else DDI_FAILURE * * This function is documented as Obsolete and is replaced by * ddi_dma_nextcookie(9F) */ int ddi_dma_segtocookie(ddi_dma_seg_t, off_t *, off_t *, ddi_dma_cookie_t *); /* * Synchronization of I/O with respect to various * caches and system write buffers. * * Done at varying points during an I/O transfer (including at the * removal of an I/O mapping). * * Due to the support of systems with write buffers which may * not be able to be turned off, this function *must* used at * any point in which data consistency might be required. * * Generally this means that if a memory object has multiple mappings * (both for I/O, as described by the handle, and the IU, via, e.g. * a call to ddi_dma_kvaddrp), and one mapping may have been * used to modify the memory object, this function must be called * to ensure that the modification of the memory object is * complete, as well as possibly to inform other mappings of * the object that any cached references to the object are * now stale (and flush or invalidate these stale cache references * as necessary). * * The function ddi_dma_sync() provides the general interface with * respect to this capability. Generally, ddi_dma_free() (below) may * be used in preference to ddi_dma_sync() as ddi_dma_free() calls * ddi_dma_sync(). * * Returns 0 if all caches that exist and are specified by cache_flags * are successfully operated on, else -1. * * The argument offset specifies an offset into the mapping of the mapped * object in which to perform the synchronization. It will be silently * truncated to the granularity of underlying cache line sizes as * appropriate. * * The argument len specifies a length starting from offset in which to * perform the synchronization. A value of (uint_t) -1 means that the length * proceeds from offset to the end of the mapping. The length argument * will silently rounded up to the granularity of underlying cache line * sizes as appropriate. * * The argument flags specifies what to synchronize (the device's view of * the object or the cpu's view of the object). * * Inquiring minds want to know when ddi_dma_sync should be used: * * + When an object is mapped for dma, assume that an * implicit ddi_dma_sync() is done for you. * * + When an object is unmapped (ddi_dma_free()), assume * that an implicit ddi_dma_sync() is done for you. * * + At any time between the two times above that the * memory object may have been modified by either * the DMA device or a processor and you wish that * the change be noticed by the master that didn't * do the modifying. * * Clearly, only the third case above requires the use of ddi_dma_sync. * * Inquiring minds also want to know which flag to use: * * + If you *modify* with a cpu the object, you use * ddi_dma_sync(...DDI_DMA_SYNC_FORDEV) (you are making sure * that the DMA device sees the changes you made). * * + If you are checking, with the processor, an area * of the object that the DMA device *may* have modified, * you use ddi_dma_sync(....DDI_DMA_SYNC_FORCPU) (you are * making sure that the processor(s) will see the changes * that the DMA device may have made). */ int ddi_dma_sync(ddi_dma_handle_t handle, off_t offset, size_t len, uint_t flags); /* * DMA mapping de-allocation * * When an I/O transfer completes, the resources required to map the * object for DMA should be completely released. As a side effect, * various cache synchronization might need to occur (see above). * * Returns DDI_SUCCESS if the all underlying caches are successfully * flushed, else DDI_FAILURE. * */ int ddi_dma_free(ddi_dma_handle_t handle); /* * Device constraint cognizant kernel memory allocation- consistent access. * * IOPB allocation and de-allocation * * An IOPB allocation allocates some primary memory such that both * the kernel and the specified DMA device might be able to access it in a * non-cacheable (otherwise known as byte-consistent or non-streaming mode) * fashion. The allocation will obey the beginning alignment and padding * constraints as specified in the initial limits argument and as subsequently * modified by intervening parents. The limits argument may be NULL, in * which case the system picks a reasonable beginning limits. * * A kernel virtual address to the allocated primary memory is returned, * but no DMA mapping to the object is established (drivers must use the * ddi_dma_map() routines for that). * * If no iopb space can be allocated, DDI_FAILURE is returned. */ int ddi_iopb_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, caddr_t *iopbp); /* * Deallocate an IOPB kernel virtual mapping. */ void ddi_iopb_free(caddr_t iopb); /* * Device constraint cognizant kernel memory allocation- streaming access. * * Similar to ddi_iopb_alloc, but for primary memory that is intended * to be accessed in a streaming fashion. The allocation will obey the * beginning alignment and padding constraints as specified in the initial * limits argument and as subsequently modified by intervening parents. * The limits argument may be NULL, in which case the system picks a * reasonable beginning limits. * * A flags value of 0x1 indicates whether the caller can wait for * memory to become available. Other bits in the flags argument * are reserved for future use and must be zero. * * Upon return from a successful call, the new real length of * the allocation is returned (for use in mapping the memory * later). */ int ddi_mem_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, uint_t flags, caddr_t *kaddrp, uint_t *real_length); /* * Free the memory allocated via ddi_mem_alloc(). * * Note that passing an address not allocated via ddi_mem_alloc() * will panic the system. */ void ddi_mem_free(caddr_t kaddr); /* * Dma alignment, minimum transfers sizes, and burst sizes allowed. * Some with tears, some without. */ /* * Return a copy of the DMA attributes for the given handle. */ int ddi_dma_get_attr(ddi_dma_handle_t handle, ddi_dma_attr_t *attrp); /* * Return the allowable DMA burst size for the object mapped by handle. * The burst sizes will returned in an integer that encodes power * of two burst sizes that are allowed in bit encoded format. For * example, a transfer that could allow 1, 2, 4, 8 and 32 byte bursts * would be encoded as 0x2f. A transfer that could be allowed as solely * a halfword (2 byte) transfers would be returned as 0x2. */ int ddi_dma_burstsizes(ddi_dma_handle_t handle); /* * Return the required beginning alignment for a transfer and * the minimum sized effect a transfer would have. The beginning * alignment will be some power of two. The minimum sized effect * indicates, for writes, how much of the mapped object will be * affected by the minimum access and for reads how much of the * mapped object will accessed. */ int ddi_dma_devalign(ddi_dma_handle_t handle, uint_t *alignment, uint_t *mineffect); /* * Like ddi_dma_devalign, but without having to map the object. * The object is assumed to be primary memory, and it is assumed * a minimum effective transfer is also the appropriate alignment * to be using. The streaming flag, if non-zero, indicates that the * returned value should be modified to account for streaming mode * accesses (e.g., with I/O caches enabled). The initial value * is passed by the requester if it has a dma engine that has * a minimum cycle constraint (or, for streaming mode, the most * efficient size). */ int ddi_iomin(dev_info_t *dip, int initial, int streaming); /* * Given two DMA limit structures, apply the limitations * of one to the other, following the rules of limits * and the wishes of the caller. * * The rules of dma limit structures are that you cannot * make things *less* restrictive as you apply one set * of limits to another. * */ void ddi_dmalim_merge(ddi_dma_lim_t *limit, ddi_dma_lim_t *modifier); /* * Merge DMA attributes */ void ddi_dma_attr_merge(ddi_dma_attr_t *attr, ddi_dma_attr_t *mod); /* * Allocate a DMA handle */ int ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep); /* * Free DMA handle */ void ddi_dma_free_handle(ddi_dma_handle_t *handlep); /* * Allocate memory for DMA transfers */ int ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length, ddi_device_acc_attr_t *accattrp, uint_t xfermodes, int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp, size_t *real_length, ddi_acc_handle_t *handlep); /* * Free DMA memory */ void ddi_dma_mem_free(ddi_acc_handle_t *hp); /* * bind address to a DMA handle */ int ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as *as, caddr_t addr, size_t len, uint_t flags, int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t *ccountp); /* * bind buffer to DMA handle */ int ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf *bp, uint_t flags, int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t *ccountp); /* * unbind mapping object to handle */ int ddi_dma_unbind_handle(ddi_dma_handle_t handle); /* * get next DMA cookie */ void ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep); /* * get number of DMA windows */ int ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp); /* * get specific DMA window */ int ddi_dma_getwin(ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); /* * activate 64 bit SBus support */ int ddi_dma_set_sbus64(ddi_dma_handle_t handle, ulong_t burstsizes); /* * Miscellaneous functions */ /* * ddi_report_dev: Report a successful attach. */ void ddi_report_dev(dev_info_t *dev); /* * ddi_dev_regsize * * If the device has h/w register(s), report * the size, in bytes, of the specified one into *resultp. * * Returns DDI_FAILURE if there are not registers, * or the specified register doesn't exist. */ int ddi_dev_regsize(dev_info_t *dev, uint_t rnumber, off_t *resultp); /* * ddi_dev_nregs * * If the device has h/w register(s), report * how many of them that there are into resultp. * Return DDI_FAILURE if the device has no registers. */ int ddi_dev_nregs(dev_info_t *dev, int *resultp); /* * ddi_dev_is_sid * * If the device is self-identifying, i.e., * has already been probed by a smart PROM * (and thus registers are known to be valid) * return DDI_SUCCESS, else DDI_FAILURE. */ int ddi_dev_is_sid(dev_info_t *dev); /* * ddi_slaveonly * * If the device is on a bus that precludes * the device from being either a dma master or * a dma slave, return DDI_SUCCESS. */ int ddi_slaveonly(dev_info_t *); /* * ddi_dev_affinity * * Report, via DDI_SUCCESS, whether there exists * an 'affinity' between two dev_info_t's. An * affinity is defined to be either a parent-child, * or a sibling relationship such that the siblings * or in the same part of the bus they happen to be * on. */ int ddi_dev_affinity(dev_info_t *deva, dev_info_t *devb); /* * ddi_set_callback * * Set a function/arg pair into the callback list identified * by listid. *listid must always initially start out as zero. */ void ddi_set_callback(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid); /* * ddi_run_callback * * Run the callback list identified by listid. */ void ddi_run_callback(uintptr_t *listid); /* * More miscellaneous */ int nochpoll(dev_t dev, short events, int anyyet, short *reventsp, struct pollhead **phpp); dev_info_t * nodevinfo(dev_t dev, int otyp); int ddi_no_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result); int ddi_getinfo_1to1(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result); int ddifail(dev_info_t *devi, ddi_attach_cmd_t cmd); int ddi_no_dma_map(dev_info_t *dip, dev_info_t *rdip, struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep); int ddi_no_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep); int ddi_no_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle); int ddi_no_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, ddi_dma_cookie_t *cp, uint_t *ccountp); int ddi_no_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle); int ddi_no_dma_flush(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags); int ddi_no_dma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); int ddi_no_dma_mctl(register dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags); void ddivoid(); cred_t * ddi_get_cred(void); clock_t ddi_get_lbolt(void); time_t ddi_get_time(void); pid_t ddi_get_pid(void); kt_did_t ddi_get_kt_did(void); boolean_t ddi_can_receive_sig(void); void swab(void *src, void *dst, size_t nbytes); int ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type, minor_t minor_num, char *node_type, int flag); int ddi_create_priv_minor_node(dev_info_t *dip, char *name, int spec_type, minor_t minor_num, char *node_type, int flag, const char *rdpriv, const char *wrpriv, mode_t priv_mode); void ddi_remove_minor_node(dev_info_t *dip, char *name); int ddi_in_panic(void); int ddi_streams_driver(dev_info_t *dip); /* * DDI wrappers for ffs and fls */ int ddi_ffs(long mask); int ddi_fls(long mask); /* * The next five routines comprise generic storage management utilities * for driver soft state structures. */ /* * Allocate a set of pointers to 'n_items' objects of size 'size' * bytes. Each pointer is initialized to nil. 'n_items' is a hint i.e. * zero is allowed. */ int ddi_soft_state_init(void **state_p, size_t size, size_t n_items); /* * Allocate a state structure of size 'size' to be associated * with item 'item'. */ int ddi_soft_state_zalloc(void *state, int item); /* * Fetch a pointer to the allocated soft state structure * corresponding to 'item.' */ void * ddi_get_soft_state(void *state, int item); /* * Free the state structure corresponding to 'item.' */ void ddi_soft_state_free(void *state, int item); /* * Free the handle, and any associated soft state structures. */ void ddi_soft_state_fini(void **state_p); /* * Set the addr field of the name in dip to name */ void ddi_set_name_addr(dev_info_t *dip, char *name); /* * Get the address part of the name. */ char * ddi_get_name_addr(dev_info_t *dip); void ddi_set_parent_data(dev_info_t *dip, void *pd); void * ddi_get_parent_data(dev_info_t *dip); int ddi_initchild(dev_info_t *parent, dev_info_t *proto); int ddi_uninitchild(dev_info_t *dip); major_t ddi_name_to_major(char *name); char * ddi_major_to_name(major_t major); char * ddi_deviname(dev_info_t *dip, char *name); char * ddi_pathname(dev_info_t *dip, char *path); int ddi_dev_pathname(dev_t devt, int spec_type, char *name); dev_t ddi_pathname_to_dev_t(char *pathname); /* * High resolution system timer functions. * * These functions are already in the kernel (see sys/time.h). * The ddi supports the notion of a hrtime_t type and the * functions gethrtime, hrtadd, hrtsub and hrtcmp. */ /* * Nexus wrapper functions * * These functions are for entries in a bus nexus driver's bus_ops * structure for when the driver doesn't have such a function and * doesn't wish to prohibit such a function from existing. They * may also be called to start passing a request up the dev_info * tree. */ /* * bus_ctl wrapper */ int ddi_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t o, void *a, void *v); /* * bus_dma_map wrapper */ int ddi_dma_map(dev_info_t *dip, dev_info_t *rdip, struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep); int ddi_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep); int ddi_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle); int ddi_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, ddi_dma_cookie_t *cp, uint_t *ccountp); int ddi_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle); int ddi_dma_flush(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags); int ddi_dma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); /* * bus_dma_ctl wrapper */ int ddi_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags); /* * dvma support for networking drivers */ unsigned long dvma_pagesize(dev_info_t *dip); int dvma_reserve(dev_info_t *dip, ddi_dma_lim_t *limp, uint_t pages, ddi_dma_handle_t *handlep); void dvma_release(ddi_dma_handle_t h); void dvma_kaddr_load(ddi_dma_handle_t h, caddr_t a, uint_t len, uint_t index, ddi_dma_cookie_t *cp); void dvma_unload(ddi_dma_handle_t h, uint_t objindex, uint_t type); void dvma_sync(ddi_dma_handle_t h, uint_t objindex, uint_t type); /* * Layered driver support */ extern int ddi_copyin(const void *, void *, size_t, int); extern int ddi_copyout(const void *, void *, size_t, int); /* * Send signals to processes */ extern void *proc_ref(void); extern void proc_unref(void *pref); extern int proc_signal(void *pref, int sig); /* I/O port access routines */ extern uint8_t inb(int port); extern uint16_t inw(int port); extern uint32_t inl(int port); extern void repinsb(int port, uint8_t *addr, int count); extern void repinsw(int port, uint16_t *addr, int count); extern void repinsd(int port, uint32_t *addr, int count); extern void outb(int port, uint8_t value); extern void outw(int port, uint16_t value); extern void outl(int port, uint32_t value); extern void repoutsb(int port, uint8_t *addr, int count); extern void repoutsw(int port, uint16_t *addr, int count); extern void repoutsd(int port, uint32_t *addr, int count); /* * Console bell routines */ extern void ddi_ring_console_bell(clock_t duration); extern void ddi_set_console_bell(void (*bellfunc)(clock_t duration)); /* * Fault-related functions */ extern int ddi_check_acc_handle(ddi_acc_handle_t); extern int ddi_check_dma_handle(ddi_dma_handle_t); extern void ddi_dev_report_fault(dev_info_t *, ddi_fault_impact_t, ddi_fault_location_t, const char *); extern ddi_devstate_t ddi_get_devstate(dev_info_t *); /* * Miscellaneous redefines */ #define uiophysio physio /* * utilities - "reg" mapping and all common portable data access functions */ /* * error code from ddi_regs_map_setup */ #define DDI_REGS_ACC_CONFLICT (-10) /* * Device address advance flags */ #define DDI_DEV_NO_AUTOINCR 0x0000 #define DDI_DEV_AUTOINCR 0x0001 int ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t *addrp, offset_t offset, offset_t len, ddi_device_acc_attr_t *accattrp, ddi_acc_handle_t *handle); void ddi_regs_map_free(ddi_acc_handle_t *handle); /* * these are the prototypes for the common portable data access functions */ #ifdef _LP64 uint8_t ddi_get8(ddi_acc_handle_t handle, uint8_t *addr); uint16_t ddi_get16(ddi_acc_handle_t handle, uint16_t *addr); uint32_t ddi_get32(ddi_acc_handle_t handle, uint32_t *addr); uint64_t ddi_get64(ddi_acc_handle_t handle, uint64_t *addr); void ddi_rep_get8(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, size_t repcount, uint_t flags); void ddi_rep_get16(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, size_t repcount, uint_t flags); void ddi_rep_get32(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, size_t repcount, uint_t flags); void ddi_rep_get64(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, size_t repcount, uint_t flags); void ddi_put8(ddi_acc_handle_t handle, uint8_t *addr, uint8_t value); void ddi_put16(ddi_acc_handle_t handle, uint16_t *addr, uint16_t value); void ddi_put32(ddi_acc_handle_t handle, uint32_t *addr, uint32_t value); void ddi_put64(ddi_acc_handle_t handle, uint64_t *addr, uint64_t value); void ddi_rep_put8(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, size_t repcount, uint_t flags); void ddi_rep_put16(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, size_t repcount, uint_t flags); void ddi_rep_put32(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, size_t repcount, uint_t flags); void ddi_rep_put64(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, size_t repcount, uint_t flags); #else /* _ILP32 */ uint8_t ddi_getb(ddi_acc_handle_t handle, uint8_t *addr); #define ddi_get8 ddi_getb uint16_t ddi_getw(ddi_acc_handle_t handle, uint16_t *addr); #define ddi_get16 ddi_getw uint32_t ddi_getl(ddi_acc_handle_t handle, uint32_t *addr); #define ddi_get32 ddi_getl uint64_t ddi_getll(ddi_acc_handle_t handle, uint64_t *addr); #define ddi_get64 ddi_getll void ddi_rep_getb(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, size_t repcount, uint_t flags); #define ddi_rep_get8 ddi_rep_getb void ddi_rep_getw(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, size_t repcount, uint_t flags); #define ddi_rep_get16 ddi_rep_getw void ddi_rep_getl(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, size_t repcount, uint_t flags); #define ddi_rep_get32 ddi_rep_getl void ddi_rep_getll(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, size_t repcount, uint_t flags); #define ddi_rep_get64 ddi_rep_getll void ddi_putb(ddi_acc_handle_t handle, uint8_t *addr, uint8_t value); #define ddi_put8 ddi_putb void ddi_putw(ddi_acc_handle_t handle, uint16_t *addr, uint16_t value); #define ddi_put16 ddi_putw void ddi_putl(ddi_acc_handle_t handle, uint32_t *addr, uint32_t value); #define ddi_put32 ddi_putl void ddi_putll(ddi_acc_handle_t handle, uint64_t *addr, uint64_t value); #define ddi_put64 ddi_putll void ddi_rep_putb(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, size_t repcount, uint_t flags); #define ddi_rep_put8 ddi_rep_putb void ddi_rep_putw(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, size_t repcount, uint_t flags); #define ddi_rep_put16 ddi_rep_putw void ddi_rep_putl(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, size_t repcount, uint_t flags); #define ddi_rep_put32 ddi_rep_putl void ddi_rep_putll(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, size_t repcount, uint_t flags); #define ddi_rep_put64 ddi_rep_putll #endif /* _LP64 */ /* * these are special device handling functions */ int ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr, size_t bytecount, ssize_t dev_advcnt, uint_t dev_datasz); int ddi_device_copy( ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt, ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt, size_t bytecount, uint_t dev_datasz); /* * these are software byte swapping functions */ uint16_t ddi_swap16(uint16_t value); uint32_t ddi_swap32(uint32_t value); uint64_t ddi_swap64(uint64_t value); /* * these are the prototypes for PCI local bus functions */ /* * PCI power management capabilities reporting in addition to those * provided by the PCI Power Management Specification. */ #define PCI_PM_IDLESPEED 0x1 /* clock for idle dev - cap */ #define PCI_PM_IDLESPEED_ANY (void *)-1 /* any clock for idle dev */ #define PCI_PM_IDLESPEED_NONE (void *)-2 /* regular clock for idle dev */ int pci_config_setup(dev_info_t *dip, ddi_acc_handle_t *handle); void pci_config_teardown(ddi_acc_handle_t *handle); #ifdef _LP64 uint8_t pci_config_get8(ddi_acc_handle_t handle, off_t offset); uint16_t pci_config_get16(ddi_acc_handle_t handle, off_t offset); uint32_t pci_config_get32(ddi_acc_handle_t handle, off_t offset); uint64_t pci_config_get64(ddi_acc_handle_t handle, off_t offset); void pci_config_put8(ddi_acc_handle_t handle, off_t offset, uint8_t value); void pci_config_put16(ddi_acc_handle_t handle, off_t offset, uint16_t value); void pci_config_put32(ddi_acc_handle_t handle, off_t offset, uint32_t value); void pci_config_put64(ddi_acc_handle_t handle, off_t offset, uint64_t value); #else /* _ILP32 */ uint8_t pci_config_getb(ddi_acc_handle_t handle, off_t offset); #define pci_config_get8 pci_config_getb uint16_t pci_config_getw(ddi_acc_handle_t handle, off_t offset); #define pci_config_get16 pci_config_getw uint32_t pci_config_getl(ddi_acc_handle_t handle, off_t offset); #define pci_config_get32 pci_config_getl uint64_t pci_config_getll(ddi_acc_handle_t handle, off_t offset); #define pci_config_get64 pci_config_getll void pci_config_putb(ddi_acc_handle_t handle, off_t offset, uint8_t value); #define pci_config_put8 pci_config_putb void pci_config_putw(ddi_acc_handle_t handle, off_t offset, uint16_t value); #define pci_config_put16 pci_config_putw void pci_config_putl(ddi_acc_handle_t handle, off_t offset, uint32_t value); #define pci_config_put32 pci_config_putl void pci_config_putll(ddi_acc_handle_t handle, off_t offset, uint64_t value); #define pci_config_put64 pci_config_putll #endif /* _LP64 */ int pci_report_pmcap(dev_info_t *dip, int cap, void *arg); int pci_restore_config_regs(dev_info_t *dip); int pci_save_config_regs(dev_info_t *dip); void pci_ereport_setup(dev_info_t *dip); void pci_ereport_teardown(dev_info_t *dip); void pci_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status); void pci_bdg_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status); int pci_bdg_check_status(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t pci_cfg_stat, uint16_t pci_cfg_sec_stat); /* * the prototype for the C Language Type Model inquiry. */ model_t ddi_mmap_get_model(void); model_t ddi_model_convert_from(model_t); /* * these are the prototypes for device id functions. */ int ddi_devid_valid(ddi_devid_t devid); int ddi_devid_register(dev_info_t *dip, ddi_devid_t devid); void ddi_devid_unregister(dev_info_t *dip); int ddi_devid_init(dev_info_t *dip, ushort_t devid_type, ushort_t nbytes, void *id, ddi_devid_t *ret_devid); size_t ddi_devid_sizeof(ddi_devid_t devid); void ddi_devid_free(ddi_devid_t devid); int ddi_devid_compare(ddi_devid_t id1, ddi_devid_t id2); int ddi_devid_scsi_encode(int version, char *driver_name, uchar_t *inq, size_t inq_len, uchar_t *inq80, size_t inq80_len, uchar_t *inq83, size_t inq83_len, ddi_devid_t *ret_devid); char *ddi_devid_to_guid(ddi_devid_t devid); void ddi_devid_free_guid(char *guid); int ddi_lyr_get_devid(dev_t dev, ddi_devid_t *ret_devid); int ddi_lyr_get_minor_name(dev_t dev, int spec_type, char **minor_name); int ddi_lyr_devid_to_devlist(ddi_devid_t devid, char *minor_name, int *retndevs, dev_t **retdevs); void ddi_lyr_free_devlist(dev_t *devlist, int ndevs); char * ddi_devid_str_encode(ddi_devid_t devid, char *minor_name); int ddi_devid_str_decode(char *devidstr, ddi_devid_t *devidp, char **minor_namep); void ddi_devid_str_free(char *devidstr); int ddi_devid_str_compare(char *id1_str, char *id2_str); /* * Event to post to when a devinfo node is removed. */ #define DDI_DEVI_REMOVE_EVENT "DDI:DEVI_REMOVE" #define DDI_DEVI_INSERT_EVENT "DDI:DEVI_INSERT" #define DDI_DEVI_BUS_RESET_EVENT "DDI:DEVI_BUS_RESET" #define DDI_DEVI_DEVICE_RESET_EVENT "DDI:DEVI_DEVICE_RESET" /* * Invoke bus nexus driver's implementation of the * (*bus_remove_eventcall)() interface to remove a registered * callback handler for "event". */ int ddi_remove_event_handler(ddi_callback_id_t id); /* * Invoke bus nexus driver's implementation of the * (*bus_add_eventcall)() interface to register a callback handler * for "event". */ int ddi_add_event_handler(dev_info_t *dip, ddi_eventcookie_t event, void (*handler)(dev_info_t *, ddi_eventcookie_t, void *, void *), void *arg, ddi_callback_id_t *id); /* * Return a handle for event "name" by calling up the device tree * hierarchy via (*bus_get_eventcookie)() interface until claimed * by a bus nexus or top of dev_info tree is reached. */ int ddi_get_eventcookie(dev_info_t *dip, char *name, ddi_eventcookie_t *event_cookiep); /* * log a system event */ int ddi_log_sysevent(dev_info_t *dip, char *vendor, char *class_name, char *subclass_name, nvlist_t *attr_list, sysevent_id_t *eidp, int sleep_flag); /* * ddi_log_sysevent() vendors */ #define DDI_VENDOR_SUNW "SUNW" /* * Opaque task queue handle. */ typedef struct ddi_taskq ddi_taskq_t; /* * Use default system priority. */ #define TASKQ_DEFAULTPRI -1 /* * Create a task queue */ ddi_taskq_t *ddi_taskq_create(dev_info_t *dip, const char *name, int nthreads, pri_t pri, uint_t cflags); /* * destroy a task queue */ void ddi_taskq_destroy(ddi_taskq_t *tq); /* * Dispatch a task to a task queue */ int ddi_taskq_dispatch(ddi_taskq_t *tq, void (* func)(void *), void *arg, uint_t dflags); /* * Wait for all previously scheduled tasks to complete. */ void ddi_taskq_wait(ddi_taskq_t *tq); /* * Suspend all task execution. */ void ddi_taskq_suspend(ddi_taskq_t *tq); /* * Resume task execution. */ void ddi_taskq_resume(ddi_taskq_t *tq); /* * Is task queue suspended? */ boolean_t ddi_taskq_suspended(ddi_taskq_t *tq); /* * Parse an interface name of the form ## where * is maximal. */ int ddi_parse(const char *, char *, uint_t *); #endif /* _KERNEL */ #ifdef __cplusplus } #endif #endif /* _SYS_SUNDDI_H */