/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Zones * * A zone is a named collection of processes, namespace constraints, * and other system resources which comprise a secure and manageable * application containment facility. * * Zones (represented by the reference counted zone_t) are tracked in * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs * (zoneid_t) are used to track zone association. Zone IDs are * dynamically generated when the zone is created; if a persistent * identifier is needed (core files, accounting logs, audit trail, * etc.), the zone name should be used. * * * Global Zone: * * The global zone (zoneid 0) is automatically associated with all * system resources that have not been bound to a user-created zone. * This means that even systems where zones are not in active use * have a global zone, and all processes, mounts, etc. are * associated with that zone. The global zone is generally * unconstrained in terms of privileges and access, though the usual * credential and privilege based restrictions apply. * * * Zone States: * * The states in which a zone may be in and the transitions are as * follows: * * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially * initialized zone is added to the list of active zones on the system but * isn't accessible. * * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is * ready. The zone is made visible after the ZSD constructor callbacks are * executed. A zone remains in this state until it transitions into * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). * * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN * state. * * ZONE_IS_RUNNING: The zone is open for business: zsched has * successfully started init. A zone remains in this state until * zone_shutdown() is called. * * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is * killing all processes running in the zone. The zone remains * in this state until there are no more user processes running in the zone. * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. * Since zone_shutdown() is restartable, it may be called successfully * multiple times for the same zone_t. Setting of the zone's state to * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check * the zone's status without worrying about it being a moving target. * * ZONE_IS_EMPTY: zone_shutdown() has been called, and there * are no more user processes in the zone. The zone remains in this * state until there are no more kernel threads associated with the * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will * fail. * * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone * have exited. zone_shutdown() returns. Henceforth it is not possible to * join the zone or create kernel threads therein. * * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone * remains in this state until zsched exits. Calls to zone_find_by_*() * return NULL from now on. * * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no * processes or threads doing work on behalf of the zone. The zone is * removed from the list of active zones. zone_destroy() returns, and * the zone can be recreated. * * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor * callbacks are executed, and all memory associated with the zone is * freed. * * Threads can wait for the zone to enter a requested state by using * zone_status_wait() or zone_status_timedwait() with the desired * state passed in as an argument. Zone state transitions are * uni-directional; it is not possible to move back to an earlier state. * * * Zone-Specific Data: * * Subsystems needing to maintain zone-specific data can store that * data using the ZSD mechanism. This provides a zone-specific data * store, similar to thread-specific data (see pthread_getspecific(3C) * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used * to register callbacks to be invoked when a zone is created, shut * down, or destroyed. This can be used to initialize zone-specific * data for new zones and to clean up when zones go away. * * * Data Structures: * * The per-zone structure (zone_t) is reference counted, and freed * when all references are released. zone_hold and zone_rele can be * used to adjust the reference count. In addition, reference counts * associated with the cred_t structure are tracked separately using * zone_cred_hold and zone_cred_rele. * * Pointers to active zone_t's are stored in two hash tables; one * for searching by id, the other for searching by name. Lookups * can be performed on either basis, using zone_find_by_id and * zone_find_by_name. Both return zone_t pointers with the zone * held, so zone_rele should be called when the pointer is no longer * needed. Zones can also be searched by path; zone_find_by_path * returns the zone with which a path name is associated (global * zone if the path is not within some other zone's file system * hierarchy). This currently requires iterating through each zone, * so it is slower than an id or name search via a hash table. * * * Locking: * * zonehash_lock: This is a top-level global lock used to protect the * zone hash tables and lists. Zones cannot be created or destroyed * while this lock is held. * zone_status_lock: This is a global lock protecting zone state. * Zones cannot change state while this lock is held. It also * protects the list of kernel threads associated with a zone. * zone_lock: This is a per-zone lock used to protect several fields of * the zone_t (see for details). In addition, holding * this lock means that the zone cannot go away. * zsd_key_lock: This is a global lock protecting the key state for ZSD. * zone_deathrow_lock: This is a global lock protecting the "deathrow" * list (a list of zones in the ZONE_IS_DEAD state). * * Ordering requirements: * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> * zone_lock --> zsd_key_lock --> pidlock --> p_lock * * Blocking memory allocations are permitted while holding any of the * zone locks. * * * System Call Interface: * * The zone subsystem can be managed and queried from user level with * the following system calls (all subcodes of the primary "zone" * system call): * - zone_create: creates a zone with selected attributes (name, * root path, privileges, resource controls) * - zone_enter: allows the current process to enter a zone * - zone_getattr: reports attributes of a zone * - zone_list: lists all zones active in the system * - zone_lookup: looks up zone id based on name * - zone_shutdown: initiates shutdown process (see states above) * - zone_destroy: completes shutdown process (see states above) * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * cv used to signal that all references to the zone have been released. This * needs to be global since there may be multiple waiters, and the first to * wake up will free the zone_t, hence we cannot use zone->zone_cv. */ static kcondvar_t zone_destroy_cv; /* * Lock used to serialize access to zone_cv. This could have been per-zone, * but then we'd need another lock for zone_destroy_cv, and why bother? */ static kmutex_t zone_status_lock; /* * ZSD-related global variables. */ static kmutex_t zsd_key_lock; /* protects the following two */ /* * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. */ static zone_key_t zsd_keyval = 0; /* * Global list of registered keys. We use this when a new zone is created. */ static list_t zsd_registered_keys; int zone_hash_size = 256; static mod_hash_t *zonehashbyname, *zonehashbyid; static kmutex_t zonehash_lock; static uint_t zonecount; static id_space_t *zoneid_space; /* * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the * kernel proper runs, and which manages all other zones. * * Although not declared as static, the variable "zone0" should not be used * except for by code that needs to reference the global zone early on in boot, * before it is fully initialized. All other consumers should use * 'global_zone'. */ zone_t zone0; zone_t *global_zone = NULL; /* Set when the global zone is initialized */ /* * List of active zones, protected by zonehash_lock. */ static list_t zone_active; /* * List of destroyed zones that still have outstanding cred references. * Used for debugging. Uses a separate lock to avoid lock ordering * problems in zone_free. */ static list_t zone_deathrow; static kmutex_t zone_deathrow_lock; /* number of zones is limited by virtual interface limit in IP */ uint_t maxzones = 8192; /* * This isn't static so lint doesn't complain. */ rctl_hndl_t rc_zone_cpu_shares; rctl_hndl_t rc_zone_nlwps; /* * Synchronization primitives used to synchronize between mounts and zone * creation/destruction. */ static int mounts_in_progress; static kcondvar_t mount_cv; static kmutex_t mount_lock; const char * const zone_initname = "/sbin/init"; static int zone_shutdown(zoneid_t zoneid); /* * Certain filesystems (such as NFS and autofs) need to know which zone * the mount is being placed in. Because of this, we need to be able to * ensure that a zone isn't in the process of being created such that * nfs_mount() thinks it is in the global zone, while by the time it * gets added the list of mounted zones, it ends up on zoneA's mount * list. * * The following functions: block_mounts()/resume_mounts() and * mount_in_progress()/mount_completed() are used by zones and the VFS * layer (respectively) to synchronize zone creation and new mounts. * * The semantics are like a reader-reader lock such that there may * either be multiple mounts (or zone creations, if that weren't * serialized by zonehash_lock) in progress at the same time, but not * both. * * We use cv's so the user can ctrl-C out of the operation if it's * taking too long. * * The semantics are such that there is unfair bias towards the * "current" operation. This means that zone creations may starve if * there is a rapid succession of new mounts coming in to the system, or * there is a remote possibility that zones will be created at such a * rate that new mounts will not be able to proceed. */ /* * Prevent new mounts from progressing to the point of calling * VFS_MOUNT(). If there are already mounts in this "region", wait for * them to complete. */ static int block_mounts(void) { int retval = 0; /* * Since it may block for a long time, block_mounts() shouldn't be * called with zonehash_lock held. */ ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); mutex_enter(&mount_lock); while (mounts_in_progress > 0) { if (cv_wait_sig(&mount_cv, &mount_lock) == 0) goto signaled; } /* * A negative value of mounts_in_progress indicates that mounts * have been blocked by (-mounts_in_progress) different callers. */ mounts_in_progress--; retval = 1; signaled: mutex_exit(&mount_lock); return (retval); } /* * The VFS layer may progress with new mounts as far as we're concerned. * Allow them to progress if we were the last obstacle. */ static void resume_mounts(void) { mutex_enter(&mount_lock); if (++mounts_in_progress == 0) cv_broadcast(&mount_cv); mutex_exit(&mount_lock); } /* * The VFS layer is busy with a mount; zones should wait until all * mounts are completed to progress. */ void mount_in_progress(void) { mutex_enter(&mount_lock); while (mounts_in_progress < 0) cv_wait(&mount_cv, &mount_lock); mounts_in_progress++; mutex_exit(&mount_lock); } /* * VFS is done with one mount; wake up any waiting block_mounts() * callers if this is the last mount. */ void mount_completed(void) { mutex_enter(&mount_lock); if (--mounts_in_progress == 0) cv_broadcast(&mount_cv); mutex_exit(&mount_lock); } /* * ZSD routines. * * Zone Specific Data (ZSD) is modeled after Thread Specific Data as * defined by the pthread_key_create() and related interfaces. * * Kernel subsystems may register one or more data items and/or * callbacks to be executed when a zone is created, shutdown, or * destroyed. * * Unlike the thread counterpart, destructor callbacks will be executed * even if the data pointer is NULL and/or there are no constructor * callbacks, so it is the responsibility of such callbacks to check for * NULL data values if necessary. * * The locking strategy and overall picture is as follows: * * When someone calls zone_key_create(), a template ZSD entry is added to the * global list "zsd_registered_keys", protected by zsd_key_lock. The * constructor callback is called immediately on all existing zones, and a * copy of the ZSD entry added to the per-zone zone_zsd list (protected by * zone_lock). As this operation requires the list of zones, the list of * registered keys, and the per-zone list of ZSD entries to remain constant * throughout the entire operation, it must grab zonehash_lock, zone_lock for * all existing zones, and zsd_key_lock, in that order. Similar locking is * needed when zone_key_delete() is called. It is thus sufficient to hold * zsd_key_lock *or* zone_lock to prevent additions to or removals from the * per-zone zone_zsd list. * * Note that this implementation does not make a copy of the ZSD entry if a * constructor callback is not provided. A zone_getspecific() on such an * uninitialized ZSD entry will return NULL. * * When new zones are created constructor callbacks for all registered ZSD * entries will be called. * * The framework does not provide any locking around zone_getspecific() and * zone_setspecific() apart from that needed for internal consistency, so * callers interested in atomic "test-and-set" semantics will need to provide * their own locking. */ void zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) { struct zsd_entry *zsdp; struct zsd_entry *t; struct zone *zone; zsdp = kmem_alloc(sizeof (*zsdp), KM_SLEEP); zsdp->zsd_data = NULL; zsdp->zsd_create = create; zsdp->zsd_shutdown = shutdown; zsdp->zsd_destroy = destroy; mutex_enter(&zonehash_lock); /* stop the world */ for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) mutex_enter(&zone->zone_lock); /* lock all zones */ mutex_enter(&zsd_key_lock); *keyp = zsdp->zsd_key = ++zsd_keyval; ASSERT(zsd_keyval != 0); list_insert_tail(&zsd_registered_keys, zsdp); mutex_exit(&zsd_key_lock); if (create != NULL) { for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { t = kmem_alloc(sizeof (*t), KM_SLEEP); t->zsd_key = *keyp; t->zsd_data = (*create)(zone->zone_id); t->zsd_create = create; t->zsd_shutdown = shutdown; t->zsd_destroy = destroy; list_insert_tail(&zone->zone_zsd, t); } } for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) mutex_exit(&zone->zone_lock); mutex_exit(&zonehash_lock); } /* * Helper function to find the zsd_entry associated with the key in the * given list. */ static struct zsd_entry * zsd_find(list_t *l, zone_key_t key) { struct zsd_entry *zsd; for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { if (zsd->zsd_key == key) { /* * Move to head of list to keep list in MRU order. */ if (zsd != list_head(l)) { list_remove(l, zsd); list_insert_head(l, zsd); } return (zsd); } } return (NULL); } /* * Function called when a module is being unloaded, or otherwise wishes * to unregister its ZSD key and callbacks. */ int zone_key_delete(zone_key_t key) { struct zsd_entry *zsdp = NULL; zone_t *zone; mutex_enter(&zonehash_lock); /* Zone create/delete waits for us */ for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) mutex_enter(&zone->zone_lock); /* lock all zones */ mutex_enter(&zsd_key_lock); zsdp = zsd_find(&zsd_registered_keys, key); if (zsdp == NULL) goto notfound; list_remove(&zsd_registered_keys, zsdp); mutex_exit(&zsd_key_lock); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { struct zsd_entry *del; void *data; if (!(zone->zone_flags & ZF_DESTROYED)) { del = zsd_find(&zone->zone_zsd, key); if (del != NULL) { data = del->zsd_data; ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); ASSERT(del->zsd_destroy == zsdp->zsd_destroy); list_remove(&zone->zone_zsd, del); kmem_free(del, sizeof (*del)); } else { data = NULL; } if (zsdp->zsd_shutdown) zsdp->zsd_shutdown(zone->zone_id, data); if (zsdp->zsd_destroy) zsdp->zsd_destroy(zone->zone_id, data); } mutex_exit(&zone->zone_lock); } mutex_exit(&zonehash_lock); kmem_free(zsdp, sizeof (*zsdp)); return (0); notfound: mutex_exit(&zsd_key_lock); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) mutex_exit(&zone->zone_lock); mutex_exit(&zonehash_lock); return (-1); } /* * ZSD counterpart of pthread_setspecific(). */ int zone_setspecific(zone_key_t key, zone_t *zone, const void *data) { struct zsd_entry *t; struct zsd_entry *zsdp = NULL; mutex_enter(&zone->zone_lock); t = zsd_find(&zone->zone_zsd, key); if (t != NULL) { /* * Replace old value with new */ t->zsd_data = (void *)data; mutex_exit(&zone->zone_lock); return (0); } /* * If there was no previous value, go through the list of registered * keys. * * We avoid grabbing zsd_key_lock until we are sure we need it; this is * necessary for shutdown callbacks to be able to execute without fear * of deadlock. */ mutex_enter(&zsd_key_lock); zsdp = zsd_find(&zsd_registered_keys, key); if (zsdp == NULL) { /* Key was not registered */ mutex_exit(&zsd_key_lock); mutex_exit(&zone->zone_lock); return (-1); } /* * Add a zsd_entry to this zone, using the template we just retrieved * to initialize the constructor and destructor(s). */ t = kmem_alloc(sizeof (*t), KM_SLEEP); t->zsd_key = key; t->zsd_data = (void *)data; t->zsd_create = zsdp->zsd_create; t->zsd_shutdown = zsdp->zsd_shutdown; t->zsd_destroy = zsdp->zsd_destroy; list_insert_tail(&zone->zone_zsd, t); mutex_exit(&zsd_key_lock); mutex_exit(&zone->zone_lock); return (0); } /* * ZSD counterpart of pthread_getspecific(). */ void * zone_getspecific(zone_key_t key, zone_t *zone) { struct zsd_entry *t; void *data; mutex_enter(&zone->zone_lock); t = zsd_find(&zone->zone_zsd, key); data = (t == NULL ? NULL : t->zsd_data); mutex_exit(&zone->zone_lock); return (data); } /* * Function used to initialize a zone's list of ZSD callbacks and data * when the zone is being created. The callbacks are initialized from * the template list (zsd_registered_keys), and the constructor * callback executed (if one exists). * * This is called before the zone is made publicly available, hence no * need to grab zone_lock. * * Although we grab and release zsd_key_lock, new entries cannot be * added to or removed from the zsd_registered_keys list until we * release zonehash_lock, so there isn't a window for a * zone_key_create() to come in after we've dropped zsd_key_lock but * before the zone is added to the zone list, such that the constructor * callbacks aren't executed for the new zone. */ static void zone_zsd_configure(zone_t *zone) { struct zsd_entry *zsdp; struct zsd_entry *t; zoneid_t zoneid = zone->zone_id; ASSERT(MUTEX_HELD(&zonehash_lock)); ASSERT(list_head(&zone->zone_zsd) == NULL); mutex_enter(&zsd_key_lock); for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; zsdp = list_next(&zsd_registered_keys, zsdp)) { if (zsdp->zsd_create != NULL) { t = kmem_alloc(sizeof (*t), KM_SLEEP); t->zsd_key = zsdp->zsd_key; t->zsd_create = zsdp->zsd_create; t->zsd_data = (*t->zsd_create)(zoneid); t->zsd_shutdown = zsdp->zsd_shutdown; t->zsd_destroy = zsdp->zsd_destroy; list_insert_tail(&zone->zone_zsd, t); } } mutex_exit(&zsd_key_lock); } enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; /* * Helper function to execute shutdown or destructor callbacks. */ static void zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) { struct zsd_entry *zsdp; struct zsd_entry *t; zoneid_t zoneid = zone->zone_id; ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); mutex_enter(&zone->zone_lock); if (ct == ZSD_DESTROY) { if (zone->zone_flags & ZF_DESTROYED) { /* * Make sure destructors are only called once. */ mutex_exit(&zone->zone_lock); return; } zone->zone_flags |= ZF_DESTROYED; } mutex_exit(&zone->zone_lock); /* * Both zsd_key_lock and zone_lock need to be held in order to add or * remove a ZSD key, (either globally as part of * zone_key_create()/zone_key_delete(), or on a per-zone basis, as is * possible through zone_setspecific()), so it's sufficient to hold * zsd_key_lock here. * * This is a good thing, since we don't want to recursively try to grab * zone_lock if a callback attempts to do something like a crfree() or * zone_rele(). */ mutex_enter(&zsd_key_lock); for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; zsdp = list_next(&zsd_registered_keys, zsdp)) { zone_key_t key = zsdp->zsd_key; /* Skip if no callbacks registered */ if (ct == ZSD_SHUTDOWN && zsdp->zsd_shutdown == NULL) continue; if (ct == ZSD_DESTROY && zsdp->zsd_destroy == NULL) continue; /* * Call the callback with the zone-specific data if we can find * any, otherwise with NULL. */ t = zsd_find(&zone->zone_zsd, key); if (t != NULL) { if (ct == ZSD_SHUTDOWN) { t->zsd_shutdown(zoneid, t->zsd_data); } else { ASSERT(ct == ZSD_DESTROY); t->zsd_destroy(zoneid, t->zsd_data); } } else { if (ct == ZSD_SHUTDOWN) { zsdp->zsd_shutdown(zoneid, NULL); } else { ASSERT(ct == ZSD_DESTROY); zsdp->zsd_destroy(zoneid, NULL); } } } mutex_exit(&zsd_key_lock); } /* * Called when the zone is going away; free ZSD-related memory, and * destroy the zone_zsd list. */ static void zone_free_zsd(zone_t *zone) { struct zsd_entry *t, *next; /* * Free all the zsd_entry's we had on this zone. */ for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { next = list_next(&zone->zone_zsd, t); list_remove(&zone->zone_zsd, t); kmem_free(t, sizeof (*t)); } list_destroy(&zone->zone_zsd); } /* * zone.cpu-shares resource control support. */ /*ARGSUSED*/ static rctl_qty_t zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) { ASSERT(MUTEX_HELD(&p->p_lock)); return (p->p_zone->zone_shares); } /*ARGSUSED*/ static int zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); if (e->rcep_p.zone == NULL) return (0); e->rcep_p.zone->zone_shares = nv; return (0); } static rctl_ops_t zone_cpu_shares_ops = { rcop_no_action, zone_cpu_shares_usage, zone_cpu_shares_set, rcop_no_test }; /*ARGSUSED*/ static rctl_qty_t zone_lwps_usage(rctl_t *r, proc_t *p) { rctl_qty_t nlwps; zone_t *zone = p->p_zone; ASSERT(MUTEX_HELD(&p->p_lock)); mutex_enter(&zone->zone_nlwps_lock); nlwps = zone->zone_nlwps; mutex_exit(&zone->zone_nlwps_lock); return (nlwps); } /*ARGSUSED*/ static int zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) { rctl_qty_t nlwps; ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); if (e->rcep_p.zone == NULL) return (0); ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); nlwps = e->rcep_p.zone->zone_nlwps; if (nlwps + incr > rcntl->rcv_value) return (1); return (0); } /*ARGSUSED*/ static int zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); if (e->rcep_p.zone == NULL) return (0); e->rcep_p.zone->zone_nlwps_ctl = nv; return (0); } static rctl_ops_t zone_lwps_ops = { rcop_no_action, zone_lwps_usage, zone_lwps_set, zone_lwps_test, }; /* * Helper function to brand the zone with a unique ID. */ static void zone_uniqid(zone_t *zone) { static uint64_t uniqid = 0; ASSERT(MUTEX_HELD(&zonehash_lock)); zone->zone_uniqid = uniqid++; } /* * Returns a held pointer to the "kcred" for the specified zone. */ struct cred * zone_get_kcred(zoneid_t zoneid) { zone_t *zone; cred_t *cr; if ((zone = zone_find_by_id(zoneid)) == NULL) return (NULL); cr = zone->zone_kcred; crhold(cr); zone_rele(zone); return (cr); } /* * Called very early on in boot to initialize the ZSD list so that * zone_key_create() can be called before zone_init(). It also initializes * portions of zone0 which may be used before zone_init() is called. The * variable "global_zone" will be set when zone0 is fully initialized by * zone_init(). */ void zone_zsd_init(void) { mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zsd_registered_keys, sizeof (struct zsd_entry), offsetof(struct zsd_entry, zsd_linkage)); list_create(&zone_active, sizeof (zone_t), offsetof(zone_t, zone_linkage)); list_create(&zone_deathrow, sizeof (zone_t), offsetof(zone_t, zone_linkage)); mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); zone0.zone_shares = 1; zone0.zone_nlwps_ctl = INT_MAX; zone0.zone_name = GLOBAL_ZONENAME; zone0.zone_nodename = utsname.nodename; zone0.zone_domain = srpc_domain; zone0.zone_ref = 1; zone0.zone_id = GLOBAL_ZONEID; zone0.zone_status = ZONE_IS_RUNNING; zone0.zone_rootpath = "/"; zone0.zone_rootpathlen = 2; zone0.zone_psetid = ZONE_PS_INVAL; zone0.zone_ncpus = 0; zone0.zone_ncpus_online = 0; zone0.zone_proc_initpid = 1; list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), offsetof(struct zsd_entry, zsd_linkage)); list_insert_head(&zone_active, &zone0); /* * The root filesystem is not mounted yet, so zone_rootvp cannot be set * to anything meaningful. It is assigned to be 'rootdir' in * vfs_mountroot(). */ zone0.zone_rootvp = NULL; zone0.zone_vfslist = NULL; zone0.zone_bootargs = NULL; zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); /* * The global zone has all privileges */ priv_fillset(zone0.zone_privset); /* * Add p0 to the global zone */ zone0.zone_zsched = &p0; p0.p_zone = &zone0; } /* * Called by main() to initialize the zones framework. */ void zone_init(void) { rctl_dict_entry_t *rde; rctl_val_t *dval; rctl_set_t *set; rctl_alloc_gp_t *gp; rctl_entity_p_t e; ASSERT(curproc == &p0); /* * Create ID space for zone IDs. ID 0 is reserved for the * global zone. */ zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); /* * Initialize generic zone resource controls, if any. */ rc_zone_cpu_shares = rctl_register("zone.cpu-shares", RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX, &zone_lwps_ops); /* * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. */ dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); bzero(dval, sizeof (rctl_val_t)); dval->rcv_value = 1; dval->rcv_privilege = RCPRIV_PRIVILEGED; dval->rcv_flagaction = RCTL_LOCAL_NOACTION; dval->rcv_action_recip_pid = -1; rde = rctl_dict_lookup("zone.cpu-shares"); (void) rctl_val_list_insert(&rde->rcd_default_value, dval); /* * Initialize the ``global zone''. */ set = rctl_set_create(); gp = rctl_set_init_prealloc(RCENTITY_ZONE); mutex_enter(&p0.p_lock); e.rcep_p.zone = &zone0; e.rcep_t = RCENTITY_ZONE; zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, gp); zone0.zone_nlwps = p0.p_lwpcnt; zone0.zone_ntasks = 1; mutex_exit(&p0.p_lock); rctl_prealloc_destroy(gp); /* * pool_default hasn't been initialized yet, so we let pool_init() take * care of making the global zone is in the default pool. */ mutex_enter(&zonehash_lock); zone_uniqid(&zone0); ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); mutex_exit(&zonehash_lock); zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, mod_hash_null_valdtor); zonehashbyname = mod_hash_create_strhash("zone_by_name", zone_hash_size, mod_hash_null_valdtor); zonecount = 1; (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, (mod_hash_val_t)&zone0); (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, (mod_hash_val_t)&zone0); /* * We avoid setting zone_kcred until now, since kcred is initialized * sometime after zone_zsd_init() and before zone_init(). */ zone0.zone_kcred = kcred; /* * The global zone is fully initialized (except for zone_rootvp which * will be set when the root filesystem is mounted). */ global_zone = &zone0; } static void zone_free(zone_t *zone) { ASSERT(zone != global_zone); ASSERT(zone->zone_ntasks == 0); ASSERT(zone->zone_nlwps == 0); ASSERT(zone->zone_cred_ref == 0); ASSERT(zone->zone_kcred == NULL); ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || zone_status_get(zone) == ZONE_IS_UNINITIALIZED); /* remove from deathrow list */ if (zone_status_get(zone) == ZONE_IS_DEAD) { ASSERT(zone->zone_ref == 0); mutex_enter(&zone_deathrow_lock); list_remove(&zone_deathrow, zone); mutex_exit(&zone_deathrow_lock); } zone_free_zsd(zone); if (zone->zone_rootvp != NULL) VN_RELE(zone->zone_rootvp); if (zone->zone_rootpath) kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); if (zone->zone_name != NULL) kmem_free(zone->zone_name, ZONENAME_MAX); if (zone->zone_nodename != NULL) kmem_free(zone->zone_nodename, _SYS_NMLN); if (zone->zone_domain != NULL) kmem_free(zone->zone_domain, _SYS_NMLN); if (zone->zone_privset != NULL) kmem_free(zone->zone_privset, sizeof (priv_set_t)); if (zone->zone_rctls != NULL) rctl_set_free(zone->zone_rctls); if (zone->zone_bootargs != NULL) kmem_free(zone->zone_bootargs, ZONEBOOTARGS_MAX); id_free(zoneid_space, zone->zone_id); mutex_destroy(&zone->zone_lock); cv_destroy(&zone->zone_cv); kmem_free(zone, sizeof (zone_t)); } /* * See block comment at the top of this file for information about zone * status values. */ /* * Convenience function for setting zone status. */ static void zone_status_set(zone_t *zone, zone_status_t status) { ASSERT(MUTEX_HELD(&zone_status_lock)); ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && status >= zone_status_get(zone)); zone->zone_status = status; cv_broadcast(&zone->zone_cv); } /* * Public function to retrieve the zone status. The zone status may * change after it is retrieved. */ zone_status_t zone_status_get(zone_t *zone) { return (zone->zone_status); } static int zone_set_bootargs(zone_t *zone, const char *zone_bootargs) { char *bootargs = kmem_zalloc(ZONEBOOTARGS_MAX, KM_SLEEP); size_t len; int err; err = copyinstr(zone_bootargs, bootargs, ZONEBOOTARGS_MAX - 1, &len); if (err != 0) { kmem_free(bootargs, ZONEBOOTARGS_MAX); return (err); /* EFAULT or ENAMETOOLONG */ } bootargs[len] = '\0'; ASSERT(zone->zone_bootargs == NULL); zone->zone_bootargs = bootargs; return (0); } /* * Block indefinitely waiting for (zone_status >= status) */ void zone_status_wait(zone_t *zone, zone_status_t status) { ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); mutex_enter(&zone_status_lock); while (zone->zone_status < status) { cv_wait(&zone->zone_cv, &zone_status_lock); } mutex_exit(&zone_status_lock); } /* * Private CPR-safe version of zone_status_wait(). */ static void zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) { callb_cpr_t cprinfo; ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, str); mutex_enter(&zone_status_lock); while (zone->zone_status < status) { CALLB_CPR_SAFE_BEGIN(&cprinfo); cv_wait(&zone->zone_cv, &zone_status_lock); CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); } /* * zone_status_lock is implicitly released by the following. */ CALLB_CPR_EXIT(&cprinfo); } /* * Block until zone enters requested state or signal is received. Return (0) * if signaled, non-zero otherwise. */ int zone_status_wait_sig(zone_t *zone, zone_status_t status) { ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); mutex_enter(&zone_status_lock); while (zone->zone_status < status) { if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { mutex_exit(&zone_status_lock); return (0); } } mutex_exit(&zone_status_lock); return (1); } /* * Block until the zone enters the requested state or the timeout expires, * whichever happens first. Return (-1) if operation timed out, time remaining * otherwise. */ clock_t zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) { clock_t timeleft = 0; ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); mutex_enter(&zone_status_lock); while (zone->zone_status < status && timeleft != -1) { timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); } mutex_exit(&zone_status_lock); return (timeleft); } /* * Block until the zone enters the requested state, the current process is * signaled, or the timeout expires, whichever happens first. Return (-1) if * operation timed out, 0 if signaled, time remaining otherwise. */ clock_t zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) { clock_t timeleft = tim - lbolt; ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); mutex_enter(&zone_status_lock); while (zone->zone_status < status) { timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, tim); if (timeleft <= 0) break; } mutex_exit(&zone_status_lock); return (timeleft); } /* * Zones have two reference counts: one for references from credential * structures (zone_cred_ref), and one (zone_ref) for everything else. * This is so we can allow a zone to be rebooted while there are still * outstanding cred references, since certain drivers cache dblks (which * implicitly results in cached creds). We wait for zone_ref to drop to * 0 (actually 1), but not zone_cred_ref. The zone structure itself is * later freed when the zone_cred_ref drops to 0, though nothing other * than the zone id and privilege set should be accessed once the zone * is "dead". * * A debugging flag, zone_wait_for_cred, can be set to a non-zero value * to force halt/reboot to block waiting for the zone_cred_ref to drop * to 0. This can be useful to flush out other sources of cached creds * that may be less innocuous than the driver case. */ int zone_wait_for_cred = 0; static void zone_hold_locked(zone_t *z) { ASSERT(MUTEX_HELD(&z->zone_lock)); z->zone_ref++; ASSERT(z->zone_ref != 0); } void zone_hold(zone_t *z) { mutex_enter(&z->zone_lock); zone_hold_locked(z); mutex_exit(&z->zone_lock); } /* * If the non-cred ref count drops to 1 and either the cred ref count * is 0 or we aren't waiting for cred references, the zone is ready to * be destroyed. */ #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) void zone_rele(zone_t *z) { boolean_t wakeup; mutex_enter(&z->zone_lock); ASSERT(z->zone_ref != 0); z->zone_ref--; if (z->zone_ref == 0 && z->zone_cred_ref == 0) { /* no more refs, free the structure */ mutex_exit(&z->zone_lock); zone_free(z); return; } /* signal zone_destroy so the zone can finish halting */ wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); mutex_exit(&z->zone_lock); if (wakeup) { /* * Grabbing zonehash_lock here effectively synchronizes with * zone_destroy() to avoid missed signals. */ mutex_enter(&zonehash_lock); cv_broadcast(&zone_destroy_cv); mutex_exit(&zonehash_lock); } } void zone_cred_hold(zone_t *z) { mutex_enter(&z->zone_lock); z->zone_cred_ref++; ASSERT(z->zone_cred_ref != 0); mutex_exit(&z->zone_lock); } void zone_cred_rele(zone_t *z) { boolean_t wakeup; mutex_enter(&z->zone_lock); ASSERT(z->zone_cred_ref != 0); z->zone_cred_ref--; if (z->zone_ref == 0 && z->zone_cred_ref == 0) { /* no more refs, free the structure */ mutex_exit(&z->zone_lock); zone_free(z); return; } /* * If zone_destroy is waiting for the cred references to drain * out, and they have, signal it. */ wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); mutex_exit(&z->zone_lock); if (wakeup) { /* * Grabbing zonehash_lock here effectively synchronizes with * zone_destroy() to avoid missed signals. */ mutex_enter(&zonehash_lock); cv_broadcast(&zone_destroy_cv); mutex_exit(&zonehash_lock); } } void zone_task_hold(zone_t *z) { mutex_enter(&z->zone_lock); z->zone_ntasks++; ASSERT(z->zone_ntasks != 0); mutex_exit(&z->zone_lock); } void zone_task_rele(zone_t *zone) { uint_t refcnt; mutex_enter(&zone->zone_lock); ASSERT(zone->zone_ntasks != 0); refcnt = --zone->zone_ntasks; if (refcnt > 1) { /* Common case */ mutex_exit(&zone->zone_lock); return; } zone_hold_locked(zone); /* so we can use the zone_t later */ mutex_exit(&zone->zone_lock); if (refcnt == 1) { /* * See if the zone is shutting down. */ mutex_enter(&zone_status_lock); if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { goto out; } /* * Make sure the ntasks didn't change since we * dropped zone_lock. */ mutex_enter(&zone->zone_lock); if (refcnt != zone->zone_ntasks) { mutex_exit(&zone->zone_lock); goto out; } mutex_exit(&zone->zone_lock); /* * No more user processes in the zone. The zone is empty. */ zone_status_set(zone, ZONE_IS_EMPTY); goto out; } ASSERT(refcnt == 0); /* * zsched has exited; the zone is dead. */ zone->zone_zsched = NULL; /* paranoia */ mutex_enter(&zone_status_lock); zone_status_set(zone, ZONE_IS_DEAD); out: mutex_exit(&zone_status_lock); zone_rele(zone); } zoneid_t getzoneid(void) { return (curproc->p_zone->zone_id); } /* * Internal versions of zone_find_by_*(). These don't zone_hold() or * check the validity of a zone's state. */ static zone_t * zone_find_all_by_id(zoneid_t zoneid) { mod_hash_val_t hv; zone_t *zone = NULL; ASSERT(MUTEX_HELD(&zonehash_lock)); if (mod_hash_find(zonehashbyid, (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) zone = (zone_t *)hv; return (zone); } static zone_t * zone_find_all_by_name(char *name) { mod_hash_val_t hv; zone_t *zone = NULL; ASSERT(MUTEX_HELD(&zonehash_lock)); if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) zone = (zone_t *)hv; return (zone); } /* * Public interface for looking up a zone by zoneid. Only returns the zone if * it is fully initialized, and has not yet begun the zone_destroy() sequence. * Caller must call zone_rele() once it is done with the zone. * * The zone may begin the zone_destroy() sequence immediately after this * function returns, but may be safely used until zone_rele() is called. */ zone_t * zone_find_by_id(zoneid_t zoneid) { zone_t *zone; zone_status_t status; mutex_enter(&zonehash_lock); if ((zone = zone_find_all_by_id(zoneid)) == NULL) { mutex_exit(&zonehash_lock); return (NULL); } status = zone_status_get(zone); if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { /* * For all practical purposes the zone doesn't exist. */ mutex_exit(&zonehash_lock); return (NULL); } zone_hold(zone); mutex_exit(&zonehash_lock); return (zone); } /* * Similar to zone_find_by_id, but using zone name as the key. */ zone_t * zone_find_by_name(char *name) { zone_t *zone; zone_status_t status; mutex_enter(&zonehash_lock); if ((zone = zone_find_all_by_name(name)) == NULL) { mutex_exit(&zonehash_lock); return (NULL); } status = zone_status_get(zone); if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { /* * For all practical purposes the zone doesn't exist. */ mutex_exit(&zonehash_lock); return (NULL); } zone_hold(zone); mutex_exit(&zonehash_lock); return (zone); } /* * Similar to zone_find_by_id(), using the path as a key. For instance, * if there is a zone "foo" rooted at /foo/root, and the path argument * is "/foo/root/proc", it will return the held zone_t corresponding to * zone "foo". * * zone_find_by_path() always returns a non-NULL value, since at the * very least every path will be contained in the global zone. * * As with the other zone_find_by_*() functions, the caller is * responsible for zone_rele()ing the return value of this function. */ zone_t * zone_find_by_path(const char *path) { zone_t *zone; zone_t *zret = NULL; zone_status_t status; if (path == NULL) { /* * Call from rootconf(). */ zone_hold(global_zone); return (global_zone); } ASSERT(*path == '/'); mutex_enter(&zonehash_lock); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { if (ZONE_PATH_VISIBLE(path, zone)) zret = zone; } ASSERT(zret != NULL); status = zone_status_get(zret); if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { /* * Zone practically doesn't exist. */ zret = global_zone; } zone_hold(zret); mutex_exit(&zonehash_lock); return (zret); } /* * Get the number of cpus visible to this zone. The system-wide global * 'ncpus' is returned if pools are disabled, the caller is in the * global zone, or a NULL zone argument is passed in. */ int zone_ncpus_get(zone_t *zone) { int myncpus = zone == NULL ? 0 : zone->zone_ncpus; return (myncpus != 0 ? myncpus : ncpus); } /* * Get the number of online cpus visible to this zone. The system-wide * global 'ncpus_online' is returned if pools are disabled, the caller * is in the global zone, or a NULL zone argument is passed in. */ int zone_ncpus_online_get(zone_t *zone) { int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; return (myncpus_online != 0 ? myncpus_online : ncpus_online); } /* * Return the pool to which the zone is currently bound. */ pool_t * zone_pool_get(zone_t *zone) { ASSERT(pool_lock_held()); return (zone->zone_pool); } /* * Set the zone's pool pointer and update the zone's visibility to match * the resources in the new pool. */ void zone_pool_set(zone_t *zone, pool_t *pool) { ASSERT(pool_lock_held()); ASSERT(MUTEX_HELD(&cpu_lock)); zone->zone_pool = pool; zone_pset_set(zone, pool->pool_pset->pset_id); } /* * Return the cached value of the id of the processor set to which the * zone is currently bound. The value will be ZONE_PS_INVAL if the pools * facility is disabled. */ psetid_t zone_pset_get(zone_t *zone) { ASSERT(MUTEX_HELD(&cpu_lock)); return (zone->zone_psetid); } /* * Set the cached value of the id of the processor set to which the zone * is currently bound. Also update the zone's visibility to match the * resources in the new processor set. */ void zone_pset_set(zone_t *zone, psetid_t newpsetid) { psetid_t oldpsetid; ASSERT(MUTEX_HELD(&cpu_lock)); oldpsetid = zone_pset_get(zone); if (oldpsetid == newpsetid) return; /* * Global zone sees all. */ if (zone != global_zone) { zone->zone_psetid = newpsetid; if (newpsetid != ZONE_PS_INVAL) pool_pset_visibility_add(newpsetid, zone); if (oldpsetid != ZONE_PS_INVAL) pool_pset_visibility_remove(oldpsetid, zone); } /* * Disabling pools, so we should start using the global values * for ncpus and ncpus_online. */ if (newpsetid == ZONE_PS_INVAL) { zone->zone_ncpus = 0; zone->zone_ncpus_online = 0; } } /* * Walk the list of active zones and issue the provided callback for * each of them. * * Caller must not be holding any locks that may be acquired under * zonehash_lock. See comment at the beginning of the file for a list of * common locks and their interactions with zones. */ int zone_walk(int (*cb)(zone_t *, void *), void *data) { zone_t *zone; int ret = 0; zone_status_t status; mutex_enter(&zonehash_lock); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { /* * Skip zones that shouldn't be externally visible. */ status = zone_status_get(zone); if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) continue; /* * Bail immediately if any callback invocation returns a * non-zero value. */ ret = (*cb)(zone, data); if (ret != 0) break; } mutex_exit(&zonehash_lock); return (ret); } static int zone_set_root(zone_t *zone, const char *upath) { vnode_t *vp; int trycount; int error = 0; char *path; struct pathname upn, pn; size_t pathlen; if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) return (error); pn_alloc(&pn); /* prevent infinite loop */ trycount = 10; for (;;) { if (--trycount <= 0) { error = ESTALE; goto out; } if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { /* * VOP_ACCESS() may cover 'vp' with a new * filesystem, if 'vp' is an autoFS vnode. * Get the new 'vp' if so. */ if ((error = VOP_ACCESS(vp, VEXEC, 0, CRED())) == 0 && (vp->v_vfsmountedhere == NULL || (error = traverse(&vp)) == 0)) { pathlen = pn.pn_pathlen + 2; path = kmem_alloc(pathlen, KM_SLEEP); (void) strncpy(path, pn.pn_path, pn.pn_pathlen + 1); path[pathlen - 2] = '/'; path[pathlen - 1] = '\0'; pn_free(&pn); pn_free(&upn); /* Success! */ break; } VN_RELE(vp); } if (error != ESTALE) goto out; } ASSERT(error == 0); zone->zone_rootvp = vp; /* we hold a reference to vp */ zone->zone_rootpath = path; zone->zone_rootpathlen = pathlen; return (0); out: pn_free(&pn); pn_free(&upn); return (error); } #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ ((c) >= 'a' && (c) <= 'z') || \ ((c) >= 'A' && (c) <= 'Z')) static int zone_set_name(zone_t *zone, const char *uname) { char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); size_t len; int i, err; if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { kmem_free(kname, ZONENAME_MAX); return (err); /* EFAULT or ENAMETOOLONG */ } /* must be less than ZONENAME_MAX */ if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { kmem_free(kname, ZONENAME_MAX); return (EINVAL); } /* * Name must start with an alphanumeric and must contain only * alphanumerics, '-', '_' and '.'. */ if (!isalnum(kname[0])) { kmem_free(kname, ZONENAME_MAX); return (EINVAL); } for (i = 1; i < len - 1; i++) { if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && kname[i] != '.') { kmem_free(kname, ZONENAME_MAX); return (EINVAL); } } zone->zone_name = kname; return (0); } /* * Similar to thread_create(), but makes sure the thread is in the appropriate * zone's zsched process (curproc->p_zone->zone_zsched) before returning. */ /*ARGSUSED*/ kthread_t * zthread_create( caddr_t stk, size_t stksize, void (*proc)(), void *arg, size_t len, pri_t pri) { kthread_t *t; zone_t *zone = curproc->p_zone; proc_t *pp = zone->zone_zsched; zone_hold(zone); /* Reference to be dropped when thread exits */ /* * No-one should be trying to create threads if the zone is shutting * down and there aren't any kernel threads around. See comment * in zthread_exit(). */ ASSERT(!(zone->zone_kthreads == NULL && zone_status_get(zone) >= ZONE_IS_EMPTY)); /* * Create a thread, but don't let it run until we've finished setting * things up. */ t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); ASSERT(t->t_forw == NULL); mutex_enter(&zone_status_lock); if (zone->zone_kthreads == NULL) { t->t_forw = t->t_back = t; } else { kthread_t *tx = zone->zone_kthreads; t->t_forw = tx; t->t_back = tx->t_back; tx->t_back->t_forw = t; tx->t_back = t; } zone->zone_kthreads = t; mutex_exit(&zone_status_lock); mutex_enter(&pp->p_lock); t->t_proc_flag |= TP_ZTHREAD; project_rele(t->t_proj); t->t_proj = project_hold(pp->p_task->tk_proj); /* * Setup complete, let it run. */ thread_lock(t); t->t_schedflag |= TS_ALLSTART; setrun_locked(t); thread_unlock(t); mutex_exit(&pp->p_lock); return (t); } /* * Similar to thread_exit(). Must be called by threads created via * zthread_exit(). */ void zthread_exit(void) { kthread_t *t = curthread; proc_t *pp = curproc; zone_t *zone = pp->p_zone; mutex_enter(&zone_status_lock); /* * Reparent to p0 */ mutex_enter(&pp->p_lock); t->t_proc_flag &= ~TP_ZTHREAD; t->t_procp = &p0; hat_thread_exit(t); mutex_exit(&pp->p_lock); if (t->t_back == t) { ASSERT(t->t_forw == t); /* * If the zone is empty, once the thread count * goes to zero no further kernel threads can be * created. This is because if the creator is a process * in the zone, then it must have exited before the zone * state could be set to ZONE_IS_EMPTY. * Otherwise, if the creator is a kernel thread in the * zone, the thread count is non-zero. * * This really means that non-zone kernel threads should * not create zone kernel threads. */ zone->zone_kthreads = NULL; if (zone_status_get(zone) == ZONE_IS_EMPTY) { zone_status_set(zone, ZONE_IS_DOWN); } } else { t->t_forw->t_back = t->t_back; t->t_back->t_forw = t->t_forw; if (zone->zone_kthreads == t) zone->zone_kthreads = t->t_forw; } mutex_exit(&zone_status_lock); zone_rele(zone); thread_exit(); /* NOTREACHED */ } static void zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) { vnode_t *oldvp; /* we're going to hold a reference here to the directory */ VN_HOLD(vp); #ifdef C2_AUDIT if (audit_active) /* update abs cwd/root path see c2audit.c */ audit_chdirec(vp, vpp); #endif mutex_enter(&pp->p_lock); oldvp = *vpp; *vpp = vp; mutex_exit(&pp->p_lock); if (oldvp != NULL) VN_RELE(oldvp); } /* * Convert an rctl value represented by an nvlist_t into an rctl_val_t. */ static int nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) { nvpair_t *nvp = NULL; boolean_t priv_set = B_FALSE; boolean_t limit_set = B_FALSE; boolean_t action_set = B_FALSE; while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { const char *name; uint64_t ui64; name = nvpair_name(nvp); if (nvpair_type(nvp) != DATA_TYPE_UINT64) return (EINVAL); (void) nvpair_value_uint64(nvp, &ui64); if (strcmp(name, "privilege") == 0) { /* * Currently only privileged values are allowed, but * this may change in the future. */ if (ui64 != RCPRIV_PRIVILEGED) return (EINVAL); rv->rcv_privilege = ui64; priv_set = B_TRUE; } else if (strcmp(name, "limit") == 0) { rv->rcv_value = ui64; limit_set = B_TRUE; } else if (strcmp(name, "action") == 0) { if (ui64 != RCTL_LOCAL_NOACTION && ui64 != RCTL_LOCAL_DENY) return (EINVAL); rv->rcv_flagaction = ui64; action_set = B_TRUE; } else { return (EINVAL); } } if (!(priv_set && limit_set && action_set)) return (EINVAL); rv->rcv_action_signal = 0; rv->rcv_action_recipient = NULL; rv->rcv_action_recip_pid = -1; rv->rcv_firing_time = 0; return (0); } void zone_icode(void) { proc_t *p = ttoproc(curthread); struct core_globals *cg; /* * For all purposes (ZONE_ATTR_INITPID and restart_init), * storing just the pid of init is sufficient. */ p->p_zone->zone_proc_initpid = p->p_pid; /* * Allocate user address space and stack segment */ p->p_cstime = p->p_stime = p->p_cutime = p->p_utime = 0; p->p_usrstack = (caddr_t)USRSTACK32; p->p_model = DATAMODEL_ILP32; p->p_stkprot = PROT_ZFOD & ~PROT_EXEC; p->p_datprot = PROT_ZFOD & ~PROT_EXEC; p->p_stk_ctl = INT32_MAX; p->p_as = as_alloc(); p->p_as->a_userlimit = (caddr_t)USERLIMIT32; (void) hat_setup(p->p_as->a_hat, HAT_INIT); cg = zone_getspecific(core_zone_key, p->p_zone); ASSERT(cg != NULL); corectl_path_hold(cg->core_default_path); corectl_content_hold(cg->core_default_content); p->p_corefile = cg->core_default_path; p->p_content = cg->core_default_content; init_mstate(curthread, LMS_SYSTEM); p->p_zone->zone_boot_err = exec_init(zone_initname, 0, p->p_zone->zone_bootargs); mutex_enter(&zone_status_lock); if (p->p_zone->zone_boot_err != 0) { /* * Make sure we are still in the booting state-- we could have * raced and already be shutting down, or even further along. */ if (zone_status_get(p->p_zone) == ZONE_IS_BOOTING) zone_status_set(p->p_zone, ZONE_IS_SHUTTING_DOWN); mutex_exit(&zone_status_lock); /* It's gone bad, dispose of the process */ if (proc_exit(CLD_EXITED, p->p_zone->zone_boot_err) != 0) { mutex_enter(&curproc->p_lock); ASSERT(curproc->p_flag & SEXITLWPS); lwp_exit(); } } else { if (zone_status_get(p->p_zone) == ZONE_IS_BOOTING) zone_status_set(p->p_zone, ZONE_IS_RUNNING); mutex_exit(&zone_status_lock); /* cause the process to return to userland. */ lwp_rtt(); } } struct zsched_arg { zone_t *zone; nvlist_t *nvlist; }; /* * Per-zone "sched" workalike. The similarity to "sched" doesn't have * anything to do with scheduling, but rather with the fact that * per-zone kernel threads are parented to zsched, just like regular * kernel threads are parented to sched (p0). * * zsched is also responsible for launching init for the zone. */ static void zsched(void *arg) { struct zsched_arg *za = arg; proc_t *pp = curproc; proc_t *initp = proc_init; zone_t *zone = za->zone; cred_t *cr, *oldcred; rctl_set_t *set; rctl_alloc_gp_t *gp; contract_t *ct = NULL; task_t *tk, *oldtk; rctl_entity_p_t e; kproject_t *pj; nvlist_t *nvl = za->nvlist; nvpair_t *nvp = NULL; bcopy("zsched", u.u_psargs, sizeof ("zsched")); bcopy("zsched", u.u_comm, sizeof ("zsched")); u.u_argc = 0; u.u_argv = NULL; u.u_envp = NULL; closeall(P_FINFO(pp)); /* * We are this zone's "zsched" process. As the zone isn't generally * visible yet we don't need to grab any locks before initializing its * zone_proc pointer. */ zone_hold(zone); /* this hold is released by zone_destroy() */ zone->zone_zsched = pp; mutex_enter(&pp->p_lock); pp->p_zone = zone; mutex_exit(&pp->p_lock); /* * Disassociate process from its 'parent'; parent ourselves to init * (pid 1) and change other values as needed. */ sess_create(); mutex_enter(&pidlock); proc_detach(pp); pp->p_ppid = 1; pp->p_flag |= SZONETOP; pp->p_ancpid = 1; pp->p_parent = initp; pp->p_psibling = NULL; if (initp->p_child) initp->p_child->p_psibling = pp; pp->p_sibling = initp->p_child; initp->p_child = pp; /* Decrement what newproc() incremented. */ upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); /* * Our credentials are about to become kcred-like, so we don't care * about the caller's ruid. */ upcount_inc(crgetruid(kcred), zone->zone_id); mutex_exit(&pidlock); /* * getting out of global zone, so decrement lwp counts */ pj = pp->p_task->tk_proj; mutex_enter(&global_zone->zone_nlwps_lock); pj->kpj_nlwps -= pp->p_lwpcnt; global_zone->zone_nlwps -= pp->p_lwpcnt; mutex_exit(&global_zone->zone_nlwps_lock); /* * Create and join a new task in project '0' of this zone. * * We don't need to call holdlwps() since we know we're the only lwp in * this process. * * task_join() returns with p_lock held. */ tk = task_create(0, zone); mutex_enter(&cpu_lock); oldtk = task_join(tk, 0); mutex_exit(&curproc->p_lock); mutex_exit(&cpu_lock); task_rele(oldtk); /* * add lwp counts to zsched's zone, and increment project's task count * due to the task created in the above tasksys_settaskid */ pj = pp->p_task->tk_proj; mutex_enter(&zone->zone_nlwps_lock); pj->kpj_nlwps += pp->p_lwpcnt; pj->kpj_ntasks += 1; zone->zone_nlwps += pp->p_lwpcnt; mutex_exit(&zone->zone_nlwps_lock); /* * The process was created by a process in the global zone, hence the * credentials are wrong. We might as well have kcred-ish credentials. */ cr = zone->zone_kcred; crhold(cr); mutex_enter(&pp->p_crlock); oldcred = pp->p_cred; pp->p_cred = cr; mutex_exit(&pp->p_crlock); crfree(oldcred); /* * Hold credentials again (for thread) */ crhold(cr); /* * p_lwpcnt can't change since this is a kernel process. */ crset(pp, cr); /* * Chroot */ zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); /* * Initialize zone's rctl set. */ set = rctl_set_create(); gp = rctl_set_init_prealloc(RCENTITY_ZONE); mutex_enter(&pp->p_lock); e.rcep_p.zone = zone; e.rcep_t = RCENTITY_ZONE; zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); mutex_exit(&pp->p_lock); rctl_prealloc_destroy(gp); /* * Apply the rctls passed in to zone_create(). This is basically a list * assignment: all of the old values are removed and the new ones * inserted. That is, if an empty list is passed in, all values are * removed. */ while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { rctl_dict_entry_t *rde; rctl_hndl_t hndl; char *name; nvlist_t **nvlarray; uint_t i, nelem; int error; /* For ASSERT()s */ name = nvpair_name(nvp); hndl = rctl_hndl_lookup(name); ASSERT(hndl != -1); rde = rctl_dict_lookup_hndl(hndl); ASSERT(rde != NULL); for (; /* ever */; ) { rctl_val_t oval; mutex_enter(&pp->p_lock); error = rctl_local_get(hndl, NULL, &oval, pp); mutex_exit(&pp->p_lock); ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ ASSERT(oval.rcv_privilege != RCPRIV_BASIC); if (oval.rcv_privilege == RCPRIV_SYSTEM) break; mutex_enter(&pp->p_lock); error = rctl_local_delete(hndl, &oval, pp); mutex_exit(&pp->p_lock); ASSERT(error == 0); } error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); ASSERT(error == 0); for (i = 0; i < nelem; i++) { rctl_val_t *nvalp; nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); error = nvlist2rctlval(nvlarray[i], nvalp); ASSERT(error == 0); /* * rctl_local_insert can fail if the value being * inserted is a duplicate; this is OK. */ mutex_enter(&pp->p_lock); if (rctl_local_insert(hndl, nvalp, pp) != 0) kmem_cache_free(rctl_val_cache, nvalp); mutex_exit(&pp->p_lock); } } /* * Tell the world that we're done setting up. * * At this point we want to set the zone status to ZONE_IS_READY * and atomically set the zone's processor set visibility. Once * we drop pool_lock() this zone will automatically get updated * to reflect any future changes to the pools configuration. */ pool_lock(); mutex_enter(&cpu_lock); mutex_enter(&zonehash_lock); zone_uniqid(zone); zone_zsd_configure(zone); if (pool_state == POOL_ENABLED) zone_pset_set(zone, pool_default->pool_pset->pset_id); mutex_enter(&zone_status_lock); ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); zone_status_set(zone, ZONE_IS_READY); mutex_exit(&zone_status_lock); mutex_exit(&zonehash_lock); mutex_exit(&cpu_lock); pool_unlock(); /* * Once we see the zone transition to the ZONE_IS_BOOTING state, * we launch init, and set the state to running. */ zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); if (zone_status_get(zone) == ZONE_IS_BOOTING) { id_t cid; /* * Ok, this is a little complicated. We need to grab the * zone's pool's scheduling class ID; note that by now, we * are already bound to a pool if we need to be (zoneadmd * will have done that to us while we're in the READY * state). *But* the scheduling class for the zone's 'init' * must be explicitly passed to newproc, which doesn't * respect pool bindings. * * We hold the pool_lock across the call to newproc() to * close the obvious race: the pool's scheduling class * could change before we manage to create the LWP with * classid 'cid'. */ pool_lock(); cid = pool_get_class(zone->zone_pool); if (cid == -1) cid = defaultcid; /* * If this fails, zone_boot will ultimately fail. The * state of the zone will be set to SHUTTING_DOWN-- userland * will have to tear down the zone, and fail, or try again. */ if ((zone->zone_boot_err = newproc(zone_icode, NULL, cid, minclsyspri - 1, &ct)) != 0) { mutex_enter(&zone_status_lock); zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); mutex_exit(&zone_status_lock); } pool_unlock(); } /* * Wait for zone_destroy() to be called. This is what we spend * most of our life doing. */ zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); if (ct) /* * At this point the process contract should be empty. * (Though if it isn't, it's not the end of the world.) */ VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); /* * Allow kcred to be freed when all referring processes * (including this one) go away. We can't just do this in * zone_free because we need to wait for the zone_cred_ref to * drop to 0 before calling zone_free, and the existence of * zone_kcred will prevent that. Thus, we call crfree here to * balance the crdup in zone_create. The crhold calls earlier * in zsched will be dropped when the thread and process exit. */ crfree(zone->zone_kcred); zone->zone_kcred = NULL; exit(CLD_EXITED, 0); } /* * Helper function to determine if there are any submounts of the * provided path. Used to make sure the zone doesn't "inherit" any * mounts from before it is created. */ static uint_t zone_mount_count(const char *rootpath) { vfs_t *vfsp; uint_t count = 0; size_t rootpathlen = strlen(rootpath); /* * Holding zonehash_lock prevents race conditions with * vfs_list_add()/vfs_list_remove() since we serialize with * zone_find_by_path(). */ ASSERT(MUTEX_HELD(&zonehash_lock)); /* * The rootpath must end with a '/' */ ASSERT(rootpath[rootpathlen - 1] == '/'); /* * This intentionally does not count the rootpath itself if that * happens to be a mount point. */ vfs_list_read_lock(); vfsp = rootvfs; do { if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), rootpathlen) == 0) count++; vfsp = vfsp->vfs_next; } while (vfsp != rootvfs); vfs_list_unlock(); return (count); } /* * Helper function to make sure that a zone created on 'rootpath' * wouldn't end up containing other zones' rootpaths. */ static boolean_t zone_is_nested(const char *rootpath) { zone_t *zone; size_t rootpathlen = strlen(rootpath); size_t len; ASSERT(MUTEX_HELD(&zonehash_lock)); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { if (zone == global_zone) continue; len = strlen(zone->zone_rootpath); if (strncmp(rootpath, zone->zone_rootpath, MIN(rootpathlen, len)) == 0) return (B_TRUE); } return (B_FALSE); } static int zone_set_privset(zone_t *zone, const priv_set_t *zone_privs) { priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); if (copyin(zone_privs, privs, sizeof (priv_set_t))) { kmem_free(privs, sizeof (priv_set_t)); return (EFAULT); } zone->zone_privset = privs; return (0); } /* * We make creative use of nvlists to pass in rctls from userland. The list is * a list of the following structures: * * (name = rctl_name, value = nvpair_list_array) * * Where each element of the nvpair_list_array is of the form: * * [(name = "privilege", value = RCPRIV_PRIVILEGED), * (name = "limit", value = uint64_t), * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] */ static int parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) { nvpair_t *nvp = NULL; nvlist_t *nvl = NULL; char *kbuf; int error; rctl_val_t rv; *nvlp = NULL; if (buflen == 0) return (0); if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) return (ENOMEM); if (copyin(ubuf, kbuf, buflen)) { error = EFAULT; goto out; } if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { /* * nvl may have been allocated/free'd, but the value set to * non-NULL, so we reset it here. */ nvl = NULL; error = EINVAL; goto out; } while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { rctl_dict_entry_t *rde; rctl_hndl_t hndl; nvlist_t **nvlarray; uint_t i, nelem; char *name; error = EINVAL; name = nvpair_name(nvp); if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { goto out; } if ((hndl = rctl_hndl_lookup(name)) == -1) { goto out; } rde = rctl_dict_lookup_hndl(hndl); error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); ASSERT(error == 0); for (i = 0; i < nelem; i++) { if (error = nvlist2rctlval(nvlarray[i], &rv)) goto out; } if (rctl_invalid_value(rde, &rv)) { error = EINVAL; goto out; } } error = 0; *nvlp = nvl; out: kmem_free(kbuf, buflen); if (error && nvl != NULL) nvlist_free(nvl); return (error); } int zone_create_error(int er_error, int er_ext, int *er_out) { if (er_out != NULL) { if (copyout(&er_ext, er_out, sizeof (int))) { return (set_errno(EFAULT)); } } return (set_errno(er_error)); } /* * System call to create/initialize a new zone named 'zone_name', rooted * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', * and initialized with the zone-wide rctls described in 'rctlbuf'. * * If extended error is non-null, we may use it to return more detailed * error information. */ static zoneid_t zone_create(const char *zone_name, const char *zone_root, const priv_set_t *zone_privs, caddr_t rctlbuf, size_t rctlbufsz, int *extended_error) { struct zsched_arg zarg; nvlist_t *rctls = NULL; proc_t *pp = curproc; zone_t *zone, *ztmp; zoneid_t zoneid; int error; int error2 = 0; char *str; cred_t *zkcr; if (secpolicy_zone_config(CRED()) != 0) return (set_errno(EPERM)); /* can't boot zone from within chroot environment */ if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) return (zone_create_error(ENOTSUP, ZE_CHROOTED, extended_error)); zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); zoneid = zone->zone_id = id_alloc(zoneid_space); zone->zone_status = ZONE_IS_UNINITIALIZED; zone->zone_pool = pool_default; zone->zone_pool_mod = gethrtime(); zone->zone_psetid = ZONE_PS_INVAL; zone->zone_ncpus = 0; zone->zone_ncpus_online = 0; mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); list_create(&zone->zone_zsd, sizeof (struct zsd_entry), offsetof(struct zsd_entry, zsd_linkage)); if ((error = zone_set_name(zone, zone_name)) != 0) { zone_free(zone); return (zone_create_error(error, 0, extended_error)); } if ((error = zone_set_root(zone, zone_root)) != 0) { zone_free(zone); return (zone_create_error(error, 0, extended_error)); } if ((error = zone_set_privset(zone, zone_privs)) != 0) { zone_free(zone); return (zone_create_error(error, 0, extended_error)); } /* initialize node name to be the same as zone name */ zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); zone->zone_nodename[_SYS_NMLN - 1] = '\0'; zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); zone->zone_domain[0] = '\0'; zone->zone_shares = 1; zone->zone_bootargs = NULL; /* * Zsched initializes the rctls. */ zone->zone_rctls = NULL; if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { zone_free(zone); return (zone_create_error(error, 0, extended_error)); } /* * Stop all lwps since that's what normally happens as part of fork(). * This needs to happen before we grab any locks to avoid deadlock * (another lwp in the process could be waiting for the held lock). */ if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { zone_free(zone); if (rctls) nvlist_free(rctls); return (zone_create_error(error, 0, extended_error)); } if (block_mounts() == 0) { mutex_enter(&pp->p_lock); if (curthread != pp->p_agenttp) continuelwps(pp); mutex_exit(&pp->p_lock); zone_free(zone); if (rctls) nvlist_free(rctls); return (zone_create_error(error, 0, extended_error)); } /* * Set up credential for kernel access. After this, any errors * should go through the dance in errout rather than calling * zone_free directly. */ zone->zone_kcred = crdup(kcred); crsetzone(zone->zone_kcred, zone); priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); mutex_enter(&zonehash_lock); /* * Make sure zone doesn't already exist. */ if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL) { zone_status_t status; status = zone_status_get(ztmp); if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) error = EEXIST; else error = EBUSY; goto errout; } /* * Don't allow zone creations which would cause one zone's rootpath to * be accessible from that of another (non-global) zone. */ if (zone_is_nested(zone->zone_rootpath)) { error = EBUSY; goto errout; } ASSERT(zonecount != 0); /* check for leaks */ if (zonecount + 1 > maxzones) { error = ENOMEM; goto errout; } if (zone_mount_count(zone->zone_rootpath) != 0) { error = EBUSY; error2 = ZE_AREMOUNTS; goto errout; } /* * Zone is still incomplete, but we need to drop all locks while * zsched() initializes this zone's kernel process. We * optimistically add the zone to the hashtable and associated * lists so a parallel zone_create() doesn't try to create the * same zone. */ zonecount++; (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)(uintptr_t)zone->zone_id, (mod_hash_val_t)(uintptr_t)zone); str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); (void) strcpy(str, zone->zone_name); (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, (mod_hash_val_t)(uintptr_t)zone); /* * Insert into active list. At this point there are no 'hold's * on the zone, but everyone else knows not to use it, so we can * continue to use it. zsched() will do a zone_hold() if the * newproc() is successful. */ list_insert_tail(&zone_active, zone); mutex_exit(&zonehash_lock); zarg.zone = zone; zarg.nvlist = rctls; /* * The process, task, and project rctls are probably wrong; * we need an interface to get the default values of all rctls, * and initialize zsched appropriately. I'm not sure that that * makes much of a difference, though. */ if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) { /* * We need to undo all globally visible state. */ mutex_enter(&zonehash_lock); list_remove(&zone_active, zone); (void) mod_hash_destroy(zonehashbyname, (mod_hash_key_t)(uintptr_t)zone->zone_name); (void) mod_hash_destroy(zonehashbyid, (mod_hash_key_t)(uintptr_t)zone->zone_id); ASSERT(zonecount > 1); zonecount--; goto errout; } /* * Zone creation can't fail from now on. */ /* * Let the other lwps continue. */ mutex_enter(&pp->p_lock); if (curthread != pp->p_agenttp) continuelwps(pp); mutex_exit(&pp->p_lock); /* * Wait for zsched to finish initializing the zone. */ zone_status_wait(zone, ZONE_IS_READY); /* * The zone is fully visible, so we can let mounts progress. */ resume_mounts(); if (rctls) nvlist_free(rctls); return (zoneid); errout: mutex_exit(&zonehash_lock); /* * Let the other lwps continue. */ mutex_enter(&pp->p_lock); if (curthread != pp->p_agenttp) continuelwps(pp); mutex_exit(&pp->p_lock); resume_mounts(); if (rctls) nvlist_free(rctls); /* * There is currently one reference to the zone, a cred_ref from * zone_kcred. To free the zone, we call crfree, which will call * zone_cred_rele, which will call zone_free. */ ASSERT(zone->zone_cred_ref == 1); /* for zone_kcred */ ASSERT(zone->zone_kcred->cr_ref == 1); ASSERT(zone->zone_ref == 0); zkcr = zone->zone_kcred; zone->zone_kcred = NULL; crfree(zkcr); /* triggers call to zone_free */ return (zone_create_error(error, error2, extended_error)); } /* * Cause the zone to boot. This is pretty simple, since we let zoneadmd do * the heavy lifting. */ static int zone_boot(zoneid_t zoneid, const char *bootargs) { int err; zone_t *zone; if (secpolicy_zone_config(CRED()) != 0) return (set_errno(EPERM)); if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) return (set_errno(EINVAL)); mutex_enter(&zonehash_lock); /* * Look for zone under hash lock to prevent races with calls to * zone_shutdown, zone_destroy, etc. */ if ((zone = zone_find_all_by_id(zoneid)) == NULL) { mutex_exit(&zonehash_lock); return (set_errno(EINVAL)); } if ((err = zone_set_bootargs(zone, bootargs)) != 0) { mutex_exit(&zonehash_lock); return (set_errno(err)); } mutex_enter(&zone_status_lock); if (zone_status_get(zone) != ZONE_IS_READY) { mutex_exit(&zone_status_lock); mutex_exit(&zonehash_lock); return (set_errno(EINVAL)); } zone_status_set(zone, ZONE_IS_BOOTING); mutex_exit(&zone_status_lock); zone_hold(zone); /* so we can use the zone_t later */ mutex_exit(&zonehash_lock); if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { zone_rele(zone); return (set_errno(EINTR)); } /* * Boot (starting init) might have failed, in which case the zone * will go to the SHUTTING_DOWN state; an appropriate errno will * be placed in zone->zone_boot_err, and so we return that. */ err = zone->zone_boot_err; zone_rele(zone); return (err ? set_errno(err) : 0); } /* * Kills all user processes in the zone, waiting for them all to exit * before returning. */ static int zone_empty(zone_t *zone) { int waitstatus; /* * We need to drop zonehash_lock before killing all * processes, otherwise we'll deadlock with zone_find_* * which can be called from the exit path. */ ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz, ZONE_IS_EMPTY)) == -1) { killall(zone->zone_id); } /* * return EINTR if we were signaled */ if (waitstatus == 0) return (EINTR); return (0); } /* * Systemcall to start the zone's halt sequence. By the time this * function successfully returns, all user processes and kernel threads * executing in it will have exited, ZSD shutdown callbacks executed, * and the zone status set to ZONE_IS_DOWN. * * It is possible that the call will interrupt itself if the caller is the * parent of any process running in the zone, and doesn't have SIGCHLD blocked. */ static int zone_shutdown(zoneid_t zoneid) { int error; zone_t *zone; zone_status_t status; if (secpolicy_zone_config(CRED()) != 0) return (set_errno(EPERM)); if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) return (set_errno(EINVAL)); /* * Block mounts so that VFS_MOUNT() can get an accurate view of * the zone's status with regards to ZONE_IS_SHUTTING down. * * e.g. NFS can fail the mount if it determines that the zone * has already begun the shutdown sequence. */ if (block_mounts() == 0) return (set_errno(EINTR)); mutex_enter(&zonehash_lock); /* * Look for zone under hash lock to prevent races with other * calls to zone_shutdown and zone_destroy. */ if ((zone = zone_find_all_by_id(zoneid)) == NULL) { mutex_exit(&zonehash_lock); resume_mounts(); return (set_errno(EINVAL)); } mutex_enter(&zone_status_lock); status = zone_status_get(zone); /* * Fail if the zone isn't fully initialized yet. */ if (status < ZONE_IS_READY) { mutex_exit(&zone_status_lock); mutex_exit(&zonehash_lock); resume_mounts(); return (set_errno(EINVAL)); } /* * If conditions required for zone_shutdown() to return have been met, * return success. */ if (status >= ZONE_IS_DOWN) { mutex_exit(&zone_status_lock); mutex_exit(&zonehash_lock); resume_mounts(); return (0); } /* * If zone_shutdown() hasn't been called before, go through the motions. * If it has, there's nothing to do but wait for the kernel threads to * drain. */ if (status < ZONE_IS_EMPTY) { uint_t ntasks; mutex_enter(&zone->zone_lock); if ((ntasks = zone->zone_ntasks) != 1) { /* * There's still stuff running. */ zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); } mutex_exit(&zone->zone_lock); if (ntasks == 1) { /* * The only way to create another task is through * zone_enter(), which will block until we drop * zonehash_lock. The zone is empty. */ if (zone->zone_kthreads == NULL) { /* * Skip ahead to ZONE_IS_DOWN */ zone_status_set(zone, ZONE_IS_DOWN); } else { zone_status_set(zone, ZONE_IS_EMPTY); } } } zone_hold(zone); /* so we can use the zone_t later */ mutex_exit(&zone_status_lock); mutex_exit(&zonehash_lock); resume_mounts(); if (error = zone_empty(zone)) { zone_rele(zone); return (set_errno(error)); } /* * After the zone status goes to ZONE_IS_DOWN this zone will no * longer be notified of changes to the pools configuration, so * in order to not end up with a stale pool pointer, we point * ourselves at the default pool and remove all resource * visibility. This is especially important as the zone_t may * languish on the deathrow for a very long time waiting for * cred's to drain out. * * This rebinding of the zone can happen multiple times * (presumably due to interrupted or parallel systemcalls) * without any adverse effects. */ if (pool_lock_intr() != 0) { zone_rele(zone); return (set_errno(EINTR)); } if (pool_state == POOL_ENABLED) { mutex_enter(&cpu_lock); zone_pool_set(zone, pool_default); /* * The zone no longer needs to be able to see any cpus. */ zone_pset_set(zone, ZONE_PS_INVAL); mutex_exit(&cpu_lock); } pool_unlock(); /* * ZSD shutdown callbacks can be executed multiple times, hence * it is safe to not be holding any locks across this call. */ zone_zsd_callbacks(zone, ZSD_SHUTDOWN); mutex_enter(&zone_status_lock); if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) zone_status_set(zone, ZONE_IS_DOWN); mutex_exit(&zone_status_lock); /* * Wait for kernel threads to drain. */ if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { zone_rele(zone); return (set_errno(EINTR)); } zone_rele(zone); return (0); } /* * Systemcall entry point to finalize the zone halt process. The caller * must have already successfully callefd zone_shutdown(). * * Upon successful completion, the zone will have been fully destroyed: * zsched will have exited, destructor callbacks executed, and the zone * removed from the list of active zones. */ static int zone_destroy(zoneid_t zoneid) { uint64_t uniqid; zone_t *zone; zone_status_t status; if (secpolicy_zone_config(CRED()) != 0) return (set_errno(EPERM)); if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) return (set_errno(EINVAL)); mutex_enter(&zonehash_lock); /* * Look for zone under hash lock to prevent races with other * calls to zone_destroy. */ if ((zone = zone_find_all_by_id(zoneid)) == NULL) { mutex_exit(&zonehash_lock); return (set_errno(EINVAL)); } if (zone_mount_count(zone->zone_rootpath) != 0) { mutex_exit(&zonehash_lock); return (set_errno(EBUSY)); } mutex_enter(&zone_status_lock); status = zone_status_get(zone); if (status < ZONE_IS_DOWN) { mutex_exit(&zone_status_lock); mutex_exit(&zonehash_lock); return (set_errno(EBUSY)); } else if (status == ZONE_IS_DOWN) { zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ } mutex_exit(&zone_status_lock); zone_hold(zone); mutex_exit(&zonehash_lock); /* * wait for zsched to exit */ zone_status_wait(zone, ZONE_IS_DEAD); zone_zsd_callbacks(zone, ZSD_DESTROY); uniqid = zone->zone_uniqid; zone_rele(zone); zone = NULL; /* potentially free'd */ mutex_enter(&zonehash_lock); for (; /* ever */; ) { boolean_t unref; if ((zone = zone_find_all_by_id(zoneid)) == NULL || zone->zone_uniqid != uniqid) { /* * The zone has gone away. Necessary conditions * are met, so we return success. */ mutex_exit(&zonehash_lock); return (0); } mutex_enter(&zone->zone_lock); unref = ZONE_IS_UNREF(zone); mutex_exit(&zone->zone_lock); if (unref) { /* * There is only one reference to the zone -- that * added when the zone was added to the hashtables -- * and things will remain this way until we drop * zonehash_lock... we can go ahead and cleanup the * zone. */ break; } if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { /* Signaled */ mutex_exit(&zonehash_lock); return (set_errno(EINTR)); } } /* * It is now safe to let the zone be recreated; remove it from the * lists. The memory will not be freed until the last cred * reference goes away. */ ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ zonecount--; /* remove from active list and hash tables */ list_remove(&zone_active, zone); (void) mod_hash_destroy(zonehashbyname, (mod_hash_key_t)zone->zone_name); (void) mod_hash_destroy(zonehashbyid, (mod_hash_key_t)(uintptr_t)zone->zone_id); mutex_exit(&zonehash_lock); /* add to deathrow list */ mutex_enter(&zone_deathrow_lock); list_insert_tail(&zone_deathrow, zone); mutex_exit(&zone_deathrow_lock); /* * Drop last reference (which was added by zsched()), this will * free the zone unless there are outstanding cred references. */ zone_rele(zone); return (0); } /* * Systemcall entry point for zone_getattr(2). */ static ssize_t zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) { size_t size; int error = 0, err; zone_t *zone; char *zonepath; zone_status_t zone_status; pid_t initpid; boolean_t global = (curproc->p_zone == global_zone); mutex_enter(&zonehash_lock); if ((zone = zone_find_all_by_id(zoneid)) == NULL) { mutex_exit(&zonehash_lock); return (set_errno(EINVAL)); } zone_status = zone_status_get(zone); if (zone_status < ZONE_IS_READY) { mutex_exit(&zonehash_lock); return (set_errno(EINVAL)); } zone_hold(zone); mutex_exit(&zonehash_lock); /* * If not in the global zone, don't show information about other zones. */ if (!global && curproc->p_zone != zone) { zone_rele(zone); return (set_errno(EINVAL)); } switch (attr) { case ZONE_ATTR_ROOT: if (global) { /* * Copy the path to trim the trailing "/" (except for * the global zone). */ if (zone != global_zone) size = zone->zone_rootpathlen - 1; else size = zone->zone_rootpathlen; zonepath = kmem_alloc(size, KM_SLEEP); bcopy(zone->zone_rootpath, zonepath, size); zonepath[size - 1] = '\0'; } else { /* * Caller is not in the global zone, just return * faked-up path for current zone. */ zonepath = "/"; size = 2; } if (bufsize > size) bufsize = size; if (buf != NULL) { err = copyoutstr(zonepath, buf, bufsize, NULL); if (err != 0 && err != ENAMETOOLONG) error = EFAULT; } if (global) kmem_free(zonepath, size); break; case ZONE_ATTR_NAME: size = strlen(zone->zone_name) + 1; if (bufsize > size) bufsize = size; if (buf != NULL) { err = copyoutstr(zone->zone_name, buf, bufsize, NULL); if (err != 0 && err != ENAMETOOLONG) error = EFAULT; } break; case ZONE_ATTR_STATUS: /* * Since we're not holding zonehash_lock, the zone status * may be anything; leave it up to userland to sort it out. */ size = sizeof (zone_status); if (bufsize > size) bufsize = size; zone_status = zone_status_get(zone); if (buf != NULL && copyout(&zone_status, buf, bufsize) != 0) error = EFAULT; break; case ZONE_ATTR_PRIVSET: size = sizeof (priv_set_t); if (bufsize > size) bufsize = size; if (buf != NULL && copyout(zone->zone_privset, buf, bufsize) != 0) error = EFAULT; break; case ZONE_ATTR_UNIQID: size = sizeof (zone->zone_uniqid); if (bufsize > size) bufsize = size; if (buf != NULL && copyout(&zone->zone_uniqid, buf, bufsize) != 0) error = EFAULT; break; case ZONE_ATTR_POOLID: { pool_t *pool; poolid_t poolid; if (pool_lock_intr() != 0) { error = EINTR; break; } pool = zone_pool_get(zone); poolid = pool->pool_id; pool_unlock(); size = sizeof (poolid); if (bufsize > size) bufsize = size; if (buf != NULL && copyout(&poolid, buf, size) != 0) error = EFAULT; } break; case ZONE_ATTR_INITPID: size = sizeof (initpid); if (bufsize > size) bufsize = size; initpid = zone->zone_proc_initpid; if (initpid == -1) { error = ESRCH; break; } if (buf != NULL && copyout(&initpid, buf, bufsize) != 0) error = EFAULT; break; default: error = EINVAL; } zone_rele(zone); if (error) return (set_errno(error)); return ((ssize_t)size); } /* * Return zero if the process has at least one vnode mapped in to its * address space which shouldn't be allowed to change zones. */ static int as_can_change_zones(void) { proc_t *pp = curproc; struct seg *seg; struct as *as = pp->p_as; vnode_t *vp; int allow = 1; ASSERT(pp->p_as != &kas); AS_LOCK_ENTER(&as, &as->a_lock, RW_READER); for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { /* * if we can't get a backing vnode for this segment then skip * it. */ vp = NULL; if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) continue; if (!vn_can_change_zones(vp)) { /* bail on first match */ allow = 0; break; } } AS_LOCK_EXIT(&as, &as->a_lock); return (allow); } /* * Systemcall entry point for zone_enter(). * * The current process is injected into said zone. In the process * it will change its project membership, privileges, rootdir/cwd, * zone-wide rctls, and pool association to match those of the zone. * * The first zone_enter() called while the zone is in the ZONE_IS_READY * state will transition it to ZONE_IS_RUNNING. Processes may only * enter a zone that is "ready" or "running". */ static int zone_enter(zoneid_t zoneid) { zone_t *zone; vnode_t *vp; proc_t *pp = curproc; contract_t *ct; cont_process_t *ctp; task_t *tk, *oldtk; kproject_t *zone_proj0; cred_t *cr, *newcr; pool_t *oldpool, *newpool; sess_t *sp; uid_t uid; zone_status_t status; int err = 0; rctl_entity_p_t e; if (secpolicy_zone_config(CRED()) != 0) return (set_errno(EPERM)); if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) return (set_errno(EINVAL)); /* * Stop all lwps so we don't need to hold a lock to look at * curproc->p_zone. This needs to happen before we grab any * locks to avoid deadlock (another lwp in the process could * be waiting for the held lock). */ if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) return (set_errno(EINTR)); /* * Make sure we're not changing zones with files open or mapped in * to our address space which shouldn't be changing zones. */ if (!files_can_change_zones()) { err = EBADF; goto out; } if (!as_can_change_zones()) { err = EFAULT; goto out; } mutex_enter(&zonehash_lock); if (pp->p_zone != global_zone) { mutex_exit(&zonehash_lock); err = EINVAL; goto out; } zone = zone_find_all_by_id(zoneid); if (zone == NULL) { mutex_exit(&zonehash_lock); err = EINVAL; goto out; } /* * To prevent processes in a zone from holding contracts on * extrazonal resources, and to avoid process contract * memberships which span zones, contract holders and processes * which aren't the sole members of their encapsulating process * contracts are not allowed to zone_enter. */ ctp = pp->p_ct_process; ct = &ctp->conp_contract; mutex_enter(&ct->ct_lock); mutex_enter(&pp->p_lock); if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { mutex_exit(&pp->p_lock); mutex_exit(&ct->ct_lock); mutex_exit(&zonehash_lock); pool_unlock(); err = EINVAL; goto out; } /* * Moreover, we don't allow processes whose encapsulating * process contracts have inherited extrazonal contracts. * While it would be easier to eliminate all process contracts * with inherited contracts, we need to be able to give a * restarted init (or other zone-penetrating process) its * predecessor's contracts. */ if (ctp->conp_ninherited != 0) { contract_t *next; for (next = list_head(&ctp->conp_inherited); next; next = list_next(&ctp->conp_inherited, next)) { if (contract_getzuniqid(next) != zone->zone_uniqid) { mutex_exit(&pp->p_lock); mutex_exit(&ct->ct_lock); mutex_exit(&zonehash_lock); pool_unlock(); err = EINVAL; goto out; } } } mutex_exit(&pp->p_lock); mutex_exit(&ct->ct_lock); status = zone_status_get(zone); if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { /* * Can't join */ mutex_exit(&zonehash_lock); err = EINVAL; goto out; } /* * Make sure new priv set is within the permitted set for caller */ if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { mutex_exit(&zonehash_lock); err = EPERM; goto out; } /* * We want to momentarily drop zonehash_lock while we optimistically * bind curproc to the pool it should be running in. This is safe * since the zone can't disappear (we have a hold on it). */ zone_hold(zone); mutex_exit(&zonehash_lock); /* * Grab pool_lock to keep the pools configuration from changing * and to stop ourselves from getting rebound to another pool * until we join the zone. */ if (pool_lock_intr() != 0) { zone_rele(zone); err = EINTR; goto out; } ASSERT(secpolicy_pool(CRED()) == 0); /* * Bind ourselves to the pool currently associated with the zone. */ oldpool = curproc->p_pool; newpool = zone_pool_get(zone); if (pool_state == POOL_ENABLED && newpool != oldpool && (err = pool_do_bind(newpool, P_PID, P_MYID, POOL_BIND_ALL)) != 0) { pool_unlock(); zone_rele(zone); goto out; } /* * Grab cpu_lock now; we'll need it later when we call * task_join(). */ mutex_enter(&cpu_lock); mutex_enter(&zonehash_lock); /* * Make sure the zone hasn't moved on since we dropped zonehash_lock. */ if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { /* * Can't join anymore. */ mutex_exit(&zonehash_lock); mutex_exit(&cpu_lock); if (pool_state == POOL_ENABLED && newpool != oldpool) (void) pool_do_bind(oldpool, P_PID, P_MYID, POOL_BIND_ALL); pool_unlock(); zone_rele(zone); err = EINVAL; goto out; } mutex_enter(&pp->p_lock); zone_proj0 = zone->zone_zsched->p_task->tk_proj; /* verify that we do not exceed and task or lwp limits */ mutex_enter(&zone->zone_nlwps_lock); /* add new lwps to zone and zone's proj0 */ zone_proj0->kpj_nlwps += pp->p_lwpcnt; zone->zone_nlwps += pp->p_lwpcnt; /* add 1 task to zone's proj0 */ zone_proj0->kpj_ntasks += 1; mutex_exit(&pp->p_lock); mutex_exit(&zone->zone_nlwps_lock); /* remove lwps from proc's old zone and old project */ mutex_enter(&pp->p_zone->zone_nlwps_lock); pp->p_zone->zone_nlwps -= pp->p_lwpcnt; pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; mutex_exit(&pp->p_zone->zone_nlwps_lock); /* * Joining the zone cannot fail from now on. * * This means that a lot of the following code can be commonized and * shared with zsched(). */ /* * Reset the encapsulating process contract's zone. */ ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); contract_setzuniqid(ct, zone->zone_uniqid); /* * Create a new task and associate the process with the project keyed * by (projid,zoneid). * * We might as well be in project 0; the global zone's projid doesn't * make much sense in a zone anyhow. * * This also increments zone_ntasks, and returns with p_lock held. */ tk = task_create(0, zone); oldtk = task_join(tk, 0); mutex_exit(&cpu_lock); pp->p_flag |= SZONETOP; pp->p_zone = zone; /* * call RCTLOP_SET functions on this proc */ e.rcep_p.zone = zone; e.rcep_t = RCENTITY_ZONE; (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, RCD_CALLBACK); mutex_exit(&pp->p_lock); /* * We don't need to hold any of zsched's locks here; not only do we know * the process and zone aren't going away, we know its session isn't * changing either. * * By joining zsched's session here, we mimic the behavior in the * global zone of init's sid being the pid of sched. We extend this * to all zlogin-like zone_enter()'ing processes as well. */ mutex_enter(&pidlock); sp = zone->zone_zsched->p_sessp; SESS_HOLD(sp); mutex_enter(&pp->p_lock); pgexit(pp); SESS_RELE(pp->p_sessp); pp->p_sessp = sp; pgjoin(pp, zone->zone_zsched->p_pidp); mutex_exit(&pp->p_lock); mutex_exit(&pidlock); mutex_exit(&zonehash_lock); /* * We're firmly in the zone; let pools progress. */ pool_unlock(); task_rele(oldtk); /* * We don't need to retain a hold on the zone since we already * incremented zone_ntasks, so the zone isn't going anywhere. */ zone_rele(zone); /* * Chroot */ vp = zone->zone_rootvp; zone_chdir(vp, &PTOU(pp)->u_cdir, pp); zone_chdir(vp, &PTOU(pp)->u_rdir, pp); /* * Change process credentials */ newcr = cralloc(); mutex_enter(&pp->p_crlock); cr = pp->p_cred; crcopy_to(cr, newcr); crsetzone(newcr, zone); pp->p_cred = newcr; /* * Restrict all process privilege sets to zone limit */ priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); mutex_exit(&pp->p_crlock); crset(pp, newcr); /* * Adjust upcount to reflect zone entry. */ uid = crgetruid(newcr); mutex_enter(&pidlock); upcount_dec(uid, GLOBAL_ZONEID); upcount_inc(uid, zoneid); mutex_exit(&pidlock); /* * Set up core file path and content. */ set_core_defaults(); out: /* * Let the other lwps continue. */ mutex_enter(&pp->p_lock); if (curthread != pp->p_agenttp) continuelwps(pp); mutex_exit(&pp->p_lock); return (err != 0 ? set_errno(err) : 0); } /* * Systemcall entry point for zone_list(2). * * Processes running in a (non-global) zone only see themselves. */ static int zone_list(zoneid_t *zoneidlist, uint_t *numzones) { zoneid_t *zoneids; zone_t *zone; uint_t user_nzones, real_nzones; int error = 0; uint_t i; if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) return (set_errno(EFAULT)); if (curproc->p_zone != global_zone) { /* just return current zone */ real_nzones = 1; zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); zoneids[0] = curproc->p_zone->zone_id; } else { mutex_enter(&zonehash_lock); real_nzones = zonecount; if (real_nzones) { zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), KM_SLEEP); i = 0; for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) zoneids[i++] = zone->zone_id; ASSERT(i == real_nzones); } mutex_exit(&zonehash_lock); } if (user_nzones > real_nzones) user_nzones = real_nzones; if (copyout(&real_nzones, numzones, sizeof (uint_t)) != 0) error = EFAULT; else if (zoneidlist != NULL && user_nzones != 0) { if (copyout(zoneids, zoneidlist, user_nzones * sizeof (zoneid_t)) != 0) error = EFAULT; } if (real_nzones) kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); if (error) return (set_errno(error)); else return (0); } /* * Systemcall entry point for zone_lookup(2). * * Non-global zones are only able to see themselves. */ static zoneid_t zone_lookup(const char *zone_name) { char *kname; zone_t *zone; zoneid_t zoneid; int err; if (zone_name == NULL) { /* return caller's zone id */ return (getzoneid()); } kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { kmem_free(kname, ZONENAME_MAX); return (set_errno(err)); } mutex_enter(&zonehash_lock); zone = zone_find_all_by_name(kname); kmem_free(kname, ZONENAME_MAX); if (zone == NULL || zone_status_get(zone) < ZONE_IS_READY || (curproc->p_zone != global_zone && curproc->p_zone != zone)) { /* in non-global zone, can only lookup own name */ mutex_exit(&zonehash_lock); return (set_errno(EINVAL)); } zoneid = zone->zone_id; mutex_exit(&zonehash_lock); return (zoneid); } /* ARGSUSED */ long zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4, void *arg5) { zone_def zs; switch (cmd) { case ZONE_CREATE: if (get_udatamodel() == DATAMODEL_NATIVE) { if (copyin(arg1, &zs, sizeof (zone_def))) { return (set_errno(EFAULT)); } } else { #ifdef _SYSCALL32_IMPL zone_def32 zs32; if (copyin(arg1, &zs32, sizeof (zone_def32))) { return (set_errno(EFAULT)); } zs.zone_name = (const char *)(unsigned long)zs32.zone_name; zs.zone_root = (const char *)(unsigned long)zs32.zone_root; zs.zone_privs = (const struct priv_set *) (unsigned long)zs32.zone_privs; zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; zs.rctlbufsz = zs32.rctlbufsz; zs.extended_error = (int *)(unsigned long)zs32.extended_error; #else panic("get_udatamodel() returned bogus result\n"); #endif } return (zone_create(zs.zone_name, zs.zone_root, zs.zone_privs, (caddr_t)zs.rctlbuf, zs.rctlbufsz, zs.extended_error)); case ZONE_BOOT: return (zone_boot((zoneid_t)(uintptr_t)arg1, (const char *)arg2)); case ZONE_DESTROY: return (zone_destroy((zoneid_t)(uintptr_t)arg1)); case ZONE_GETATTR: return (zone_getattr((zoneid_t)(uintptr_t)arg1, (int)(uintptr_t)arg2, arg3, (size_t)arg4)); case ZONE_ENTER: return (zone_enter((zoneid_t)(uintptr_t)arg1)); case ZONE_LIST: return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); case ZONE_SHUTDOWN: return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); case ZONE_LOOKUP: return (zone_lookup((const char *)arg1)); default: return (set_errno(EINVAL)); } } struct zarg { zone_t *zone; zone_cmd_arg_t arg; }; static int zone_lookup_door(const char *zone_name, door_handle_t *doorp) { char *buf; size_t buflen; int error; buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); buf = kmem_alloc(buflen, KM_SLEEP); (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); error = door_ki_open(buf, doorp); kmem_free(buf, buflen); return (error); } static void zone_release_door(door_handle_t *doorp) { door_ki_rele(*doorp); *doorp = NULL; } static void zone_ki_call_zoneadmd(struct zarg *zargp) { door_handle_t door = NULL; door_arg_t darg, save_arg; char *zone_name; size_t zone_namelen; zoneid_t zoneid; zone_t *zone; zone_cmd_arg_t arg; uint64_t uniqid; size_t size; int error; int retry; zone = zargp->zone; arg = zargp->arg; kmem_free(zargp, sizeof (*zargp)); zone_namelen = strlen(zone->zone_name) + 1; zone_name = kmem_alloc(zone_namelen, KM_SLEEP); bcopy(zone->zone_name, zone_name, zone_namelen); zoneid = zone->zone_id; uniqid = zone->zone_uniqid; /* * zoneadmd may be down, but at least we can empty out the zone. * We can ignore the return value of zone_empty() since we're called * from a kernel thread and know we won't be delivered any signals. */ ASSERT(curproc == &p0); (void) zone_empty(zone); ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); zone_rele(zone); size = sizeof (arg); darg.rbuf = (char *)&arg; darg.data_ptr = (char *)&arg; darg.rsize = size; darg.data_size = size; darg.desc_ptr = NULL; darg.desc_num = 0; save_arg = darg; /* * Since we're not holding a reference to the zone, any number of * things can go wrong, including the zone disappearing before we get a * chance to talk to zoneadmd. */ for (retry = 0; /* forever */; retry++) { if (door == NULL && (error = zone_lookup_door(zone_name, &door)) != 0) { goto next; } ASSERT(door != NULL); if ((error = door_ki_upcall(door, &darg)) == 0) { break; } switch (error) { case EINTR: /* FALLTHROUGH */ case EAGAIN: /* process may be forking */ /* * Back off for a bit */ break; case EBADF: zone_release_door(&door); if (zone_lookup_door(zone_name, &door) != 0) { /* * zoneadmd may be dead, but it may come back to * life later. */ break; } break; default: cmn_err(CE_WARN, "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", error); goto out; } next: /* * If this isn't the same zone_t that we originally had in mind, * then this is the same as if two kadmin requests come in at * the same time: the first one wins. This means we lose, so we * bail. */ if ((zone = zone_find_by_id(zoneid)) == NULL) { /* * Problem is solved. */ break; } if (zone->zone_uniqid != uniqid) { /* * zoneid recycled */ zone_rele(zone); break; } /* * We could zone_status_timedwait(), but there doesn't seem to * be much point in doing that (plus, it would mean that * zone_free() isn't called until this thread exits). */ zone_rele(zone); delay(hz); darg = save_arg; } out: if (door != NULL) { zone_release_door(&door); } kmem_free(zone_name, zone_namelen); thread_exit(); } /* * Entry point for uadmin() to tell the zone to go away or reboot. The caller * is a process in the zone to be modified. * * In order to shutdown the zone, we will hand off control to zoneadmd * (running in the global zone) via a door. We do a half-hearted job at * killing all processes in the zone, create a kernel thread to contact * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is * a form of generation number used to let zoneadmd (as well as * zone_destroy()) know exactly which zone they're re talking about. */ int zone_uadmin(int cmd, int fcn, cred_t *credp) { struct zarg *zargp; zone_cmd_t zcmd; zone_t *zone; zone = curproc->p_zone; ASSERT(getzoneid() != GLOBAL_ZONEID); switch (cmd) { case A_SHUTDOWN: switch (fcn) { case AD_HALT: case AD_POWEROFF: zcmd = Z_HALT; break; case AD_BOOT: zcmd = Z_REBOOT; break; case AD_IBOOT: case AD_SBOOT: case AD_SIBOOT: case AD_NOSYNC: return (ENOTSUP); default: return (EINVAL); } break; case A_REBOOT: zcmd = Z_REBOOT; break; case A_FTRACE: case A_REMOUNT: case A_FREEZE: case A_DUMP: return (ENOTSUP); default: ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ return (EINVAL); } if (secpolicy_zone_admin(credp, B_FALSE)) return (EPERM); mutex_enter(&zone_status_lock); /* * zone_status can't be ZONE_IS_EMPTY or higher since curproc * is in the zone. */ ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); if (zone_status_get(zone) > ZONE_IS_RUNNING) { /* * This zone is already on its way down. */ mutex_exit(&zone_status_lock); return (0); } /* * Prevent future zone_enter()s */ zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); mutex_exit(&zone_status_lock); /* * Kill everyone now and call zoneadmd later. * zone_ki_call_zoneadmd() will do a more thorough job of this * later. */ killall(zone->zone_id); /* * Now, create the thread to contact zoneadmd and do the rest of the * work. This thread can't be created in our zone otherwise * zone_destroy() would deadlock. */ zargp = kmem_alloc(sizeof (*zargp), KM_SLEEP); zargp->arg.cmd = zcmd; zargp->arg.uniqid = zone->zone_uniqid; (void) strcpy(zargp->arg.locale, "C"); zone_hold(zargp->zone = zone); (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, TS_RUN, minclsyspri); exit(CLD_EXITED, 0); return (EINVAL); } /* * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's * status to ZONE_IS_SHUTTING_DOWN. */ void zone_shutdown_global(void) { ASSERT(curproc->p_zone == global_zone); mutex_enter(&zone_status_lock); ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); mutex_exit(&zone_status_lock); }