/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Instance number assignment code */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void in_preassign_instance(void); static void i_log_devfs_instance_mod(void); static int in_get_infile(char *); static void in_removenode(struct devnames *dnp, in_node_t *mp, in_node_t *ap); static in_node_t *in_alloc_node(char *name, char *addr); static int in_eqstr(char *a, char *b); static char *in_name_addr(char **cpp, char **addrp); static in_node_t *in_devwalk(dev_info_t *dip, in_node_t **ap, char *addr); static void in_dealloc_node(in_node_t *np); static in_node_t *in_make_path(char *path); static void in_enlist(in_node_t *ap, in_node_t *np); static int in_inuse(int instance, char *name); static void in_hashdrv(in_drv_t *dp); static in_drv_t *in_drvwalk(in_node_t *np, char *binding_name); static in_drv_t *in_alloc_drv(char *bindingname); static void in_endrv(in_node_t *np, in_drv_t *dp); static void in_dq_drv(in_drv_t *np); static void in_removedrv(struct devnames *dnp, in_drv_t *mp); static int in_pathin(char *cp, int instance, char *bname, struct bind **args); static int in_next_instance_block(major_t, int); static int in_next_instance(major_t); /* external functions */ extern char *i_binding_to_drv_name(char *bname); /* * This plus devnames defines the entire software state of the instance world. */ typedef struct in_softstate { in_node_t *ins_root; /* the root of our instance tree */ in_drv_t *ins_no_major; /* majorless drv entries */ /* * Used to serialize access to data structures */ void *ins_thread; kmutex_t ins_serial; kcondvar_t ins_serial_cv; int ins_busy; char ins_dirty; /* need flush */ } in_softstate_t; static in_softstate_t e_ddi_inst_state; /* * State transition information: * e_ddi_inst_state contains, among other things, the root of a tree of * device nodes used to track instance number assignments. * Each device node may contain multiple driver bindings, represented * by a linked list of in_drv_t nodes, each with an instance assignment * (except for root node). Each in_drv node can be in one of 3 states, * indicated by ind_state: * * IN_UNKNOWN: Each node created in this state. The instance number of * this node is not known. ind_instance is set to -1. * IN_PROVISIONAL: When a node is assigned an instance number in * e_ddi_assign_instance(), its state is set to IN_PROVISIONAL. * Subsequently, the framework will always call either * e_ddi_keep_instance() which makes the node IN_PERMANENT, * or e_ddi_free_instance(), which deletes the node. * IN_PERMANENT: * If e_ddi_keep_instance() is called on an IN_PROVISIONAL node, * its state is set to IN_PERMANENT. */ static char *instance_file = INSTANCE_FILE; static char *instance_file_backup = INSTANCE_FILE INSTANCE_FILE_SUFFIX; /* * Return values for in_get_infile(). */ #define PTI_FOUND 0 #define PTI_NOT_FOUND 1 #define PTI_REBUILD 2 /* * Path to instance file magic string used for first time boot after * an install. If this is the first string in the file we will * automatically rebuild the file. */ #define PTI_MAGIC_STR "#path_to_inst_bootstrap_1" #define PTI_MAGIC_STR_LEN (sizeof (PTI_MAGIC_STR) - 1) void e_ddi_instance_init(void) { char *file; int rebuild = 1; struct in_drv *dp; mutex_init(&e_ddi_inst_state.ins_serial, NULL, MUTEX_DEFAULT, NULL); cv_init(&e_ddi_inst_state.ins_serial_cv, NULL, CV_DEFAULT, NULL); /* * Only one thread is allowed to change the state of the instance * number assignments on the system at any given time. * Note that this is not really necessary, as we are single-threaded * here, but it won't hurt, and it allows us to keep ASSERTS for * our assumptions in the code. */ e_ddi_enter_instance(); /* * Create the root node, instance zallocs to 0. * The name and address of this node never get examined, we always * start searching with its first child. */ ASSERT(e_ddi_inst_state.ins_root == NULL); e_ddi_inst_state.ins_root = in_alloc_node(NULL, NULL); dp = in_alloc_drv("rootnex"); in_endrv(e_ddi_inst_state.ins_root, dp); file = instance_file; switch (in_get_infile(file)) { default: case PTI_NOT_FOUND: /* make sure path_to_inst is recreated */ boothowto |= RB_RECONFIG; /* * Something is wrong. First try the backup file. * If not found, rebuild path_to_inst. Emit a * message about the problem. */ cmn_err(CE_WARN, "%s empty or not found", file); file = instance_file_backup; if (in_get_infile(file) != PTI_FOUND) { cmn_err(CE_NOTE, "rebuilding device instance data"); break; } cmn_err(CE_NOTE, "using backup instance data in %s", file); /*FALLTHROUGH*/ case PTI_FOUND: /* * We've got a readable file * parse the file into the instance tree */ (void) read_binding_file(file, NULL, in_pathin); rebuild = 0; break; case PTI_REBUILD: cmn_err(CE_CONT, "?Using default device instance data\n"); break; } /* * The OBP device tree has been copied to the kernel and * bound to drivers at this point. We walk the per-driver * list to preassign instances. Since the bus addr is * unknown at this point, we cannot place the instance * number in the instance tree. This will be done at * a later time. */ if (rebuild) in_preassign_instance(); e_ddi_exit_instance(); } static void in_preassign_instance() { major_t m; extern major_t devcnt; for (m = 0; m < devcnt; m++) { struct devnames *dnp = &devnamesp[m]; dev_info_t *dip = dnp->dn_head; while (dip) { DEVI(dip)->devi_instance = dnp->dn_instance; dnp->dn_instance++; dip = ddi_get_next(dip); } } } /* * Checks to see if the /etc/path_to_inst file exists and whether or not * it has the magic string in it. * * Returns one of the following: * * PTI_FOUND - We have found the /etc/path_to_inst file * PTI_REBUILD - We have found the /etc/path_to_inst file and the * first line was PTI_MAGIC_STR. * PTI_NOT_FOUND - We did not find the /etc/path_to_inst file * */ static int in_get_infile(char *filename) { struct _buf *file; int return_val; char buf[PTI_MAGIC_STR_LEN]; /* * Try to open the file. */ if ((file = kobj_open_file(filename)) == (struct _buf *)-1) { return (PTI_NOT_FOUND); } return_val = PTI_FOUND; /* * Read the first PTI_MAGIC_STR_LEN bytes from the file to see if * it contains the magic string. If there aren't that many bytes * in the file, then assume file is correct and no magic string * and move on. */ switch (kobj_read_file(file, buf, PTI_MAGIC_STR_LEN, 0)) { case PTI_MAGIC_STR_LEN: /* * If the first PTI_MAGIC_STR_LEN bytes are the magic string * then return PTI_REBUILD. */ if (strncmp(PTI_MAGIC_STR, buf, PTI_MAGIC_STR_LEN) == 0) return_val = PTI_REBUILD; break; case 0: /* * If the file is zero bytes in length, then consider the * file to not be found */ return_val = PTI_NOT_FOUND; default: /* Do nothing we have a good file */ break; } kobj_close_file(file); return (return_val); } int is_pseudo_device(dev_info_t *dip) { dev_info_t *pdip; for (pdip = ddi_get_parent(dip); pdip && pdip != ddi_root_node(); pdip = ddi_get_parent(pdip)) { if (strcmp(ddi_get_name(pdip), DEVI_PSEUDO_NEXNAME) == 0) return (1); } return (0); } static void in_set_instance(dev_info_t *dip, in_drv_t *dp, major_t major) { /* use preassigned instance if available */ if (DEVI(dip)->devi_instance != -1) dp->ind_instance = DEVI(dip)->devi_instance; else dp->ind_instance = in_next_instance(major); } /* * Return 1 if instance block was assigned for the path. * * For multi-port NIC cards, sequential instance assignment across all * ports on a card is highly deseriable since the ppa is typically the * same as the instance number, and the ppa is used in the NIC's public * /dev name. This sequential assignment typically occurs as a result * of in_preassign_instance() after initial install, or by * i_ndi_init_hw_children() for NIC ports that share a common parent. * * Some NIC cards however use multi-function bridge chips, and to * support sequential instance assignment accross all ports, without * disabling multi-threaded attach, we have a (currently) undocumented * hack to allocate instance numbers in contiguous blocks based on * driver.conf properties. * * ^ * /---------- ------------\ * pci@0 pci@0,1 MULTI-FUNCTION BRIDGE CHIP * / \ / \ * FJSV,e4ta@4 FJSV,e4ta@4,1 FJSV,e4ta@6 FJSV,e4ta@6,1 NIC PORTS * n n+2 n+2 n+3 INSTANCE * * For the above example, the following driver.conf properties would be * used to guarantee sequential instance number assignment. * * ddi-instance-blocks ="ib-FJSVe4ca", "ib-FJSVe4ta", "ib-generic"; * ib-FJSVe4ca = "/pci@0/FJSV,e4ca@4", "/pci@0/FJSV,e4ca@4,1", * "/pci@0,1/FJSV,e4ca@6", "/pci@0,1/FJSV,e4ca@6,1"; * ib-FJSVe4ta = "/pci@0/FJSV,e4ta@4", "/pci@0/FJSV,e4ta@4,1", * "/pci@0,1/FJSV,e4ta@6", "/pci@0,1/FJSV,e4ta@6,1"; * ib-generic = "/pci@0/network@4", "/pci@0/network@4,1", * "/pci@0,1/network@6", "/pci@0,1/network@6,1"; * * The value of the 'ddi-instance-blocks' property references a series * of card specific properties, like 'ib-FJSV-e4ta', who's value * defines a single 'instance block'. The 'instance block' describes * all the paths below a multi-function bridge, where each path is * called an 'instance path'. The 'instance block' property value is a * series of 'instance paths'. The number of 'instance paths' in an * 'instance block' defines the size of the instance block, and the * ordering of the 'instance paths' defines the instance number * assignment order for paths going through the 'instance block'. * * In the instance assignment code below, if a (path, driver) that * currently has no instance number has a path that goes through an * 'instance block', then block instance number allocation occurs. The * block allocation code will find a sequential set of unused instance * numbers, and assign instance numbers for all the paths in the * 'instance block'. Each path is assigned a persistent instance * number, even paths that don't exist in the device tree or fail * probe(9E). */ static int in_assign_instance_block(dev_info_t *dip) { char **ibn; /* instance block names */ uint_t nibn; /* number of instance block names */ uint_t ibni; /* ibn index */ char *driver; major_t major; char *path; char *addr; int plen; char **ibp; /* instance block paths */ uint_t nibp; /* number of paths in instance block */ uint_t ibpi; /* ibp index */ int ibplen; /* length of instance block path */ char *ipath; int instance_base; int splice; int i; /* check for fresh install case (in miniroot) */ if (DEVI(dip)->devi_instance != -1) return (0); /* already assigned */ /* * Check to see if we need to allocate a block of contiguous instance * numbers by looking for the 'ddi-instance-blocks' property. */ if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "ddi-instance-blocks", &ibn, &nibn) != DDI_SUCCESS) return (0); /* no instance block needed */ /* * Get information out about node we are processing. * * NOTE: Since the node is not yet at DS_INITIALIZED, ddi_pathname() * will not return the unit-address of the final path component even * though the node has an established devi_addr unit-address - so we * need to add the unit-address by hand. */ driver = (char *)ddi_driver_name(dip); major = ddi_driver_major(dip); path = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) ddi_pathname(dip, path); if ((addr = ddi_get_name_addr(dip)) != NULL) { (void) strcat(path, "@"); (void) strcat(path, addr); } plen = strlen(path); /* loop through instance block names */ for (ibni = 0; ibni < nibn; ibni++) { if (ibn[ibni] == NULL) continue; /* lookup instance block */ if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, ibn[ibni], &ibp, &nibp) != DDI_SUCCESS) { cmn_err(CE_WARN, "no devinition for instance block '%s' in %s.conf", ibn[ibni], driver); continue; } /* Does 'path' go through this instance block? */ for (ibpi = 0; ibpi < nibp; ibpi++) { if (ibp[ibpi] == NULL) continue; ibplen = strlen(ibp[ibpi]); if ((ibplen <= plen) && (strcmp(ibp[ibpi], path + plen - ibplen) == 0)) break; } if (ibpi >= nibp) { ddi_prop_free(ibp); continue; /* no try next instance block */ } /* yes, allocate and assign instances for all paths in block */ /* * determine where we splice in instance paths and verify * that none of the paths are too long. */ splice = plen - ibplen; for (i = 0; i < nibp; i++) { if ((splice + strlen(ibp[i])+ 1) >= MAXPATHLEN) { cmn_err(CE_WARN, "path %d through instance block '%s' from " "%s.conf too long", i, ibn[ibni], driver); break; } } if (i < nibp) { ddi_prop_free(ibp); continue; /* too long */ } /* allocate the instance block - no more failures */ instance_base = in_next_instance_block(major, nibp); ipath = kmem_alloc(MAXPATHLEN, KM_SLEEP); for (ibpi = 0; ibpi < nibp; ibpi++) { if (ibp[ibpi] == NULL) continue; (void) strcpy(ipath, path); (void) strcpy(ipath + splice, ibp[ibpi]); (void) in_pathin(ipath, instance_base + ibpi, driver, NULL); } /* free allocations */ kmem_free(ipath, MAXPATHLEN); ddi_prop_free(ibp); kmem_free(path, MAXPATHLEN); ddi_prop_free(ibn); /* notify devfsadmd to sync of path_to_inst file */ mutex_enter(&e_ddi_inst_state.ins_serial); i_log_devfs_instance_mod(); e_ddi_inst_state.ins_dirty = 1; mutex_exit(&e_ddi_inst_state.ins_serial); return (1); } /* our path did not go through any of of the instance blocks */ kmem_free(path, MAXPATHLEN); ddi_prop_free(ibn); return (0); } /* * Look up an instance number for a dev_info node, and assign one if it does * not have one (the dev_info node has devi_name and devi_addr already set). */ uint_t e_ddi_assign_instance(dev_info_t *dip) { char *name; in_node_t *ap, *np; in_drv_t *dp; major_t major; uint_t ret; char *bname; /* * Allow implementation to override */ if ((ret = impl_assign_instance(dip)) != (uint_t)-1) return (ret); /* * If this is a pseudo-device, use the instance number * assigned by the pseudo nexus driver. The mutex is * not needed since the instance tree is not used. */ if (is_pseudo_device(dip)) { return (ddi_get_instance(dip)); } /* * Only one thread is allowed to change the state of the instance * number assignments on the system at any given time. */ e_ddi_enter_instance(); /* * Look for instance node, allocate one if not found */ np = in_devwalk(dip, &ap, NULL); if (np == NULL) { if (in_assign_instance_block(dip)) { np = in_devwalk(dip, &ap, NULL); } else { name = ddi_node_name(dip); np = in_alloc_node(name, ddi_get_name_addr(dip)); ASSERT(np != NULL); in_enlist(ap, np); /* insert into tree */ } } ASSERT(np == in_devwalk(dip, &ap, NULL)); /* * Look for driver entry, allocate one if not found */ bname = (char *)ddi_driver_name(dip); dp = in_drvwalk(np, bname); if (dp == NULL) { dp = in_alloc_drv(bname); ASSERT(dp != NULL); major = ddi_driver_major(dip); ASSERT(major != (major_t)-1); in_endrv(np, dp); in_set_instance(dip, dp, major); dp->ind_state = IN_PROVISIONAL; in_hashdrv(dp); } ret = dp->ind_instance; e_ddi_exit_instance(); return (ret); } static int mkpathname(char *path, in_node_t *np, int len) { int len_needed; if (np == e_ddi_inst_state.ins_root) return (DDI_SUCCESS); if (mkpathname(path, np->in_parent, len) == DDI_FAILURE) return (DDI_FAILURE); len_needed = strlen(path); len_needed += strlen(np->in_node_name) + 1; /* for '/' */ if (np->in_unit_addr) { len_needed += strlen(np->in_unit_addr) + 1; /* for '@' */ } len_needed += 1; /* for '\0' */ /* * XX complain */ if (len_needed > len) return (DDI_FAILURE); if (np->in_unit_addr[0] == '\0') (void) sprintf(path+strlen(path), "/%s", np->in_node_name); else (void) sprintf(path+strlen(path), "/%s@%s", np->in_node_name, np->in_unit_addr); return (DDI_SUCCESS); } /* * produce the path to the given instance of a major number. * path must hold MAXPATHLEN string */ int e_ddi_instance_majorinstance_to_path(major_t major, uint_t inst, char *path) { struct devnames *dnp; in_drv_t *dp; int ret; e_ddi_enter_instance(); /* look for the instance threaded off major */ dnp = &devnamesp[major]; for (dp = dnp->dn_inlist; dp != NULL; dp = dp->ind_next) if (dp->ind_instance == inst) break; /* produce path from the node that uses the instance */ if (dp) { *path = 0; ret = mkpathname(path, dp->ind_node, MAXPATHLEN); } else ret = DDI_FAILURE; e_ddi_exit_instance(); return (ret); } /* * Allocate a sequential block of instance numbers for the specified driver, * and return the base instance number of the block. The implementation * depends on the list being sorted in ascending instance number sequence. * When there are no 'holes' in the allocation sequence, dn_instance is the * next available instance number. When dn_instance is IN_SEARCHME, hole(s) * exists and a slower code path executes which tries to fill holes. */ static int in_next_instance_block(major_t major, int block_size) { unsigned int prev; struct devnames *dnp; in_drv_t *dp; int base; int hole; dnp = &devnamesp[major]; ASSERT(major != (major_t)-1); ASSERT(e_ddi_inst_state.ins_busy); ASSERT(block_size); /* check to see if we can do a quick allocation */ if (dnp->dn_instance != IN_SEARCHME) { base = dnp->dn_instance; dnp->dn_instance += block_size; return (base); } dp = dnp->dn_inlist; /* no existing entries, allocate block at 0 */ if (dp == NULL) { dnp->dn_instance = block_size; return (0); } prev = dp->ind_instance; if (prev >= block_size) return (0); /* we fit in hole at beginning */ /* search the list for a large enough hole */ for (dp = dp->ind_next, hole = 0; dp; dp = dp->ind_next) { if (dp->ind_instance != (prev + 1)) hole++; /* we have a hole */ if (dp->ind_instance >= (prev + block_size + 1)) break; /* we fit in hole */ prev = dp->ind_instance; } /* * If hole is zero then all holes are patched and we can resume * quick allocations. */ if (hole == 0) dnp->dn_instance = prev + 1 + block_size; return (prev + 1); } /* assign instance block of size 1 */ static int in_next_instance(major_t major) { return (in_next_instance_block(major, 1)); } /* * This call causes us to *forget* the instance number we've generated * for a given device if it was not permanent. */ void e_ddi_free_instance(dev_info_t *dip, char *addr) { char *name; in_node_t *np; in_node_t *ap; /* ancestor node */ major_t major; struct devnames *dnp; in_drv_t *dp; /* in_drv entry */ /* * Allow implementation override */ if (impl_free_instance(dip) == DDI_SUCCESS) return; /* * If this is a pseudo-device, no instance number * was assigned. */ if (is_pseudo_device(dip)) { return; } name = (char *)ddi_driver_name(dip); major = ddi_driver_major(dip); ASSERT(major != (major_t)-1); dnp = &devnamesp[major]; /* * Only one thread is allowed to change the state of the instance * number assignments on the system at any given time. */ e_ddi_enter_instance(); np = in_devwalk(dip, &ap, addr); ASSERT(np); dp = in_drvwalk(np, name); ASSERT(dp); if (dp->ind_state == IN_PROVISIONAL) { in_removedrv(dnp, dp); } if (np->in_drivers == NULL) { in_removenode(dnp, np, ap); } e_ddi_exit_instance(); } /* * This makes our memory of an instance assignment permanent */ void e_ddi_keep_instance(dev_info_t *dip) { in_node_t *np, *ap; in_drv_t *dp; /* * Allow implementation override */ if (impl_keep_instance(dip) == DDI_SUCCESS) return; /* * Nothing to do for pseudo devices. */ if (is_pseudo_device(dip)) return; /* * Only one thread is allowed to change the state of the instance * number assignments on the system at any given time. */ e_ddi_enter_instance(); np = in_devwalk(dip, &ap, NULL); ASSERT(np); dp = in_drvwalk(np, (char *)ddi_driver_name(dip)); ASSERT(dp); mutex_enter(&e_ddi_inst_state.ins_serial); if (dp->ind_state == IN_PROVISIONAL) { dp->ind_state = IN_PERMANENT; i_log_devfs_instance_mod(); e_ddi_inst_state.ins_dirty = 1; } mutex_exit(&e_ddi_inst_state.ins_serial); e_ddi_exit_instance(); } /* * A new major has been added to the system. Run through the orphan list * and try to attach each one to a driver's list. */ void e_ddi_unorphan_instance_nos() { in_drv_t *dp, *ndp; /* * disconnect the orphan list, and call in_hashdrv for each item * on it */ /* * Only one thread is allowed to change the state of the instance * number assignments on the system at any given time. */ e_ddi_enter_instance(); if (e_ddi_inst_state.ins_no_major == NULL) { e_ddi_exit_instance(); return; } /* * Hash instance list to devnames structure of major. * Note that if there is not a valid major number for the * node, in_hashdrv will put it back on the no_major list. */ dp = e_ddi_inst_state.ins_no_major; e_ddi_inst_state.ins_no_major = NULL; while (dp) { ndp = dp->ind_next; ASSERT(dp->ind_state != IN_UNKNOWN); dp->ind_next = NULL; in_hashdrv(dp); dp = ndp; } e_ddi_exit_instance(); } static void in_removenode(struct devnames *dnp, in_node_t *mp, in_node_t *ap) { in_node_t *np; ASSERT(e_ddi_inst_state.ins_busy); /* * Assertion: parents are always instantiated by the framework * before their children, destroyed after them */ ASSERT(mp->in_child == NULL); /* * Assertion: drv entries are always removed before their owning nodes */ ASSERT(mp->in_drivers == NULL); /* * Take the node out of the tree */ if (ap->in_child == mp) { ap->in_child = mp->in_sibling; in_dealloc_node(mp); return; } else { for (np = ap->in_child; np; np = np->in_sibling) { if (np->in_sibling == mp) { np->in_sibling = mp->in_sibling; in_dealloc_node(mp); return; } } } panic("in_removenode dnp %p mp %p", (void *)dnp, (void *)mp); } /* * Recursive ascent * * This now only does half the job. It finds the node, then the caller * has to search the node for the binding name */ static in_node_t * in_devwalk(dev_info_t *dip, in_node_t **ap, char *addr) { in_node_t *np; char *name; ASSERT(dip); ASSERT(e_ddi_inst_state.ins_busy); if (dip == ddi_root_node()) { *ap = NULL; return (e_ddi_inst_state.ins_root); } /* * call up to find parent, then look through the list of kids * for a match */ np = in_devwalk(ddi_get_parent(dip), ap, NULL); if (np == NULL) return (np); *ap = np; np = np->in_child; name = ddi_node_name(dip); if (addr == NULL) addr = ddi_get_name_addr(dip); while (np) { if (in_eqstr(np->in_node_name, name) && in_eqstr(np->in_unit_addr, addr)) { return (np); } np = np->in_sibling; } return (np); } /* * Create a node specified by cp and assign it the given instance no. */ static int in_pathin(char *cp, int instance, char *bname, struct bind **args) { in_node_t *np; in_drv_t *dp; char *name; ASSERT(e_ddi_inst_state.ins_busy); ASSERT(args == NULL); /* * Give a warning to the console. * return value ignored */ if (cp[0] != '/' || instance == -1 || bname == NULL) { cmn_err(CE_WARN, "invalid instance file entry %s %d", cp, instance); return (0); } if ((name = i_binding_to_drv_name(bname)) != NULL) bname = name; np = in_make_path(cp); ASSERT(np); if (in_inuse(instance, bname)) { cmn_err(CE_WARN, "instance already in use: %s %d", cp, instance); return (0); } dp = in_drvwalk(np, bname); if (dp != NULL) { cmn_err(CE_WARN, "multiple instance number assignments for " "'%s' (driver %s), %d used", cp, bname, dp->ind_instance); return (0); } dp = in_alloc_drv(bname); in_endrv(np, dp); dp->ind_instance = instance; dp->ind_state = IN_PERMANENT; in_hashdrv(dp); return (0); } /* * Create (or find) the node named by path by recursively descending from the * root's first child (we ignore the root, which is never named) */ static in_node_t * in_make_path(char *path) { in_node_t *ap; /* ancestor pointer */ in_node_t *np; /* working node pointer */ in_node_t *rp; /* return node pointer */ char buf[MAXPATHLEN]; /* copy of string so we can change it */ char *cp, *name, *addr; ASSERT(e_ddi_inst_state.ins_busy); if (path == NULL || path[0] != '/') return (NULL); (void) snprintf(buf, sizeof (buf), "%s", path); cp = buf + 1; /* skip over initial '/' in path */ name = in_name_addr(&cp, &addr); /* * In S9 and earlier releases, the path_to_inst file * SunCluster was prepended with "/node@#". This was * removed in S10. We skip the prefix if the prefix * still exists in /etc/path_to_inst. It is needed for * various forms of Solaris upgrade to work properly * in the SunCluster environment. */ if ((cluster_bootflags & CLUSTER_CONFIGURED) && (strcmp(name, "node") == 0)) name = in_name_addr(&cp, &addr); ap = e_ddi_inst_state.ins_root; rp = np = e_ddi_inst_state.ins_root->in_child; while (name) { while (name && np) { if (in_eqstr(name, np->in_node_name) && in_eqstr(addr, np->in_unit_addr)) { name = in_name_addr(&cp, &addr); if (name == NULL) return (np); ap = np; np = np->in_child; continue; } else { np = np->in_sibling; } } np = in_alloc_node(name, addr); in_enlist(ap, np); /* insert into tree */ rp = np; /* value to return if we quit */ ap = np; /* new parent */ np = NULL; /* can have no children */ name = in_name_addr(&cp, &addr); } return (rp); } /* * Insert node np into the tree as one of ap's children. */ static void in_enlist(in_node_t *ap, in_node_t *np) { in_node_t *mp; ASSERT(e_ddi_inst_state.ins_busy); /* * Make this node some other node's child or child's sibling */ ASSERT(ap && np); if (ap->in_child == NULL) { ap->in_child = np; } else { for (mp = ap->in_child; mp; mp = mp->in_sibling) if (mp->in_sibling == NULL) { mp->in_sibling = np; break; } } np->in_parent = ap; } /* * Insert drv entry dp onto a node's driver list */ static void in_endrv(in_node_t *np, in_drv_t *dp) { in_drv_t *mp; ASSERT(e_ddi_inst_state.ins_busy); ASSERT(np && dp); mp = np->in_drivers; np->in_drivers = dp; dp->ind_next_drv = mp; dp->ind_node = np; } /* * Parse the next name out of the path, null terminate it and update cp. * caller has copied string so we can mess with it. * Upon return *cpp points to the next section to be parsed, *addrp points * to the current address substring (or NULL if none) and we return the * current name substring (or NULL if none). name and address substrings * are null terminated in place. */ static char * in_name_addr(char **cpp, char **addrp) { char *namep; /* return value holder */ char *ap; /* pointer to '@' in string */ char *sp; /* pointer to '/' in string */ if (*cpp == NULL || **cpp == '\0') { *addrp = NULL; return (NULL); } namep = *cpp; sp = strchr(*cpp, '/'); if (sp != NULL) { /* more to follow */ *sp = '\0'; *cpp = sp + 1; } else { /* this is last component. */ *cpp = NULL; } ap = strchr(namep, '@'); if (ap == NULL) { *addrp = NULL; } else { *ap = '\0'; /* terminate the name */ *addrp = ap + 1; } return (namep); } /* * Allocate a node and storage for name and addr strings, and fill them in. */ static in_node_t * in_alloc_node(char *name, char *addr) { in_node_t *np; char *cp; size_t namelen; ASSERT(e_ddi_inst_state.ins_busy); /* * Has name or will become root */ ASSERT(name || e_ddi_inst_state.ins_root == NULL); if (addr == NULL) addr = ""; if (name == NULL) namelen = 0; else namelen = strlen(name) + 1; cp = kmem_zalloc(sizeof (in_node_t) + namelen + strlen(addr) + 1, KM_SLEEP); np = (in_node_t *)cp; if (name) { np->in_node_name = cp + sizeof (in_node_t); (void) strcpy(np->in_node_name, name); } np->in_unit_addr = cp + sizeof (in_node_t) + namelen; (void) strcpy(np->in_unit_addr, addr); return (np); } /* * Allocate a drv entry and storage for binding name string, and fill it in. */ static in_drv_t * in_alloc_drv(char *bindingname) { in_drv_t *dp; char *cp; size_t namelen; ASSERT(e_ddi_inst_state.ins_busy); /* * Has name or will become root */ ASSERT(bindingname || e_ddi_inst_state.ins_root == NULL); if (bindingname == NULL) namelen = 0; else namelen = strlen(bindingname) + 1; cp = kmem_zalloc(sizeof (in_drv_t) + namelen, KM_SLEEP); dp = (in_drv_t *)cp; if (bindingname) { dp->ind_driver_name = cp + sizeof (in_drv_t); (void) strcpy(dp->ind_driver_name, bindingname); } dp->ind_state = IN_UNKNOWN; dp->ind_instance = -1; return (dp); } static void in_dealloc_node(in_node_t *np) { /* * The root node can never be de-allocated */ ASSERT(np->in_node_name && np->in_unit_addr); ASSERT(e_ddi_inst_state.ins_busy); kmem_free(np, sizeof (in_node_t) + strlen(np->in_node_name) + strlen(np->in_unit_addr) + 2); } static void in_dealloc_drv(in_drv_t *dp) { ASSERT(dp->ind_driver_name); ASSERT(e_ddi_inst_state.ins_busy); kmem_free(dp, sizeof (in_drv_t) + strlen(dp->ind_driver_name) + 1); } /* * Handle the various possible versions of "no address" */ static int in_eqstr(char *a, char *b) { if (a == b) /* covers case where both are nulls */ return (1); if (a == NULL && *b == 0) return (1); if (b == NULL && *a == 0) return (1); if (a == NULL || b == NULL) return (0); return (strcmp(a, b) == 0); } /* * Returns true if instance no. is already in use by named driver */ static int in_inuse(int instance, char *name) { major_t major; in_drv_t *dp; struct devnames *dnp; ASSERT(e_ddi_inst_state.ins_busy); /* * For now, if we've never heard of this device we assume it is not * in use, since we can't tell * XXX could do the weaker search through the nomajor list checking * XXX for the same name */ if ((major = ddi_name_to_major(name)) == (major_t)-1) return (0); dnp = &devnamesp[major]; dp = dnp->dn_inlist; while (dp) { if (dp->ind_instance == instance) return (1); dp = dp->ind_next; } return (0); } static void in_hashdrv(in_drv_t *dp) { struct devnames *dnp; in_drv_t *mp, *pp; major_t major; /* hash to no major list */ if ((major = ddi_name_to_major(dp->ind_driver_name)) == (major_t)-1) { dp->ind_next = e_ddi_inst_state.ins_no_major; e_ddi_inst_state.ins_no_major = dp; return; } /* * dnp->dn_inlist is sorted by instance number. * Adding a new instance entry may introduce holes, * set dn_instance to IN_SEARCHME so the next instance * assignment may fill in holes. */ dnp = &devnamesp[major]; pp = mp = dnp->dn_inlist; if (mp == NULL || dp->ind_instance < mp->ind_instance) { /* prepend as the first entry, turn on IN_SEARCHME */ dnp->dn_instance = IN_SEARCHME; dp->ind_next = mp; dnp->dn_inlist = dp; return; } ASSERT(mp->ind_instance != dp->ind_instance); while (mp->ind_instance < dp->ind_instance && mp->ind_next) { pp = mp; mp = mp->ind_next; ASSERT(mp->ind_instance != dp->ind_instance); } if (mp->ind_instance < dp->ind_instance) { /* end of list */ dp->ind_next = NULL; mp->ind_next = dp; } else { ASSERT(dnp->dn_instance == IN_SEARCHME); dp->ind_next = pp->ind_next; pp->ind_next = dp; } } /* * Remove a driver entry from the list, given a previous pointer */ static void in_removedrv(struct devnames *dnp, in_drv_t *mp) { in_drv_t *dp; in_drv_t *prevp; if (dnp->dn_inlist == mp) { /* head of list */ dnp->dn_inlist = mp->ind_next; dnp->dn_instance = IN_SEARCHME; in_dq_drv(mp); in_dealloc_drv(mp); return; } prevp = dnp->dn_inlist; for (dp = prevp->ind_next; dp; dp = dp->ind_next) { if (dp == mp) { /* found it */ break; } prevp = dp; } ASSERT(dp == mp); dnp->dn_instance = IN_SEARCHME; prevp->ind_next = mp->ind_next; in_dq_drv(mp); in_dealloc_drv(mp); } static void in_dq_drv(in_drv_t *mp) { struct in_node *node = mp->ind_node; in_drv_t *ptr, *prev; if (mp == node->in_drivers) { node->in_drivers = mp->ind_next_drv; return; } prev = node->in_drivers; for (ptr = prev->ind_next_drv; ptr != (struct in_drv *)NULL; ptr = ptr->ind_next_drv) { if (ptr == mp) { prev->ind_next_drv = ptr->ind_next_drv; return; } } panic("in_dq_drv: in_drv not found on node driver list"); } in_drv_t * in_drvwalk(in_node_t *np, char *binding_name) { char *name; in_drv_t *dp = np->in_drivers; while (dp) { if ((name = i_binding_to_drv_name(dp->ind_driver_name)) == NULL) { name = dp->ind_driver_name; } if (strcmp(binding_name, name) == 0) { break; } dp = dp->ind_next_drv; } return (dp); } static void i_log_devfs_instance_mod(void) { sysevent_t *ev; sysevent_id_t eid; static int sent_one = 0; /* * Prevent unnecessary event generation. Do not generate more than * one event during boot. */ if (sent_one && !i_ddi_io_initialized()) return; ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_INSTANCE_MOD, EP_DDI, SE_NOSLEEP); if (ev == NULL) { return; } if (log_sysevent(ev, SE_NOSLEEP, &eid) != 0) { cmn_err(CE_WARN, "i_log_devfs_instance_mod: failed to post " "event"); } else { sent_one = 1; } sysevent_free(ev); } void e_ddi_enter_instance() { mutex_enter(&e_ddi_inst_state.ins_serial); if (e_ddi_inst_state.ins_thread == curthread) e_ddi_inst_state.ins_busy++; else { while (e_ddi_inst_state.ins_busy) cv_wait(&e_ddi_inst_state.ins_serial_cv, &e_ddi_inst_state.ins_serial); e_ddi_inst_state.ins_thread = curthread; e_ddi_inst_state.ins_busy = 1; } mutex_exit(&e_ddi_inst_state.ins_serial); } void e_ddi_exit_instance() { mutex_enter(&e_ddi_inst_state.ins_serial); e_ddi_inst_state.ins_busy--; if (e_ddi_inst_state.ins_busy == 0) { cv_broadcast(&e_ddi_inst_state.ins_serial_cv); e_ddi_inst_state.ins_thread = NULL; } mutex_exit(&e_ddi_inst_state.ins_serial); } int e_ddi_instance_is_clean() { return (e_ddi_inst_state.ins_dirty == 0); } void e_ddi_instance_set_clean() { e_ddi_inst_state.ins_dirty = 0; } in_node_t * e_ddi_instance_root() { return (e_ddi_inst_state.ins_root); } /* * Visit a node in the instance tree */ static int in_walk_instances(in_node_t *np, char *path, char *this, int (*f)(const char *, in_node_t *, in_drv_t *, void *), void *arg) { in_drv_t *dp; int rval = INST_WALK_CONTINUE; char *next; while (np != NULL) { if (np->in_unit_addr[0] == 0) (void) sprintf(this, "/%s", np->in_node_name); else (void) sprintf(this, "/%s@%s", np->in_node_name, np->in_unit_addr); next = this + strlen(this); for (dp = np->in_drivers; dp; dp = dp->ind_next_drv) { if (dp->ind_state == IN_PERMANENT) { rval = (*f)(path, np, dp, arg); if (rval == INST_WALK_TERMINATE) break; } } if (np->in_child) { rval = in_walk_instances(np->in_child, path, next, f, arg); if (rval == INST_WALK_TERMINATE) break; } np = np->in_sibling; } return (rval); } /* * A general interface for walking the instance tree, * calling a user-supplied callback for each node. */ int e_ddi_walk_instances(int (*f)(const char *, in_node_t *, in_drv_t *, void *), void *arg) { in_node_t *root; int rval; char *path; path = kmem_zalloc(MAXPATHLEN, KM_SLEEP); e_ddi_enter_instance(); root = e_ddi_instance_root(); rval = in_walk_instances(root->in_child, path, path, f, arg); e_ddi_exit_instance(); kmem_free(path, MAXPATHLEN); return (rval); }