/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Fault Management for Device Drivers * * Device drivers wishing to participate in fault management may do so by * first initializing their fault management state and capabilties via * ddi_fm_init(). If the system supports the requested FM capabilities, * the IO framework will intialize FM state and return a bit mask of the * requested capabilities. * * If the system does not support the requested FM capabilities, * the device driver must behave in accordance with the programming semantics * defined below for the capabilities returned from ddi_fm_init(). * ddi_fm_init() must be called at attach(9E) time and ddi_fm_fini() must be * called from detach(9E) to perform FM clean-up. * * Driver Fault Management Capabilities * * DDI_FM_NOT_CAPABLE * * This is the default fault management capability for drivers. Drivers * that implement no fault management capabilites or do not participate * in fault management activities have their FM capability bitmask set * to 0. * * DDI_FM_EREPORT_CAPABLE * * When this capability bit is set, drivers are expected to generate error * report events via ddi_ereport_post() for the associated faults * that are diagnosed by the IO fault manager DE. ddi_ereport_post() * may be called in any context subject to the constraints specified * by the interrupt iblock cookie returned during initialization. * * Error reports resulting from hardware component specific and common IO * fault and driver defects must be accompanied by an Eversholt fault * tree (.eft) by the Solaris fault manager (fmd(1M)) for * diagnosis. * * DDI_FM_ERRCB_CAPABLE * * Device drivers are expected to implement and register an error * handler callback function. ddi_fm_handler_register() and * ddi_fm_handler_unregister() must be * called in passive kernel context, typically during an attach(9E) * or detach(9E) operation. When called by the FM IO framework, * the callback function should check for error conditions for the * hardware and software under its control. All detected errors * should have ereport events generated for them. * * Upon completion of the error handler callback, the driver should * return one of the following values: * * #define DDI_FM_OK - no error was detected * #define DDI_FM_FATAL - a fatal error was detected * #define DDI_FM_NONFATAL - a non-fatal error was detected * #define DDI_FM_UNKNOWN - the error status is unknown * * To insure single threaded access to error handling callbacks, * the device driver may use i_ddi_fm_handler_enter() and * i_ddi_fm_handler_exit() when entering and exiting the callback. * * DDI_FM_ACCCHK_CAPABLE/DDI_FM_DMACHK_CAPABLE * * Device drivers are expected to set-up access and DMA handles * with FM-specific attributes designed to allow nexus parent * drivers to flag any errors seen during subsequent IO transactions. * Drivers must set the devacc_attr_acc_flag member of their * ddi_device_acc_attr_t structures to DDI_FLAGERR_ACC or DDI_CAUTIOUS_ACC. * For DMA transactions, driver must set the dma_attr_flags of * their ddi_dma_attr_t structures to DDI_DMA_FLAGERR. * * Upon completion of an IO transaction, device drivers are expected * to check the status of host-side hardware access and device-side * dma completions by calling ddi_acc_err_check() or ddi_dma_err_check() * respectively. If the handle is associated with an error detected by * the nexus parent or FM IO framework, ddi_fm_error_t data (status, ena * and error expectation) is returned. If status of DDI_FM_NONFATAL or * DDI_FM_FATAL is returned, the ena is valid and the expectation flag * will be set to 1 if the error was unexpected (i.e. not the result * of a peek or poke type operation). * * ddi_acc_err_check() and ddi_dma_err_check() may be called in any * context subject to the constraints specified by the interrupt * iblock cookie returned during initialization. * * Device drivers should generate an access (DDI_FM_IO_ACC) or dma * (DDI_FM_IO_DMA) data path error report if DDI_FM_NONFATAL or * DDI_FM_FATAL is returned. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ERPT_CLASS_SZ sizeof (DDI_IO_CLASS) + sizeof (FM_EREPORT_CLASS) + \ DDI_MAX_ERPT_CLASS + 2 /* Globals */ int default_dmacache_sz = DEFAULT_DMACACHE_SZ; int default_acccache_sz = DEFAULT_ACCCACHE_SZ; int ddi_system_fmcap = 0; static struct i_ddi_fmkstat ddifm_kstat_template = { {"erpt_dropped", KSTAT_DATA_UINT64 }, {"fm_cache_full", KSTAT_DATA_UINT64 }, {"fm_cache_grew", KSTAT_DATA_UINT64 }, {"acc_err", KSTAT_DATA_UINT64 }, {"dma_err", KSTAT_DATA_UINT64 } }; /* * Update the service state following the detection of an * error. */ void ddi_fm_service_impact(dev_info_t *dip, int svc_impact) { uint64_t ena; char buf[FM_MAX_CLASS]; ena = fm_ena_generate(0, FM_ENA_FMT1); mutex_enter(&(DEVI(dip)->devi_lock)); if (!DEVI_IS_DEVICE_OFFLINE(dip)) { switch (svc_impact) { case DDI_SERVICE_LOST: DEVI_SET_DEVICE_DOWN(dip); (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_SERVICE_IMPACT, DDI_FM_SERVICE_LOST); ddi_fm_ereport_post(dip, buf, ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL); break; case DDI_SERVICE_DEGRADED: DEVI_SET_DEVICE_DEGRADED(dip); if (DEVI_IS_DEVICE_DEGRADED(dip)) { (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_SERVICE_IMPACT, DDI_FM_SERVICE_DEGRADED); ddi_fm_ereport_post(dip, buf, ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL); } else if (DEVI_IS_DEVICE_DOWN(dip)) { (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_SERVICE_IMPACT, DDI_FM_SERVICE_LOST); ddi_fm_ereport_post(dip, buf, ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL); } break; case DDI_SERVICE_RESTORED: DEVI_SET_DEVICE_UP(dip); (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_SERVICE_IMPACT, DDI_FM_SERVICE_RESTORED); ddi_fm_ereport_post(dip, buf, ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL); break; case DDI_SERVICE_UNAFFECTED: (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_SERVICE_IMPACT, DDI_FM_SERVICE_UNAFFECTED); ddi_fm_ereport_post(dip, buf, ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL); break; default: break; } } mutex_exit(&(DEVI(dip)->devi_lock)); } void i_ddi_drv_ereport_post(dev_info_t *dip, const char *error_class, nvlist_t *errp, int sflag) { int i; int depth; char classp[DDI_DVR_MAX_CLASS]; caddr_t stkp; char *buf; char **stkpp; char *sym; pc_t stack[DDI_FM_STKDEPTH]; ulong_t off; dev_info_t *root_dip = ddi_root_node(); if (!DDI_FM_EREPORT_CAP(ddi_fm_capable(root_dip))) return; (void) snprintf(classp, DDI_DVR_MAX_CLASS, "%s%s", DVR_ERPT, error_class); if (sflag == DDI_SLEEP) { depth = getpcstack(stack, DDI_FM_STKDEPTH); /* Allocate array of char * for nvlist payload */ stkpp = (char **)kmem_alloc(depth * sizeof (char *), KM_SLEEP); /* * Allocate temporary 64-bit aligned buffer for stack * symbol strings */ buf = kmem_alloc(depth * DDI_FM_SYM_SZ, KM_SLEEP); stkp = buf; for (i = 0; i < depth; ++i) { sym = kobj_getsymname(stack[i], &off); (void) snprintf(stkp, DDI_FM_SYM_SZ, "\t%s+%lx\n", sym ? sym : "?", off); stkpp[i] = stkp; stkp += DDI_FM_SYM_SZ; } if (errp) ddi_fm_ereport_post(root_dip, classp, fm_ena_generate(0, FM_ENA_FMT1), sflag, FM_VERSION, DATA_TYPE_UINT8, 0, DVR_NAME, DATA_TYPE_STRING, ddi_driver_name(dip), DVR_STACK_DEPTH, DATA_TYPE_UINT32, depth, DVR_STACK, DATA_TYPE_STRING_ARRAY, depth, stkpp, DVR_ERR_SPECIFIC, DATA_TYPE_NVLIST, errp, NULL); else ddi_fm_ereport_post(root_dip, classp, fm_ena_generate(0, FM_ENA_FMT1), sflag, FM_VERSION, DATA_TYPE_UINT8, 0, DVR_NAME, DATA_TYPE_STRING, ddi_driver_name(dip), DVR_STACK_DEPTH, DATA_TYPE_UINT32, depth, DVR_STACK, DATA_TYPE_STRING_ARRAY, depth, stkpp, NULL); kmem_free(stkpp, depth * sizeof (char *)); kmem_free(buf, depth * DDI_FM_SYM_SZ); } else { if (errp) ddi_fm_ereport_post(root_dip, classp, fm_ena_generate(0, FM_ENA_FMT1), sflag, FM_VERSION, DATA_TYPE_UINT8, 0, DVR_NAME, DATA_TYPE_STRING, ddi_driver_name(dip), DVR_ERR_SPECIFIC, DATA_TYPE_NVLIST, errp, NULL); else ddi_fm_ereport_post(root_dip, classp, fm_ena_generate(0, FM_ENA_FMT1), sflag, FM_VERSION, DATA_TYPE_UINT8, 0, DVR_NAME, DATA_TYPE_STRING, ddi_driver_name(dip), NULL); } } /* * fm_dev_ereport_postv: Common consolidation private interface to * post a device tree oriented dev_scheme ereport. The device tree is * composed of the following entities: devinfo nodes, minor nodes, and * pathinfo nodes. All entities are associated with some devinfo node, * either directly or indirectly. The intended devinfo node association * for the ereport is communicated by the 'dip' argument. A minor node, * an entity below 'dip', is represented by a non-null 'minor_name' * argument. An application specific caller, like scsi_fm_ereport_post, * can override the devinfo path with a pathinfo path via a non-null * 'devpath' argument - in this case 'dip' is the MPXIO client node and * devpath should be the path through the pHCI devinfo node to the * pathinfo node. * * This interface also allows the caller to decide if the error being * reported is know to be associated with a specific device identity * via the 'devid' argument. The caller needs to control wether the * devid appears as an authority in the FMRI because for some types of * errors, like transport errors, the identity of the device on the * other end of the transport is not guaranteed to be the current * identity of the dip. For transport errors the caller should specify * a NULL devid, even when there is a valid devid associated with the dip. * * The ddi_fm_ereport_post() implementation calls this interface with * just a dip: devpath, minor_name, and devid are all NULL. The * scsi_fm_ereport_post() implementation may call this interface with * non-null devpath, minor_name, and devid arguments depending on * wether MPXIO is enabled, and wether a transport or non-transport * error is being posted. */ void fm_dev_ereport_postv(dev_info_t *dip, dev_info_t *eqdip, const char *devpath, const char *minor_name, const char *devid, const char *error_class, uint64_t ena, int sflag, va_list ap) { struct i_ddi_fmhdl *fmhdl; errorq_elem_t *eqep; nv_alloc_t *nva; nvlist_t *ereport = NULL; nvlist_t *detector = NULL; char *name; data_type_t type; uint8_t version; char class[ERPT_CLASS_SZ]; char path[MAXPATHLEN]; ASSERT(dip && eqdip && error_class); /* * This interface should be called with a fm_capable eqdip. The * ddi_fm_ereport_post* interfaces call with eqdip == dip, * ndi_fm_ereport_post* interfaces call with eqdip == ddi_parent(dip). */ if (!DDI_FM_EREPORT_CAP(ddi_fm_capable(eqdip))) goto err; /* get ereport nvlist handle */ if ((sflag == DDI_SLEEP) && !panicstr) { /* * Driver defect - should not call with DDI_SLEEP while in * interrupt context. */ if (servicing_interrupt()) { i_ddi_drv_ereport_post(dip, DVR_ECONTEXT, NULL, sflag); goto err; } /* Use normal interfaces to allocate memory. */ if ((ereport = fm_nvlist_create(NULL)) == NULL) goto err; nva = NULL; } else { /* Use errorq interfaces to avoid memory allocation. */ fmhdl = DEVI(eqdip)->devi_fmhdl; ASSERT(fmhdl); eqep = errorq_reserve(fmhdl->fh_errorq); if (eqep == NULL) goto err; ereport = errorq_elem_nvl(fmhdl->fh_errorq, eqep); nva = errorq_elem_nva(fmhdl->fh_errorq, eqep); ASSERT(nva); } ASSERT(ereport); /* * Form parts of an ereport: * A: version * B: error_class * C: ena * D: detector (path and optional devid authority) * E: payload * * A: ereport version: first payload tuple must be the version. */ name = va_arg(ap, char *); type = va_arg(ap, data_type_t); version = va_arg(ap, uint_t); if ((strcmp(name, FM_VERSION) != 0) || (type != DATA_TYPE_UINT8)) { i_ddi_drv_ereport_post(dip, DVR_EVER, NULL, sflag); goto err; } /* B: ereport error_class: add "io." prefix to class. */ (void) snprintf(class, ERPT_CLASS_SZ, "%s.%s", DDI_IO_CLASS, error_class); /* C: ereport ena: if not passed in, generate new ena. */ if (ena == 0) ena = fm_ena_generate(0, FM_ENA_FMT1); /* D: detector: form dev scheme fmri with path and devid. */ if (devpath) { (void) strlcpy(path, devpath, sizeof (path)); } else { /* derive devpath from dip */ if (dip == ddi_root_node()) (void) strcpy(path, "/"); else (void) ddi_pathname(dip, path); } if (minor_name) { (void) strlcat(path, ":", sizeof (path)); (void) strlcat(path, minor_name, sizeof (path)); } detector = fm_nvlist_create(nva); fm_fmri_dev_set(detector, FM_DEV_SCHEME_VERSION, NULL, path, devid); /* Pull parts of ereport together into ereport. */ fm_ereport_set(ereport, version, class, ena, detector, NULL); /* Add the payload to ereport. */ name = va_arg(ap, char *); (void) i_fm_payload_set(ereport, name, ap); /* Post the ereport. */ if (nva) errorq_commit(fmhdl->fh_errorq, eqep, ERRORQ_ASYNC); else fm_ereport_post(ereport, EVCH_SLEEP); goto out; /* Count errors as drops. */ err: if (fmhdl) atomic_add_64(&fmhdl->fh_kstat.fek_erpt_dropped.value.ui64, 1); out: if (ereport && (nva == NULL)) fm_nvlist_destroy(ereport, FM_NVA_FREE); if (detector && (nva == NULL)) fm_nvlist_destroy(detector, FM_NVA_FREE); } /* * Generate an error report for consumption by the Solaris Fault Manager, * fmd(1M). Valid ereport classes are defined in /usr/include/sys/fm/io. * * The ENA should be set if this error is a result of an error status * returned from ddi_dma_err_check() or ddi_acc_err_check(). Otherwise, * an ENA value of 0 is appropriate. * * If sflag == DDI_NOSLEEP, ddi_fm_ereport_post () may be called * from user, kernel, interrupt or high-interrupt context. Otherwise, * ddi_fm_ereport_post() must be called from user or kernel context. * * The ndi_interfaces are provided for use by nexus drivers to post * ereports about children who may not themselves be fm_capable. * * All interfaces end up in the common fm_dev_ereport_postv code above. */ void ddi_fm_ereport_post(dev_info_t *dip, const char *error_class, uint64_t ena, int sflag, ...) { va_list ap; ASSERT(dip && error_class); va_start(ap, sflag); fm_dev_ereport_postv(dip, dip, NULL, NULL, NULL, error_class, ena, sflag, ap); va_end(ap); } void ndi_fm_ereport_post(dev_info_t *dip, const char *error_class, uint64_t ena, int sflag, ...) { va_list ap; ASSERT(dip && error_class && (sflag == DDI_SLEEP)); va_start(ap, sflag); fm_dev_ereport_postv(dip, ddi_get_parent(dip), NULL, NULL, NULL, error_class, ena, sflag, ap); va_end(ap); } /* * Driver error handling entry. Prevents multiple simultaneous calls into * driver error handling callback. * * May be called from a context consistent with the iblock_cookie returned * in ddi_fm_init(). */ void i_ddi_fm_handler_enter(dev_info_t *dip) { struct i_ddi_fmhdl *hdl = DEVI(dip)->devi_fmhdl; mutex_enter(&hdl->fh_lock); hdl->fh_lock_owner = curthread; } /* * Driver error handling exit. * * May be called from a context consistent with the iblock_cookie returned * in ddi_fm_init(). */ void i_ddi_fm_handler_exit(dev_info_t *dip) { struct i_ddi_fmhdl *hdl = DEVI(dip)->devi_fmhdl; hdl->fh_lock_owner = NULL; mutex_exit(&hdl->fh_lock); } boolean_t i_ddi_fm_handler_owned(dev_info_t *dip) { struct i_ddi_fmhdl *hdl = DEVI(dip)->devi_fmhdl; return (hdl->fh_lock_owner == curthread); } /* * Register a fault manager error handler for this device instance * * This function must be called from a driver's attach(9E) routine. */ void ddi_fm_handler_register(dev_info_t *dip, ddi_err_func_t handler, void *impl_data) { dev_info_t *pdip; struct i_ddi_fmhdl *pfmhdl; struct i_ddi_errhdl *new_eh; struct i_ddi_fmtgt *tgt; /* * Check for proper calling context. * The DDI configuration framework does not support * DR states to allow checking for proper invocation * from a DDI_ATTACH or DDI_RESUME. This limits context checking * to interrupt only. */ if (servicing_interrupt()) { i_ddi_drv_ereport_post(dip, DVR_ECONTEXT, NULL, DDI_NOSLEEP); return; } if (dip == ddi_root_node()) pdip = dip; else pdip = (dev_info_t *)DEVI(dip)->devi_parent; ASSERT(pdip); if (!(DDI_FM_ERRCB_CAP(ddi_fm_capable(dip)) && DDI_FM_ERRCB_CAP(ddi_fm_capable(pdip)))) { i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_SLEEP); return; } new_eh = kmem_zalloc(sizeof (struct i_ddi_errhdl), KM_SLEEP); new_eh->eh_func = handler; new_eh->eh_impl = impl_data; /* Add dip to parent's target list of registered error handlers */ tgt = kmem_alloc(sizeof (struct i_ddi_fmtgt), KM_SLEEP); tgt->ft_dip = dip; tgt->ft_errhdl = new_eh; i_ddi_fm_handler_enter(pdip); pfmhdl = DEVI(pdip)->devi_fmhdl; ASSERT(pfmhdl); tgt->ft_next = pfmhdl->fh_tgts; pfmhdl->fh_tgts = tgt; i_ddi_fm_handler_exit(pdip); } /* * Unregister a fault manager error handler for this device instance * * This function must be called from a drivers attach(9E) or detach(9E) * routine. */ void ddi_fm_handler_unregister(dev_info_t *dip) { dev_info_t *pdip; struct i_ddi_fmhdl *pfmhdl; struct i_ddi_fmtgt *tgt, **ptgt; /* * Check for proper calling context. * The DDI configuration framework does not support * DR states to allow checking for proper invocation * from a DDI_DETACH or DDI_SUSPEND. This limits context checking * to interrupt only. */ if (servicing_interrupt()) { i_ddi_drv_ereport_post(dip, DVR_ECONTEXT, NULL, DDI_NOSLEEP); return; } if (dip == ddi_root_node()) pdip = dip; else pdip = (dev_info_t *)DEVI(dip)->devi_parent; ASSERT(pdip); if (!(DDI_FM_ERRCB_CAP(ddi_fm_capable(dip)) && DDI_FM_ERRCB_CAP(ddi_fm_capable(pdip)))) { i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_SLEEP); return; } i_ddi_fm_handler_enter(pdip); pfmhdl = DEVI(pdip)->devi_fmhdl; ASSERT(pfmhdl); ptgt = &pfmhdl->fh_tgts; for (tgt = pfmhdl->fh_tgts; tgt != NULL; tgt = tgt->ft_next) { if (dip == tgt->ft_dip) { *ptgt = tgt->ft_next; kmem_free(tgt->ft_errhdl, sizeof (struct i_ddi_errhdl)); kmem_free(tgt, sizeof (struct i_ddi_fmtgt)); break; } ptgt = &tgt->ft_next; } i_ddi_fm_handler_exit(pdip); } /* * Initialize Fault Management capabilities for this device instance (dip). * When called with the following capabilities, data structures neccessary * for fault management activities are allocated and initialized. * * DDI_FM_EREPORT_CAPABLE - initialize ereport errorq and ereport * capable driver property. * * DDI_FM_ERRCB_CAPABLE - check with parent for ability to register * an error handler. * * DDI_FM_ACCCHK_CAPABLE - initialize access handle cache and acc-chk * driver property * * DDI_FM_DMACHK_CAPABLE - initialize dma handle cache and dma-chk * driver property * * A driver's FM capability level may not exceed that of its parent or * system-wide FM capability. The available capability level for this * device instance is returned in *fmcap. * * This function must be called from a driver's attach(9E) entry point. */ void ddi_fm_init(dev_info_t *dip, int *fmcap, ddi_iblock_cookie_t *ibcp) { struct dev_info *devi = DEVI(dip); struct i_ddi_fmhdl *fmhdl; ddi_iblock_cookie_t ibc; int pcap, newcap = DDI_FM_NOT_CAPABLE; if (!DEVI_IS_ATTACHING(dip)) { i_ddi_drv_ereport_post(dip, DVR_ECONTEXT, NULL, DDI_NOSLEEP); *fmcap = DDI_FM_NOT_CAPABLE; return; } if (DDI_FM_DEFAULT_CAP(*fmcap)) return; /* * Check parent for supported FM level * and correct error handling PIL */ if (dip != ddi_root_node()) { /* * Initialize the default ibc. The parent may change it * depending upon its capabilities. */ ibc = (ddi_iblock_cookie_t)ipltospl(FM_ERR_PIL); pcap = i_ndi_busop_fm_init(dip, *fmcap, &ibc); } else { pcap = *fmcap; ibc = *ibcp; } /* Initialize the per-device instance FM handle */ fmhdl = kmem_zalloc(sizeof (struct i_ddi_fmhdl), KM_SLEEP); if ((fmhdl->fh_ksp = kstat_create((char *)ddi_driver_name(dip), ddi_get_instance(dip), "fm", "misc", KSTAT_TYPE_NAMED, sizeof (struct i_ddi_fmkstat) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) == NULL) { mutex_destroy(&fmhdl->fh_lock); kmem_free(fmhdl, sizeof (struct i_ddi_fmhdl)); *fmcap = DDI_FM_NOT_CAPABLE; return; } bcopy(&ddifm_kstat_template, &fmhdl->fh_kstat, sizeof (struct i_ddi_fmkstat)); fmhdl->fh_ksp->ks_data = &fmhdl->fh_kstat; fmhdl->fh_ksp->ks_private = fmhdl; kstat_install(fmhdl->fh_ksp); fmhdl->fh_dma_cache = NULL; fmhdl->fh_acc_cache = NULL; fmhdl->fh_tgts = NULL; fmhdl->fh_dip = dip; fmhdl->fh_ibc = ibc; mutex_init(&fmhdl->fh_lock, NULL, MUTEX_DRIVER, fmhdl->fh_ibc); devi->devi_fmhdl = fmhdl; /* * Initialize support for ereport generation */ if (DDI_FM_EREPORT_CAP(*fmcap) && DDI_FM_EREPORT_CAP(pcap)) { fmhdl->fh_errorq = ereport_errorq; if (ddi_getprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS, "fm-ereport-capable", 0) == 0) (void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, "fm-ereport-capable", NULL, 0); newcap |= DDI_FM_EREPORT_CAPABLE; } /* * Need cooperation of the parent for error handling */ if (DDI_FM_ERRCB_CAP(*fmcap) && DDI_FM_ERRCB_CAP(pcap)) { if (ddi_getprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS, "fm-errcb-capable", 0) == 0) (void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, "fm-errcb-capable", NULL, 0); newcap |= DDI_FM_ERRCB_CAPABLE; } /* * Support for DMA and Access error handling */ if (DDI_FM_DMA_ERR_CAP(*fmcap) && DDI_FM_DMA_ERR_CAP(pcap)) { i_ndi_fmc_create(&fmhdl->fh_dma_cache, 2, ibc); /* Set-up dma chk capability prop */ if (ddi_getprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS, "fm-dmachk-capable", 0) == 0) (void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, "fm-dmachk-capable", NULL, 0); newcap |= DDI_FM_DMACHK_CAPABLE; } if (DDI_FM_ACC_ERR_CAP(*fmcap) && DDI_FM_ACC_ERR_CAP(pcap)) { i_ndi_fmc_create(&fmhdl->fh_acc_cache, 2, ibc); /* Set-up dma chk capability prop */ if (ddi_getprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS, "fm-accchk-capable", 0) == 0) (void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, "fm-accchk-capable", NULL, 0); newcap |= DDI_FM_ACCCHK_CAPABLE; } /* * Return the capability support available * to this driver instance */ fmhdl->fh_cap = newcap; *fmcap = newcap; if (ibcp != NULL) *ibcp = ibc; } /* * Finalize Fault Management activities for this device instance. * Outstanding IO transaction must be completed prior to calling * this routine. All previously allocated resources and error handler * registration are cleared and deallocated. * * This function must be called from a driver's detach(9E) entry point. */ void ddi_fm_fini(dev_info_t *dip) { struct i_ddi_fmhdl *fmhdl = DEVI(dip)->devi_fmhdl; ASSERT(fmhdl); if (!(DEVI_IS_DETACHING(dip) || DEVI_IS_ATTACHING(dip))) { i_ddi_drv_ereport_post(dip, DVR_ECONTEXT, NULL, DDI_NOSLEEP); return; } kstat_delete(fmhdl->fh_ksp); if (DDI_FM_EREPORT_CAP(fmhdl->fh_cap)) { (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "fm-ereport-capable"); } if (dip != ddi_root_node()) { if (DDI_FM_ERRCB_CAP(fmhdl->fh_cap)) { ddi_fm_handler_unregister(dip); (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "fm-errcb-capable"); } if (DDI_FM_DMA_ERR_CAP(fmhdl->fh_cap) || DDI_FM_ACC_ERR_CAP(fmhdl->fh_cap)) { if (fmhdl->fh_dma_cache != NULL) { i_ndi_fmc_destroy(fmhdl->fh_dma_cache); (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "fm-dmachk-capable"); } if (fmhdl->fh_acc_cache != NULL) { i_ndi_fmc_destroy(fmhdl->fh_acc_cache); (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "fm-accachk-capable"); } } i_ndi_busop_fm_fini(dip); } kmem_free(fmhdl, sizeof (struct i_ddi_fmhdl)); DEVI(dip)->devi_fmhdl = NULL; } /* * Return the fault management capability level for this device instance. * * This function may be called from user, kernel, or interrupt context. */ int ddi_fm_capable(dev_info_t *dip) { struct i_ddi_fmhdl *fmhdl = DEVI(dip)->devi_fmhdl; if (fmhdl == NULL) return (DDI_FM_NOT_CAPABLE); return (fmhdl->fh_cap); } /* * Routines to set and get error information for/from an access or dma handle * * These routines may be called from user, kernel, and interrupt contexts. */ void ddi_fm_acc_err_get(ddi_acc_handle_t handle, ddi_fm_error_t *de, int version) { ndi_err_t *errp; if (handle == NULL) return; if (version != DDI_FME_VER0 && version != DDI_FME_VER1) { ddi_acc_hdl_t *hp = impl_acc_hdl_get(handle); i_ddi_drv_ereport_post(hp->ah_dip, DVR_EVER, NULL, DDI_NOSLEEP); cmn_err(CE_PANIC, "ddi_fm_acc_err_get: " "Invalid driver version\n"); } errp = ((ddi_acc_impl_t *)handle)->ahi_err; de->fme_status = errp->err_status; de->fme_ena = errp->err_ena; de->fme_flag = errp->err_expected; de->fme_acc_handle = handle; } void ddi_fm_dma_err_get(ddi_dma_handle_t handle, ddi_fm_error_t *de, int version) { ndi_err_t *errp; if (handle == NULL) return; if (version != DDI_FME_VER0 && version != DDI_FME_VER1) { i_ddi_drv_ereport_post(((ddi_dma_impl_t *)handle)->dmai_rdip, DVR_EVER, NULL, DDI_NOSLEEP); cmn_err(CE_PANIC, "ddi_fm_dma_err_get: " "Invalid driver version\n"); } errp = &((ddi_dma_impl_t *)handle)->dmai_error; de->fme_status = errp->err_status; de->fme_ena = errp->err_ena; de->fme_flag = errp->err_expected; de->fme_dma_handle = handle; } void ddi_fm_acc_err_clear(ddi_acc_handle_t handle, int version) { ndi_err_t *errp; if (handle == NULL) return; if (version != DDI_FME_VER0 && version != DDI_FME_VER1) { ddi_acc_hdl_t *hp = impl_acc_hdl_get(handle); i_ddi_drv_ereport_post(hp->ah_dip, DVR_EVER, NULL, DDI_NOSLEEP); cmn_err(CE_PANIC, "ddi_fm_acc_err_clear: " "Invalid driver version\n"); } errp = ((ddi_acc_impl_t *)handle)->ahi_err; errp->err_status = DDI_FM_OK; errp->err_ena = 0; errp->err_expected = DDI_FM_ERR_UNEXPECTED; } void ddi_fm_dma_err_clear(ddi_dma_handle_t handle, int version) { ndi_err_t *errp; if (handle == NULL) return; if (version != DDI_FME_VER0 && version != DDI_FME_VER1) { i_ddi_drv_ereport_post(((ddi_dma_impl_t *)handle)->dmai_rdip, DVR_EVER, NULL, DDI_NOSLEEP); cmn_err(CE_PANIC, "ddi_fm_dma_err_clear: " "Invalid driver version\n"); } errp = &((ddi_dma_impl_t *)handle)->dmai_error; errp->err_status = DDI_FM_OK; errp->err_ena = 0; errp->err_expected = DDI_FM_ERR_UNEXPECTED; } void i_ddi_fm_acc_err_set(ddi_acc_handle_t handle, uint64_t ena, int status, int flag) { ddi_acc_hdl_t *hdlp = impl_acc_hdl_get(handle); ddi_acc_impl_t *i_hdlp = (ddi_acc_impl_t *)handle; struct i_ddi_fmhdl *fmhdl = DEVI(hdlp->ah_dip)->devi_fmhdl; i_hdlp->ahi_err->err_ena = ena; i_hdlp->ahi_err->err_status = status; i_hdlp->ahi_err->err_expected = flag; atomic_add_64(&fmhdl->fh_kstat.fek_acc_err.value.ui64, 1); } void i_ddi_fm_dma_err_set(ddi_dma_handle_t handle, uint64_t ena, int status, int flag) { ddi_dma_impl_t *hdlp = (ddi_dma_impl_t *)handle; struct i_ddi_fmhdl *fmhdl = DEVI(hdlp->dmai_rdip)->devi_fmhdl; hdlp->dmai_error.err_ena = ena; hdlp->dmai_error.err_status = status; hdlp->dmai_error.err_expected = flag; atomic_add_64(&fmhdl->fh_kstat.fek_dma_err.value.ui64, 1); } ddi_fmcompare_t i_ddi_fm_acc_err_cf_get(ddi_acc_handle_t handle) { ddi_acc_impl_t *i_hdlp = (ddi_acc_impl_t *)handle; return (i_hdlp->ahi_err->err_cf); } ddi_fmcompare_t i_ddi_fm_dma_err_cf_get(ddi_dma_handle_t handle) { ddi_dma_impl_t *hdlp = (ddi_dma_impl_t *)handle; return (hdlp->dmai_error.err_cf); }