/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * SunOs MT STREAMS NIU/Neptune 10Gb Ethernet Device Driver. */ #include #include #include #include uint32_t nxge_use_partition = 0; /* debug partition flag */ uint32_t nxge_dma_obp_props_only = 1; /* use obp published props */ uint32_t nxge_use_rdc_intr = 1; /* debug to assign rdc intr */ /* * PSARC/2007/453 MSI-X interrupt limit override */ uint32_t nxge_msi_enable = 2; /* * Software workaround for a Neptune (PCI-E) * hardware interrupt bug which the hardware * may generate spurious interrupts after the * device interrupt handler was removed. If this flag * is enabled, the driver will reset the * hardware when devices are being detached. */ uint32_t nxge_peu_reset_enable = 0; /* * Software workaround for the hardware * checksum bugs that affect packet transmission * and receive: * * Usage of nxge_cksum_offload: * * (1) nxge_cksum_offload = 0 (default): * - transmits packets: * TCP: uses the hardware checksum feature. * UDP: driver will compute the software checksum * based on the partial checksum computed * by the IP layer. * - receives packets * TCP: marks packets checksum flags based on hardware result. * UDP: will not mark checksum flags. * * (2) nxge_cksum_offload = 1: * - transmit packets: * TCP/UDP: uses the hardware checksum feature. * - receives packets * TCP/UDP: marks packet checksum flags based on hardware result. * * (3) nxge_cksum_offload = 2: * - The driver will not register its checksum capability. * Checksum for both TCP and UDP will be computed * by the stack. * - The software LSO is not allowed in this case. * * (4) nxge_cksum_offload > 2: * - Will be treated as it is set to 2 * (stack will compute the checksum). * * (5) If the hardware bug is fixed, this workaround * needs to be updated accordingly to reflect * the new hardware revision. */ uint32_t nxge_cksum_offload = 0; /* * Globals: tunable parameters (/etc/system or adb) * */ uint32_t nxge_rbr_size = NXGE_RBR_RBB_DEFAULT; uint32_t nxge_rbr_spare_size = 0; uint32_t nxge_rcr_size = NXGE_RCR_DEFAULT; uint32_t nxge_tx_ring_size = NXGE_TX_RING_DEFAULT; boolean_t nxge_no_msg = B_TRUE; /* control message display */ uint32_t nxge_no_link_notify = 0; /* control DL_NOTIFY */ uint32_t nxge_bcopy_thresh = TX_BCOPY_MAX; uint32_t nxge_dvma_thresh = TX_FASTDVMA_MIN; uint32_t nxge_dma_stream_thresh = TX_STREAM_MIN; uint32_t nxge_jumbo_mtu = TX_JUMBO_MTU; nxge_tx_mode_t nxge_tx_scheme = NXGE_USE_SERIAL; /* MAX LSO size */ #define NXGE_LSO_MAXLEN 65535 uint32_t nxge_lso_max = NXGE_LSO_MAXLEN; /* * Add tunable to reduce the amount of time spent in the * ISR doing Rx Processing. */ uint32_t nxge_max_rx_pkts = 1024; /* * Tunables to manage the receive buffer blocks. * * nxge_rx_threshold_hi: copy all buffers. * nxge_rx_bcopy_size_type: receive buffer block size type. * nxge_rx_threshold_lo: copy only up to tunable block size type. */ nxge_rxbuf_threshold_t nxge_rx_threshold_hi = NXGE_RX_COPY_6; nxge_rxbuf_type_t nxge_rx_buf_size_type = RCR_PKTBUFSZ_0; nxge_rxbuf_threshold_t nxge_rx_threshold_lo = NXGE_RX_COPY_3; /* Use kmem_alloc() to allocate data buffers. */ #if defined(__sparc) uint32_t nxge_use_kmem_alloc = 1; #elif defined(__i386) uint32_t nxge_use_kmem_alloc = 0; #else uint32_t nxge_use_kmem_alloc = 1; #endif rtrace_t npi_rtracebuf; /* * The hardware sometimes fails to allow enough time for the link partner * to send an acknowledgement for packets that the hardware sent to it. The * hardware resends the packets earlier than it should be in those instances. * This behavior caused some switches to acknowledge the wrong packets * and it triggered the fatal error. * This software workaround is to set the replay timer to a value * suggested by the hardware team. * * PCI config space replay timer register: * The following replay timeout value is 0xc * for bit 14:18. */ #define PCI_REPLAY_TIMEOUT_CFG_OFFSET 0xb8 #define PCI_REPLAY_TIMEOUT_SHIFT 14 uint32_t nxge_set_replay_timer = 1; uint32_t nxge_replay_timeout = 0xc; /* * The transmit serialization sometimes causes * longer sleep before calling the driver transmit * function as it sleeps longer than it should. * The performace group suggests that a time wait tunable * can be used to set the maximum wait time when needed * and the default is set to 1 tick. */ uint32_t nxge_tx_serial_maxsleep = 1; #if defined(sun4v) /* * Hypervisor N2/NIU services information. */ static hsvc_info_t niu_hsvc = { HSVC_REV_1, NULL, HSVC_GROUP_NIU, NIU_MAJOR_VER, NIU_MINOR_VER, "nxge" }; static int nxge_hsvc_register(p_nxge_t); #endif /* * Function Prototypes */ static int nxge_attach(dev_info_t *, ddi_attach_cmd_t); static int nxge_detach(dev_info_t *, ddi_detach_cmd_t); static void nxge_unattach(p_nxge_t); static int nxge_quiesce(dev_info_t *); #if NXGE_PROPERTY static void nxge_remove_hard_properties(p_nxge_t); #endif /* * These two functions are required by nxge_hio.c */ extern int nxge_m_mmac_remove(void *arg, int slot); extern void nxge_grp_cleanup(p_nxge_t nxge); static nxge_status_t nxge_setup_system_dma_pages(p_nxge_t); static nxge_status_t nxge_setup_mutexes(p_nxge_t); static void nxge_destroy_mutexes(p_nxge_t); static nxge_status_t nxge_map_regs(p_nxge_t nxgep); static void nxge_unmap_regs(p_nxge_t nxgep); #ifdef NXGE_DEBUG static void nxge_test_map_regs(p_nxge_t nxgep); #endif static nxge_status_t nxge_add_intrs(p_nxge_t nxgep); static void nxge_remove_intrs(p_nxge_t nxgep); static nxge_status_t nxge_add_intrs_adv(p_nxge_t nxgep); static nxge_status_t nxge_add_intrs_adv_type(p_nxge_t, uint32_t); static nxge_status_t nxge_add_intrs_adv_type_fix(p_nxge_t, uint32_t); static void nxge_intrs_enable(p_nxge_t nxgep); static void nxge_intrs_disable(p_nxge_t nxgep); static void nxge_suspend(p_nxge_t); static nxge_status_t nxge_resume(p_nxge_t); static nxge_status_t nxge_setup_dev(p_nxge_t); static void nxge_destroy_dev(p_nxge_t); static nxge_status_t nxge_alloc_mem_pool(p_nxge_t); static void nxge_free_mem_pool(p_nxge_t); nxge_status_t nxge_alloc_rx_mem_pool(p_nxge_t); static void nxge_free_rx_mem_pool(p_nxge_t); nxge_status_t nxge_alloc_tx_mem_pool(p_nxge_t); static void nxge_free_tx_mem_pool(p_nxge_t); static nxge_status_t nxge_dma_mem_alloc(p_nxge_t, dma_method_t, struct ddi_dma_attr *, size_t, ddi_device_acc_attr_t *, uint_t, p_nxge_dma_common_t); static void nxge_dma_mem_free(p_nxge_dma_common_t); static void nxge_dma_free_rx_data_buf(p_nxge_dma_common_t); static nxge_status_t nxge_alloc_rx_buf_dma(p_nxge_t, uint16_t, p_nxge_dma_common_t *, size_t, size_t, uint32_t *); static void nxge_free_rx_buf_dma(p_nxge_t, p_nxge_dma_common_t, uint32_t); static nxge_status_t nxge_alloc_rx_cntl_dma(p_nxge_t, uint16_t, p_nxge_dma_common_t *, size_t); static void nxge_free_rx_cntl_dma(p_nxge_t, p_nxge_dma_common_t); extern nxge_status_t nxge_alloc_tx_buf_dma(p_nxge_t, uint16_t, p_nxge_dma_common_t *, size_t, size_t, uint32_t *); static void nxge_free_tx_buf_dma(p_nxge_t, p_nxge_dma_common_t, uint32_t); extern nxge_status_t nxge_alloc_tx_cntl_dma(p_nxge_t, uint16_t, p_nxge_dma_common_t *, size_t); static void nxge_free_tx_cntl_dma(p_nxge_t, p_nxge_dma_common_t); static int nxge_init_common_dev(p_nxge_t); static void nxge_uninit_common_dev(p_nxge_t); extern int nxge_param_set_mac(p_nxge_t, queue_t *, mblk_t *, char *, caddr_t); #if defined(sun4v) extern nxge_status_t nxge_hio_rdc_enable(p_nxge_t nxgep); extern nxge_status_t nxge_hio_rdc_intr_arm(p_nxge_t nxge, boolean_t arm); #endif /* * The next declarations are for the GLDv3 interface. */ static int nxge_m_start(void *); static void nxge_m_stop(void *); static int nxge_m_multicst(void *, boolean_t, const uint8_t *); static int nxge_m_promisc(void *, boolean_t); static void nxge_m_ioctl(void *, queue_t *, mblk_t *); nxge_status_t nxge_mac_register(p_nxge_t); static int nxge_altmac_set(p_nxge_t nxgep, uint8_t *mac_addr, int slot, int rdctbl, boolean_t usetbl); void nxge_mmac_kstat_update(p_nxge_t nxgep, int slot, boolean_t factory); static void nxge_m_getfactaddr(void *, uint_t, uint8_t *); static boolean_t nxge_m_getcapab(void *, mac_capab_t, void *); static int nxge_m_setprop(void *, const char *, mac_prop_id_t, uint_t, const void *); static int nxge_m_getprop(void *, const char *, mac_prop_id_t, uint_t, uint_t, void *, uint_t *); static int nxge_set_priv_prop(nxge_t *, const char *, uint_t, const void *); static int nxge_get_priv_prop(nxge_t *, const char *, uint_t, uint_t, void *, uint_t *); static int nxge_get_def_val(nxge_t *, mac_prop_id_t, uint_t, void *); static void nxge_fill_ring(void *, mac_ring_type_t, const int, const int, mac_ring_info_t *, mac_ring_handle_t); static void nxge_group_add_ring(mac_group_driver_t, mac_ring_driver_t, mac_ring_type_t); static void nxge_group_rem_ring(mac_group_driver_t, mac_ring_driver_t, mac_ring_type_t); static void nxge_niu_peu_reset(p_nxge_t nxgep); static void nxge_set_pci_replay_timeout(nxge_t *); mac_priv_prop_t nxge_priv_props[] = { {"_adv_10gfdx_cap", MAC_PROP_PERM_RW}, {"_adv_pause_cap", MAC_PROP_PERM_RW}, {"_function_number", MAC_PROP_PERM_READ}, {"_fw_version", MAC_PROP_PERM_READ}, {"_port_mode", MAC_PROP_PERM_READ}, {"_hot_swap_phy", MAC_PROP_PERM_READ}, {"_rxdma_intr_time", MAC_PROP_PERM_RW}, {"_rxdma_intr_pkts", MAC_PROP_PERM_RW}, {"_class_opt_ipv4_tcp", MAC_PROP_PERM_RW}, {"_class_opt_ipv4_udp", MAC_PROP_PERM_RW}, {"_class_opt_ipv4_ah", MAC_PROP_PERM_RW}, {"_class_opt_ipv4_sctp", MAC_PROP_PERM_RW}, {"_class_opt_ipv6_tcp", MAC_PROP_PERM_RW}, {"_class_opt_ipv6_udp", MAC_PROP_PERM_RW}, {"_class_opt_ipv6_ah", MAC_PROP_PERM_RW}, {"_class_opt_ipv6_sctp", MAC_PROP_PERM_RW}, {"_soft_lso_enable", MAC_PROP_PERM_RW} }; #define NXGE_MAX_PRIV_PROPS \ (sizeof (nxge_priv_props)/sizeof (mac_priv_prop_t)) #define NXGE_NEPTUNE_MAGIC 0x4E584745UL #define MAX_DUMP_SZ 256 #define NXGE_M_CALLBACK_FLAGS \ (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP) mac_callbacks_t nxge_m_callbacks = { NXGE_M_CALLBACK_FLAGS, nxge_m_stat, nxge_m_start, nxge_m_stop, nxge_m_promisc, nxge_m_multicst, NULL, NULL, nxge_m_ioctl, nxge_m_getcapab, NULL, NULL, nxge_m_setprop, nxge_m_getprop }; void nxge_err_inject(p_nxge_t, queue_t *, mblk_t *); /* PSARC/2007/453 MSI-X interrupt limit override. */ #define NXGE_MSIX_REQUEST_10G 8 #define NXGE_MSIX_REQUEST_1G 2 static int nxge_create_msi_property(p_nxge_t); /* * For applications that care about the * latency, it was requested by PAE and the * customers that the driver has tunables that * allow the user to tune it to a higher number * interrupts to spread the interrupts among * multiple channels. The DDI framework limits * the maximum number of MSI-X resources to allocate * to 8 (ddi_msix_alloc_limit). If more than 8 * is set, ddi_msix_alloc_limit must be set accordingly. * The default number of MSI interrupts are set to * 8 for 10G and 2 for 1G link. */ #define NXGE_MSIX_MAX_ALLOWED 32 uint32_t nxge_msix_10g_intrs = NXGE_MSIX_REQUEST_10G; uint32_t nxge_msix_1g_intrs = NXGE_MSIX_REQUEST_1G; /* * These global variables control the message * output. */ out_dbgmsg_t nxge_dbgmsg_out = DBG_CONSOLE | STR_LOG; uint64_t nxge_debug_level; /* * This list contains the instance structures for the Neptune * devices present in the system. The lock exists to guarantee * mutually exclusive access to the list. */ void *nxge_list = NULL; void *nxge_hw_list = NULL; nxge_os_mutex_t nxge_common_lock; nxge_os_mutex_t nxgedebuglock; extern uint64_t npi_debug_level; extern nxge_status_t nxge_ldgv_init(p_nxge_t, int *, int *); extern nxge_status_t nxge_ldgv_init_n2(p_nxge_t, int *, int *); extern nxge_status_t nxge_ldgv_uninit(p_nxge_t); extern nxge_status_t nxge_intr_ldgv_init(p_nxge_t); extern void nxge_fm_init(p_nxge_t, ddi_device_acc_attr_t *, ddi_dma_attr_t *); extern void nxge_fm_fini(p_nxge_t); extern npi_status_t npi_mac_altaddr_disable(npi_handle_t, uint8_t, uint8_t); /* * Count used to maintain the number of buffers being used * by Neptune instances and loaned up to the upper layers. */ uint32_t nxge_mblks_pending = 0; /* * Device register access attributes for PIO. */ static ddi_device_acc_attr_t nxge_dev_reg_acc_attr = { DDI_DEVICE_ATTR_V1, DDI_STRUCTURE_LE_ACC, DDI_STRICTORDER_ACC, DDI_DEFAULT_ACC }; /* * Device descriptor access attributes for DMA. */ static ddi_device_acc_attr_t nxge_dev_desc_dma_acc_attr = { DDI_DEVICE_ATTR_V0, DDI_STRUCTURE_LE_ACC, DDI_STRICTORDER_ACC }; /* * Device buffer access attributes for DMA. */ static ddi_device_acc_attr_t nxge_dev_buf_dma_acc_attr = { DDI_DEVICE_ATTR_V0, DDI_STRUCTURE_BE_ACC, DDI_STRICTORDER_ACC }; ddi_dma_attr_t nxge_desc_dma_attr = { DMA_ATTR_V0, /* version number. */ 0, /* low address */ 0xffffffffffffffff, /* high address */ 0xffffffffffffffff, /* address counter max */ #ifndef NIU_PA_WORKAROUND 0x100000, /* alignment */ #else 0x2000, #endif 0xfc00fc, /* dlim_burstsizes */ 0x1, /* minimum transfer size */ 0xffffffffffffffff, /* maximum transfer size */ 0xffffffffffffffff, /* maximum segment size */ 1, /* scatter/gather list length */ (unsigned int) 1, /* granularity */ 0 /* attribute flags */ }; ddi_dma_attr_t nxge_tx_dma_attr = { DMA_ATTR_V0, /* version number. */ 0, /* low address */ 0xffffffffffffffff, /* high address */ 0xffffffffffffffff, /* address counter max */ #if defined(_BIG_ENDIAN) 0x2000, /* alignment */ #else 0x1000, /* alignment */ #endif 0xfc00fc, /* dlim_burstsizes */ 0x1, /* minimum transfer size */ 0xffffffffffffffff, /* maximum transfer size */ 0xffffffffffffffff, /* maximum segment size */ 5, /* scatter/gather list length */ (unsigned int) 1, /* granularity */ 0 /* attribute flags */ }; ddi_dma_attr_t nxge_rx_dma_attr = { DMA_ATTR_V0, /* version number. */ 0, /* low address */ 0xffffffffffffffff, /* high address */ 0xffffffffffffffff, /* address counter max */ 0x2000, /* alignment */ 0xfc00fc, /* dlim_burstsizes */ 0x1, /* minimum transfer size */ 0xffffffffffffffff, /* maximum transfer size */ 0xffffffffffffffff, /* maximum segment size */ 1, /* scatter/gather list length */ (unsigned int) 1, /* granularity */ DDI_DMA_RELAXED_ORDERING /* attribute flags */ }; ddi_dma_lim_t nxge_dma_limits = { (uint_t)0, /* dlim_addr_lo */ (uint_t)0xffffffff, /* dlim_addr_hi */ (uint_t)0xffffffff, /* dlim_cntr_max */ (uint_t)0xfc00fc, /* dlim_burstsizes for 32 and 64 bit xfers */ 0x1, /* dlim_minxfer */ 1024 /* dlim_speed */ }; dma_method_t nxge_force_dma = DVMA; /* * dma chunk sizes. * * Try to allocate the largest possible size * so that fewer number of dma chunks would be managed */ #ifdef NIU_PA_WORKAROUND size_t alloc_sizes [] = {0x2000}; #else size_t alloc_sizes [] = {0x1000, 0x2000, 0x4000, 0x8000, 0x10000, 0x20000, 0x40000, 0x80000, 0x100000, 0x200000, 0x400000, 0x800000, 0x1000000, 0x2000000, 0x4000000}; #endif /* * Translate "dev_t" to a pointer to the associated "dev_info_t". */ extern void nxge_get_environs(nxge_t *); static int nxge_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { p_nxge_t nxgep = NULL; int instance; int status = DDI_SUCCESS; uint8_t portn; nxge_mmac_t *mmac_info; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_attach")); /* * Get the device instance since we'll need to setup * or retrieve a soft state for this instance. */ instance = ddi_get_instance(dip); switch (cmd) { case DDI_ATTACH: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "doing DDI_ATTACH")); break; case DDI_RESUME: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "doing DDI_RESUME")); nxgep = (p_nxge_t)ddi_get_soft_state(nxge_list, instance); if (nxgep == NULL) { status = DDI_FAILURE; break; } if (nxgep->dip != dip) { status = DDI_FAILURE; break; } if (nxgep->suspended == DDI_PM_SUSPEND) { status = ddi_dev_is_needed(nxgep->dip, 0, 1); } else { status = nxge_resume(nxgep); } goto nxge_attach_exit; case DDI_PM_RESUME: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "doing DDI_PM_RESUME")); nxgep = (p_nxge_t)ddi_get_soft_state(nxge_list, instance); if (nxgep == NULL) { status = DDI_FAILURE; break; } if (nxgep->dip != dip) { status = DDI_FAILURE; break; } status = nxge_resume(nxgep); goto nxge_attach_exit; default: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "doing unknown")); status = DDI_FAILURE; goto nxge_attach_exit; } if (ddi_soft_state_zalloc(nxge_list, instance) == DDI_FAILURE) { status = DDI_FAILURE; goto nxge_attach_exit; } nxgep = ddi_get_soft_state(nxge_list, instance); if (nxgep == NULL) { status = NXGE_ERROR; goto nxge_attach_fail2; } nxgep->nxge_magic = NXGE_MAGIC; nxgep->drv_state = 0; nxgep->dip = dip; nxgep->instance = instance; nxgep->p_dip = ddi_get_parent(dip); nxgep->nxge_debug_level = nxge_debug_level; npi_debug_level = nxge_debug_level; /* Are we a guest running in a Hybrid I/O environment? */ nxge_get_environs(nxgep); status = nxge_map_regs(nxgep); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_map_regs failed")); goto nxge_attach_fail3; } nxge_fm_init(nxgep, &nxge_dev_reg_acc_attr, &nxge_rx_dma_attr); /* Create & initialize the per-Neptune data structure */ /* (even if we're a guest). */ status = nxge_init_common_dev(nxgep); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_init_common_dev failed")); goto nxge_attach_fail4; } /* * Software workaround: set the replay timer. */ if (nxgep->niu_type != N2_NIU) { nxge_set_pci_replay_timeout(nxgep); } #if defined(sun4v) /* This is required by nxge_hio_init(), which follows. */ if ((status = nxge_hsvc_register(nxgep)) != DDI_SUCCESS) goto nxge_attach_fail4; #endif if ((status = nxge_hio_init(nxgep)) != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_hio_init failed")); goto nxge_attach_fail4; } if (nxgep->niu_type == NEPTUNE_2_10GF) { if (nxgep->function_num > 1) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "Unsupported" " function %d. Only functions 0 and 1 are " "supported for this card.", nxgep->function_num)); status = NXGE_ERROR; goto nxge_attach_fail4; } } if (isLDOMguest(nxgep)) { /* * Use the function number here. */ nxgep->mac.portnum = nxgep->function_num; nxgep->mac.porttype = PORT_TYPE_LOGICAL; /* XXX We'll set the MAC address counts to 1 for now. */ mmac_info = &nxgep->nxge_mmac_info; mmac_info->num_mmac = 1; mmac_info->naddrfree = 1; } else { portn = NXGE_GET_PORT_NUM(nxgep->function_num); nxgep->mac.portnum = portn; if ((portn == 0) || (portn == 1)) nxgep->mac.porttype = PORT_TYPE_XMAC; else nxgep->mac.porttype = PORT_TYPE_BMAC; /* * Neptune has 4 ports, the first 2 ports use XMAC (10G MAC) * internally, the rest 2 ports use BMAC (1G "Big" MAC). * The two types of MACs have different characterizations. */ mmac_info = &nxgep->nxge_mmac_info; if (nxgep->function_num < 2) { mmac_info->num_mmac = XMAC_MAX_ALT_ADDR_ENTRY; mmac_info->naddrfree = XMAC_MAX_ALT_ADDR_ENTRY; } else { mmac_info->num_mmac = BMAC_MAX_ALT_ADDR_ENTRY; mmac_info->naddrfree = BMAC_MAX_ALT_ADDR_ENTRY; } } /* * Setup the Ndd parameters for the this instance. */ nxge_init_param(nxgep); /* * Setup Register Tracing Buffer. */ npi_rtrace_buf_init((rtrace_t *)&npi_rtracebuf); /* init stats ptr */ nxge_init_statsp(nxgep); /* * Copy the vpd info from eeprom to a local data * structure, and then check its validity. */ if (!isLDOMguest(nxgep)) { int *regp; uint_t reglen; int rv; nxge_vpd_info_get(nxgep); /* Find the NIU config handle. */ rv = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, ddi_get_parent(nxgep->dip), DDI_PROP_DONTPASS, "reg", ®p, ®len); if (rv != DDI_PROP_SUCCESS) { goto nxge_attach_fail5; } /* * The address_hi, that is the first int, in the reg * property consists of config handle, but need to remove * the bits 28-31 which are OBP specific info. */ nxgep->niu_cfg_hdl = (*regp) & 0xFFFFFFF; ddi_prop_free(regp); } /* * Set the defaults for the MTU size. */ nxge_hw_id_init(nxgep); if (isLDOMguest(nxgep)) { uchar_t *prop_val; uint_t prop_len; uint32_t max_frame_size; extern void nxge_get_logical_props(p_nxge_t); nxgep->statsp->mac_stats.xcvr_inuse = LOGICAL_XCVR; nxgep->mac.portmode = PORT_LOGICAL; (void) ddi_prop_update_string(DDI_DEV_T_NONE, nxgep->dip, "phy-type", "virtual transceiver"); nxgep->nports = 1; nxgep->board_ver = 0; /* XXX What? */ /* * local-mac-address property gives us info on which * specific MAC address the Hybrid resource is associated * with. */ if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, nxgep->dip, 0, "local-mac-address", &prop_val, &prop_len) != DDI_PROP_SUCCESS) { goto nxge_attach_fail5; } if (prop_len != ETHERADDRL) { ddi_prop_free(prop_val); goto nxge_attach_fail5; } ether_copy(prop_val, nxgep->hio_mac_addr); ddi_prop_free(prop_val); nxge_get_logical_props(nxgep); /* * Enable Jumbo property based on the "max-frame-size" * property value. */ max_frame_size = ddi_prop_get_int(DDI_DEV_T_ANY, nxgep->dip, DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "max-frame-size", NXGE_MTU_DEFAULT_MAX); if ((max_frame_size > NXGE_MTU_DEFAULT_MAX) && (max_frame_size <= TX_JUMBO_MTU)) { nxgep->mac.is_jumbo = B_TRUE; nxgep->mac.maxframesize = (uint16_t)max_frame_size; nxgep->mac.default_mtu = nxgep->mac.maxframesize - NXGE_EHEADER_VLAN_CRC; } } else { status = nxge_xcvr_find(nxgep); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_attach: " " Couldn't determine card type" " .... exit ")); goto nxge_attach_fail5; } status = nxge_get_config_properties(nxgep); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "get_hw create failed")); goto nxge_attach_fail; } } /* * Setup the Kstats for the driver. */ nxge_setup_kstats(nxgep); if (!isLDOMguest(nxgep)) nxge_setup_param(nxgep); status = nxge_setup_system_dma_pages(nxgep); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "set dma page failed")); goto nxge_attach_fail; } if (!isLDOMguest(nxgep)) nxge_hw_init_niu_common(nxgep); status = nxge_setup_mutexes(nxgep); if (status != NXGE_OK) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "set mutex failed")); goto nxge_attach_fail; } #if defined(sun4v) if (isLDOMguest(nxgep)) { /* Find our VR & channel sets. */ status = nxge_hio_vr_add(nxgep); if (status != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_hio_vr_add failed")); (void) hsvc_unregister(&nxgep->niu_hsvc); nxgep->niu_hsvc_available = B_FALSE; goto nxge_attach_fail; } goto nxge_attach_exit; } #endif status = nxge_setup_dev(nxgep); if (status != DDI_SUCCESS) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "set dev failed")); goto nxge_attach_fail; } status = nxge_add_intrs(nxgep); if (status != DDI_SUCCESS) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "add_intr failed")); goto nxge_attach_fail; } /* If a guest, register with vio_net instead. */ if ((status = nxge_mac_register(nxgep)) != NXGE_OK) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "unable to register to mac layer (%d)", status)); goto nxge_attach_fail; } mac_link_update(nxgep->mach, LINK_STATE_UNKNOWN); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "registered to mac (instance %d)", instance)); /* nxge_link_monitor calls xcvr.check_link recursively */ (void) nxge_link_monitor(nxgep, LINK_MONITOR_START); goto nxge_attach_exit; nxge_attach_fail: nxge_unattach(nxgep); goto nxge_attach_fail1; nxge_attach_fail5: /* * Tear down the ndd parameters setup. */ nxge_destroy_param(nxgep); /* * Tear down the kstat setup. */ nxge_destroy_kstats(nxgep); nxge_attach_fail4: if (nxgep->nxge_hw_p) { nxge_uninit_common_dev(nxgep); nxgep->nxge_hw_p = NULL; } nxge_attach_fail3: /* * Unmap the register setup. */ nxge_unmap_regs(nxgep); nxge_fm_fini(nxgep); nxge_attach_fail2: ddi_soft_state_free(nxge_list, nxgep->instance); nxge_attach_fail1: if (status != NXGE_OK) status = (NXGE_ERROR | NXGE_DDI_FAILED); nxgep = NULL; nxge_attach_exit: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_attach status = 0x%08x", status)); return (status); } static int nxge_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { int status = DDI_SUCCESS; int instance; p_nxge_t nxgep = NULL; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_detach")); instance = ddi_get_instance(dip); nxgep = ddi_get_soft_state(nxge_list, instance); if (nxgep == NULL) { status = DDI_FAILURE; goto nxge_detach_exit; } switch (cmd) { case DDI_DETACH: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "doing DDI_DETACH")); break; case DDI_PM_SUSPEND: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "doing DDI_PM_SUSPEND")); nxgep->suspended = DDI_PM_SUSPEND; nxge_suspend(nxgep); break; case DDI_SUSPEND: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "doing DDI_SUSPEND")); if (nxgep->suspended != DDI_PM_SUSPEND) { nxgep->suspended = DDI_SUSPEND; nxge_suspend(nxgep); } break; default: status = DDI_FAILURE; } if (cmd != DDI_DETACH) goto nxge_detach_exit; /* * Stop the xcvr polling. */ nxgep->suspended = cmd; (void) nxge_link_monitor(nxgep, LINK_MONITOR_STOP); if (nxgep->mach && (status = mac_unregister(nxgep->mach)) != 0) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_detach status = 0x%08X", status)); return (DDI_FAILURE); } NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_detach (mac_unregister) status = 0x%08X", status)); nxge_unattach(nxgep); nxgep = NULL; nxge_detach_exit: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_detach status = 0x%08X", status)); return (status); } static void nxge_unattach(p_nxge_t nxgep) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_unattach")); if (nxgep == NULL || nxgep->dev_regs == NULL) { return; } nxgep->nxge_magic = 0; if (nxgep->nxge_timerid) { nxge_stop_timer(nxgep, nxgep->nxge_timerid); nxgep->nxge_timerid = 0; } /* * If this flag is set, it will affect the Neptune * only. */ if ((nxgep->niu_type != N2_NIU) && nxge_peu_reset_enable) { nxge_niu_peu_reset(nxgep); } #if defined(sun4v) if (isLDOMguest(nxgep)) { (void) nxge_hio_vr_release(nxgep); } #endif if (nxgep->nxge_hw_p) { nxge_uninit_common_dev(nxgep); nxgep->nxge_hw_p = NULL; } #if defined(sun4v) if (nxgep->niu_type == N2_NIU && nxgep->niu_hsvc_available == B_TRUE) { (void) hsvc_unregister(&nxgep->niu_hsvc); nxgep->niu_hsvc_available = B_FALSE; } #endif /* * Stop any further interrupts. */ nxge_remove_intrs(nxgep); /* * Stop the device and free resources. */ if (!isLDOMguest(nxgep)) { nxge_destroy_dev(nxgep); } /* * Tear down the ndd parameters setup. */ nxge_destroy_param(nxgep); /* * Tear down the kstat setup. */ nxge_destroy_kstats(nxgep); /* * Destroy all mutexes. */ nxge_destroy_mutexes(nxgep); /* * Remove the list of ndd parameters which * were setup during attach. */ if (nxgep->dip) { NXGE_DEBUG_MSG((nxgep, OBP_CTL, " nxge_unattach: remove all properties")); (void) ddi_prop_remove_all(nxgep->dip); } #if NXGE_PROPERTY nxge_remove_hard_properties(nxgep); #endif /* * Unmap the register setup. */ nxge_unmap_regs(nxgep); nxge_fm_fini(nxgep); ddi_soft_state_free(nxge_list, nxgep->instance); NXGE_DEBUG_MSG((NULL, DDI_CTL, "<== nxge_unattach")); } #if defined(sun4v) int nxge_hsvc_register(nxge_t *nxgep) { nxge_status_t status; if (nxgep->niu_type == N2_NIU) { nxgep->niu_hsvc_available = B_FALSE; bcopy(&niu_hsvc, &nxgep->niu_hsvc, sizeof (hsvc_info_t)); if ((status = hsvc_register(&nxgep->niu_hsvc, &nxgep->niu_min_ver)) != 0) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_attach: %s: cannot negotiate " "hypervisor services revision %d group: 0x%lx " "major: 0x%lx minor: 0x%lx errno: %d", niu_hsvc.hsvc_modname, niu_hsvc.hsvc_rev, niu_hsvc.hsvc_group, niu_hsvc.hsvc_major, niu_hsvc.hsvc_minor, status)); return (DDI_FAILURE); } nxgep->niu_hsvc_available = B_TRUE; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "NIU Hypervisor service enabled")); } return (DDI_SUCCESS); } #endif static char n2_siu_name[] = "niu"; static nxge_status_t nxge_map_regs(p_nxge_t nxgep) { int ddi_status = DDI_SUCCESS; p_dev_regs_t dev_regs; char buf[MAXPATHLEN + 1]; char *devname; #ifdef NXGE_DEBUG char *sysname; #endif off_t regsize; nxge_status_t status = NXGE_OK; #if !defined(_BIG_ENDIAN) off_t pci_offset; uint16_t pcie_devctl; #endif if (isLDOMguest(nxgep)) { return (nxge_guest_regs_map(nxgep)); } NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_map_regs")); nxgep->dev_regs = NULL; dev_regs = KMEM_ZALLOC(sizeof (dev_regs_t), KM_SLEEP); dev_regs->nxge_regh = NULL; dev_regs->nxge_pciregh = NULL; dev_regs->nxge_msix_regh = NULL; dev_regs->nxge_vir_regh = NULL; dev_regs->nxge_vir2_regh = NULL; nxgep->niu_type = NIU_TYPE_NONE; devname = ddi_pathname(nxgep->dip, buf); ASSERT(strlen(devname) > 0); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_map_regs: pathname devname %s", devname)); /* * The driver is running on a N2-NIU system if devname is something * like "/niu@80/network@0" */ if (strstr(devname, n2_siu_name)) { /* N2/NIU */ nxgep->niu_type = N2_NIU; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_map_regs: N2/NIU devname %s", devname)); /* get function number */ nxgep->function_num = (devname[strlen(devname) -1] == '1' ? 1 : 0); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_map_regs: N2/NIU function number %d", nxgep->function_num)); } else { int *prop_val; uint_t prop_len; uint8_t func_num; if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, nxgep->dip, 0, "reg", &prop_val, &prop_len) != DDI_PROP_SUCCESS) { NXGE_DEBUG_MSG((nxgep, VPD_CTL, "Reg property not found")); ddi_status = DDI_FAILURE; goto nxge_map_regs_fail0; } else { func_num = (prop_val[0] >> 8) & 0x7; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "Reg property found: fun # %d", func_num)); nxgep->function_num = func_num; if (isLDOMguest(nxgep)) { nxgep->function_num /= 2; return (NXGE_OK); } ddi_prop_free(prop_val); } } switch (nxgep->niu_type) { default: (void) ddi_dev_regsize(nxgep->dip, 0, ®size); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_map_regs: pci config size 0x%x", regsize)); ddi_status = ddi_regs_map_setup(nxgep->dip, 0, (caddr_t *)&(dev_regs->nxge_pciregp), 0, 0, &nxge_dev_reg_acc_attr, &dev_regs->nxge_pciregh); if (ddi_status != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "ddi_map_regs, nxge bus config regs failed")); goto nxge_map_regs_fail0; } NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_map_reg: PCI config addr 0x%0llx " " handle 0x%0llx", dev_regs->nxge_pciregp, dev_regs->nxge_pciregh)); /* * IMP IMP * workaround for bit swapping bug in HW * which ends up in no-snoop = yes * resulting, in DMA not synched properly */ #if !defined(_BIG_ENDIAN) /* workarounds for x86 systems */ pci_offset = 0x80 + PCIE_DEVCTL; pcie_devctl = pci_config_get16(dev_regs->nxge_pciregh, pci_offset); pcie_devctl &= ~PCIE_DEVCTL_ENABLE_NO_SNOOP; pcie_devctl |= PCIE_DEVCTL_RO_EN; pci_config_put16(dev_regs->nxge_pciregh, pci_offset, pcie_devctl); #endif (void) ddi_dev_regsize(nxgep->dip, 1, ®size); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_map_regs: pio size 0x%x", regsize)); /* set up the device mapped register */ ddi_status = ddi_regs_map_setup(nxgep->dip, 1, (caddr_t *)&(dev_regs->nxge_regp), 0, 0, &nxge_dev_reg_acc_attr, &dev_regs->nxge_regh); if (ddi_status != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "ddi_map_regs for Neptune global reg failed")); goto nxge_map_regs_fail1; } /* set up the msi/msi-x mapped register */ (void) ddi_dev_regsize(nxgep->dip, 2, ®size); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_map_regs: msix size 0x%x", regsize)); ddi_status = ddi_regs_map_setup(nxgep->dip, 2, (caddr_t *)&(dev_regs->nxge_msix_regp), 0, 0, &nxge_dev_reg_acc_attr, &dev_regs->nxge_msix_regh); if (ddi_status != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "ddi_map_regs for msi reg failed")); goto nxge_map_regs_fail2; } /* set up the vio region mapped register */ (void) ddi_dev_regsize(nxgep->dip, 3, ®size); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_map_regs: vio size 0x%x", regsize)); ddi_status = ddi_regs_map_setup(nxgep->dip, 3, (caddr_t *)&(dev_regs->nxge_vir_regp), 0, 0, &nxge_dev_reg_acc_attr, &dev_regs->nxge_vir_regh); if (ddi_status != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "ddi_map_regs for nxge vio reg failed")); goto nxge_map_regs_fail3; } nxgep->dev_regs = dev_regs; NPI_PCI_ACC_HANDLE_SET(nxgep, dev_regs->nxge_pciregh); NPI_PCI_ADD_HANDLE_SET(nxgep, (npi_reg_ptr_t)dev_regs->nxge_pciregp); NPI_MSI_ACC_HANDLE_SET(nxgep, dev_regs->nxge_msix_regh); NPI_MSI_ADD_HANDLE_SET(nxgep, (npi_reg_ptr_t)dev_regs->nxge_msix_regp); NPI_ACC_HANDLE_SET(nxgep, dev_regs->nxge_regh); NPI_ADD_HANDLE_SET(nxgep, (npi_reg_ptr_t)dev_regs->nxge_regp); NPI_REG_ACC_HANDLE_SET(nxgep, dev_regs->nxge_regh); NPI_REG_ADD_HANDLE_SET(nxgep, (npi_reg_ptr_t)dev_regs->nxge_regp); NPI_VREG_ACC_HANDLE_SET(nxgep, dev_regs->nxge_vir_regh); NPI_VREG_ADD_HANDLE_SET(nxgep, (npi_reg_ptr_t)dev_regs->nxge_vir_regp); break; case N2_NIU: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "ddi_map_regs, NIU")); /* * Set up the device mapped register (FWARC 2006/556) * (changed back to 1: reg starts at 1!) */ (void) ddi_dev_regsize(nxgep->dip, 1, ®size); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_map_regs: dev size 0x%x", regsize)); ddi_status = ddi_regs_map_setup(nxgep->dip, 1, (caddr_t *)&(dev_regs->nxge_regp), 0, 0, &nxge_dev_reg_acc_attr, &dev_regs->nxge_regh); if (ddi_status != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "ddi_map_regs for N2/NIU, global reg failed ")); goto nxge_map_regs_fail1; } /* set up the first vio region mapped register */ (void) ddi_dev_regsize(nxgep->dip, 2, ®size); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_map_regs: vio (1) size 0x%x", regsize)); ddi_status = ddi_regs_map_setup(nxgep->dip, 2, (caddr_t *)&(dev_regs->nxge_vir_regp), 0, 0, &nxge_dev_reg_acc_attr, &dev_regs->nxge_vir_regh); if (ddi_status != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "ddi_map_regs for nxge vio reg failed")); goto nxge_map_regs_fail2; } /* set up the second vio region mapped register */ (void) ddi_dev_regsize(nxgep->dip, 3, ®size); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_map_regs: vio (3) size 0x%x", regsize)); ddi_status = ddi_regs_map_setup(nxgep->dip, 3, (caddr_t *)&(dev_regs->nxge_vir2_regp), 0, 0, &nxge_dev_reg_acc_attr, &dev_regs->nxge_vir2_regh); if (ddi_status != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "ddi_map_regs for nxge vio2 reg failed")); goto nxge_map_regs_fail3; } nxgep->dev_regs = dev_regs; NPI_ACC_HANDLE_SET(nxgep, dev_regs->nxge_regh); NPI_ADD_HANDLE_SET(nxgep, (npi_reg_ptr_t)dev_regs->nxge_regp); NPI_REG_ACC_HANDLE_SET(nxgep, dev_regs->nxge_regh); NPI_REG_ADD_HANDLE_SET(nxgep, (npi_reg_ptr_t)dev_regs->nxge_regp); NPI_VREG_ACC_HANDLE_SET(nxgep, dev_regs->nxge_vir_regh); NPI_VREG_ADD_HANDLE_SET(nxgep, (npi_reg_ptr_t)dev_regs->nxge_vir_regp); NPI_V2REG_ACC_HANDLE_SET(nxgep, dev_regs->nxge_vir2_regh); NPI_V2REG_ADD_HANDLE_SET(nxgep, (npi_reg_ptr_t)dev_regs->nxge_vir2_regp); break; } NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_map_reg: hardware addr 0x%0llx " " handle 0x%0llx", dev_regs->nxge_regp, dev_regs->nxge_regh)); goto nxge_map_regs_exit; nxge_map_regs_fail3: if (dev_regs->nxge_msix_regh) { ddi_regs_map_free(&dev_regs->nxge_msix_regh); } if (dev_regs->nxge_vir_regh) { ddi_regs_map_free(&dev_regs->nxge_regh); } nxge_map_regs_fail2: if (dev_regs->nxge_regh) { ddi_regs_map_free(&dev_regs->nxge_regh); } nxge_map_regs_fail1: if (dev_regs->nxge_pciregh) { ddi_regs_map_free(&dev_regs->nxge_pciregh); } nxge_map_regs_fail0: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "Freeing register set memory")); kmem_free(dev_regs, sizeof (dev_regs_t)); nxge_map_regs_exit: if (ddi_status != DDI_SUCCESS) status |= (NXGE_ERROR | NXGE_DDI_FAILED); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_map_regs")); return (status); } static void nxge_unmap_regs(p_nxge_t nxgep) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_unmap_regs")); if (isLDOMguest(nxgep)) { nxge_guest_regs_map_free(nxgep); return; } if (nxgep->dev_regs) { if (nxgep->dev_regs->nxge_pciregh) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_unmap_regs: bus")); ddi_regs_map_free(&nxgep->dev_regs->nxge_pciregh); nxgep->dev_regs->nxge_pciregh = NULL; } if (nxgep->dev_regs->nxge_regh) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_unmap_regs: device registers")); ddi_regs_map_free(&nxgep->dev_regs->nxge_regh); nxgep->dev_regs->nxge_regh = NULL; } if (nxgep->dev_regs->nxge_msix_regh) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_unmap_regs: device interrupts")); ddi_regs_map_free(&nxgep->dev_regs->nxge_msix_regh); nxgep->dev_regs->nxge_msix_regh = NULL; } if (nxgep->dev_regs->nxge_vir_regh) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_unmap_regs: vio region")); ddi_regs_map_free(&nxgep->dev_regs->nxge_vir_regh); nxgep->dev_regs->nxge_vir_regh = NULL; } if (nxgep->dev_regs->nxge_vir2_regh) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_unmap_regs: vio2 region")); ddi_regs_map_free(&nxgep->dev_regs->nxge_vir2_regh); nxgep->dev_regs->nxge_vir2_regh = NULL; } kmem_free(nxgep->dev_regs, sizeof (dev_regs_t)); nxgep->dev_regs = NULL; } NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_unmap_regs")); } static nxge_status_t nxge_setup_mutexes(p_nxge_t nxgep) { int ddi_status = DDI_SUCCESS; nxge_status_t status = NXGE_OK; nxge_classify_t *classify_ptr; int partition; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_setup_mutexes")); /* * Get the interrupt cookie so the mutexes can be * Initialized. */ if (isLDOMguest(nxgep)) { nxgep->interrupt_cookie = 0; } else { ddi_status = ddi_get_iblock_cookie(nxgep->dip, 0, &nxgep->interrupt_cookie); if (ddi_status != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_setup_mutexes: failed 0x%x", ddi_status)); goto nxge_setup_mutexes_exit; } } cv_init(&nxgep->poll_cv, NULL, CV_DRIVER, NULL); MUTEX_INIT(&nxgep->poll_lock, NULL, MUTEX_DRIVER, (void *)nxgep->interrupt_cookie); /* * Initialize mutexes for this device. */ MUTEX_INIT(nxgep->genlock, NULL, MUTEX_DRIVER, (void *)nxgep->interrupt_cookie); MUTEX_INIT(&nxgep->ouraddr_lock, NULL, MUTEX_DRIVER, (void *)nxgep->interrupt_cookie); MUTEX_INIT(&nxgep->mif_lock, NULL, MUTEX_DRIVER, (void *)nxgep->interrupt_cookie); MUTEX_INIT(&nxgep->group_lock, NULL, MUTEX_DRIVER, (void *)nxgep->interrupt_cookie); RW_INIT(&nxgep->filter_lock, NULL, RW_DRIVER, (void *)nxgep->interrupt_cookie); classify_ptr = &nxgep->classifier; /* * FFLP Mutexes are never used in interrupt context * as fflp operation can take very long time to * complete and hence not suitable to invoke from interrupt * handlers. */ MUTEX_INIT(&classify_ptr->tcam_lock, NULL, NXGE_MUTEX_DRIVER, (void *)nxgep->interrupt_cookie); if (NXGE_IS_VALID_NEPTUNE_TYPE(nxgep)) { MUTEX_INIT(&classify_ptr->fcram_lock, NULL, NXGE_MUTEX_DRIVER, (void *)nxgep->interrupt_cookie); for (partition = 0; partition < MAX_PARTITION; partition++) { MUTEX_INIT(&classify_ptr->hash_lock[partition], NULL, NXGE_MUTEX_DRIVER, (void *)nxgep->interrupt_cookie); } } nxge_setup_mutexes_exit: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_setup_mutexes status = %x", status)); if (ddi_status != DDI_SUCCESS) status |= (NXGE_ERROR | NXGE_DDI_FAILED); return (status); } static void nxge_destroy_mutexes(p_nxge_t nxgep) { int partition; nxge_classify_t *classify_ptr; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_destroy_mutexes")); RW_DESTROY(&nxgep->filter_lock); MUTEX_DESTROY(&nxgep->group_lock); MUTEX_DESTROY(&nxgep->mif_lock); MUTEX_DESTROY(&nxgep->ouraddr_lock); MUTEX_DESTROY(nxgep->genlock); classify_ptr = &nxgep->classifier; MUTEX_DESTROY(&classify_ptr->tcam_lock); /* Destroy all polling resources. */ MUTEX_DESTROY(&nxgep->poll_lock); cv_destroy(&nxgep->poll_cv); /* free data structures, based on HW type */ if (NXGE_IS_VALID_NEPTUNE_TYPE(nxgep)) { MUTEX_DESTROY(&classify_ptr->fcram_lock); for (partition = 0; partition < MAX_PARTITION; partition++) { MUTEX_DESTROY(&classify_ptr->hash_lock[partition]); } } NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_destroy_mutexes")); } nxge_status_t nxge_init(p_nxge_t nxgep) { nxge_status_t status = NXGE_OK; NXGE_DEBUG_MSG((nxgep, STR_CTL, "==> nxge_init")); if (nxgep->drv_state & STATE_HW_INITIALIZED) { return (status); } /* * Allocate system memory for the receive/transmit buffer blocks * and receive/transmit descriptor rings. */ status = nxge_alloc_mem_pool(nxgep); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "alloc mem failed\n")); goto nxge_init_fail1; } if (!isLDOMguest(nxgep)) { /* * Initialize and enable the TXC registers. * (Globally enable the Tx controller, * enable the port, configure the dma channel bitmap, * configure the max burst size). */ status = nxge_txc_init(nxgep); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "init txc failed\n")); goto nxge_init_fail2; } } /* * Initialize and enable TXDMA channels. */ status = nxge_init_txdma_channels(nxgep); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "init txdma failed\n")); goto nxge_init_fail3; } /* * Initialize and enable RXDMA channels. */ status = nxge_init_rxdma_channels(nxgep); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "init rxdma failed\n")); goto nxge_init_fail4; } /* * The guest domain is now done. */ if (isLDOMguest(nxgep)) { nxgep->drv_state |= STATE_HW_INITIALIZED; goto nxge_init_exit; } /* * Initialize TCAM and FCRAM (Neptune). */ status = nxge_classify_init(nxgep); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "init classify failed\n")); goto nxge_init_fail5; } /* * Initialize ZCP */ status = nxge_zcp_init(nxgep); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "init ZCP failed\n")); goto nxge_init_fail5; } /* * Initialize IPP. */ status = nxge_ipp_init(nxgep); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "init IPP failed\n")); goto nxge_init_fail5; } /* * Initialize the MAC block. */ status = nxge_mac_init(nxgep); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "init MAC failed\n")); goto nxge_init_fail5; } /* * Enable the interrrupts for DDI. */ nxge_intrs_enable(nxgep); nxgep->drv_state |= STATE_HW_INITIALIZED; goto nxge_init_exit; nxge_init_fail5: nxge_uninit_rxdma_channels(nxgep); nxge_init_fail4: nxge_uninit_txdma_channels(nxgep); nxge_init_fail3: if (!isLDOMguest(nxgep)) { (void) nxge_txc_uninit(nxgep); } nxge_init_fail2: nxge_free_mem_pool(nxgep); nxge_init_fail1: NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_init status (failed) = 0x%08x", status)); return (status); nxge_init_exit: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_init status = 0x%08x", status)); return (status); } timeout_id_t nxge_start_timer(p_nxge_t nxgep, fptrv_t func, int msec) { if ((nxgep->suspended == 0) || (nxgep->suspended == DDI_RESUME)) { return (timeout(func, (caddr_t)nxgep, drv_usectohz(1000 * msec))); } return (NULL); } /*ARGSUSED*/ void nxge_stop_timer(p_nxge_t nxgep, timeout_id_t timerid) { if (timerid) { (void) untimeout(timerid); } } void nxge_uninit(p_nxge_t nxgep) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_uninit")); if (!(nxgep->drv_state & STATE_HW_INITIALIZED)) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_uninit: not initialized")); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_uninit")); return; } if (!isLDOMguest(nxgep)) { /* * Reset the receive MAC side. */ (void) nxge_rx_mac_disable(nxgep); /* * Drain the IPP. */ (void) nxge_ipp_drain(nxgep); } /* stop timer */ if (nxgep->nxge_timerid) { nxge_stop_timer(nxgep, nxgep->nxge_timerid); nxgep->nxge_timerid = 0; } (void) nxge_link_monitor(nxgep, LINK_MONITOR_STOP); (void) nxge_intr_hw_disable(nxgep); /* Disable and soft reset the IPP */ if (!isLDOMguest(nxgep)) (void) nxge_ipp_disable(nxgep); /* Free classification resources */ (void) nxge_classify_uninit(nxgep); /* * Reset the transmit/receive DMA side. */ (void) nxge_txdma_hw_mode(nxgep, NXGE_DMA_STOP); (void) nxge_rxdma_hw_mode(nxgep, NXGE_DMA_STOP); nxge_uninit_txdma_channels(nxgep); nxge_uninit_rxdma_channels(nxgep); /* * Reset the transmit MAC side. */ (void) nxge_tx_mac_disable(nxgep); nxge_free_mem_pool(nxgep); /* * Start the timer if the reset flag is not set. * If this reset flag is set, the link monitor * will not be started in order to stop furthur bus * activities coming from this interface. * The driver will start the monitor function * if the interface was initialized again later. */ if (!nxge_peu_reset_enable) { (void) nxge_link_monitor(nxgep, LINK_MONITOR_START); } nxgep->drv_state &= ~STATE_HW_INITIALIZED; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_uninit: " "nxge_mblks_pending %d", nxge_mblks_pending)); } void nxge_get64(p_nxge_t nxgep, p_mblk_t mp) { uint64_t reg; uint64_t regdata; int i, retry; bcopy((char *)mp->b_rptr, (char *)®, sizeof (uint64_t)); regdata = 0; retry = 1; for (i = 0; i < retry; i++) { NXGE_REG_RD64(nxgep->npi_handle, reg, ®data); } bcopy((char *)®data, (char *)mp->b_rptr, sizeof (uint64_t)); } void nxge_put64(p_nxge_t nxgep, p_mblk_t mp) { uint64_t reg; uint64_t buf[2]; bcopy((char *)mp->b_rptr, (char *)&buf[0], 2 * sizeof (uint64_t)); reg = buf[0]; NXGE_NPI_PIO_WRITE64(nxgep->npi_handle, reg, buf[1]); } /*ARGSUSED*/ /*VARARGS*/ void nxge_debug_msg(p_nxge_t nxgep, uint64_t level, char *fmt, ...) { char msg_buffer[1048]; char prefix_buffer[32]; int instance; uint64_t debug_level; int cmn_level = CE_CONT; va_list ap; if (nxgep && nxgep->nxge_debug_level != nxge_debug_level) { /* In case a developer has changed nxge_debug_level. */ if (nxgep->nxge_debug_level != nxge_debug_level) nxgep->nxge_debug_level = nxge_debug_level; } debug_level = (nxgep == NULL) ? nxge_debug_level : nxgep->nxge_debug_level; if ((level & debug_level) || (level == NXGE_NOTE) || (level == NXGE_ERR_CTL)) { /* do the msg processing */ MUTEX_ENTER(&nxgedebuglock); if ((level & NXGE_NOTE)) { cmn_level = CE_NOTE; } if (level & NXGE_ERR_CTL) { cmn_level = CE_WARN; } va_start(ap, fmt); (void) vsprintf(msg_buffer, fmt, ap); va_end(ap); if (nxgep == NULL) { instance = -1; (void) sprintf(prefix_buffer, "%s :", "nxge"); } else { instance = nxgep->instance; (void) sprintf(prefix_buffer, "%s%d :", "nxge", instance); } MUTEX_EXIT(&nxgedebuglock); cmn_err(cmn_level, "!%s %s\n", prefix_buffer, msg_buffer); } } char * nxge_dump_packet(char *addr, int size) { uchar_t *ap = (uchar_t *)addr; int i; static char etherbuf[1024]; char *cp = etherbuf; char digits[] = "0123456789abcdef"; if (!size) size = 60; if (size > MAX_DUMP_SZ) { /* Dump the leading bytes */ for (i = 0; i < MAX_DUMP_SZ/2; i++) { if (*ap > 0x0f) *cp++ = digits[*ap >> 4]; *cp++ = digits[*ap++ & 0xf]; *cp++ = ':'; } for (i = 0; i < 20; i++) *cp++ = '.'; /* Dump the last MAX_DUMP_SZ/2 bytes */ ap = (uchar_t *)(addr + (size - MAX_DUMP_SZ/2)); for (i = 0; i < MAX_DUMP_SZ/2; i++) { if (*ap > 0x0f) *cp++ = digits[*ap >> 4]; *cp++ = digits[*ap++ & 0xf]; *cp++ = ':'; } } else { for (i = 0; i < size; i++) { if (*ap > 0x0f) *cp++ = digits[*ap >> 4]; *cp++ = digits[*ap++ & 0xf]; *cp++ = ':'; } } *--cp = 0; return (etherbuf); } #ifdef NXGE_DEBUG static void nxge_test_map_regs(p_nxge_t nxgep) { ddi_acc_handle_t cfg_handle; p_pci_cfg_t cfg_ptr; ddi_acc_handle_t dev_handle; char *dev_ptr; ddi_acc_handle_t pci_config_handle; uint32_t regval; int i; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_test_map_regs")); dev_handle = nxgep->dev_regs->nxge_regh; dev_ptr = (char *)nxgep->dev_regs->nxge_regp; if (NXGE_IS_VALID_NEPTUNE_TYPE(nxgep)) { cfg_handle = nxgep->dev_regs->nxge_pciregh; cfg_ptr = (void *)nxgep->dev_regs->nxge_pciregp; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "Neptune PCI regp cfg_ptr 0x%llx", (char *)cfg_ptr)); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "Neptune PCI cfg_ptr vendor id ptr 0x%llx", &cfg_ptr->vendorid)); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "\tvendorid 0x%x devid 0x%x", NXGE_PIO_READ16(cfg_handle, &cfg_ptr->vendorid, 0), NXGE_PIO_READ16(cfg_handle, &cfg_ptr->devid, 0))); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "PCI BAR: base 0x%x base14 0x%x base 18 0x%x " "bar1c 0x%x", NXGE_PIO_READ32(cfg_handle, &cfg_ptr->base, 0), NXGE_PIO_READ32(cfg_handle, &cfg_ptr->base14, 0), NXGE_PIO_READ32(cfg_handle, &cfg_ptr->base18, 0), NXGE_PIO_READ32(cfg_handle, &cfg_ptr->base1c, 0))); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "\nNeptune PCI BAR: base20 0x%x base24 0x%x " "base 28 0x%x bar2c 0x%x\n", NXGE_PIO_READ32(cfg_handle, &cfg_ptr->base20, 0), NXGE_PIO_READ32(cfg_handle, &cfg_ptr->base24, 0), NXGE_PIO_READ32(cfg_handle, &cfg_ptr->base28, 0), NXGE_PIO_READ32(cfg_handle, &cfg_ptr->base2c, 0))); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "\nNeptune PCI BAR: base30 0x%x\n", NXGE_PIO_READ32(cfg_handle, &cfg_ptr->base30, 0))); cfg_handle = nxgep->dev_regs->nxge_pciregh; cfg_ptr = (void *)nxgep->dev_regs->nxge_pciregp; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "first 0x%llx second 0x%llx third 0x%llx " "last 0x%llx ", NXGE_PIO_READ64(dev_handle, (uint64_t *)(dev_ptr + 0), 0), NXGE_PIO_READ64(dev_handle, (uint64_t *)(dev_ptr + 8), 0), NXGE_PIO_READ64(dev_handle, (uint64_t *)(dev_ptr + 16), 0), NXGE_PIO_READ64(cfg_handle, (uint64_t *)(dev_ptr + 24), 0))); } } #endif static void nxge_suspend(p_nxge_t nxgep) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_suspend")); nxge_intrs_disable(nxgep); nxge_destroy_dev(nxgep); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_suspend")); } static nxge_status_t nxge_resume(p_nxge_t nxgep) { nxge_status_t status = NXGE_OK; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_resume")); nxgep->suspended = DDI_RESUME; (void) nxge_link_monitor(nxgep, LINK_MONITOR_START); (void) nxge_rxdma_hw_mode(nxgep, NXGE_DMA_START); (void) nxge_txdma_hw_mode(nxgep, NXGE_DMA_START); (void) nxge_rx_mac_enable(nxgep); (void) nxge_tx_mac_enable(nxgep); nxge_intrs_enable(nxgep); nxgep->suspended = 0; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_resume status = 0x%x", status)); return (status); } static nxge_status_t nxge_setup_dev(p_nxge_t nxgep) { nxge_status_t status = NXGE_OK; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_setup_dev port %d", nxgep->mac.portnum)); status = nxge_link_init(nxgep); if (fm_check_acc_handle(nxgep->dev_regs->nxge_regh) != DDI_FM_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "port%d Bad register acc handle", nxgep->mac.portnum)); status = NXGE_ERROR; } if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, " nxge_setup_dev status " "(xcvr init 0x%08x)", status)); goto nxge_setup_dev_exit; } nxge_setup_dev_exit: NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_setup_dev port %d status = 0x%08x", nxgep->mac.portnum, status)); return (status); } static void nxge_destroy_dev(p_nxge_t nxgep) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_destroy_dev")); (void) nxge_link_monitor(nxgep, LINK_MONITOR_STOP); (void) nxge_hw_stop(nxgep); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_destroy_dev")); } static nxge_status_t nxge_setup_system_dma_pages(p_nxge_t nxgep) { int ddi_status = DDI_SUCCESS; uint_t count; ddi_dma_cookie_t cookie; uint_t iommu_pagesize; nxge_status_t status = NXGE_OK; NXGE_ERROR_MSG((nxgep, DDI_CTL, "==> nxge_setup_system_dma_pages")); nxgep->sys_page_sz = ddi_ptob(nxgep->dip, (ulong_t)1); if (nxgep->niu_type != N2_NIU) { iommu_pagesize = dvma_pagesize(nxgep->dip); NXGE_DEBUG_MSG((nxgep, DDI_CTL, " nxge_setup_system_dma_pages: page %d (ddi_ptob %d) " " default_block_size %d iommu_pagesize %d", nxgep->sys_page_sz, ddi_ptob(nxgep->dip, (ulong_t)1), nxgep->rx_default_block_size, iommu_pagesize)); if (iommu_pagesize != 0) { if (nxgep->sys_page_sz == iommu_pagesize) { if (iommu_pagesize > 0x4000) nxgep->sys_page_sz = 0x4000; } else { if (nxgep->sys_page_sz > iommu_pagesize) nxgep->sys_page_sz = iommu_pagesize; } } } nxgep->sys_page_mask = ~(nxgep->sys_page_sz - 1); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_setup_system_dma_pages: page %d (ddi_ptob %d) " "default_block_size %d page mask %d", nxgep->sys_page_sz, ddi_ptob(nxgep->dip, (ulong_t)1), nxgep->rx_default_block_size, nxgep->sys_page_mask)); switch (nxgep->sys_page_sz) { default: nxgep->sys_page_sz = 0x1000; nxgep->sys_page_mask = ~(nxgep->sys_page_sz - 1); nxgep->rx_default_block_size = 0x1000; nxgep->rx_bksize_code = RBR_BKSIZE_4K; break; case 0x1000: nxgep->rx_default_block_size = 0x1000; nxgep->rx_bksize_code = RBR_BKSIZE_4K; break; case 0x2000: nxgep->rx_default_block_size = 0x2000; nxgep->rx_bksize_code = RBR_BKSIZE_8K; break; case 0x4000: nxgep->rx_default_block_size = 0x4000; nxgep->rx_bksize_code = RBR_BKSIZE_16K; break; case 0x8000: nxgep->rx_default_block_size = 0x8000; nxgep->rx_bksize_code = RBR_BKSIZE_32K; break; } #ifndef USE_RX_BIG_BUF nxge_rx_dma_attr.dma_attr_align = nxgep->sys_page_sz; #else nxgep->rx_default_block_size = 0x2000; nxgep->rx_bksize_code = RBR_BKSIZE_8K; #endif /* * Get the system DMA burst size. */ ddi_status = ddi_dma_alloc_handle(nxgep->dip, &nxge_tx_dma_attr, DDI_DMA_DONTWAIT, 0, &nxgep->dmasparehandle); if (ddi_status != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "ddi_dma_alloc_handle: failed " " status 0x%x", ddi_status)); goto nxge_get_soft_properties_exit; } ddi_status = ddi_dma_addr_bind_handle(nxgep->dmasparehandle, NULL, (caddr_t)nxgep->dmasparehandle, sizeof (nxgep->dmasparehandle), DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_DONTWAIT, 0, &cookie, &count); if (ddi_status != DDI_DMA_MAPPED) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "Binding spare handle to find system" " burstsize failed.")); ddi_status = DDI_FAILURE; goto nxge_get_soft_properties_fail1; } nxgep->sys_burst_sz = ddi_dma_burstsizes(nxgep->dmasparehandle); (void) ddi_dma_unbind_handle(nxgep->dmasparehandle); nxge_get_soft_properties_fail1: ddi_dma_free_handle(&nxgep->dmasparehandle); nxge_get_soft_properties_exit: if (ddi_status != DDI_SUCCESS) status |= (NXGE_ERROR | NXGE_DDI_FAILED); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_setup_system_dma_pages status = 0x%08x", status)); return (status); } static nxge_status_t nxge_alloc_mem_pool(p_nxge_t nxgep) { nxge_status_t status = NXGE_OK; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_alloc_mem_pool")); status = nxge_alloc_rx_mem_pool(nxgep); if (status != NXGE_OK) { return (NXGE_ERROR); } status = nxge_alloc_tx_mem_pool(nxgep); if (status != NXGE_OK) { nxge_free_rx_mem_pool(nxgep); return (NXGE_ERROR); } NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_alloc_mem_pool")); return (NXGE_OK); } static void nxge_free_mem_pool(p_nxge_t nxgep) { NXGE_DEBUG_MSG((nxgep, MEM_CTL, "==> nxge_free_mem_pool")); nxge_free_rx_mem_pool(nxgep); nxge_free_tx_mem_pool(nxgep); NXGE_DEBUG_MSG((nxgep, MEM_CTL, "<== nxge_free_mem_pool")); } nxge_status_t nxge_alloc_rx_mem_pool(p_nxge_t nxgep) { uint32_t rdc_max; p_nxge_dma_pt_cfg_t p_all_cfgp; p_nxge_hw_pt_cfg_t p_cfgp; p_nxge_dma_pool_t dma_poolp; p_nxge_dma_common_t *dma_buf_p; p_nxge_dma_pool_t dma_cntl_poolp; p_nxge_dma_common_t *dma_cntl_p; uint32_t *num_chunks; /* per dma */ nxge_status_t status = NXGE_OK; uint32_t nxge_port_rbr_size; uint32_t nxge_port_rbr_spare_size; uint32_t nxge_port_rcr_size; uint32_t rx_cntl_alloc_size; NXGE_DEBUG_MSG((nxgep, DMA_CTL, "==> nxge_alloc_rx_mem_pool")); p_all_cfgp = (p_nxge_dma_pt_cfg_t)&nxgep->pt_config; p_cfgp = (p_nxge_hw_pt_cfg_t)&p_all_cfgp->hw_config; rdc_max = NXGE_MAX_RDCS; /* * Allocate memory for the common DMA data structures. */ dma_poolp = (p_nxge_dma_pool_t)KMEM_ZALLOC(sizeof (nxge_dma_pool_t), KM_SLEEP); dma_buf_p = (p_nxge_dma_common_t *)KMEM_ZALLOC( sizeof (p_nxge_dma_common_t) * rdc_max, KM_SLEEP); dma_cntl_poolp = (p_nxge_dma_pool_t) KMEM_ZALLOC(sizeof (nxge_dma_pool_t), KM_SLEEP); dma_cntl_p = (p_nxge_dma_common_t *)KMEM_ZALLOC( sizeof (p_nxge_dma_common_t) * rdc_max, KM_SLEEP); num_chunks = (uint32_t *)KMEM_ZALLOC( sizeof (uint32_t) * rdc_max, KM_SLEEP); /* * Assume that each DMA channel will be configured with * the default block size. * rbr block counts are modulo the batch count (16). */ nxge_port_rbr_size = p_all_cfgp->rbr_size; nxge_port_rcr_size = p_all_cfgp->rcr_size; if (!nxge_port_rbr_size) { nxge_port_rbr_size = NXGE_RBR_RBB_DEFAULT; } if (nxge_port_rbr_size % NXGE_RXDMA_POST_BATCH) { nxge_port_rbr_size = (NXGE_RXDMA_POST_BATCH * (nxge_port_rbr_size / NXGE_RXDMA_POST_BATCH + 1)); } p_all_cfgp->rbr_size = nxge_port_rbr_size; nxge_port_rbr_spare_size = nxge_rbr_spare_size; if (nxge_port_rbr_spare_size % NXGE_RXDMA_POST_BATCH) { nxge_port_rbr_spare_size = (NXGE_RXDMA_POST_BATCH * (nxge_port_rbr_spare_size / NXGE_RXDMA_POST_BATCH + 1)); } if (nxge_port_rbr_size > RBR_DEFAULT_MAX_BLKS) { NXGE_DEBUG_MSG((nxgep, MEM_CTL, "nxge_alloc_rx_mem_pool: RBR size too high %d, " "set to default %d", nxge_port_rbr_size, RBR_DEFAULT_MAX_BLKS)); nxge_port_rbr_size = RBR_DEFAULT_MAX_BLKS; } if (nxge_port_rcr_size > RCR_DEFAULT_MAX) { NXGE_DEBUG_MSG((nxgep, MEM_CTL, "nxge_alloc_rx_mem_pool: RCR too high %d, " "set to default %d", nxge_port_rcr_size, RCR_DEFAULT_MAX)); nxge_port_rcr_size = RCR_DEFAULT_MAX; } /* * N2/NIU has limitation on the descriptor sizes (contiguous * memory allocation on data buffers to 4M (contig_mem_alloc) * and little endian for control buffers (must use the ddi/dki mem alloc * function). */ #if defined(sun4v) && defined(NIU_LP_WORKAROUND) if (nxgep->niu_type == N2_NIU) { nxge_port_rbr_spare_size = 0; if ((nxge_port_rbr_size > NXGE_NIU_CONTIG_RBR_MAX) || (!ISP2(nxge_port_rbr_size))) { nxge_port_rbr_size = NXGE_NIU_CONTIG_RBR_MAX; } if ((nxge_port_rcr_size > NXGE_NIU_CONTIG_RCR_MAX) || (!ISP2(nxge_port_rcr_size))) { nxge_port_rcr_size = NXGE_NIU_CONTIG_RCR_MAX; } } #endif /* * Addresses of receive block ring, receive completion ring and the * mailbox must be all cache-aligned (64 bytes). */ rx_cntl_alloc_size = nxge_port_rbr_size + nxge_port_rbr_spare_size; rx_cntl_alloc_size *= (sizeof (rx_desc_t)); rx_cntl_alloc_size += (sizeof (rcr_entry_t) * nxge_port_rcr_size); rx_cntl_alloc_size += sizeof (rxdma_mailbox_t); NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "==> nxge_alloc_rx_mem_pool: " "nxge_port_rbr_size = %d nxge_port_rbr_spare_size = %d " "nxge_port_rcr_size = %d " "rx_cntl_alloc_size = %d", nxge_port_rbr_size, nxge_port_rbr_spare_size, nxge_port_rcr_size, rx_cntl_alloc_size)); #if defined(sun4v) && defined(NIU_LP_WORKAROUND) if (nxgep->niu_type == N2_NIU) { uint32_t rx_buf_alloc_size = (nxgep->rx_default_block_size * (nxge_port_rbr_size + nxge_port_rbr_spare_size)); if (!ISP2(rx_buf_alloc_size)) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_alloc_rx_mem_pool: " " must be power of 2")); status |= (NXGE_ERROR | NXGE_DDI_FAILED); goto nxge_alloc_rx_mem_pool_exit; } if (rx_buf_alloc_size > (1 << 22)) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_alloc_rx_mem_pool: " " limit size to 4M")); status |= (NXGE_ERROR | NXGE_DDI_FAILED); goto nxge_alloc_rx_mem_pool_exit; } if (rx_cntl_alloc_size < 0x2000) { rx_cntl_alloc_size = 0x2000; } } #endif nxgep->nxge_port_rbr_size = nxge_port_rbr_size; nxgep->nxge_port_rcr_size = nxge_port_rcr_size; nxgep->nxge_port_rbr_spare_size = nxge_port_rbr_spare_size; nxgep->nxge_port_rx_cntl_alloc_size = rx_cntl_alloc_size; dma_poolp->ndmas = p_cfgp->max_rdcs; dma_poolp->num_chunks = num_chunks; dma_poolp->buf_allocated = B_TRUE; nxgep->rx_buf_pool_p = dma_poolp; dma_poolp->dma_buf_pool_p = dma_buf_p; dma_cntl_poolp->ndmas = p_cfgp->max_rdcs; dma_cntl_poolp->buf_allocated = B_TRUE; nxgep->rx_cntl_pool_p = dma_cntl_poolp; dma_cntl_poolp->dma_buf_pool_p = dma_cntl_p; /* Allocate the receive rings, too. */ nxgep->rx_rbr_rings = KMEM_ZALLOC(sizeof (rx_rbr_rings_t), KM_SLEEP); nxgep->rx_rbr_rings->rbr_rings = KMEM_ZALLOC(sizeof (p_rx_rbr_ring_t) * rdc_max, KM_SLEEP); nxgep->rx_rcr_rings = KMEM_ZALLOC(sizeof (rx_rcr_rings_t), KM_SLEEP); nxgep->rx_rcr_rings->rcr_rings = KMEM_ZALLOC(sizeof (p_rx_rcr_ring_t) * rdc_max, KM_SLEEP); nxgep->rx_mbox_areas_p = KMEM_ZALLOC(sizeof (rx_mbox_areas_t), KM_SLEEP); nxgep->rx_mbox_areas_p->rxmbox_areas = KMEM_ZALLOC(sizeof (p_rx_mbox_t) * rdc_max, KM_SLEEP); nxgep->rx_rbr_rings->ndmas = nxgep->rx_rcr_rings->ndmas = p_cfgp->max_rdcs; NXGE_DEBUG_MSG((nxgep, DMA_CTL, "<== nxge_alloc_rx_mem_pool:status 0x%08x", status)); nxge_alloc_rx_mem_pool_exit: return (status); } /* * nxge_alloc_rxb * * Allocate buffers for an RDC. * * Arguments: * nxgep * channel The channel to map into our kernel space. * * Notes: * * NPI function calls: * * NXGE function calls: * * Registers accessed: * * Context: * * Taking apart: * * Open questions: * */ nxge_status_t nxge_alloc_rxb( p_nxge_t nxgep, int channel) { size_t rx_buf_alloc_size; nxge_status_t status = NXGE_OK; nxge_dma_common_t **data; nxge_dma_common_t **control; uint32_t *num_chunks; NXGE_DEBUG_MSG((nxgep, DMA_CTL, "==> nxge_alloc_rbb")); /* * Allocate memory for the receive buffers and descriptor rings. * Replace these allocation functions with the interface functions * provided by the partition manager if/when they are available. */ /* * Allocate memory for the receive buffer blocks. */ rx_buf_alloc_size = (nxgep->rx_default_block_size * (nxgep->nxge_port_rbr_size + nxgep->nxge_port_rbr_spare_size)); data = &nxgep->rx_buf_pool_p->dma_buf_pool_p[channel]; num_chunks = &nxgep->rx_buf_pool_p->num_chunks[channel]; if ((status = nxge_alloc_rx_buf_dma( nxgep, channel, data, rx_buf_alloc_size, nxgep->rx_default_block_size, num_chunks)) != NXGE_OK) { return (status); } NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "<== nxge_alloc_rxb(): " "dma %d dma_buf_p %llx &dma_buf_p %llx", channel, *data, data)); /* * Allocate memory for descriptor rings and mailbox. */ control = &nxgep->rx_cntl_pool_p->dma_buf_pool_p[channel]; if ((status = nxge_alloc_rx_cntl_dma( nxgep, channel, control, nxgep->nxge_port_rx_cntl_alloc_size)) != NXGE_OK) { nxge_free_rx_cntl_dma(nxgep, *control); (*data)->buf_alloc_state |= BUF_ALLOCATED_WAIT_FREE; nxge_free_rx_buf_dma(nxgep, *data, *num_chunks); return (status); } NXGE_DEBUG_MSG((nxgep, DMA_CTL, "<== nxge_alloc_rx_mem_pool:status 0x%08x", status)); return (status); } void nxge_free_rxb( p_nxge_t nxgep, int channel) { nxge_dma_common_t *data; nxge_dma_common_t *control; uint32_t num_chunks; NXGE_DEBUG_MSG((nxgep, DMA_CTL, "==> nxge_alloc_rbb")); data = nxgep->rx_buf_pool_p->dma_buf_pool_p[channel]; num_chunks = nxgep->rx_buf_pool_p->num_chunks[channel]; nxge_free_rx_buf_dma(nxgep, data, num_chunks); nxgep->rx_buf_pool_p->dma_buf_pool_p[channel] = 0; nxgep->rx_buf_pool_p->num_chunks[channel] = 0; control = nxgep->rx_cntl_pool_p->dma_buf_pool_p[channel]; nxge_free_rx_cntl_dma(nxgep, control); nxgep->rx_cntl_pool_p->dma_buf_pool_p[channel] = 0; KMEM_FREE(data, sizeof (nxge_dma_common_t) * NXGE_DMA_BLOCK); KMEM_FREE(control, sizeof (nxge_dma_common_t)); NXGE_DEBUG_MSG((nxgep, DMA_CTL, "<== nxge_alloc_rbb")); } static void nxge_free_rx_mem_pool(p_nxge_t nxgep) { int rdc_max = NXGE_MAX_RDCS; NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "==> nxge_free_rx_mem_pool")); if (!nxgep->rx_buf_pool_p || !nxgep->rx_buf_pool_p->buf_allocated) { NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "<== nxge_free_rx_mem_pool " "(null rx buf pool or buf not allocated")); return; } if (!nxgep->rx_cntl_pool_p || !nxgep->rx_cntl_pool_p->buf_allocated) { NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "<== nxge_free_rx_mem_pool " "(null rx cntl buf pool or cntl buf not allocated")); return; } KMEM_FREE(nxgep->rx_cntl_pool_p->dma_buf_pool_p, sizeof (p_nxge_dma_common_t) * rdc_max); KMEM_FREE(nxgep->rx_cntl_pool_p, sizeof (nxge_dma_pool_t)); KMEM_FREE(nxgep->rx_buf_pool_p->num_chunks, sizeof (uint32_t) * rdc_max); KMEM_FREE(nxgep->rx_buf_pool_p->dma_buf_pool_p, sizeof (p_nxge_dma_common_t) * rdc_max); KMEM_FREE(nxgep->rx_buf_pool_p, sizeof (nxge_dma_pool_t)); nxgep->rx_buf_pool_p = 0; nxgep->rx_cntl_pool_p = 0; KMEM_FREE(nxgep->rx_rbr_rings->rbr_rings, sizeof (p_rx_rbr_ring_t) * rdc_max); KMEM_FREE(nxgep->rx_rbr_rings, sizeof (rx_rbr_rings_t)); KMEM_FREE(nxgep->rx_rcr_rings->rcr_rings, sizeof (p_rx_rcr_ring_t) * rdc_max); KMEM_FREE(nxgep->rx_rcr_rings, sizeof (rx_rcr_rings_t)); KMEM_FREE(nxgep->rx_mbox_areas_p->rxmbox_areas, sizeof (p_rx_mbox_t) * rdc_max); KMEM_FREE(nxgep->rx_mbox_areas_p, sizeof (rx_mbox_areas_t)); nxgep->rx_rbr_rings = 0; nxgep->rx_rcr_rings = 0; nxgep->rx_mbox_areas_p = 0; NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "<== nxge_free_rx_mem_pool")); } static nxge_status_t nxge_alloc_rx_buf_dma(p_nxge_t nxgep, uint16_t dma_channel, p_nxge_dma_common_t *dmap, size_t alloc_size, size_t block_size, uint32_t *num_chunks) { p_nxge_dma_common_t rx_dmap; nxge_status_t status = NXGE_OK; size_t total_alloc_size; size_t allocated = 0; int i, size_index, array_size; boolean_t use_kmem_alloc = B_FALSE; NXGE_DEBUG_MSG((nxgep, DMA_CTL, "==> nxge_alloc_rx_buf_dma")); rx_dmap = (p_nxge_dma_common_t) KMEM_ZALLOC(sizeof (nxge_dma_common_t) * NXGE_DMA_BLOCK, KM_SLEEP); NXGE_DEBUG_MSG((nxgep, MEM2_CTL, " alloc_rx_buf_dma rdc %d asize %x bsize %x bbuf %llx ", dma_channel, alloc_size, block_size, dmap)); total_alloc_size = alloc_size; #if defined(RX_USE_RECLAIM_POST) total_alloc_size = alloc_size + alloc_size/4; #endif i = 0; size_index = 0; array_size = sizeof (alloc_sizes)/sizeof (size_t); while ((size_index < array_size) && (alloc_sizes[size_index] < alloc_size)) size_index++; if (size_index >= array_size) { size_index = array_size - 1; } /* For Neptune, use kmem_alloc if the kmem flag is set. */ if (nxgep->niu_type != N2_NIU && nxge_use_kmem_alloc) { use_kmem_alloc = B_TRUE; #if defined(__i386) || defined(__amd64) size_index = 0; #endif NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "==> nxge_alloc_rx_buf_dma: " "Neptune use kmem_alloc() - size_index %d", size_index)); } while ((allocated < total_alloc_size) && (size_index >= 0) && (i < NXGE_DMA_BLOCK)) { rx_dmap[i].dma_chunk_index = i; rx_dmap[i].block_size = block_size; rx_dmap[i].alength = alloc_sizes[size_index]; rx_dmap[i].orig_alength = rx_dmap[i].alength; rx_dmap[i].nblocks = alloc_sizes[size_index] / block_size; rx_dmap[i].dma_channel = dma_channel; rx_dmap[i].contig_alloc_type = B_FALSE; rx_dmap[i].kmem_alloc_type = B_FALSE; rx_dmap[i].buf_alloc_type = DDI_MEM_ALLOC; /* * N2/NIU: data buffers must be contiguous as the driver * needs to call Hypervisor api to set up * logical pages. */ if ((nxgep->niu_type == N2_NIU) && (NXGE_DMA_BLOCK == 1)) { rx_dmap[i].contig_alloc_type = B_TRUE; rx_dmap[i].buf_alloc_type = CONTIG_MEM_ALLOC; } else if (use_kmem_alloc) { /* For Neptune, use kmem_alloc */ NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "==> nxge_alloc_rx_buf_dma: " "Neptune use kmem_alloc()")); rx_dmap[i].kmem_alloc_type = B_TRUE; rx_dmap[i].buf_alloc_type = KMEM_ALLOC; } NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "alloc_rx_buf_dma rdc %d chunk %d bufp %llx size %x " "i %d nblocks %d alength %d", dma_channel, i, &rx_dmap[i], block_size, i, rx_dmap[i].nblocks, rx_dmap[i].alength)); status = nxge_dma_mem_alloc(nxgep, nxge_force_dma, &nxge_rx_dma_attr, rx_dmap[i].alength, &nxge_dev_buf_dma_acc_attr, DDI_DMA_READ | DDI_DMA_STREAMING, (p_nxge_dma_common_t)(&rx_dmap[i])); if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_alloc_rx_buf_dma: Alloc Failed: " "dma %d size_index %d size requested %d", dma_channel, size_index, rx_dmap[i].alength)); size_index--; } else { rx_dmap[i].buf_alloc_state = BUF_ALLOCATED; NXGE_DEBUG_MSG((nxgep, MEM2_CTL, " nxge_alloc_rx_buf_dma DONE alloc mem: " "dma %d dma_buf_p $%p kaddrp $%p alength %d " "buf_alloc_state %d alloc_type %d", dma_channel, &rx_dmap[i], rx_dmap[i].kaddrp, rx_dmap[i].alength, rx_dmap[i].buf_alloc_state, rx_dmap[i].buf_alloc_type)); NXGE_DEBUG_MSG((nxgep, MEM2_CTL, " alloc_rx_buf_dma allocated rdc %d " "chunk %d size %x dvma %x bufp %llx kaddrp $%p", dma_channel, i, rx_dmap[i].alength, rx_dmap[i].ioaddr_pp, &rx_dmap[i], rx_dmap[i].kaddrp)); i++; allocated += alloc_sizes[size_index]; } } if (allocated < total_alloc_size) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_alloc_rx_buf_dma: not enough for channel %d " "allocated 0x%x requested 0x%x", dma_channel, allocated, total_alloc_size)); status = NXGE_ERROR; goto nxge_alloc_rx_mem_fail1; } NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "==> nxge_alloc_rx_buf_dma: Allocated for channel %d " "allocated 0x%x requested 0x%x", dma_channel, allocated, total_alloc_size)); NXGE_DEBUG_MSG((nxgep, DMA_CTL, " alloc_rx_buf_dma rdc %d allocated %d chunks", dma_channel, i)); *num_chunks = i; *dmap = rx_dmap; goto nxge_alloc_rx_mem_exit; nxge_alloc_rx_mem_fail1: KMEM_FREE(rx_dmap, sizeof (nxge_dma_common_t) * NXGE_DMA_BLOCK); nxge_alloc_rx_mem_exit: NXGE_DEBUG_MSG((nxgep, DMA_CTL, "<== nxge_alloc_rx_buf_dma status 0x%08x", status)); return (status); } /*ARGSUSED*/ static void nxge_free_rx_buf_dma(p_nxge_t nxgep, p_nxge_dma_common_t dmap, uint32_t num_chunks) { int i; NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "==> nxge_free_rx_buf_dma: # of chunks %d", num_chunks)); if (dmap == 0) return; for (i = 0; i < num_chunks; i++) { NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "==> nxge_free_rx_buf_dma: chunk %d dmap 0x%llx", i, dmap)); nxge_dma_free_rx_data_buf(dmap++); } NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "==> nxge_free_rx_buf_dma")); } /*ARGSUSED*/ static nxge_status_t nxge_alloc_rx_cntl_dma(p_nxge_t nxgep, uint16_t dma_channel, p_nxge_dma_common_t *dmap, size_t size) { p_nxge_dma_common_t rx_dmap; nxge_status_t status = NXGE_OK; NXGE_DEBUG_MSG((nxgep, DMA_CTL, "==> nxge_alloc_rx_cntl_dma")); rx_dmap = (p_nxge_dma_common_t) KMEM_ZALLOC(sizeof (nxge_dma_common_t), KM_SLEEP); rx_dmap->contig_alloc_type = B_FALSE; rx_dmap->kmem_alloc_type = B_FALSE; status = nxge_dma_mem_alloc(nxgep, nxge_force_dma, &nxge_desc_dma_attr, size, &nxge_dev_desc_dma_acc_attr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, rx_dmap); if (status != NXGE_OK) { goto nxge_alloc_rx_cntl_dma_fail1; } *dmap = rx_dmap; goto nxge_alloc_rx_cntl_dma_exit; nxge_alloc_rx_cntl_dma_fail1: KMEM_FREE(rx_dmap, sizeof (nxge_dma_common_t)); nxge_alloc_rx_cntl_dma_exit: NXGE_DEBUG_MSG((nxgep, DMA_CTL, "<== nxge_alloc_rx_cntl_dma status 0x%08x", status)); return (status); } /*ARGSUSED*/ static void nxge_free_rx_cntl_dma(p_nxge_t nxgep, p_nxge_dma_common_t dmap) { NXGE_DEBUG_MSG((nxgep, DMA_CTL, "==> nxge_free_rx_cntl_dma")); if (dmap == 0) return; nxge_dma_mem_free(dmap); NXGE_DEBUG_MSG((nxgep, DMA_CTL, "<== nxge_free_rx_cntl_dma")); } typedef struct { size_t tx_size; size_t cr_size; size_t threshhold; } nxge_tdc_sizes_t; static nxge_status_t nxge_tdc_sizes( nxge_t *nxgep, nxge_tdc_sizes_t *sizes) { uint32_t threshhold; /* The bcopy() threshhold */ size_t tx_size; /* Transmit buffer size */ size_t cr_size; /* Completion ring size */ /* * Assume that each DMA channel will be configured with the * default transmit buffer size for copying transmit data. * (If a packet is bigger than this, it will not be copied.) */ if (nxgep->niu_type == N2_NIU) { threshhold = TX_BCOPY_SIZE; } else { threshhold = nxge_bcopy_thresh; } tx_size = nxge_tx_ring_size * threshhold; cr_size = nxge_tx_ring_size * sizeof (tx_desc_t); cr_size += sizeof (txdma_mailbox_t); #if defined(sun4v) && defined(NIU_LP_WORKAROUND) if (nxgep->niu_type == N2_NIU) { if (!ISP2(tx_size)) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_tdc_sizes: Tx size" " must be power of 2")); return (NXGE_ERROR); } if (tx_size > (1 << 22)) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_tdc_sizes: Tx size" " limited to 4M")); return (NXGE_ERROR); } if (cr_size < 0x2000) cr_size = 0x2000; } #endif sizes->threshhold = threshhold; sizes->tx_size = tx_size; sizes->cr_size = cr_size; return (NXGE_OK); } /* * nxge_alloc_txb * * Allocate buffers for an TDC. * * Arguments: * nxgep * channel The channel to map into our kernel space. * * Notes: * * NPI function calls: * * NXGE function calls: * * Registers accessed: * * Context: * * Taking apart: * * Open questions: * */ nxge_status_t nxge_alloc_txb( p_nxge_t nxgep, int channel) { nxge_dma_common_t **dma_buf_p; nxge_dma_common_t **dma_cntl_p; uint32_t *num_chunks; nxge_status_t status = NXGE_OK; nxge_tdc_sizes_t sizes; NXGE_DEBUG_MSG((nxgep, DMA_CTL, "==> nxge_alloc_tbb")); if (nxge_tdc_sizes(nxgep, &sizes) != NXGE_OK) return (NXGE_ERROR); /* * Allocate memory for transmit buffers and descriptor rings. * Replace these allocation functions with the interface functions * provided by the partition manager Real Soon Now. */ dma_buf_p = &nxgep->tx_buf_pool_p->dma_buf_pool_p[channel]; num_chunks = &nxgep->tx_buf_pool_p->num_chunks[channel]; dma_cntl_p = &nxgep->tx_cntl_pool_p->dma_buf_pool_p[channel]; /* * Allocate memory for transmit buffers and descriptor rings. * Replace allocation functions with interface functions provided * by the partition manager when it is available. * * Allocate memory for the transmit buffer pool. */ NXGE_DEBUG_MSG((nxgep, DMA_CTL, "sizes: tx: %ld, cr:%ld, th:%ld", sizes.tx_size, sizes.cr_size, sizes.threshhold)); *num_chunks = 0; status = nxge_alloc_tx_buf_dma(nxgep, channel, dma_buf_p, sizes.tx_size, sizes.threshhold, num_chunks); if (status != NXGE_OK) { cmn_err(CE_NOTE, "nxge_alloc_tx_buf_dma failed!"); return (status); } /* * Allocate memory for descriptor rings and mailbox. */ status = nxge_alloc_tx_cntl_dma(nxgep, channel, dma_cntl_p, sizes.cr_size); if (status != NXGE_OK) { nxge_free_tx_buf_dma(nxgep, *dma_buf_p, *num_chunks); cmn_err(CE_NOTE, "nxge_alloc_tx_cntl_dma failed!"); return (status); } return (NXGE_OK); } void nxge_free_txb( p_nxge_t nxgep, int channel) { nxge_dma_common_t *data; nxge_dma_common_t *control; uint32_t num_chunks; NXGE_DEBUG_MSG((nxgep, DMA_CTL, "==> nxge_free_txb")); data = nxgep->tx_buf_pool_p->dma_buf_pool_p[channel]; num_chunks = nxgep->tx_buf_pool_p->num_chunks[channel]; nxge_free_tx_buf_dma(nxgep, data, num_chunks); nxgep->tx_buf_pool_p->dma_buf_pool_p[channel] = 0; nxgep->tx_buf_pool_p->num_chunks[channel] = 0; control = nxgep->tx_cntl_pool_p->dma_buf_pool_p[channel]; nxge_free_tx_cntl_dma(nxgep, control); nxgep->tx_cntl_pool_p->dma_buf_pool_p[channel] = 0; KMEM_FREE(data, sizeof (nxge_dma_common_t) * NXGE_DMA_BLOCK); KMEM_FREE(control, sizeof (nxge_dma_common_t)); NXGE_DEBUG_MSG((nxgep, DMA_CTL, "<== nxge_free_txb")); } /* * nxge_alloc_tx_mem_pool * * This function allocates all of the per-port TDC control data structures. * The per-channel (TDC) data structures are allocated when needed. * * Arguments: * nxgep * * Notes: * * Context: * Any domain */ nxge_status_t nxge_alloc_tx_mem_pool(p_nxge_t nxgep) { nxge_hw_pt_cfg_t *p_cfgp; nxge_dma_pool_t *dma_poolp; nxge_dma_common_t **dma_buf_p; nxge_dma_pool_t *dma_cntl_poolp; nxge_dma_common_t **dma_cntl_p; uint32_t *num_chunks; /* per dma */ int tdc_max; NXGE_DEBUG_MSG((nxgep, MEM_CTL, "==> nxge_alloc_tx_mem_pool")); p_cfgp = &nxgep->pt_config.hw_config; tdc_max = NXGE_MAX_TDCS; /* * Allocate memory for each transmit DMA channel. */ dma_poolp = (p_nxge_dma_pool_t)KMEM_ZALLOC(sizeof (nxge_dma_pool_t), KM_SLEEP); dma_buf_p = (p_nxge_dma_common_t *)KMEM_ZALLOC( sizeof (p_nxge_dma_common_t) * tdc_max, KM_SLEEP); dma_cntl_poolp = (p_nxge_dma_pool_t) KMEM_ZALLOC(sizeof (nxge_dma_pool_t), KM_SLEEP); dma_cntl_p = (p_nxge_dma_common_t *)KMEM_ZALLOC( sizeof (p_nxge_dma_common_t) * tdc_max, KM_SLEEP); if (nxge_tx_ring_size > TDC_DEFAULT_MAX) { NXGE_DEBUG_MSG((nxgep, MEM_CTL, "nxge_alloc_tx_mem_pool: TDC too high %d, " "set to default %d", nxge_tx_ring_size, TDC_DEFAULT_MAX)); nxge_tx_ring_size = TDC_DEFAULT_MAX; } #if defined(sun4v) && defined(NIU_LP_WORKAROUND) /* * N2/NIU has limitation on the descriptor sizes (contiguous * memory allocation on data buffers to 4M (contig_mem_alloc) * and little endian for control buffers (must use the ddi/dki mem alloc * function). The transmit ring is limited to 8K (includes the * mailbox). */ if (nxgep->niu_type == N2_NIU) { if ((nxge_tx_ring_size > NXGE_NIU_CONTIG_TX_MAX) || (!ISP2(nxge_tx_ring_size))) { nxge_tx_ring_size = NXGE_NIU_CONTIG_TX_MAX; } } #endif nxgep->nxge_port_tx_ring_size = nxge_tx_ring_size; num_chunks = (uint32_t *)KMEM_ZALLOC( sizeof (uint32_t) * tdc_max, KM_SLEEP); dma_poolp->ndmas = p_cfgp->tdc.owned; dma_poolp->num_chunks = num_chunks; dma_poolp->dma_buf_pool_p = dma_buf_p; nxgep->tx_buf_pool_p = dma_poolp; dma_poolp->buf_allocated = B_TRUE; dma_cntl_poolp->ndmas = p_cfgp->tdc.owned; dma_cntl_poolp->dma_buf_pool_p = dma_cntl_p; nxgep->tx_cntl_pool_p = dma_cntl_poolp; dma_cntl_poolp->buf_allocated = B_TRUE; nxgep->tx_rings = KMEM_ZALLOC(sizeof (tx_rings_t), KM_SLEEP); nxgep->tx_rings->rings = KMEM_ZALLOC(sizeof (p_tx_ring_t) * tdc_max, KM_SLEEP); nxgep->tx_mbox_areas_p = KMEM_ZALLOC(sizeof (tx_mbox_areas_t), KM_SLEEP); nxgep->tx_mbox_areas_p->txmbox_areas_p = KMEM_ZALLOC(sizeof (p_tx_mbox_t) * tdc_max, KM_SLEEP); nxgep->tx_rings->ndmas = p_cfgp->tdc.owned; NXGE_DEBUG_MSG((nxgep, MEM_CTL, "==> nxge_alloc_tx_mem_pool: ndmas %d poolp->ndmas %d", tdc_max, dma_poolp->ndmas)); return (NXGE_OK); } nxge_status_t nxge_alloc_tx_buf_dma(p_nxge_t nxgep, uint16_t dma_channel, p_nxge_dma_common_t *dmap, size_t alloc_size, size_t block_size, uint32_t *num_chunks) { p_nxge_dma_common_t tx_dmap; nxge_status_t status = NXGE_OK; size_t total_alloc_size; size_t allocated = 0; int i, size_index, array_size; NXGE_DEBUG_MSG((nxgep, DMA_CTL, "==> nxge_alloc_tx_buf_dma")); tx_dmap = (p_nxge_dma_common_t) KMEM_ZALLOC(sizeof (nxge_dma_common_t) * NXGE_DMA_BLOCK, KM_SLEEP); total_alloc_size = alloc_size; i = 0; size_index = 0; array_size = sizeof (alloc_sizes) / sizeof (size_t); while ((size_index < array_size) && (alloc_sizes[size_index] < alloc_size)) size_index++; if (size_index >= array_size) { size_index = array_size - 1; } while ((allocated < total_alloc_size) && (size_index >= 0) && (i < NXGE_DMA_BLOCK)) { tx_dmap[i].dma_chunk_index = i; tx_dmap[i].block_size = block_size; tx_dmap[i].alength = alloc_sizes[size_index]; tx_dmap[i].orig_alength = tx_dmap[i].alength; tx_dmap[i].nblocks = alloc_sizes[size_index] / block_size; tx_dmap[i].dma_channel = dma_channel; tx_dmap[i].contig_alloc_type = B_FALSE; tx_dmap[i].kmem_alloc_type = B_FALSE; /* * N2/NIU: data buffers must be contiguous as the driver * needs to call Hypervisor api to set up * logical pages. */ if ((nxgep->niu_type == N2_NIU) && (NXGE_DMA_BLOCK == 1)) { tx_dmap[i].contig_alloc_type = B_TRUE; } status = nxge_dma_mem_alloc(nxgep, nxge_force_dma, &nxge_tx_dma_attr, tx_dmap[i].alength, &nxge_dev_buf_dma_acc_attr, DDI_DMA_WRITE | DDI_DMA_STREAMING, (p_nxge_dma_common_t)(&tx_dmap[i])); if (status != NXGE_OK) { size_index--; } else { i++; allocated += alloc_sizes[size_index]; } } if (allocated < total_alloc_size) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_alloc_tx_buf_dma: not enough channel %d: " "allocated 0x%x requested 0x%x", dma_channel, allocated, total_alloc_size)); status = NXGE_ERROR; goto nxge_alloc_tx_mem_fail1; } NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "==> nxge_alloc_tx_buf_dma: Allocated for channel %d: " "allocated 0x%x requested 0x%x", dma_channel, allocated, total_alloc_size)); *num_chunks = i; *dmap = tx_dmap; NXGE_DEBUG_MSG((nxgep, DMA_CTL, "==> nxge_alloc_tx_buf_dma dmap 0x%016llx num chunks %d", *dmap, i)); goto nxge_alloc_tx_mem_exit; nxge_alloc_tx_mem_fail1: KMEM_FREE(tx_dmap, sizeof (nxge_dma_common_t) * NXGE_DMA_BLOCK); nxge_alloc_tx_mem_exit: NXGE_DEBUG_MSG((nxgep, DMA_CTL, "<== nxge_alloc_tx_buf_dma status 0x%08x", status)); return (status); } /*ARGSUSED*/ static void nxge_free_tx_buf_dma(p_nxge_t nxgep, p_nxge_dma_common_t dmap, uint32_t num_chunks) { int i; NXGE_DEBUG_MSG((nxgep, MEM_CTL, "==> nxge_free_tx_buf_dma")); if (dmap == 0) return; for (i = 0; i < num_chunks; i++) { nxge_dma_mem_free(dmap++); } NXGE_DEBUG_MSG((nxgep, MEM_CTL, "<== nxge_free_tx_buf_dma")); } /*ARGSUSED*/ nxge_status_t nxge_alloc_tx_cntl_dma(p_nxge_t nxgep, uint16_t dma_channel, p_nxge_dma_common_t *dmap, size_t size) { p_nxge_dma_common_t tx_dmap; nxge_status_t status = NXGE_OK; NXGE_DEBUG_MSG((nxgep, DMA_CTL, "==> nxge_alloc_tx_cntl_dma")); tx_dmap = (p_nxge_dma_common_t) KMEM_ZALLOC(sizeof (nxge_dma_common_t), KM_SLEEP); tx_dmap->contig_alloc_type = B_FALSE; tx_dmap->kmem_alloc_type = B_FALSE; status = nxge_dma_mem_alloc(nxgep, nxge_force_dma, &nxge_desc_dma_attr, size, &nxge_dev_desc_dma_acc_attr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, tx_dmap); if (status != NXGE_OK) { goto nxge_alloc_tx_cntl_dma_fail1; } *dmap = tx_dmap; goto nxge_alloc_tx_cntl_dma_exit; nxge_alloc_tx_cntl_dma_fail1: KMEM_FREE(tx_dmap, sizeof (nxge_dma_common_t)); nxge_alloc_tx_cntl_dma_exit: NXGE_DEBUG_MSG((nxgep, DMA_CTL, "<== nxge_alloc_tx_cntl_dma status 0x%08x", status)); return (status); } /*ARGSUSED*/ static void nxge_free_tx_cntl_dma(p_nxge_t nxgep, p_nxge_dma_common_t dmap) { NXGE_DEBUG_MSG((nxgep, DMA_CTL, "==> nxge_free_tx_cntl_dma")); if (dmap == 0) return; nxge_dma_mem_free(dmap); NXGE_DEBUG_MSG((nxgep, DMA_CTL, "<== nxge_free_tx_cntl_dma")); } /* * nxge_free_tx_mem_pool * * This function frees all of the per-port TDC control data structures. * The per-channel (TDC) data structures are freed when the channel * is stopped. * * Arguments: * nxgep * * Notes: * * Context: * Any domain */ static void nxge_free_tx_mem_pool(p_nxge_t nxgep) { int tdc_max = NXGE_MAX_TDCS; NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "==> nxge_free_tx_mem_pool")); if (!nxgep->tx_buf_pool_p || !nxgep->tx_buf_pool_p->buf_allocated) { NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "<== nxge_free_tx_mem_pool " "(null tx buf pool or buf not allocated")); return; } if (!nxgep->tx_cntl_pool_p || !nxgep->tx_cntl_pool_p->buf_allocated) { NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "<== nxge_free_tx_mem_pool " "(null tx cntl buf pool or cntl buf not allocated")); return; } /* 1. Free the mailboxes. */ KMEM_FREE(nxgep->tx_mbox_areas_p->txmbox_areas_p, sizeof (p_tx_mbox_t) * tdc_max); KMEM_FREE(nxgep->tx_mbox_areas_p, sizeof (tx_mbox_areas_t)); nxgep->tx_mbox_areas_p = 0; /* 2. Free the transmit ring arrays. */ KMEM_FREE(nxgep->tx_rings->rings, sizeof (p_tx_ring_t) * tdc_max); KMEM_FREE(nxgep->tx_rings, sizeof (tx_rings_t)); nxgep->tx_rings = 0; /* 3. Free the completion ring data structures. */ KMEM_FREE(nxgep->tx_cntl_pool_p->dma_buf_pool_p, sizeof (p_nxge_dma_common_t) * tdc_max); KMEM_FREE(nxgep->tx_cntl_pool_p, sizeof (nxge_dma_pool_t)); nxgep->tx_cntl_pool_p = 0; /* 4. Free the data ring data structures. */ KMEM_FREE(nxgep->tx_buf_pool_p->num_chunks, sizeof (uint32_t) * tdc_max); KMEM_FREE(nxgep->tx_buf_pool_p->dma_buf_pool_p, sizeof (p_nxge_dma_common_t) * tdc_max); KMEM_FREE(nxgep->tx_buf_pool_p, sizeof (nxge_dma_pool_t)); nxgep->tx_buf_pool_p = 0; NXGE_DEBUG_MSG((nxgep, MEM2_CTL, "<== nxge_free_tx_mem_pool")); } /*ARGSUSED*/ static nxge_status_t nxge_dma_mem_alloc(p_nxge_t nxgep, dma_method_t method, struct ddi_dma_attr *dma_attrp, size_t length, ddi_device_acc_attr_t *acc_attr_p, uint_t xfer_flags, p_nxge_dma_common_t dma_p) { caddr_t kaddrp; int ddi_status = DDI_SUCCESS; boolean_t contig_alloc_type; boolean_t kmem_alloc_type; contig_alloc_type = dma_p->contig_alloc_type; if (contig_alloc_type && (nxgep->niu_type != N2_NIU)) { /* * contig_alloc_type for contiguous memory only allowed * for N2/NIU. */ NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_dma_mem_alloc: alloc type not allowed (%d)", dma_p->contig_alloc_type)); return (NXGE_ERROR | NXGE_DDI_FAILED); } dma_p->dma_handle = NULL; dma_p->acc_handle = NULL; dma_p->kaddrp = dma_p->last_kaddrp = NULL; dma_p->first_ioaddr_pp = dma_p->last_ioaddr_pp = NULL; ddi_status = ddi_dma_alloc_handle(nxgep->dip, dma_attrp, DDI_DMA_DONTWAIT, NULL, &dma_p->dma_handle); if (ddi_status != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_dma_mem_alloc:ddi_dma_alloc_handle failed.")); return (NXGE_ERROR | NXGE_DDI_FAILED); } kmem_alloc_type = dma_p->kmem_alloc_type; switch (contig_alloc_type) { case B_FALSE: switch (kmem_alloc_type) { case B_FALSE: ddi_status = ddi_dma_mem_alloc(dma_p->dma_handle, length, acc_attr_p, xfer_flags, DDI_DMA_DONTWAIT, 0, &kaddrp, &dma_p->alength, &dma_p->acc_handle); if (ddi_status != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_dma_mem_alloc: " "ddi_dma_mem_alloc failed")); ddi_dma_free_handle(&dma_p->dma_handle); dma_p->dma_handle = NULL; return (NXGE_ERROR | NXGE_DDI_FAILED); } if (dma_p->alength < length) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_dma_mem_alloc:di_dma_mem_alloc " "< length.")); ddi_dma_mem_free(&dma_p->acc_handle); ddi_dma_free_handle(&dma_p->dma_handle); dma_p->acc_handle = NULL; dma_p->dma_handle = NULL; return (NXGE_ERROR); } ddi_status = ddi_dma_addr_bind_handle(dma_p->dma_handle, NULL, kaddrp, dma_p->alength, xfer_flags, DDI_DMA_DONTWAIT, 0, &dma_p->dma_cookie, &dma_p->ncookies); if (ddi_status != DDI_DMA_MAPPED) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_dma_mem_alloc: ddi_dma_addr_bind " "failed " "(staus 0x%x ncookies %d.)", ddi_status, dma_p->ncookies)); if (dma_p->acc_handle) { ddi_dma_mem_free(&dma_p->acc_handle); dma_p->acc_handle = NULL; } ddi_dma_free_handle(&dma_p->dma_handle); dma_p->dma_handle = NULL; return (NXGE_ERROR | NXGE_DDI_FAILED); } if (dma_p->ncookies != 1) { NXGE_DEBUG_MSG((nxgep, DMA_CTL, "nxge_dma_mem_alloc:ddi_dma_addr_bind " "> 1 cookie" "(staus 0x%x ncookies %d.)", ddi_status, dma_p->ncookies)); (void) ddi_dma_unbind_handle(dma_p->dma_handle); if (dma_p->acc_handle) { ddi_dma_mem_free(&dma_p->acc_handle); dma_p->acc_handle = NULL; } ddi_dma_free_handle(&dma_p->dma_handle); dma_p->dma_handle = NULL; dma_p->acc_handle = NULL; return (NXGE_ERROR); } break; case B_TRUE: kaddrp = KMEM_ALLOC(length, KM_NOSLEEP); if (kaddrp == NULL) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_dma_mem_alloc:ddi_dma_mem_alloc " "kmem alloc failed")); return (NXGE_ERROR); } dma_p->alength = length; ddi_status = ddi_dma_addr_bind_handle(dma_p->dma_handle, NULL, kaddrp, dma_p->alength, xfer_flags, DDI_DMA_DONTWAIT, 0, &dma_p->dma_cookie, &dma_p->ncookies); if (ddi_status != DDI_DMA_MAPPED) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_dma_mem_alloc:ddi_dma_addr_bind: " "(kmem_alloc) failed kaddrp $%p length %d " "(staus 0x%x (%d) ncookies %d.)", kaddrp, length, ddi_status, ddi_status, dma_p->ncookies)); KMEM_FREE(kaddrp, length); dma_p->acc_handle = NULL; ddi_dma_free_handle(&dma_p->dma_handle); dma_p->dma_handle = NULL; dma_p->kaddrp = NULL; return (NXGE_ERROR | NXGE_DDI_FAILED); } if (dma_p->ncookies != 1) { NXGE_DEBUG_MSG((nxgep, DMA_CTL, "nxge_dma_mem_alloc:ddi_dma_addr_bind " "(kmem_alloc) > 1 cookie" "(staus 0x%x ncookies %d.)", ddi_status, dma_p->ncookies)); (void) ddi_dma_unbind_handle(dma_p->dma_handle); KMEM_FREE(kaddrp, length); ddi_dma_free_handle(&dma_p->dma_handle); dma_p->dma_handle = NULL; dma_p->acc_handle = NULL; dma_p->kaddrp = NULL; return (NXGE_ERROR); } dma_p->kaddrp = kaddrp; NXGE_DEBUG_MSG((nxgep, NXGE_ERR_CTL, "nxge_dma_mem_alloc: kmem_alloc dmap $%p " "kaddr $%p alength %d", dma_p, kaddrp, dma_p->alength)); break; } break; #if defined(sun4v) && defined(NIU_LP_WORKAROUND) case B_TRUE: kaddrp = (caddr_t)contig_mem_alloc(length); if (kaddrp == NULL) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_dma_mem_alloc:contig_mem_alloc failed.")); ddi_dma_free_handle(&dma_p->dma_handle); return (NXGE_ERROR | NXGE_DDI_FAILED); } dma_p->alength = length; ddi_status = ddi_dma_addr_bind_handle(dma_p->dma_handle, NULL, kaddrp, dma_p->alength, xfer_flags, DDI_DMA_DONTWAIT, 0, &dma_p->dma_cookie, &dma_p->ncookies); if (ddi_status != DDI_DMA_MAPPED) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_dma_mem_alloc:di_dma_addr_bind failed " "(status 0x%x ncookies %d.)", ddi_status, dma_p->ncookies)); NXGE_DEBUG_MSG((nxgep, DMA_CTL, "==> nxge_dma_mem_alloc: (not mapped)" "length %lu (0x%x) " "free contig kaddrp $%p " "va_to_pa $%p", length, length, kaddrp, va_to_pa(kaddrp))); contig_mem_free((void *)kaddrp, length); ddi_dma_free_handle(&dma_p->dma_handle); dma_p->dma_handle = NULL; dma_p->acc_handle = NULL; dma_p->alength = NULL; dma_p->kaddrp = NULL; return (NXGE_ERROR | NXGE_DDI_FAILED); } if (dma_p->ncookies != 1 || (dma_p->dma_cookie.dmac_laddress == NULL)) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_dma_mem_alloc:di_dma_addr_bind > 1 " "cookie or " "dmac_laddress is NULL $%p size %d " " (status 0x%x ncookies %d.)", ddi_status, dma_p->dma_cookie.dmac_laddress, dma_p->dma_cookie.dmac_size, dma_p->ncookies)); contig_mem_free((void *)kaddrp, length); (void) ddi_dma_unbind_handle(dma_p->dma_handle); ddi_dma_free_handle(&dma_p->dma_handle); dma_p->alength = 0; dma_p->dma_handle = NULL; dma_p->acc_handle = NULL; dma_p->kaddrp = NULL; return (NXGE_ERROR | NXGE_DDI_FAILED); } break; #else case B_TRUE: NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_dma_mem_alloc: invalid alloc type for !sun4v")); return (NXGE_ERROR | NXGE_DDI_FAILED); #endif } dma_p->kaddrp = kaddrp; dma_p->last_kaddrp = (unsigned char *)kaddrp + dma_p->alength - RXBUF_64B_ALIGNED; #if defined(__i386) dma_p->ioaddr_pp = (unsigned char *)(uint32_t)dma_p->dma_cookie.dmac_laddress; #else dma_p->ioaddr_pp = (unsigned char *)dma_p->dma_cookie.dmac_laddress; #endif dma_p->last_ioaddr_pp = #if defined(__i386) (unsigned char *)(uint32_t)dma_p->dma_cookie.dmac_laddress + #else (unsigned char *)dma_p->dma_cookie.dmac_laddress + #endif dma_p->alength - RXBUF_64B_ALIGNED; NPI_DMA_ACC_HANDLE_SET(dma_p, dma_p->acc_handle); #if defined(sun4v) && defined(NIU_LP_WORKAROUND) dma_p->orig_ioaddr_pp = (unsigned char *)dma_p->dma_cookie.dmac_laddress; dma_p->orig_alength = length; dma_p->orig_kaddrp = kaddrp; dma_p->orig_vatopa = (uint64_t)va_to_pa(kaddrp); #endif NXGE_DEBUG_MSG((nxgep, DMA_CTL, "<== nxge_dma_mem_alloc: " "dma buffer allocated: dma_p $%p " "return dmac_ladress from cookie $%p cookie dmac_size %d " "dma_p->ioaddr_p $%p " "dma_p->orig_ioaddr_p $%p " "orig_vatopa $%p " "alength %d (0x%x) " "kaddrp $%p " "length %d (0x%x)", dma_p, dma_p->dma_cookie.dmac_laddress, dma_p->dma_cookie.dmac_size, dma_p->ioaddr_pp, dma_p->orig_ioaddr_pp, dma_p->orig_vatopa, dma_p->alength, dma_p->alength, kaddrp, length, length)); return (NXGE_OK); } static void nxge_dma_mem_free(p_nxge_dma_common_t dma_p) { if (dma_p->dma_handle != NULL) { if (dma_p->ncookies) { (void) ddi_dma_unbind_handle(dma_p->dma_handle); dma_p->ncookies = 0; } ddi_dma_free_handle(&dma_p->dma_handle); dma_p->dma_handle = NULL; } if (dma_p->acc_handle != NULL) { ddi_dma_mem_free(&dma_p->acc_handle); dma_p->acc_handle = NULL; NPI_DMA_ACC_HANDLE_SET(dma_p, NULL); } #if defined(sun4v) && defined(NIU_LP_WORKAROUND) if (dma_p->contig_alloc_type && dma_p->orig_kaddrp && dma_p->orig_alength) { NXGE_DEBUG_MSG((NULL, DMA_CTL, "nxge_dma_mem_free: " "kaddrp $%p (orig_kaddrp $%p)" "mem type %d ", "orig_alength %d " "alength 0x%x (%d)", dma_p->kaddrp, dma_p->orig_kaddrp, dma_p->contig_alloc_type, dma_p->orig_alength, dma_p->alength, dma_p->alength)); contig_mem_free(dma_p->orig_kaddrp, dma_p->orig_alength); dma_p->orig_alength = NULL; dma_p->orig_kaddrp = NULL; dma_p->contig_alloc_type = B_FALSE; } #endif dma_p->kaddrp = NULL; dma_p->alength = NULL; } static void nxge_dma_free_rx_data_buf(p_nxge_dma_common_t dma_p) { uint64_t kaddr; uint32_t buf_size; NXGE_DEBUG_MSG((NULL, DMA_CTL, "==> nxge_dma_free_rx_data_buf")); if (dma_p->dma_handle != NULL) { if (dma_p->ncookies) { (void) ddi_dma_unbind_handle(dma_p->dma_handle); dma_p->ncookies = 0; } ddi_dma_free_handle(&dma_p->dma_handle); dma_p->dma_handle = NULL; } if (dma_p->acc_handle != NULL) { ddi_dma_mem_free(&dma_p->acc_handle); dma_p->acc_handle = NULL; NPI_DMA_ACC_HANDLE_SET(dma_p, NULL); } NXGE_DEBUG_MSG((NULL, DMA_CTL, "==> nxge_dma_free_rx_data_buf: dmap $%p buf_alloc_state %d", dma_p, dma_p->buf_alloc_state)); if (!(dma_p->buf_alloc_state & BUF_ALLOCATED_WAIT_FREE)) { NXGE_DEBUG_MSG((NULL, DMA_CTL, "<== nxge_dma_free_rx_data_buf: " "outstanding data buffers")); return; } #if defined(sun4v) && defined(NIU_LP_WORKAROUND) if (dma_p->contig_alloc_type && dma_p->orig_kaddrp && dma_p->orig_alength) { NXGE_DEBUG_MSG((NULL, DMA_CTL, "nxge_dma_free_rx_data_buf: " "kaddrp $%p (orig_kaddrp $%p)" "mem type %d ", "orig_alength %d " "alength 0x%x (%d)", dma_p->kaddrp, dma_p->orig_kaddrp, dma_p->contig_alloc_type, dma_p->orig_alength, dma_p->alength, dma_p->alength)); kaddr = (uint64_t)dma_p->orig_kaddrp; buf_size = dma_p->orig_alength; nxge_free_buf(CONTIG_MEM_ALLOC, kaddr, buf_size); dma_p->orig_alength = NULL; dma_p->orig_kaddrp = NULL; dma_p->contig_alloc_type = B_FALSE; dma_p->kaddrp = NULL; dma_p->alength = NULL; return; } #endif if (dma_p->kmem_alloc_type) { NXGE_DEBUG_MSG((NULL, DMA_CTL, "nxge_dma_free_rx_data_buf: free kmem " "kaddrp $%p (orig_kaddrp $%p)" "alloc type %d " "orig_alength %d " "alength 0x%x (%d)", dma_p->kaddrp, dma_p->orig_kaddrp, dma_p->kmem_alloc_type, dma_p->orig_alength, dma_p->alength, dma_p->alength)); #if defined(__i386) kaddr = (uint64_t)(uint32_t)dma_p->kaddrp; #else kaddr = (uint64_t)dma_p->kaddrp; #endif buf_size = dma_p->orig_alength; NXGE_DEBUG_MSG((NULL, DMA_CTL, "nxge_dma_free_rx_data_buf: free dmap $%p " "kaddr $%p buf_size %d", dma_p, kaddr, buf_size)); nxge_free_buf(KMEM_ALLOC, kaddr, buf_size); dma_p->alength = 0; dma_p->orig_alength = 0; dma_p->kaddrp = NULL; dma_p->kmem_alloc_type = B_FALSE; } NXGE_DEBUG_MSG((NULL, DMA_CTL, "<== nxge_dma_free_rx_data_buf")); } /* * nxge_m_start() -- start transmitting and receiving. * * This function is called by the MAC layer when the first * stream is open to prepare the hardware ready for sending * and transmitting packets. */ static int nxge_m_start(void *arg) { p_nxge_t nxgep = (p_nxge_t)arg; NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_start")); /* * Are we already started? */ if (nxgep->nxge_mac_state == NXGE_MAC_STARTED) { return (0); } if (nxge_peu_reset_enable && !nxgep->nxge_link_poll_timerid) { (void) nxge_link_monitor(nxgep, LINK_MONITOR_START); } /* * Make sure RX MAC is disabled while we initialize. */ if (!isLDOMguest(nxgep)) { (void) nxge_rx_mac_disable(nxgep); } /* * Grab the global lock. */ MUTEX_ENTER(nxgep->genlock); /* * Initialize the driver and hardware. */ if (nxge_init(nxgep) != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_m_start: initialization failed")); MUTEX_EXIT(nxgep->genlock); return (EIO); } /* * Start timer to check the system error and tx hangs */ if (!isLDOMguest(nxgep)) nxgep->nxge_timerid = nxge_start_timer(nxgep, nxge_check_hw_state, NXGE_CHECK_TIMER); #if defined(sun4v) else nxge_hio_start_timer(nxgep); #endif nxgep->link_notify = B_TRUE; nxgep->nxge_mac_state = NXGE_MAC_STARTED; /* * Let the global lock go, since we are intialized. */ MUTEX_EXIT(nxgep->genlock); /* * Let the MAC start receiving packets, now that * we are initialized. */ if (!isLDOMguest(nxgep)) { if (nxge_rx_mac_enable(nxgep) != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_m_start: enable of RX mac failed")); return (EIO); } /* * Enable hardware interrupts. */ nxge_intr_hw_enable(nxgep); } #if defined(sun4v) else { /* * In guest domain we enable RDCs and their interrupts as * the last step. */ if (nxge_hio_rdc_enable(nxgep) != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_m_start: enable of RDCs failed")); return (EIO); } if (nxge_hio_rdc_intr_arm(nxgep, B_TRUE) != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_m_start: intrs enable for RDCs failed")); return (EIO); } } #endif NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_m_start")); return (0); } static boolean_t nxge_check_groups_stopped(p_nxge_t nxgep) { int i; for (i = 0; i < NXGE_MAX_RDC_GROUPS; i++) { if (nxgep->rx_hio_groups[i].started) return (B_FALSE); } return (B_TRUE); } /* * nxge_m_stop(): stop transmitting and receiving. */ static void nxge_m_stop(void *arg) { p_nxge_t nxgep = (p_nxge_t)arg; boolean_t groups_stopped; NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_stop")); /* * Are the groups stopped? */ groups_stopped = nxge_check_groups_stopped(nxgep); ASSERT(groups_stopped == B_TRUE); if (!groups_stopped) { cmn_err(CE_WARN, "nxge(%d): groups are not stopped!\n", nxgep->instance); return; } if (!isLDOMguest(nxgep)) { /* * Disable the RX mac. */ (void) nxge_rx_mac_disable(nxgep); /* * Wait for the IPP to drain. */ (void) nxge_ipp_drain(nxgep); /* * Disable hardware interrupts. */ nxge_intr_hw_disable(nxgep); } #if defined(sun4v) else { (void) nxge_hio_rdc_intr_arm(nxgep, B_FALSE); } #endif /* * Grab the global lock. */ MUTEX_ENTER(nxgep->genlock); nxgep->nxge_mac_state = NXGE_MAC_STOPPING; if (nxgep->nxge_timerid) { nxge_stop_timer(nxgep, nxgep->nxge_timerid); nxgep->nxge_timerid = 0; } /* * Clean up. */ nxge_uninit(nxgep); nxgep->nxge_mac_state = NXGE_MAC_STOPPED; /* * Let go of the global lock. */ MUTEX_EXIT(nxgep->genlock); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_m_stop")); } static int nxge_m_multicst(void *arg, boolean_t add, const uint8_t *mca) { p_nxge_t nxgep = (p_nxge_t)arg; struct ether_addr addrp; NXGE_DEBUG_MSG((nxgep, MAC_CTL, "==> nxge_m_multicst: add %d", add)); bcopy(mca, (uint8_t *)&addrp, ETHERADDRL); if (add) { if (nxge_add_mcast_addr(nxgep, &addrp)) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_m_multicst: add multicast failed")); return (EINVAL); } } else { if (nxge_del_mcast_addr(nxgep, &addrp)) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_m_multicst: del multicast failed")); return (EINVAL); } } NXGE_DEBUG_MSG((nxgep, MAC_CTL, "<== nxge_m_multicst")); return (0); } static int nxge_m_promisc(void *arg, boolean_t on) { p_nxge_t nxgep = (p_nxge_t)arg; NXGE_DEBUG_MSG((nxgep, MAC_CTL, "==> nxge_m_promisc: on %d", on)); if (nxge_set_promisc(nxgep, on)) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_m_promisc: set promisc failed")); return (EINVAL); } NXGE_DEBUG_MSG((nxgep, MAC_CTL, "<== nxge_m_promisc: on %d", on)); return (0); } static void nxge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp) { p_nxge_t nxgep = (p_nxge_t)arg; struct iocblk *iocp; boolean_t need_privilege; int err; int cmd; NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_ioctl")); iocp = (struct iocblk *)mp->b_rptr; iocp->ioc_error = 0; need_privilege = B_TRUE; cmd = iocp->ioc_cmd; NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_ioctl: cmd 0x%08x", cmd)); switch (cmd) { default: miocnak(wq, mp, 0, EINVAL); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_m_ioctl: invalid")); return; case LB_GET_INFO_SIZE: case LB_GET_INFO: case LB_GET_MODE: need_privilege = B_FALSE; break; case LB_SET_MODE: break; case NXGE_GET_MII: case NXGE_PUT_MII: case NXGE_GET64: case NXGE_PUT64: case NXGE_GET_TX_RING_SZ: case NXGE_GET_TX_DESC: case NXGE_TX_SIDE_RESET: case NXGE_RX_SIDE_RESET: case NXGE_GLOBAL_RESET: case NXGE_RESET_MAC: case NXGE_TX_REGS_DUMP: case NXGE_RX_REGS_DUMP: case NXGE_INT_REGS_DUMP: case NXGE_VIR_INT_REGS_DUMP: case NXGE_PUT_TCAM: case NXGE_GET_TCAM: case NXGE_RTRACE: case NXGE_RDUMP: need_privilege = B_FALSE; break; case NXGE_INJECT_ERR: cmn_err(CE_NOTE, "!nxge_m_ioctl: Inject error\n"); nxge_err_inject(nxgep, wq, mp); break; } if (need_privilege) { err = secpolicy_net_config(iocp->ioc_cr, B_FALSE); if (err != 0) { miocnak(wq, mp, 0, err); NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_m_ioctl: no priv")); return; } } switch (cmd) { case LB_GET_MODE: case LB_SET_MODE: case LB_GET_INFO_SIZE: case LB_GET_INFO: nxge_loopback_ioctl(nxgep, wq, mp, iocp); break; case NXGE_GET_MII: case NXGE_PUT_MII: case NXGE_PUT_TCAM: case NXGE_GET_TCAM: case NXGE_GET64: case NXGE_PUT64: case NXGE_GET_TX_RING_SZ: case NXGE_GET_TX_DESC: case NXGE_TX_SIDE_RESET: case NXGE_RX_SIDE_RESET: case NXGE_GLOBAL_RESET: case NXGE_RESET_MAC: case NXGE_TX_REGS_DUMP: case NXGE_RX_REGS_DUMP: case NXGE_INT_REGS_DUMP: case NXGE_VIR_INT_REGS_DUMP: NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_ioctl: cmd 0x%x", cmd)); nxge_hw_ioctl(nxgep, wq, mp, iocp); break; } NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_m_ioctl")); } extern void nxge_rx_hw_blank(void *arg, time_t ticks, uint_t count); void nxge_mmac_kstat_update(p_nxge_t nxgep, int slot, boolean_t factory) { p_nxge_mmac_stats_t mmac_stats; int i; nxge_mmac_t *mmac_info; mmac_info = &nxgep->nxge_mmac_info; mmac_stats = &nxgep->statsp->mmac_stats; mmac_stats->mmac_max_cnt = mmac_info->num_mmac; mmac_stats->mmac_avail_cnt = mmac_info->naddrfree; for (i = 0; i < ETHERADDRL; i++) { if (factory) { mmac_stats->mmac_avail_pool[slot-1].ether_addr_octet[i] = mmac_info->factory_mac_pool[slot][ (ETHERADDRL-1) - i]; } else { mmac_stats->mmac_avail_pool[slot-1].ether_addr_octet[i] = mmac_info->mac_pool[slot].addr[ (ETHERADDRL - 1) - i]; } } } /* * nxge_altmac_set() -- Set an alternate MAC address */ static int nxge_altmac_set(p_nxge_t nxgep, uint8_t *maddr, int slot, int rdctbl, boolean_t usetbl) { uint8_t addrn; uint8_t portn; npi_mac_addr_t altmac; hostinfo_t mac_rdc; p_nxge_class_pt_cfg_t clscfgp; altmac.w2 = ((uint16_t)maddr[0] << 8) | ((uint16_t)maddr[1] & 0x0ff); altmac.w1 = ((uint16_t)maddr[2] << 8) | ((uint16_t)maddr[3] & 0x0ff); altmac.w0 = ((uint16_t)maddr[4] << 8) | ((uint16_t)maddr[5] & 0x0ff); portn = nxgep->mac.portnum; addrn = (uint8_t)slot - 1; if (npi_mac_altaddr_entry(nxgep->npi_handle, OP_SET, nxgep->function_num, addrn, &altmac) != NPI_SUCCESS) return (EIO); /* * Set the rdc table number for the host info entry * for this mac address slot. */ clscfgp = (p_nxge_class_pt_cfg_t)&nxgep->class_config; mac_rdc.value = 0; if (usetbl) mac_rdc.bits.w0.rdc_tbl_num = rdctbl; else mac_rdc.bits.w0.rdc_tbl_num = clscfgp->mac_host_info[addrn].rdctbl; mac_rdc.bits.w0.mac_pref = clscfgp->mac_host_info[addrn].mpr_npr; if (npi_mac_hostinfo_entry(nxgep->npi_handle, OP_SET, nxgep->function_num, addrn, &mac_rdc) != NPI_SUCCESS) { return (EIO); } /* * Enable comparison with the alternate MAC address. * While the first alternate addr is enabled by bit 1 of register * BMAC_ALTAD_CMPEN, it is enabled by bit 0 of register * XMAC_ADDR_CMPEN, so slot needs to be converted to addrn * accordingly before calling npi_mac_altaddr_entry. */ if (portn == XMAC_PORT_0 || portn == XMAC_PORT_1) addrn = (uint8_t)slot - 1; else addrn = (uint8_t)slot; if (npi_mac_altaddr_enable(nxgep->npi_handle, nxgep->function_num, addrn) != NPI_SUCCESS) { return (EIO); } return (0); } /* * nxeg_m_mmac_add_g() - find an unused address slot, set the address * value to the one specified, enable the port to start filtering on * the new MAC address. Returns 0 on success. */ int nxge_m_mmac_add_g(void *arg, const uint8_t *maddr, int rdctbl, boolean_t usetbl) { p_nxge_t nxgep = arg; int slot; nxge_mmac_t *mmac_info; int err; nxge_status_t status; mutex_enter(nxgep->genlock); /* * Make sure that nxge is initialized, if _start() has * not been called. */ if (!(nxgep->drv_state & STATE_HW_INITIALIZED)) { status = nxge_init(nxgep); if (status != NXGE_OK) { mutex_exit(nxgep->genlock); return (ENXIO); } } mmac_info = &nxgep->nxge_mmac_info; if (mmac_info->naddrfree == 0) { mutex_exit(nxgep->genlock); return (ENOSPC); } /* * Search for the first available slot. Because naddrfree * is not zero, we are guaranteed to find one. * Each of the first two ports of Neptune has 16 alternate * MAC slots but only the first 7 (of 15) slots have assigned factory * MAC addresses. We first search among the slots without bundled * factory MACs. If we fail to find one in that range, then we * search the slots with bundled factory MACs. A factory MAC * will be wasted while the slot is used with a user MAC address. * But the slot could be used by factory MAC again after calling * nxge_m_mmac_remove and nxge_m_mmac_reserve. */ for (slot = 0; slot <= mmac_info->num_mmac; slot++) { if (!(mmac_info->mac_pool[slot].flags & MMAC_SLOT_USED)) break; } ASSERT(slot <= mmac_info->num_mmac); if ((err = nxge_altmac_set(nxgep, (uint8_t *)maddr, slot, rdctbl, usetbl)) != 0) { mutex_exit(nxgep->genlock); return (err); } bcopy(maddr, mmac_info->mac_pool[slot].addr, ETHERADDRL); mmac_info->mac_pool[slot].flags |= MMAC_SLOT_USED; mmac_info->mac_pool[slot].flags &= ~MMAC_VENDOR_ADDR; mmac_info->naddrfree--; nxge_mmac_kstat_update(nxgep, slot, B_FALSE); mutex_exit(nxgep->genlock); return (0); } /* * Remove the specified mac address and update the HW not to filter * the mac address anymore. */ int nxge_m_mmac_remove(void *arg, int slot) { p_nxge_t nxgep = arg; nxge_mmac_t *mmac_info; uint8_t addrn; uint8_t portn; int err = 0; nxge_status_t status; mutex_enter(nxgep->genlock); /* * Make sure that nxge is initialized, if _start() has * not been called. */ if (!(nxgep->drv_state & STATE_HW_INITIALIZED)) { status = nxge_init(nxgep); if (status != NXGE_OK) { mutex_exit(nxgep->genlock); return (ENXIO); } } mmac_info = &nxgep->nxge_mmac_info; if (slot < 1 || slot > mmac_info->num_mmac) { mutex_exit(nxgep->genlock); return (EINVAL); } portn = nxgep->mac.portnum; if (portn == XMAC_PORT_0 || portn == XMAC_PORT_1) addrn = (uint8_t)slot - 1; else addrn = (uint8_t)slot; if (mmac_info->mac_pool[slot].flags & MMAC_SLOT_USED) { if (npi_mac_altaddr_disable(nxgep->npi_handle, portn, addrn) == NPI_SUCCESS) { mmac_info->naddrfree++; mmac_info->mac_pool[slot].flags &= ~MMAC_SLOT_USED; /* * Regardless if the MAC we just stopped filtering * is a user addr or a facory addr, we must set * the MMAC_VENDOR_ADDR flag if this slot has an * associated factory MAC to indicate that a factory * MAC is available. */ if (slot <= mmac_info->num_factory_mmac) { mmac_info->mac_pool[slot].flags |= MMAC_VENDOR_ADDR; } /* * Clear mac_pool[slot].addr so that kstat shows 0 * alternate MAC address if the slot is not used. * (But nxge_m_mmac_get returns the factory MAC even * when the slot is not used!) */ bzero(mmac_info->mac_pool[slot].addr, ETHERADDRL); nxge_mmac_kstat_update(nxgep, slot, B_FALSE); } else { err = EIO; } } else { err = EINVAL; } mutex_exit(nxgep->genlock); return (err); } /* * The callback to query all the factory addresses. naddr must be the same as * the number of factory addresses (returned by MAC_CAPAB_MULTIFACTADDR), and * mcm_addr is the space allocated for keep all the addresses, whose size is * naddr * MAXMACADDRLEN. */ static void nxge_m_getfactaddr(void *arg, uint_t naddr, uint8_t *addr) { nxge_t *nxgep = arg; nxge_mmac_t *mmac_info; int i; mutex_enter(nxgep->genlock); mmac_info = &nxgep->nxge_mmac_info; ASSERT(naddr == mmac_info->num_factory_mmac); for (i = 0; i < naddr; i++) { bcopy(mmac_info->factory_mac_pool[i + 1], addr + i * MAXMACADDRLEN, ETHERADDRL); } mutex_exit(nxgep->genlock); } static boolean_t nxge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data) { nxge_t *nxgep = arg; uint32_t *txflags = cap_data; switch (cap) { case MAC_CAPAB_HCKSUM: NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_getcapab: checksum %d", nxge_cksum_offload)); if (nxge_cksum_offload <= 1) { *txflags = HCKSUM_INET_PARTIAL; } break; case MAC_CAPAB_MULTIFACTADDR: { mac_capab_multifactaddr_t *mfacp = cap_data; if (!isLDOMguest(nxgep)) { mutex_enter(nxgep->genlock); mfacp->mcm_naddr = nxgep->nxge_mmac_info.num_factory_mmac; mfacp->mcm_getaddr = nxge_m_getfactaddr; mutex_exit(nxgep->genlock); } break; } case MAC_CAPAB_LSO: { mac_capab_lso_t *cap_lso = cap_data; if (nxgep->soft_lso_enable) { if (nxge_cksum_offload <= 1) { cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4; if (nxge_lso_max > NXGE_LSO_MAXLEN) { nxge_lso_max = NXGE_LSO_MAXLEN; } cap_lso->lso_basic_tcp_ipv4.lso_max = nxge_lso_max; } break; } else { return (B_FALSE); } } case MAC_CAPAB_RINGS: { mac_capab_rings_t *cap_rings = cap_data; p_nxge_hw_pt_cfg_t p_cfgp = &nxgep->pt_config.hw_config; mutex_enter(nxgep->genlock); if (cap_rings->mr_type == MAC_RING_TYPE_RX) { if (isLDOMguest(nxgep)) { cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC; cap_rings->mr_rnum = NXGE_HIO_SHARE_MAX_CHANNELS; cap_rings->mr_rget = nxge_fill_ring; cap_rings->mr_gnum = 1; cap_rings->mr_gget = nxge_hio_group_get; cap_rings->mr_gaddring = NULL; cap_rings->mr_gremring = NULL; } else { /* * Service Domain. */ cap_rings->mr_group_type = MAC_GROUP_TYPE_DYNAMIC; cap_rings->mr_rnum = p_cfgp->max_rdcs; cap_rings->mr_rget = nxge_fill_ring; cap_rings->mr_gnum = p_cfgp->max_rdc_grpids; cap_rings->mr_gget = nxge_hio_group_get; cap_rings->mr_gaddring = nxge_group_add_ring; cap_rings->mr_gremring = nxge_group_rem_ring; } NXGE_DEBUG_MSG((nxgep, RX_CTL, "==> nxge_m_getcapab: rx nrings[%d] ngroups[%d]", p_cfgp->max_rdcs, p_cfgp->max_rdc_grpids)); } else { /* * TX Rings. */ if (isLDOMguest(nxgep)) { cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC; cap_rings->mr_rnum = NXGE_HIO_SHARE_MAX_CHANNELS; cap_rings->mr_rget = nxge_fill_ring; cap_rings->mr_gnum = 0; cap_rings->mr_gget = NULL; cap_rings->mr_gaddring = NULL; cap_rings->mr_gremring = NULL; } else { /* * Service Domain. */ cap_rings->mr_group_type = MAC_GROUP_TYPE_DYNAMIC; cap_rings->mr_rnum = p_cfgp->tdc.count; cap_rings->mr_rget = nxge_fill_ring; /* * Share capable. * * Do not report the default group: hence -1 */ cap_rings->mr_gnum = NXGE_MAX_TDC_GROUPS / nxgep->nports - 1; cap_rings->mr_gget = nxge_hio_group_get; cap_rings->mr_gaddring = nxge_group_add_ring; cap_rings->mr_gremring = nxge_group_rem_ring; } NXGE_DEBUG_MSG((nxgep, TX_CTL, "==> nxge_m_getcapab: tx rings # of rings %d", p_cfgp->tdc.count)); } mutex_exit(nxgep->genlock); break; } #if defined(sun4v) case MAC_CAPAB_SHARES: { mac_capab_share_t *mshares = (mac_capab_share_t *)cap_data; /* * Only the service domain driver responds to * this capability request. */ mutex_enter(nxgep->genlock); if (isLDOMservice(nxgep)) { mshares->ms_snum = 3; mshares->ms_handle = (void *)nxgep; mshares->ms_salloc = nxge_hio_share_alloc; mshares->ms_sfree = nxge_hio_share_free; mshares->ms_sadd = nxge_hio_share_add_group; mshares->ms_sremove = nxge_hio_share_rem_group; mshares->ms_squery = nxge_hio_share_query; mshares->ms_sbind = nxge_hio_share_bind; mshares->ms_sunbind = nxge_hio_share_unbind; mutex_exit(nxgep->genlock); } else { mutex_exit(nxgep->genlock); return (B_FALSE); } break; } #endif default: return (B_FALSE); } return (B_TRUE); } static boolean_t nxge_param_locked(mac_prop_id_t pr_num) { /* * All adv_* parameters are locked (read-only) while * the device is in any sort of loopback mode ... */ switch (pr_num) { case MAC_PROP_ADV_1000FDX_CAP: case MAC_PROP_EN_1000FDX_CAP: case MAC_PROP_ADV_1000HDX_CAP: case MAC_PROP_EN_1000HDX_CAP: case MAC_PROP_ADV_100FDX_CAP: case MAC_PROP_EN_100FDX_CAP: case MAC_PROP_ADV_100HDX_CAP: case MAC_PROP_EN_100HDX_CAP: case MAC_PROP_ADV_10FDX_CAP: case MAC_PROP_EN_10FDX_CAP: case MAC_PROP_ADV_10HDX_CAP: case MAC_PROP_EN_10HDX_CAP: case MAC_PROP_AUTONEG: case MAC_PROP_FLOWCTRL: return (B_TRUE); } return (B_FALSE); } /* * callback functions for set/get of properties */ static int nxge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num, uint_t pr_valsize, const void *pr_val) { nxge_t *nxgep = barg; p_nxge_param_t param_arr; p_nxge_stats_t statsp; int err = 0; uint8_t val; uint32_t cur_mtu, new_mtu, old_framesize; link_flowctrl_t fl; NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_setprop")); param_arr = nxgep->param_arr; statsp = nxgep->statsp; mutex_enter(nxgep->genlock); if (statsp->port_stats.lb_mode != nxge_lb_normal && nxge_param_locked(pr_num)) { /* * All adv_* parameters are locked (read-only) * while the device is in any sort of loopback mode. */ NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_setprop: loopback mode: read only")); mutex_exit(nxgep->genlock); return (EBUSY); } val = *(uint8_t *)pr_val; switch (pr_num) { case MAC_PROP_EN_1000FDX_CAP: nxgep->param_en_1000fdx = val; param_arr[param_anar_1000fdx].value = val; goto reprogram; case MAC_PROP_EN_100FDX_CAP: nxgep->param_en_100fdx = val; param_arr[param_anar_100fdx].value = val; goto reprogram; case MAC_PROP_EN_10FDX_CAP: nxgep->param_en_10fdx = val; param_arr[param_anar_10fdx].value = val; goto reprogram; case MAC_PROP_EN_1000HDX_CAP: case MAC_PROP_EN_100HDX_CAP: case MAC_PROP_EN_10HDX_CAP: case MAC_PROP_ADV_1000FDX_CAP: case MAC_PROP_ADV_1000HDX_CAP: case MAC_PROP_ADV_100FDX_CAP: case MAC_PROP_ADV_100HDX_CAP: case MAC_PROP_ADV_10FDX_CAP: case MAC_PROP_ADV_10HDX_CAP: case MAC_PROP_STATUS: case MAC_PROP_SPEED: case MAC_PROP_DUPLEX: err = EINVAL; /* cannot set read-only properties */ NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_setprop: read only property %d", pr_num)); break; case MAC_PROP_AUTONEG: param_arr[param_autoneg].value = val; goto reprogram; case MAC_PROP_MTU: cur_mtu = nxgep->mac.default_mtu; bcopy(pr_val, &new_mtu, sizeof (new_mtu)); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_setprop: set MTU: %d is_jumbo %d", new_mtu, nxgep->mac.is_jumbo)); if (new_mtu == cur_mtu) { err = 0; break; } if (nxgep->nxge_mac_state == NXGE_MAC_STARTED) { err = EBUSY; break; } if ((new_mtu < NXGE_DEFAULT_MTU) || (new_mtu > NXGE_MAXIMUM_MTU)) { err = EINVAL; break; } old_framesize = (uint32_t)nxgep->mac.maxframesize; nxgep->mac.maxframesize = (uint16_t) (new_mtu + NXGE_EHEADER_VLAN_CRC); if (nxge_mac_set_framesize(nxgep)) { nxgep->mac.maxframesize = (uint16_t)old_framesize; err = EINVAL; break; } err = mac_maxsdu_update(nxgep->mach, new_mtu); if (err) { nxgep->mac.maxframesize = (uint16_t)old_framesize; err = EINVAL; break; } nxgep->mac.default_mtu = new_mtu; if (new_mtu > NXGE_DEFAULT_MTU) nxgep->mac.is_jumbo = B_TRUE; else nxgep->mac.is_jumbo = B_FALSE; NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_setprop: set MTU: %d maxframe %d", new_mtu, nxgep->mac.maxframesize)); break; case MAC_PROP_FLOWCTRL: bcopy(pr_val, &fl, sizeof (fl)); switch (fl) { default: err = EINVAL; break; case LINK_FLOWCTRL_NONE: param_arr[param_anar_pause].value = 0; break; case LINK_FLOWCTRL_RX: param_arr[param_anar_pause].value = 1; break; case LINK_FLOWCTRL_TX: case LINK_FLOWCTRL_BI: err = EINVAL; break; } reprogram: if (err == 0) { if (!nxge_param_link_update(nxgep)) { err = EINVAL; } } break; case MAC_PROP_PRIVATE: NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_setprop: private property")); err = nxge_set_priv_prop(nxgep, pr_name, pr_valsize, pr_val); break; default: err = ENOTSUP; break; } mutex_exit(nxgep->genlock); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_m_setprop (return %d)", err)); return (err); } static int nxge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num, uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm) { nxge_t *nxgep = barg; p_nxge_param_t param_arr = nxgep->param_arr; p_nxge_stats_t statsp = nxgep->statsp; int err = 0; link_flowctrl_t fl; uint64_t tmp = 0; link_state_t ls; boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_getprop: pr_num %d", pr_num)); if (pr_valsize == 0) return (EINVAL); *perm = MAC_PROP_PERM_RW; if ((is_default) && (pr_num != MAC_PROP_PRIVATE)) { err = nxge_get_def_val(nxgep, pr_num, pr_valsize, pr_val); return (err); } bzero(pr_val, pr_valsize); switch (pr_num) { case MAC_PROP_DUPLEX: *perm = MAC_PROP_PERM_READ; *(uint8_t *)pr_val = statsp->mac_stats.link_duplex; NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_m_getprop: duplex mode %d", *(uint8_t *)pr_val)); break; case MAC_PROP_SPEED: if (pr_valsize < sizeof (uint64_t)) return (EINVAL); *perm = MAC_PROP_PERM_READ; tmp = statsp->mac_stats.link_speed * 1000000ull; bcopy(&tmp, pr_val, sizeof (tmp)); break; case MAC_PROP_STATUS: if (pr_valsize < sizeof (link_state_t)) return (EINVAL); *perm = MAC_PROP_PERM_READ; if (!statsp->mac_stats.link_up) ls = LINK_STATE_DOWN; else ls = LINK_STATE_UP; bcopy(&ls, pr_val, sizeof (ls)); break; case MAC_PROP_AUTONEG: *(uint8_t *)pr_val = param_arr[param_autoneg].value; break; case MAC_PROP_FLOWCTRL: if (pr_valsize < sizeof (link_flowctrl_t)) return (EINVAL); fl = LINK_FLOWCTRL_NONE; if (param_arr[param_anar_pause].value) { fl = LINK_FLOWCTRL_RX; } bcopy(&fl, pr_val, sizeof (fl)); break; case MAC_PROP_ADV_1000FDX_CAP: *perm = MAC_PROP_PERM_READ; *(uint8_t *)pr_val = param_arr[param_anar_1000fdx].value; break; case MAC_PROP_EN_1000FDX_CAP: *(uint8_t *)pr_val = nxgep->param_en_1000fdx; break; case MAC_PROP_ADV_100FDX_CAP: *perm = MAC_PROP_PERM_READ; *(uint8_t *)pr_val = param_arr[param_anar_100fdx].value; break; case MAC_PROP_EN_100FDX_CAP: *(uint8_t *)pr_val = nxgep->param_en_100fdx; break; case MAC_PROP_ADV_10FDX_CAP: *perm = MAC_PROP_PERM_READ; *(uint8_t *)pr_val = param_arr[param_anar_10fdx].value; break; case MAC_PROP_EN_10FDX_CAP: *(uint8_t *)pr_val = nxgep->param_en_10fdx; break; case MAC_PROP_EN_1000HDX_CAP: case MAC_PROP_EN_100HDX_CAP: case MAC_PROP_EN_10HDX_CAP: case MAC_PROP_ADV_1000HDX_CAP: case MAC_PROP_ADV_100HDX_CAP: case MAC_PROP_ADV_10HDX_CAP: err = ENOTSUP; break; case MAC_PROP_PRIVATE: err = nxge_get_priv_prop(nxgep, pr_name, pr_flags, pr_valsize, pr_val, perm); break; case MAC_PROP_MTU: { mac_propval_range_t range; if (!(pr_flags & MAC_PROP_POSSIBLE)) return (ENOTSUP); if (pr_valsize < sizeof (mac_propval_range_t)) return (EINVAL); range.mpr_count = 1; range.mpr_type = MAC_PROPVAL_UINT32; range.range_uint32[0].mpur_min = range.range_uint32[0].mpur_max = NXGE_DEFAULT_MTU; range.range_uint32[0].mpur_max = NXGE_MAXIMUM_MTU; bcopy(&range, pr_val, sizeof (range)); break; } default: err = EINVAL; break; } NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_m_getprop")); return (err); } /* ARGSUSED */ static int nxge_set_priv_prop(p_nxge_t nxgep, const char *pr_name, uint_t pr_valsize, const void *pr_val) { p_nxge_param_t param_arr = nxgep->param_arr; int err = 0; long result; NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_set_priv_prop: name %s", pr_name)); /* Blanking */ if (strcmp(pr_name, "_rxdma_intr_time") == 0) { err = nxge_param_rx_intr_time(nxgep, NULL, NULL, (char *)pr_val, (caddr_t)¶m_arr[param_rxdma_intr_time]); if (err) { NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: " "unable to set (%s)", pr_name)); err = EINVAL; } else { err = 0; NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: " "set (%s)", pr_name)); } NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: name %s (value %d)", pr_name, result)); return (err); } if (strcmp(pr_name, "_rxdma_intr_pkts") == 0) { err = nxge_param_rx_intr_pkts(nxgep, NULL, NULL, (char *)pr_val, (caddr_t)¶m_arr[param_rxdma_intr_pkts]); if (err) { NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: " "unable to set (%s)", pr_name)); err = EINVAL; } else { err = 0; NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: " "set (%s)", pr_name)); } NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: name %s (value %d)", pr_name, result)); return (err); } /* Classification */ if (strcmp(pr_name, "_class_opt_ipv4_tcp") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); err = nxge_param_set_ip_opt(nxgep, NULL, NULL, (char *)pr_val, (caddr_t)¶m_arr[param_class_opt_ipv4_tcp]); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: name %s (value 0x%x)", pr_name, result)); return (err); } if (strcmp(pr_name, "_class_opt_ipv4_udp") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); err = nxge_param_set_ip_opt(nxgep, NULL, NULL, (char *)pr_val, (caddr_t)¶m_arr[param_class_opt_ipv4_udp]); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: name %s (value 0x%x)", pr_name, result)); return (err); } if (strcmp(pr_name, "_class_opt_ipv4_ah") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); err = nxge_param_set_ip_opt(nxgep, NULL, NULL, (char *)pr_val, (caddr_t)¶m_arr[param_class_opt_ipv4_ah]); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: name %s (value 0x%x)", pr_name, result)); return (err); } if (strcmp(pr_name, "_class_opt_ipv4_sctp") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); err = nxge_param_set_ip_opt(nxgep, NULL, NULL, (char *)pr_val, (caddr_t)¶m_arr[param_class_opt_ipv4_sctp]); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: name %s (value 0x%x)", pr_name, result)); return (err); } if (strcmp(pr_name, "_class_opt_ipv6_tcp") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); err = nxge_param_set_ip_opt(nxgep, NULL, NULL, (char *)pr_val, (caddr_t)¶m_arr[param_class_opt_ipv6_tcp]); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: name %s (value 0x%x)", pr_name, result)); return (err); } if (strcmp(pr_name, "_class_opt_ipv6_udp") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); err = nxge_param_set_ip_opt(nxgep, NULL, NULL, (char *)pr_val, (caddr_t)¶m_arr[param_class_opt_ipv6_udp]); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: name %s (value 0x%x)", pr_name, result)); return (err); } if (strcmp(pr_name, "_class_opt_ipv6_ah") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); err = nxge_param_set_ip_opt(nxgep, NULL, NULL, (char *)pr_val, (caddr_t)¶m_arr[param_class_opt_ipv6_ah]); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: name %s (value 0x%x)", pr_name, result)); return (err); } if (strcmp(pr_name, "_class_opt_ipv6_sctp") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); err = nxge_param_set_ip_opt(nxgep, NULL, NULL, (char *)pr_val, (caddr_t)¶m_arr[param_class_opt_ipv6_sctp]); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: name %s (value 0x%x)", pr_name, result)); return (err); } if (strcmp(pr_name, "_soft_lso_enable") == 0) { if (pr_val == NULL) { NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_set_priv_prop: name %s (null)", pr_name)); err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: name %s " "(lso %d pr_val %s value %d)", pr_name, nxgep->soft_lso_enable, pr_val, result)); if (result > 1 || result < 0) { err = EINVAL; } else { if (nxgep->soft_lso_enable == (uint32_t)result) { NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "no change (%d %d)", nxgep->soft_lso_enable, result)); return (0); } } nxgep->soft_lso_enable = (int)result; NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_set_priv_prop: name %s (value %d)", pr_name, result)); return (err); } /* * Commands like "ndd -set /dev/nxge0 adv_10gfdx_cap 1" cause the * following code to be executed. */ if (strcmp(pr_name, "_adv_10gfdx_cap") == 0) { err = nxge_param_set_mac(nxgep, NULL, NULL, (char *)pr_val, (caddr_t)¶m_arr[param_anar_10gfdx]); return (err); } if (strcmp(pr_name, "_adv_pause_cap") == 0) { err = nxge_param_set_mac(nxgep, NULL, NULL, (char *)pr_val, (caddr_t)¶m_arr[param_anar_pause]); return (err); } return (EINVAL); } static int nxge_get_priv_prop(p_nxge_t nxgep, const char *pr_name, uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm) { p_nxge_param_t param_arr = nxgep->param_arr; char valstr[MAXNAMELEN]; int err = EINVAL; uint_t strsize; boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: property %s", pr_name)); /* function number */ if (strcmp(pr_name, "_function_number") == 0) { if (is_default) return (ENOTSUP); *perm = MAC_PROP_PERM_READ; (void) snprintf(valstr, sizeof (valstr), "%d", nxgep->function_num); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: name %s " "(value %d valstr %s)", pr_name, nxgep->function_num, valstr)); err = 0; goto done; } /* Neptune firmware version */ if (strcmp(pr_name, "_fw_version") == 0) { if (is_default) return (ENOTSUP); *perm = MAC_PROP_PERM_READ; (void) snprintf(valstr, sizeof (valstr), "%s", nxgep->vpd_info.ver); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: name %s " "(value %d valstr %s)", pr_name, nxgep->vpd_info.ver, valstr)); err = 0; goto done; } /* port PHY mode */ if (strcmp(pr_name, "_port_mode") == 0) { if (is_default) return (ENOTSUP); *perm = MAC_PROP_PERM_READ; switch (nxgep->mac.portmode) { case PORT_1G_COPPER: (void) snprintf(valstr, sizeof (valstr), "1G copper %s", nxgep->hot_swappable_phy ? "[Hot Swappable]" : ""); break; case PORT_1G_FIBER: (void) snprintf(valstr, sizeof (valstr), "1G fiber %s", nxgep->hot_swappable_phy ? "[hot swappable]" : ""); break; case PORT_10G_COPPER: (void) snprintf(valstr, sizeof (valstr), "10G copper %s", nxgep->hot_swappable_phy ? "[hot swappable]" : ""); break; case PORT_10G_FIBER: (void) snprintf(valstr, sizeof (valstr), "10G fiber %s", nxgep->hot_swappable_phy ? "[hot swappable]" : ""); break; case PORT_10G_SERDES: (void) snprintf(valstr, sizeof (valstr), "10G serdes %s", nxgep->hot_swappable_phy ? "[hot swappable]" : ""); break; case PORT_1G_SERDES: (void) snprintf(valstr, sizeof (valstr), "1G serdes %s", nxgep->hot_swappable_phy ? "[hot swappable]" : ""); break; case PORT_1G_TN1010: (void) snprintf(valstr, sizeof (valstr), "1G TN1010 copper %s", nxgep->hot_swappable_phy ? "[hot swappable]" : ""); break; case PORT_10G_TN1010: (void) snprintf(valstr, sizeof (valstr), "10G TN1010 copper %s", nxgep->hot_swappable_phy ? "[hot swappable]" : ""); break; case PORT_1G_RGMII_FIBER: (void) snprintf(valstr, sizeof (valstr), "1G rgmii fiber %s", nxgep->hot_swappable_phy ? "[hot swappable]" : ""); break; case PORT_HSP_MODE: (void) snprintf(valstr, sizeof (valstr), "phy not present[hot swappable]"); break; default: (void) snprintf(valstr, sizeof (valstr), "unknown %s", nxgep->hot_swappable_phy ? "[hot swappable]" : ""); break; } NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: name %s (value %s)", pr_name, valstr)); err = 0; goto done; } /* Hot swappable PHY */ if (strcmp(pr_name, "_hot_swap_phy") == 0) { if (is_default) return (ENOTSUP); *perm = MAC_PROP_PERM_READ; (void) snprintf(valstr, sizeof (valstr), "%s", nxgep->hot_swappable_phy ? "yes" : "no"); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: name %s " "(value %d valstr %s)", pr_name, nxgep->hot_swappable_phy, valstr)); err = 0; goto done; } /* Receive Interrupt Blanking Parameters */ if (strcmp(pr_name, "_rxdma_intr_time") == 0) { err = 0; if (is_default) { (void) snprintf(valstr, sizeof (valstr), "%d", RXDMA_RCR_TO_DEFAULT); goto done; } (void) snprintf(valstr, sizeof (valstr), "%d", nxgep->intr_timeout); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: name %s (value %d)", pr_name, (uint32_t)nxgep->intr_timeout)); goto done; } if (strcmp(pr_name, "_rxdma_intr_pkts") == 0) { err = 0; if (is_default) { (void) snprintf(valstr, sizeof (valstr), "%d", RXDMA_RCR_PTHRES_DEFAULT); goto done; } (void) snprintf(valstr, sizeof (valstr), "%d", nxgep->intr_threshold); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: name %s (value %d)", pr_name, (uint32_t)nxgep->intr_threshold)); goto done; } /* Classification and Load Distribution Configuration */ if (strcmp(pr_name, "_class_opt_ipv4_tcp") == 0) { if (is_default) { (void) snprintf(valstr, sizeof (valstr), "%x", NXGE_CLASS_FLOW_GEN_SERVER); err = 0; goto done; } err = nxge_dld_get_ip_opt(nxgep, (caddr_t)¶m_arr[param_class_opt_ipv4_tcp]); (void) snprintf(valstr, sizeof (valstr), "%x", (int)param_arr[param_class_opt_ipv4_tcp].value); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: %s", valstr)); goto done; } if (strcmp(pr_name, "_class_opt_ipv4_udp") == 0) { if (is_default) { (void) snprintf(valstr, sizeof (valstr), "%x", NXGE_CLASS_FLOW_GEN_SERVER); err = 0; goto done; } err = nxge_dld_get_ip_opt(nxgep, (caddr_t)¶m_arr[param_class_opt_ipv4_udp]); (void) snprintf(valstr, sizeof (valstr), "%x", (int)param_arr[param_class_opt_ipv4_udp].value); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: %s", valstr)); goto done; } if (strcmp(pr_name, "_class_opt_ipv4_ah") == 0) { if (is_default) { (void) snprintf(valstr, sizeof (valstr), "%x", NXGE_CLASS_FLOW_GEN_SERVER); err = 0; goto done; } err = nxge_dld_get_ip_opt(nxgep, (caddr_t)¶m_arr[param_class_opt_ipv4_ah]); (void) snprintf(valstr, sizeof (valstr), "%x", (int)param_arr[param_class_opt_ipv4_ah].value); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: %s", valstr)); goto done; } if (strcmp(pr_name, "_class_opt_ipv4_sctp") == 0) { if (is_default) { (void) snprintf(valstr, sizeof (valstr), "%x", NXGE_CLASS_FLOW_GEN_SERVER); err = 0; goto done; } err = nxge_dld_get_ip_opt(nxgep, (caddr_t)¶m_arr[param_class_opt_ipv4_sctp]); (void) snprintf(valstr, sizeof (valstr), "%x", (int)param_arr[param_class_opt_ipv4_sctp].value); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: %s", valstr)); goto done; } if (strcmp(pr_name, "_class_opt_ipv6_tcp") == 0) { if (is_default) { (void) snprintf(valstr, sizeof (valstr), "%x", NXGE_CLASS_FLOW_GEN_SERVER); err = 0; goto done; } err = nxge_dld_get_ip_opt(nxgep, (caddr_t)¶m_arr[param_class_opt_ipv6_tcp]); (void) snprintf(valstr, sizeof (valstr), "%x", (int)param_arr[param_class_opt_ipv6_tcp].value); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: %s", valstr)); goto done; } if (strcmp(pr_name, "_class_opt_ipv6_udp") == 0) { if (is_default) { (void) snprintf(valstr, sizeof (valstr), "%x", NXGE_CLASS_FLOW_GEN_SERVER); err = 0; goto done; } err = nxge_dld_get_ip_opt(nxgep, (caddr_t)¶m_arr[param_class_opt_ipv6_udp]); (void) snprintf(valstr, sizeof (valstr), "%x", (int)param_arr[param_class_opt_ipv6_udp].value); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: %s", valstr)); goto done; } if (strcmp(pr_name, "_class_opt_ipv6_ah") == 0) { if (is_default) { (void) snprintf(valstr, sizeof (valstr), "%x", NXGE_CLASS_FLOW_GEN_SERVER); err = 0; goto done; } err = nxge_dld_get_ip_opt(nxgep, (caddr_t)¶m_arr[param_class_opt_ipv6_ah]); (void) snprintf(valstr, sizeof (valstr), "%x", (int)param_arr[param_class_opt_ipv6_ah].value); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: %s", valstr)); goto done; } if (strcmp(pr_name, "_class_opt_ipv6_sctp") == 0) { if (is_default) { (void) snprintf(valstr, sizeof (valstr), "%x", NXGE_CLASS_FLOW_GEN_SERVER); err = 0; goto done; } err = nxge_dld_get_ip_opt(nxgep, (caddr_t)¶m_arr[param_class_opt_ipv6_sctp]); (void) snprintf(valstr, sizeof (valstr), "%x", (int)param_arr[param_class_opt_ipv6_sctp].value); NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: %s", valstr)); goto done; } /* Software LSO */ if (strcmp(pr_name, "_soft_lso_enable") == 0) { if (is_default) { (void) snprintf(valstr, sizeof (valstr), "%d", 0); err = 0; goto done; } (void) snprintf(valstr, sizeof (valstr), "%d", nxgep->soft_lso_enable); err = 0; NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "==> nxge_get_priv_prop: name %s (value %d)", pr_name, nxgep->soft_lso_enable)); goto done; } if (strcmp(pr_name, "_adv_10gfdx_cap") == 0) { err = 0; if (is_default || nxgep->param_arr[param_anar_10gfdx].value != 0) { (void) snprintf(valstr, sizeof (valstr), "%d", 1); goto done; } else { (void) snprintf(valstr, sizeof (valstr), "%d", 0); goto done; } } if (strcmp(pr_name, "_adv_pause_cap") == 0) { err = 0; if (is_default || nxgep->param_arr[param_anar_pause].value != 0) { (void) snprintf(valstr, sizeof (valstr), "%d", 1); goto done; } else { (void) snprintf(valstr, sizeof (valstr), "%d", 0); goto done; } } done: if (err == 0) { strsize = (uint_t)strlen(valstr); if (pr_valsize < strsize) { err = ENOBUFS; } else { (void) strlcpy(pr_val, valstr, pr_valsize); } } NXGE_DEBUG_MSG((nxgep, NXGE_CTL, "<== nxge_get_priv_prop: return %d", err)); return (err); } /* * Module loading and removing entry points. */ DDI_DEFINE_STREAM_OPS(nxge_dev_ops, nulldev, nulldev, nxge_attach, nxge_detach, nodev, NULL, D_MP, NULL, nxge_quiesce); #define NXGE_DESC_VER "Sun NIU 10Gb Ethernet" /* * Module linkage information for the kernel. */ static struct modldrv nxge_modldrv = { &mod_driverops, NXGE_DESC_VER, &nxge_dev_ops }; static struct modlinkage modlinkage = { MODREV_1, (void *) &nxge_modldrv, NULL }; int _init(void) { int status; MUTEX_INIT(&nxgedebuglock, NULL, MUTEX_DRIVER, NULL); NXGE_DEBUG_MSG((NULL, MOD_CTL, "==> _init")); mac_init_ops(&nxge_dev_ops, "nxge"); status = ddi_soft_state_init(&nxge_list, sizeof (nxge_t), 0); if (status != 0) { NXGE_ERROR_MSG((NULL, NXGE_ERR_CTL, "failed to init device soft state")); goto _init_exit; } status = mod_install(&modlinkage); if (status != 0) { ddi_soft_state_fini(&nxge_list); NXGE_ERROR_MSG((NULL, NXGE_ERR_CTL, "Mod install failed")); goto _init_exit; } MUTEX_INIT(&nxge_common_lock, NULL, MUTEX_DRIVER, NULL); NXGE_DEBUG_MSG((NULL, MOD_CTL, "<== _init status = 0x%X", status)); return (status); _init_exit: NXGE_DEBUG_MSG((NULL, MOD_CTL, "<== _init status = 0x%X", status)); MUTEX_DESTROY(&nxgedebuglock); return (status); } int _fini(void) { int status; NXGE_DEBUG_MSG((NULL, MOD_CTL, "==> _fini")); NXGE_DEBUG_MSG((NULL, MOD_CTL, "==> _fini: mod_remove")); if (nxge_mblks_pending) return (EBUSY); status = mod_remove(&modlinkage); if (status != DDI_SUCCESS) { NXGE_DEBUG_MSG((NULL, MOD_CTL, "Module removal failed 0x%08x", status)); goto _fini_exit; } mac_fini_ops(&nxge_dev_ops); ddi_soft_state_fini(&nxge_list); NXGE_DEBUG_MSG((NULL, MOD_CTL, "<== _fini status = 0x%08x", status)); MUTEX_DESTROY(&nxge_common_lock); MUTEX_DESTROY(&nxgedebuglock); return (status); _fini_exit: NXGE_DEBUG_MSG((NULL, MOD_CTL, "<== _fini status = 0x%08x", status)); return (status); } int _info(struct modinfo *modinfop) { int status; NXGE_DEBUG_MSG((NULL, MOD_CTL, "==> _info")); status = mod_info(&modlinkage, modinfop); NXGE_DEBUG_MSG((NULL, MOD_CTL, " _info status = 0x%X", status)); return (status); } /*ARGSUSED*/ static int nxge_tx_ring_start(mac_ring_driver_t rdriver, uint64_t mr_gen_num) { p_nxge_ring_handle_t rhp = (p_nxge_ring_handle_t)rdriver; p_nxge_t nxgep = rhp->nxgep; uint32_t channel; p_tx_ring_t ring; channel = nxgep->pt_config.hw_config.tdc.start + rhp->index; ring = nxgep->tx_rings->rings[channel]; MUTEX_ENTER(&ring->lock); ring->tx_ring_handle = rhp->ring_handle; MUTEX_EXIT(&ring->lock); return (0); } static void nxge_tx_ring_stop(mac_ring_driver_t rdriver) { p_nxge_ring_handle_t rhp = (p_nxge_ring_handle_t)rdriver; p_nxge_t nxgep = rhp->nxgep; uint32_t channel; p_tx_ring_t ring; channel = nxgep->pt_config.hw_config.tdc.start + rhp->index; ring = nxgep->tx_rings->rings[channel]; MUTEX_ENTER(&ring->lock); ring->tx_ring_handle = (mac_ring_handle_t)NULL; MUTEX_EXIT(&ring->lock); } static int nxge_rx_ring_start(mac_ring_driver_t rdriver, uint64_t mr_gen_num) { p_nxge_ring_handle_t rhp = (p_nxge_ring_handle_t)rdriver; p_nxge_t nxgep = rhp->nxgep; uint32_t channel; p_rx_rcr_ring_t ring; int i; channel = nxgep->pt_config.hw_config.start_rdc + rhp->index; ring = nxgep->rx_rcr_rings->rcr_rings[channel]; MUTEX_ENTER(&ring->lock); if (nxgep->rx_channel_started[channel] == B_TRUE) { MUTEX_EXIT(&ring->lock); return (0); } /* set rcr_ring */ for (i = 0; i < nxgep->ldgvp->maxldvs; i++) { if ((nxgep->ldgvp->ldvp[i].is_rxdma == 1) && (nxgep->ldgvp->ldvp[i].channel == channel)) { ring->ldvp = &nxgep->ldgvp->ldvp[i]; ring->ldgp = nxgep->ldgvp->ldvp[i].ldgp; } } nxgep->rx_channel_started[channel] = B_TRUE; ring->rcr_mac_handle = rhp->ring_handle; ring->rcr_gen_num = mr_gen_num; MUTEX_EXIT(&ring->lock); return (0); } static void nxge_rx_ring_stop(mac_ring_driver_t rdriver) { p_nxge_ring_handle_t rhp = (p_nxge_ring_handle_t)rdriver; p_nxge_t nxgep = rhp->nxgep; uint32_t channel; p_rx_rcr_ring_t ring; channel = nxgep->pt_config.hw_config.start_rdc + rhp->index; ring = nxgep->rx_rcr_rings->rcr_rings[channel]; MUTEX_ENTER(&ring->lock); nxgep->rx_channel_started[channel] = B_FALSE; ring->rcr_mac_handle = NULL; MUTEX_EXIT(&ring->lock); } /* * Callback funtion for MAC layer to register all rings. */ static void nxge_fill_ring(void *arg, mac_ring_type_t rtype, const int rg_index, const int index, mac_ring_info_t *infop, mac_ring_handle_t rh) { p_nxge_t nxgep = (p_nxge_t)arg; p_nxge_hw_pt_cfg_t p_cfgp = &nxgep->pt_config.hw_config; NXGE_DEBUG_MSG((nxgep, TX_CTL, "==> nxge_fill_ring 0x%x index %d", rtype, index)); switch (rtype) { case MAC_RING_TYPE_TX: { p_nxge_ring_handle_t rhandlep; NXGE_DEBUG_MSG((nxgep, TX_CTL, "==> nxge_fill_ring (TX) 0x%x index %d ntdcs %d", rtype, index, p_cfgp->tdc.count)); ASSERT((index >= 0) && (index < p_cfgp->tdc.count)); rhandlep = &nxgep->tx_ring_handles[index]; rhandlep->nxgep = nxgep; rhandlep->index = index; rhandlep->ring_handle = rh; infop->mri_driver = (mac_ring_driver_t)rhandlep; infop->mri_start = nxge_tx_ring_start; infop->mri_stop = nxge_tx_ring_stop; infop->mri_tx = nxge_tx_ring_send; break; } case MAC_RING_TYPE_RX: { p_nxge_ring_handle_t rhandlep; int nxge_rindex; mac_intr_t nxge_mac_intr; NXGE_DEBUG_MSG((nxgep, RX_CTL, "==> nxge_fill_ring (RX) 0x%x index %d nrdcs %d", rtype, index, p_cfgp->max_rdcs)); /* * 'index' is the ring index within the group. * Find the ring index in the nxge instance. */ nxge_rindex = nxge_get_rxring_index(nxgep, rg_index, index); ASSERT((nxge_rindex >= 0) && (nxge_rindex < p_cfgp->max_rdcs)); rhandlep = &nxgep->rx_ring_handles[nxge_rindex]; rhandlep->nxgep = nxgep; rhandlep->index = nxge_rindex; rhandlep->ring_handle = rh; /* * Entrypoint to enable interrupt (disable poll) and * disable interrupt (enable poll). */ nxge_mac_intr.mi_handle = (mac_intr_handle_t)rhandlep; nxge_mac_intr.mi_enable = (mac_intr_enable_t)nxge_disable_poll; nxge_mac_intr.mi_disable = (mac_intr_disable_t)nxge_enable_poll; infop->mri_driver = (mac_ring_driver_t)rhandlep; infop->mri_start = nxge_rx_ring_start; infop->mri_stop = nxge_rx_ring_stop; infop->mri_intr = nxge_mac_intr; /* ??? */ infop->mri_poll = nxge_rx_poll; break; } default: break; } NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_fill_ring 0x%x", rtype)); } static void nxge_group_add_ring(mac_group_driver_t gh, mac_ring_driver_t rh, mac_ring_type_t type) { nxge_ring_group_t *rgroup = (nxge_ring_group_t *)gh; nxge_ring_handle_t *rhandle = (nxge_ring_handle_t *)rh; nxge_t *nxge; nxge_grp_t *grp; nxge_rdc_grp_t *rdc_grp; uint16_t channel; /* device-wise ring id */ int dev_gindex; int rv; nxge = rgroup->nxgep; switch (type) { case MAC_RING_TYPE_TX: /* * nxge_grp_dc_add takes a channel number which is a * "devise" ring ID. */ channel = nxge->pt_config.hw_config.tdc.start + rhandle->index; /* * Remove the ring from the default group */ if (rgroup->gindex != 0) { (void) nxge_grp_dc_remove(nxge, VP_BOUND_TX, channel); } /* * nxge->tx_set.group[] is an array of groups indexed by * a "port" group ID. */ grp = nxge->tx_set.group[rgroup->gindex]; rv = nxge_grp_dc_add(nxge, grp, VP_BOUND_TX, channel); if (rv != 0) { NXGE_ERROR_MSG((nxge, NXGE_ERR_CTL, "nxge_group_add_ring: nxge_grp_dc_add failed")); } break; case MAC_RING_TYPE_RX: /* * nxge->rx_set.group[] is an array of groups indexed by * a "port" group ID. */ grp = nxge->rx_set.group[rgroup->gindex]; dev_gindex = nxge->pt_config.hw_config.def_mac_rxdma_grpid + rgroup->gindex; rdc_grp = &nxge->pt_config.rdc_grps[dev_gindex]; /* * nxge_grp_dc_add takes a channel number which is a * "devise" ring ID. */ channel = nxge->pt_config.hw_config.start_rdc + rhandle->index; rv = nxge_grp_dc_add(nxge, grp, VP_BOUND_RX, channel); if (rv != 0) { NXGE_ERROR_MSG((nxge, NXGE_ERR_CTL, "nxge_group_add_ring: nxge_grp_dc_add failed")); } rdc_grp->map |= (1 << channel); rdc_grp->max_rdcs++; (void) nxge_init_fzc_rdc_tbl(nxge, rdc_grp, rgroup->rdctbl); break; } } static void nxge_group_rem_ring(mac_group_driver_t gh, mac_ring_driver_t rh, mac_ring_type_t type) { nxge_ring_group_t *rgroup = (nxge_ring_group_t *)gh; nxge_ring_handle_t *rhandle = (nxge_ring_handle_t *)rh; nxge_t *nxge; uint16_t channel; /* device-wise ring id */ nxge_rdc_grp_t *rdc_grp; int dev_gindex; nxge = rgroup->nxgep; switch (type) { case MAC_RING_TYPE_TX: dev_gindex = nxge->pt_config.hw_config.def_mac_txdma_grpid + rgroup->gindex; channel = nxge->pt_config.hw_config.tdc.start + rhandle->index; nxge_grp_dc_remove(nxge, VP_BOUND_TX, channel); /* * Add the ring back to the default group */ if (rgroup->gindex != 0) { nxge_grp_t *grp; grp = nxge->tx_set.group[0]; (void) nxge_grp_dc_add(nxge, grp, VP_BOUND_TX, channel); } break; case MAC_RING_TYPE_RX: dev_gindex = nxge->pt_config.hw_config.def_mac_rxdma_grpid + rgroup->gindex; rdc_grp = &nxge->pt_config.rdc_grps[dev_gindex]; channel = rdc_grp->start_rdc + rhandle->index; nxge_grp_dc_remove(nxge, VP_BOUND_RX, channel); rdc_grp->map &= ~(1 << channel); rdc_grp->max_rdcs--; (void) nxge_init_fzc_rdc_tbl(nxge, rdc_grp, rgroup->rdctbl); break; } } /*ARGSUSED*/ static nxge_status_t nxge_add_intrs(p_nxge_t nxgep) { int intr_types; int type = 0; int ddi_status = DDI_SUCCESS; nxge_status_t status = NXGE_OK; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_add_intrs")); nxgep->nxge_intr_type.intr_registered = B_FALSE; nxgep->nxge_intr_type.intr_enabled = B_FALSE; nxgep->nxge_intr_type.msi_intx_cnt = 0; nxgep->nxge_intr_type.intr_added = 0; nxgep->nxge_intr_type.niu_msi_enable = B_FALSE; nxgep->nxge_intr_type.intr_type = 0; if (nxgep->niu_type == N2_NIU) { nxgep->nxge_intr_type.niu_msi_enable = B_TRUE; } else if (nxge_msi_enable) { nxgep->nxge_intr_type.niu_msi_enable = B_TRUE; } /* Get the supported interrupt types */ if ((ddi_status = ddi_intr_get_supported_types(nxgep->dip, &intr_types)) != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_add_intrs: " "ddi_intr_get_supported_types failed: status 0x%08x", ddi_status)); return (NXGE_ERROR | NXGE_DDI_FAILED); } nxgep->nxge_intr_type.intr_types = intr_types; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_add_intrs: " "ddi_intr_get_supported_types: 0x%08x", intr_types)); /* * Solaris MSIX is not supported yet. use MSI for now. * nxge_msi_enable (1): * 1 - MSI 2 - MSI-X others - FIXED */ switch (nxge_msi_enable) { default: type = DDI_INTR_TYPE_FIXED; NXGE_DEBUG_MSG((nxgep, INT_CTL, "==> nxge_add_intrs: " "use fixed (intx emulation) type %08x", type)); break; case 2: NXGE_DEBUG_MSG((nxgep, INT_CTL, "==> nxge_add_intrs: " "ddi_intr_get_supported_types: 0x%08x", intr_types)); if (intr_types & DDI_INTR_TYPE_MSIX) { type = DDI_INTR_TYPE_MSIX; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_add_intrs: " "ddi_intr_get_supported_types: MSIX 0x%08x", type)); } else if (intr_types & DDI_INTR_TYPE_MSI) { type = DDI_INTR_TYPE_MSI; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_add_intrs: " "ddi_intr_get_supported_types: MSI 0x%08x", type)); } else if (intr_types & DDI_INTR_TYPE_FIXED) { type = DDI_INTR_TYPE_FIXED; NXGE_DEBUG_MSG((nxgep, INT_CTL, "==> nxge_add_intrs: " "ddi_intr_get_supported_types: MSXED0x%08x", type)); } break; case 1: if (intr_types & DDI_INTR_TYPE_MSI) { type = DDI_INTR_TYPE_MSI; NXGE_DEBUG_MSG((nxgep, INT_CTL, "==> nxge_add_intrs: " "ddi_intr_get_supported_types: MSI 0x%08x", type)); } else if (intr_types & DDI_INTR_TYPE_MSIX) { type = DDI_INTR_TYPE_MSIX; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_add_intrs: " "ddi_intr_get_supported_types: MSIX 0x%08x", type)); } else if (intr_types & DDI_INTR_TYPE_FIXED) { type = DDI_INTR_TYPE_FIXED; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_add_intrs: " "ddi_intr_get_supported_types: MSXED0x%08x", type)); } } nxgep->nxge_intr_type.intr_type = type; if ((type == DDI_INTR_TYPE_MSIX || type == DDI_INTR_TYPE_MSI || type == DDI_INTR_TYPE_FIXED) && nxgep->nxge_intr_type.niu_msi_enable) { if ((status = nxge_add_intrs_adv(nxgep)) != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, " nxge_add_intrs: " " nxge_add_intrs_adv failed: status 0x%08x", status)); return (status); } else { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_add_intrs: " "interrupts registered : type %d", type)); nxgep->nxge_intr_type.intr_registered = B_TRUE; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "\nAdded advanced nxge add_intr_adv " "intr type 0x%x\n", type)); return (status); } } if (!nxgep->nxge_intr_type.intr_registered) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_add_intrs: " "failed to register interrupts")); return (NXGE_ERROR | NXGE_DDI_FAILED); } NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_add_intrs")); return (status); } static nxge_status_t nxge_add_intrs_adv(p_nxge_t nxgep) { int intr_type; p_nxge_intr_t intrp; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_add_intrs_adv")); intrp = (p_nxge_intr_t)&nxgep->nxge_intr_type; intr_type = intrp->intr_type; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_add_intrs_adv: type 0x%x", intr_type)); switch (intr_type) { case DDI_INTR_TYPE_MSI: /* 0x2 */ case DDI_INTR_TYPE_MSIX: /* 0x4 */ return (nxge_add_intrs_adv_type(nxgep, intr_type)); case DDI_INTR_TYPE_FIXED: /* 0x1 */ return (nxge_add_intrs_adv_type_fix(nxgep, intr_type)); default: return (NXGE_ERROR); } } /*ARGSUSED*/ static nxge_status_t nxge_add_intrs_adv_type(p_nxge_t nxgep, uint32_t int_type) { dev_info_t *dip = nxgep->dip; p_nxge_ldg_t ldgp; p_nxge_intr_t intrp; uint_t *inthandler; void *arg1, *arg2; int behavior; int nintrs, navail, nrequest; int nactual, nrequired; int inum = 0; int x, y; int ddi_status = DDI_SUCCESS; nxge_status_t status = NXGE_OK; NXGE_DEBUG_MSG((nxgep, INT_CTL, "==> nxge_add_intrs_adv_type")); intrp = (p_nxge_intr_t)&nxgep->nxge_intr_type; intrp->start_inum = 0; ddi_status = ddi_intr_get_nintrs(dip, int_type, &nintrs); if ((ddi_status != DDI_SUCCESS) || (nintrs == 0)) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "ddi_intr_get_nintrs() failed, status: 0x%x%, " "nintrs: %d", ddi_status, nintrs)); return (NXGE_ERROR | NXGE_DDI_FAILED); } ddi_status = ddi_intr_get_navail(dip, int_type, &navail); if ((ddi_status != DDI_SUCCESS) || (navail == 0)) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "ddi_intr_get_navail() failed, status: 0x%x%, " "nintrs: %d", ddi_status, navail)); return (NXGE_ERROR | NXGE_DDI_FAILED); } NXGE_DEBUG_MSG((nxgep, INT_CTL, "ddi_intr_get_navail() returned: nintrs %d, navail %d", nintrs, navail)); /* PSARC/2007/453 MSI-X interrupt limit override */ if (int_type == DDI_INTR_TYPE_MSIX) { nrequest = nxge_create_msi_property(nxgep); if (nrequest < navail) { navail = nrequest; NXGE_DEBUG_MSG((nxgep, INT_CTL, "nxge_add_intrs_adv_type: nintrs %d " "navail %d (nrequest %d)", nintrs, navail, nrequest)); } } if (int_type == DDI_INTR_TYPE_MSI && !ISP2(navail)) { /* MSI must be power of 2 */ if ((navail & 16) == 16) { navail = 16; } else if ((navail & 8) == 8) { navail = 8; } else if ((navail & 4) == 4) { navail = 4; } else if ((navail & 2) == 2) { navail = 2; } else { navail = 1; } NXGE_DEBUG_MSG((nxgep, INT_CTL, "ddi_intr_get_navail(): (msi power of 2) nintrs %d, " "navail %d", nintrs, navail)); } behavior = ((int_type == DDI_INTR_TYPE_FIXED) ? DDI_INTR_ALLOC_STRICT : DDI_INTR_ALLOC_NORMAL); intrp->intr_size = navail * sizeof (ddi_intr_handle_t); intrp->htable = kmem_alloc(intrp->intr_size, KM_SLEEP); ddi_status = ddi_intr_alloc(dip, intrp->htable, int_type, inum, navail, &nactual, behavior); if (ddi_status != DDI_SUCCESS || nactual == 0) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, " ddi_intr_alloc() failed: %d", ddi_status)); kmem_free(intrp->htable, intrp->intr_size); return (NXGE_ERROR | NXGE_DDI_FAILED); } if ((ddi_status = ddi_intr_get_pri(intrp->htable[0], (uint_t *)&intrp->pri)) != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, " ddi_intr_get_pri() failed: %d", ddi_status)); /* Free already allocated interrupts */ for (y = 0; y < nactual; y++) { (void) ddi_intr_free(intrp->htable[y]); } kmem_free(intrp->htable, intrp->intr_size); return (NXGE_ERROR | NXGE_DDI_FAILED); } nrequired = 0; switch (nxgep->niu_type) { default: status = nxge_ldgv_init(nxgep, &nactual, &nrequired); break; case N2_NIU: status = nxge_ldgv_init_n2(nxgep, &nactual, &nrequired); break; } if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_add_intrs_adv_typ:nxge_ldgv_init " "failed: 0x%x", status)); /* Free already allocated interrupts */ for (y = 0; y < nactual; y++) { (void) ddi_intr_free(intrp->htable[y]); } kmem_free(intrp->htable, intrp->intr_size); return (status); } ldgp = nxgep->ldgvp->ldgp; for (x = 0; x < nrequired; x++, ldgp++) { ldgp->vector = (uint8_t)x; ldgp->intdata = SID_DATA(ldgp->func, x); arg1 = ldgp->ldvp; arg2 = nxgep; if (ldgp->nldvs == 1) { inthandler = (uint_t *)ldgp->ldvp->ldv_intr_handler; NXGE_DEBUG_MSG((nxgep, INT_CTL, "nxge_add_intrs_adv_type: " "arg1 0x%x arg2 0x%x: " "1-1 int handler (entry %d intdata 0x%x)\n", arg1, arg2, x, ldgp->intdata)); } else if (ldgp->nldvs > 1) { inthandler = (uint_t *)ldgp->sys_intr_handler; NXGE_DEBUG_MSG((nxgep, INT_CTL, "nxge_add_intrs_adv_type: " "arg1 0x%x arg2 0x%x: " "nldevs %d int handler " "(entry %d intdata 0x%x)\n", arg1, arg2, ldgp->nldvs, x, ldgp->intdata)); } NXGE_DEBUG_MSG((nxgep, INT_CTL, "==> nxge_add_intrs_adv_type: ddi_add_intr(inum) #%d " "htable 0x%llx", x, intrp->htable[x])); if ((ddi_status = ddi_intr_add_handler(intrp->htable[x], (ddi_intr_handler_t *)inthandler, arg1, arg2)) != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_add_intrs_adv_type: failed #%d " "status 0x%x", x, ddi_status)); for (y = 0; y < intrp->intr_added; y++) { (void) ddi_intr_remove_handler( intrp->htable[y]); } /* Free already allocated intr */ for (y = 0; y < nactual; y++) { (void) ddi_intr_free(intrp->htable[y]); } kmem_free(intrp->htable, intrp->intr_size); (void) nxge_ldgv_uninit(nxgep); return (NXGE_ERROR | NXGE_DDI_FAILED); } intrp->intr_added++; } intrp->msi_intx_cnt = nactual; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "Requested: %d, Allowed: %d msi_intx_cnt %d intr_added %d", navail, nactual, intrp->msi_intx_cnt, intrp->intr_added)); (void) ddi_intr_get_cap(intrp->htable[0], &intrp->intr_cap); (void) nxge_intr_ldgv_init(nxgep); NXGE_DEBUG_MSG((nxgep, INT_CTL, "<== nxge_add_intrs_adv_type")); return (status); } /*ARGSUSED*/ static nxge_status_t nxge_add_intrs_adv_type_fix(p_nxge_t nxgep, uint32_t int_type) { dev_info_t *dip = nxgep->dip; p_nxge_ldg_t ldgp; p_nxge_intr_t intrp; uint_t *inthandler; void *arg1, *arg2; int behavior; int nintrs, navail; int nactual, nrequired; int inum = 0; int x, y; int ddi_status = DDI_SUCCESS; nxge_status_t status = NXGE_OK; NXGE_DEBUG_MSG((nxgep, INT_CTL, "==> nxge_add_intrs_adv_type_fix")); intrp = (p_nxge_intr_t)&nxgep->nxge_intr_type; intrp->start_inum = 0; ddi_status = ddi_intr_get_nintrs(dip, int_type, &nintrs); if ((ddi_status != DDI_SUCCESS) || (nintrs == 0)) { NXGE_DEBUG_MSG((nxgep, INT_CTL, "ddi_intr_get_nintrs() failed, status: 0x%x%, " "nintrs: %d", status, nintrs)); return (NXGE_ERROR | NXGE_DDI_FAILED); } ddi_status = ddi_intr_get_navail(dip, int_type, &navail); if ((ddi_status != DDI_SUCCESS) || (navail == 0)) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "ddi_intr_get_navail() failed, status: 0x%x%, " "nintrs: %d", ddi_status, navail)); return (NXGE_ERROR | NXGE_DDI_FAILED); } NXGE_DEBUG_MSG((nxgep, INT_CTL, "ddi_intr_get_navail() returned: nintrs %d, naavail %d", nintrs, navail)); behavior = ((int_type == DDI_INTR_TYPE_FIXED) ? DDI_INTR_ALLOC_STRICT : DDI_INTR_ALLOC_NORMAL); intrp->intr_size = navail * sizeof (ddi_intr_handle_t); intrp->htable = kmem_alloc(intrp->intr_size, KM_SLEEP); ddi_status = ddi_intr_alloc(dip, intrp->htable, int_type, inum, navail, &nactual, behavior); if (ddi_status != DDI_SUCCESS || nactual == 0) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, " ddi_intr_alloc() failed: %d", ddi_status)); kmem_free(intrp->htable, intrp->intr_size); return (NXGE_ERROR | NXGE_DDI_FAILED); } if ((ddi_status = ddi_intr_get_pri(intrp->htable[0], (uint_t *)&intrp->pri)) != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, " ddi_intr_get_pri() failed: %d", ddi_status)); /* Free already allocated interrupts */ for (y = 0; y < nactual; y++) { (void) ddi_intr_free(intrp->htable[y]); } kmem_free(intrp->htable, intrp->intr_size); return (NXGE_ERROR | NXGE_DDI_FAILED); } nrequired = 0; switch (nxgep->niu_type) { default: status = nxge_ldgv_init(nxgep, &nactual, &nrequired); break; case N2_NIU: status = nxge_ldgv_init_n2(nxgep, &nactual, &nrequired); break; } if (status != NXGE_OK) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "nxge_add_intrs_adv_type_fix:nxge_ldgv_init " "failed: 0x%x", status)); /* Free already allocated interrupts */ for (y = 0; y < nactual; y++) { (void) ddi_intr_free(intrp->htable[y]); } kmem_free(intrp->htable, intrp->intr_size); return (status); } ldgp = nxgep->ldgvp->ldgp; for (x = 0; x < nrequired; x++, ldgp++) { ldgp->vector = (uint8_t)x; if (nxgep->niu_type != N2_NIU) { ldgp->intdata = SID_DATA(ldgp->func, x); } arg1 = ldgp->ldvp; arg2 = nxgep; if (ldgp->nldvs == 1) { inthandler = (uint_t *)ldgp->ldvp->ldv_intr_handler; NXGE_DEBUG_MSG((nxgep, INT_CTL, "nxge_add_intrs_adv_type_fix: " "1-1 int handler(%d) ldg %d ldv %d " "arg1 $%p arg2 $%p\n", x, ldgp->ldg, ldgp->ldvp->ldv, arg1, arg2)); } else if (ldgp->nldvs > 1) { inthandler = (uint_t *)ldgp->sys_intr_handler; NXGE_DEBUG_MSG((nxgep, INT_CTL, "nxge_add_intrs_adv_type_fix: " "shared ldv %d int handler(%d) ldv %d ldg %d" "arg1 0x%016llx arg2 0x%016llx\n", x, ldgp->nldvs, ldgp->ldg, ldgp->ldvp->ldv, arg1, arg2)); } if ((ddi_status = ddi_intr_add_handler(intrp->htable[x], (ddi_intr_handler_t *)inthandler, arg1, arg2)) != DDI_SUCCESS) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_add_intrs_adv_type_fix: failed #%d " "status 0x%x", x, ddi_status)); for (y = 0; y < intrp->intr_added; y++) { (void) ddi_intr_remove_handler( intrp->htable[y]); } for (y = 0; y < nactual; y++) { (void) ddi_intr_free(intrp->htable[y]); } /* Free already allocated intr */ kmem_free(intrp->htable, intrp->intr_size); (void) nxge_ldgv_uninit(nxgep); return (NXGE_ERROR | NXGE_DDI_FAILED); } intrp->intr_added++; } intrp->msi_intx_cnt = nactual; (void) ddi_intr_get_cap(intrp->htable[0], &intrp->intr_cap); status = nxge_intr_ldgv_init(nxgep); NXGE_DEBUG_MSG((nxgep, INT_CTL, "<== nxge_add_intrs_adv_type_fix")); return (status); } static void nxge_remove_intrs(p_nxge_t nxgep) { int i, inum; p_nxge_intr_t intrp; NXGE_DEBUG_MSG((nxgep, INT_CTL, "==> nxge_remove_intrs")); intrp = (p_nxge_intr_t)&nxgep->nxge_intr_type; if (!intrp->intr_registered) { NXGE_DEBUG_MSG((nxgep, INT_CTL, "<== nxge_remove_intrs: interrupts not registered")); return; } NXGE_DEBUG_MSG((nxgep, INT_CTL, "==> nxge_remove_intrs:advanced")); if (intrp->intr_cap & DDI_INTR_FLAG_BLOCK) { (void) ddi_intr_block_disable(intrp->htable, intrp->intr_added); } else { for (i = 0; i < intrp->intr_added; i++) { (void) ddi_intr_disable(intrp->htable[i]); } } for (inum = 0; inum < intrp->intr_added; inum++) { if (intrp->htable[inum]) { (void) ddi_intr_remove_handler(intrp->htable[inum]); } } for (inum = 0; inum < intrp->msi_intx_cnt; inum++) { if (intrp->htable[inum]) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_remove_intrs: ddi_intr_free inum %d " "msi_intx_cnt %d intr_added %d", inum, intrp->msi_intx_cnt, intrp->intr_added)); (void) ddi_intr_free(intrp->htable[inum]); } } kmem_free(intrp->htable, intrp->intr_size); intrp->intr_registered = B_FALSE; intrp->intr_enabled = B_FALSE; intrp->msi_intx_cnt = 0; intrp->intr_added = 0; (void) nxge_ldgv_uninit(nxgep); (void) ddi_prop_remove(DDI_DEV_T_NONE, nxgep->dip, "#msix-request"); NXGE_DEBUG_MSG((nxgep, INT_CTL, "<== nxge_remove_intrs")); } /*ARGSUSED*/ static void nxge_intrs_enable(p_nxge_t nxgep) { p_nxge_intr_t intrp; int i; int status; NXGE_DEBUG_MSG((nxgep, INT_CTL, "==> nxge_intrs_enable")); intrp = (p_nxge_intr_t)&nxgep->nxge_intr_type; if (!intrp->intr_registered) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_intrs_enable: " "interrupts are not registered")); return; } if (intrp->intr_enabled) { NXGE_DEBUG_MSG((nxgep, INT_CTL, "<== nxge_intrs_enable: already enabled")); return; } if (intrp->intr_cap & DDI_INTR_FLAG_BLOCK) { status = ddi_intr_block_enable(intrp->htable, intrp->intr_added); NXGE_DEBUG_MSG((nxgep, INT_CTL, "==> nxge_intrs_enable " "block enable - status 0x%x total inums #%d\n", status, intrp->intr_added)); } else { for (i = 0; i < intrp->intr_added; i++) { status = ddi_intr_enable(intrp->htable[i]); NXGE_DEBUG_MSG((nxgep, INT_CTL, "==> nxge_intrs_enable " "ddi_intr_enable:enable - status 0x%x " "total inums %d enable inum #%d\n", status, intrp->intr_added, i)); if (status == DDI_SUCCESS) { intrp->intr_enabled = B_TRUE; } } } NXGE_DEBUG_MSG((nxgep, INT_CTL, "<== nxge_intrs_enable")); } /*ARGSUSED*/ static void nxge_intrs_disable(p_nxge_t nxgep) { p_nxge_intr_t intrp; int i; NXGE_DEBUG_MSG((nxgep, INT_CTL, "==> nxge_intrs_disable")); intrp = (p_nxge_intr_t)&nxgep->nxge_intr_type; if (!intrp->intr_registered) { NXGE_DEBUG_MSG((nxgep, INT_CTL, "<== nxge_intrs_disable: " "interrupts are not registered")); return; } if (intrp->intr_cap & DDI_INTR_FLAG_BLOCK) { (void) ddi_intr_block_disable(intrp->htable, intrp->intr_added); } else { for (i = 0; i < intrp->intr_added; i++) { (void) ddi_intr_disable(intrp->htable[i]); } } intrp->intr_enabled = B_FALSE; NXGE_DEBUG_MSG((nxgep, INT_CTL, "<== nxge_intrs_disable")); } nxge_status_t nxge_mac_register(p_nxge_t nxgep) { mac_register_t *macp; int status; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_mac_register")); if ((macp = mac_alloc(MAC_VERSION)) == NULL) return (NXGE_ERROR); macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; macp->m_driver = nxgep; macp->m_dip = nxgep->dip; if (!isLDOMguest(nxgep)) { macp->m_src_addr = nxgep->ouraddr.ether_addr_octet; } else { macp->m_src_addr = KMEM_ZALLOC(MAXMACADDRLEN, KM_SLEEP); macp->m_dst_addr = KMEM_ZALLOC(MAXMACADDRLEN, KM_SLEEP); (void) memset(macp->m_src_addr, 0xff, sizeof (MAXMACADDRLEN)); } macp->m_callbacks = &nxge_m_callbacks; macp->m_min_sdu = 0; nxgep->mac.default_mtu = nxgep->mac.maxframesize - NXGE_EHEADER_VLAN_CRC; macp->m_max_sdu = nxgep->mac.default_mtu; macp->m_margin = VLAN_TAGSZ; macp->m_priv_props = nxge_priv_props; macp->m_priv_prop_count = NXGE_MAX_PRIV_PROPS; if (isLDOMguest(nxgep)) { macp->m_v12n = MAC_VIRT_LEVEL1 | MAC_VIRT_SERIALIZE; } else { macp->m_v12n = MAC_VIRT_HIO | MAC_VIRT_LEVEL1 | \ MAC_VIRT_SERIALIZE; } NXGE_DEBUG_MSG((nxgep, MAC_CTL, "==> nxge_mac_register: instance %d " "max_sdu %d margin %d maxframe %d (header %d)", nxgep->instance, macp->m_max_sdu, macp->m_margin, nxgep->mac.maxframesize, NXGE_EHEADER_VLAN_CRC)); status = mac_register(macp, &nxgep->mach); if (isLDOMguest(nxgep)) { KMEM_FREE(macp->m_src_addr, MAXMACADDRLEN); KMEM_FREE(macp->m_dst_addr, MAXMACADDRLEN); } mac_free(macp); if (status != 0) { cmn_err(CE_WARN, "!nxge_mac_register failed (status %d instance %d)", status, nxgep->instance); return (NXGE_ERROR); } NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_mac_register success " "(instance %d)", nxgep->instance)); return (NXGE_OK); } void nxge_err_inject(p_nxge_t nxgep, queue_t *wq, mblk_t *mp) { ssize_t size; mblk_t *nmp; uint8_t blk_id; uint8_t chan; uint32_t err_id; err_inject_t *eip; NXGE_DEBUG_MSG((nxgep, STR_CTL, "==> nxge_err_inject")); size = 1024; nmp = mp->b_cont; eip = (err_inject_t *)nmp->b_rptr; blk_id = eip->blk_id; err_id = eip->err_id; chan = eip->chan; cmn_err(CE_NOTE, "!blk_id = 0x%x\n", blk_id); cmn_err(CE_NOTE, "!err_id = 0x%x\n", err_id); cmn_err(CE_NOTE, "!chan = 0x%x\n", chan); switch (blk_id) { case MAC_BLK_ID: break; case TXMAC_BLK_ID: break; case RXMAC_BLK_ID: break; case MIF_BLK_ID: break; case IPP_BLK_ID: nxge_ipp_inject_err(nxgep, err_id); break; case TXC_BLK_ID: nxge_txc_inject_err(nxgep, err_id); break; case TXDMA_BLK_ID: nxge_txdma_inject_err(nxgep, err_id, chan); break; case RXDMA_BLK_ID: nxge_rxdma_inject_err(nxgep, err_id, chan); break; case ZCP_BLK_ID: nxge_zcp_inject_err(nxgep, err_id); break; case ESPC_BLK_ID: break; case FFLP_BLK_ID: break; case PHY_BLK_ID: break; case ETHER_SERDES_BLK_ID: break; case PCIE_SERDES_BLK_ID: break; case VIR_BLK_ID: break; } nmp->b_wptr = nmp->b_rptr + size; NXGE_DEBUG_MSG((nxgep, STR_CTL, "<== nxge_err_inject")); miocack(wq, mp, (int)size, 0); } static int nxge_init_common_dev(p_nxge_t nxgep) { p_nxge_hw_list_t hw_p; dev_info_t *p_dip; ASSERT(nxgep != NULL); NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==> nxge_init_common_device")); p_dip = nxgep->p_dip; MUTEX_ENTER(&nxge_common_lock); NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==> nxge_init_common_dev:func # %d", nxgep->function_num)); /* * Loop through existing per neptune hardware list. */ for (hw_p = nxge_hw_list; hw_p; hw_p = hw_p->next) { NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==> nxge_init_common_device:func # %d " "hw_p $%p parent dip $%p", nxgep->function_num, hw_p, p_dip)); if (hw_p->parent_devp == p_dip) { nxgep->nxge_hw_p = hw_p; hw_p->ndevs++; hw_p->nxge_p[nxgep->function_num] = nxgep; NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==> nxge_init_common_device:func # %d " "hw_p $%p parent dip $%p " "ndevs %d (found)", nxgep->function_num, hw_p, p_dip, hw_p->ndevs)); break; } } if (hw_p == NULL) { char **prop_val; uint_t prop_len; int i; NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==> nxge_init_common_device:func # %d " "parent dip $%p (new)", nxgep->function_num, p_dip)); hw_p = kmem_zalloc(sizeof (nxge_hw_list_t), KM_SLEEP); hw_p->parent_devp = p_dip; hw_p->magic = NXGE_NEPTUNE_MAGIC; nxgep->nxge_hw_p = hw_p; hw_p->ndevs++; hw_p->nxge_p[nxgep->function_num] = nxgep; hw_p->next = nxge_hw_list; if (nxgep->niu_type == N2_NIU) { hw_p->niu_type = N2_NIU; hw_p->platform_type = P_NEPTUNE_NIU; } else { hw_p->niu_type = NIU_TYPE_NONE; hw_p->platform_type = P_NEPTUNE_NONE; } MUTEX_INIT(&hw_p->nxge_cfg_lock, NULL, MUTEX_DRIVER, NULL); MUTEX_INIT(&hw_p->nxge_tcam_lock, NULL, MUTEX_DRIVER, NULL); MUTEX_INIT(&hw_p->nxge_vlan_lock, NULL, MUTEX_DRIVER, NULL); MUTEX_INIT(&hw_p->nxge_mdio_lock, NULL, MUTEX_DRIVER, NULL); nxge_hw_list = hw_p; if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, nxgep->dip, 0, "compatible", &prop_val, &prop_len) == DDI_PROP_SUCCESS) { for (i = 0; i < prop_len; i++) { if ((strcmp((caddr_t)prop_val[i], NXGE_ROCK_COMPATIBLE) == 0)) { hw_p->platform_type = P_NEPTUNE_ROCK; NXGE_DEBUG_MSG((nxgep, MOD_CTL, "ROCK hw_p->platform_type %d", hw_p->platform_type)); break; } NXGE_DEBUG_MSG((nxgep, MOD_CTL, "nxge_init_common_dev: read compatible" " property[%d] val[%s]", i, (caddr_t)prop_val[i])); } } ddi_prop_free(prop_val); (void) nxge_scan_ports_phy(nxgep, nxge_hw_list); } MUTEX_EXIT(&nxge_common_lock); nxgep->platform_type = hw_p->platform_type; NXGE_DEBUG_MSG((nxgep, MOD_CTL, "nxgep->platform_type %d", nxgep->platform_type)); if (nxgep->niu_type != N2_NIU) { nxgep->niu_type = hw_p->niu_type; } NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==> nxge_init_common_device (nxge_hw_list) $%p", nxge_hw_list)); NXGE_DEBUG_MSG((nxgep, MOD_CTL, "<== nxge_init_common_device")); return (NXGE_OK); } static void nxge_uninit_common_dev(p_nxge_t nxgep) { p_nxge_hw_list_t hw_p, h_hw_p; p_nxge_dma_pt_cfg_t p_dma_cfgp; p_nxge_hw_pt_cfg_t p_cfgp; dev_info_t *p_dip; ASSERT(nxgep != NULL); NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==> nxge_uninit_common_device")); if (nxgep->nxge_hw_p == NULL) { NXGE_DEBUG_MSG((nxgep, MOD_CTL, "<== nxge_uninit_common_device (no common)")); return; } MUTEX_ENTER(&nxge_common_lock); h_hw_p = nxge_hw_list; for (hw_p = nxge_hw_list; hw_p; hw_p = hw_p->next) { p_dip = hw_p->parent_devp; if (nxgep->nxge_hw_p == hw_p && p_dip == nxgep->p_dip && nxgep->nxge_hw_p->magic == NXGE_NEPTUNE_MAGIC && hw_p->magic == NXGE_NEPTUNE_MAGIC) { NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==> nxge_uninit_common_device:func # %d " "hw_p $%p parent dip $%p " "ndevs %d (found)", nxgep->function_num, hw_p, p_dip, hw_p->ndevs)); /* * Release the RDC table, a shared resoruce * of the nxge hardware. The RDC table was * assigned to this instance of nxge in * nxge_use_cfg_dma_config(). */ if (!isLDOMguest(nxgep)) { p_dma_cfgp = (p_nxge_dma_pt_cfg_t)&nxgep->pt_config; p_cfgp = (p_nxge_hw_pt_cfg_t)&p_dma_cfgp->hw_config; (void) nxge_fzc_rdc_tbl_unbind(nxgep, p_cfgp->def_mac_rxdma_grpid); /* Cleanup any outstanding groups. */ nxge_grp_cleanup(nxgep); } if (hw_p->ndevs) { hw_p->ndevs--; } hw_p->nxge_p[nxgep->function_num] = NULL; if (!hw_p->ndevs) { MUTEX_DESTROY(&hw_p->nxge_vlan_lock); MUTEX_DESTROY(&hw_p->nxge_tcam_lock); MUTEX_DESTROY(&hw_p->nxge_cfg_lock); MUTEX_DESTROY(&hw_p->nxge_mdio_lock); NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==> nxge_uninit_common_device: " "func # %d " "hw_p $%p parent dip $%p " "ndevs %d (last)", nxgep->function_num, hw_p, p_dip, hw_p->ndevs)); nxge_hio_uninit(nxgep); if (hw_p == nxge_hw_list) { NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==> nxge_uninit_common_device:" "remove head func # %d " "hw_p $%p parent dip $%p " "ndevs %d (head)", nxgep->function_num, hw_p, p_dip, hw_p->ndevs)); nxge_hw_list = hw_p->next; } else { NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==> nxge_uninit_common_device:" "remove middle func # %d " "hw_p $%p parent dip $%p " "ndevs %d (middle)", nxgep->function_num, hw_p, p_dip, hw_p->ndevs)); h_hw_p->next = hw_p->next; } nxgep->nxge_hw_p = NULL; KMEM_FREE(hw_p, sizeof (nxge_hw_list_t)); } break; } else { h_hw_p = hw_p; } } MUTEX_EXIT(&nxge_common_lock); NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==> nxge_uninit_common_device (nxge_hw_list) $%p", nxge_hw_list)); NXGE_DEBUG_MSG((nxgep, MOD_CTL, "<= nxge_uninit_common_device")); } /* * Determines the number of ports from the niu_type or the platform type. * Returns the number of ports, or returns zero on failure. */ int nxge_get_nports(p_nxge_t nxgep) { int nports = 0; switch (nxgep->niu_type) { case N2_NIU: case NEPTUNE_2_10GF: nports = 2; break; case NEPTUNE_4_1GC: case NEPTUNE_2_10GF_2_1GC: case NEPTUNE_1_10GF_3_1GC: case NEPTUNE_1_1GC_1_10GF_2_1GC: case NEPTUNE_2_10GF_2_1GRF: nports = 4; break; default: switch (nxgep->platform_type) { case P_NEPTUNE_NIU: case P_NEPTUNE_ATLAS_2PORT: nports = 2; break; case P_NEPTUNE_ATLAS_4PORT: case P_NEPTUNE_MARAMBA_P0: case P_NEPTUNE_MARAMBA_P1: case P_NEPTUNE_ROCK: case P_NEPTUNE_ALONSO: nports = 4; break; default: break; } break; } return (nports); } /* * The following two functions are to support * PSARC/2007/453 MSI-X interrupt limit override. */ static int nxge_create_msi_property(p_nxge_t nxgep) { int nmsi; extern int ncpus; NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==>nxge_create_msi_property")); switch (nxgep->mac.portmode) { case PORT_10G_COPPER: case PORT_10G_FIBER: case PORT_10G_TN1010: (void) ddi_prop_create(DDI_DEV_T_NONE, nxgep->dip, DDI_PROP_CANSLEEP, "#msix-request", NULL, 0); /* * The maximum MSI-X requested will be 8. * If the # of CPUs is less than 8, we will request * # MSI-X based on the # of CPUs (default). */ NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==>nxge_create_msi_property (10G): nxge_msix_10g_intrs %d", nxge_msix_10g_intrs)); if ((nxge_msix_10g_intrs == 0) || (nxge_msix_10g_intrs > NXGE_MSIX_MAX_ALLOWED)) { nmsi = NXGE_MSIX_REQUEST_10G; NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==>nxge_create_msi_property (10G): reset to 8")); } else { nmsi = nxge_msix_10g_intrs; } /* * If # of interrupts requested is 8 (default), * the checking of the number of cpus will be * be maintained. */ if ((nmsi == NXGE_MSIX_REQUEST_10G) && (ncpus < nmsi)) { NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==>nxge_create_msi_property (10G): reset to 8")); nmsi = ncpus; } NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==>nxge_create_msi_property(10G): exists 0x%x (nmsi %d)", ddi_prop_exists(DDI_DEV_T_NONE, nxgep->dip, DDI_PROP_CANSLEEP, "#msix-request"), nmsi)); break; default: (void) ddi_prop_create(DDI_DEV_T_NONE, nxgep->dip, DDI_PROP_CANSLEEP, "#msix-request", NULL, 0); NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==>nxge_create_msi_property (1G): nxge_msix_1g_intrs %d", nxge_msix_1g_intrs)); if ((nxge_msix_1g_intrs == 0) || (nxge_msix_1g_intrs > NXGE_MSIX_MAX_ALLOWED)) { nmsi = NXGE_MSIX_REQUEST_1G; NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==>nxge_create_msi_property (1G): reset to 2")); } else { nmsi = nxge_msix_1g_intrs; } NXGE_DEBUG_MSG((nxgep, MOD_CTL, "==>nxge_create_msi_property(1G): exists 0x%x (nmsi %d)", ddi_prop_exists(DDI_DEV_T_NONE, nxgep->dip, DDI_PROP_CANSLEEP, "#msix-request"), nmsi)); break; } NXGE_DEBUG_MSG((nxgep, MOD_CTL, "<==nxge_create_msi_property")); return (nmsi); } /* ARGSUSED */ static int nxge_get_def_val(nxge_t *nxgep, mac_prop_id_t pr_num, uint_t pr_valsize, void *pr_val) { int err = 0; link_flowctrl_t fl; switch (pr_num) { case MAC_PROP_AUTONEG: *(uint8_t *)pr_val = 1; break; case MAC_PROP_FLOWCTRL: if (pr_valsize < sizeof (link_flowctrl_t)) return (EINVAL); fl = LINK_FLOWCTRL_RX; bcopy(&fl, pr_val, sizeof (fl)); break; case MAC_PROP_ADV_1000FDX_CAP: case MAC_PROP_EN_1000FDX_CAP: *(uint8_t *)pr_val = 1; break; case MAC_PROP_ADV_100FDX_CAP: case MAC_PROP_EN_100FDX_CAP: *(uint8_t *)pr_val = 1; break; default: err = ENOTSUP; break; } return (err); } /* * The following is a software around for the Neptune hardware's * interrupt bugs; The Neptune hardware may generate spurious interrupts when * an interrupr handler is removed. */ #define NXGE_PCI_PORT_LOGIC_OFFSET 0x98 #define NXGE_PIM_RESET (1ULL << 29) #define NXGE_GLU_RESET (1ULL << 30) #define NXGE_NIU_RESET (1ULL << 31) #define NXGE_PCI_RESET_ALL (NXGE_PIM_RESET | \ NXGE_GLU_RESET | \ NXGE_NIU_RESET) #define NXGE_WAIT_QUITE_TIME 200000 #define NXGE_WAIT_QUITE_RETRY 40 #define NXGE_PCI_RESET_WAIT 1000000 /* one second */ static void nxge_niu_peu_reset(p_nxge_t nxgep) { uint32_t rvalue; p_nxge_hw_list_t hw_p; p_nxge_t fnxgep; int i, j; NXGE_DEBUG_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_niu_peu_reset")); if ((hw_p = nxgep->nxge_hw_p) == NULL) { NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_niu_peu_reset: NULL hardware pointer")); return; } NXGE_DEBUG_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_niu_peu_reset: flags 0x%x link timer id %d timer id %d", hw_p->flags, nxgep->nxge_link_poll_timerid, nxgep->nxge_timerid)); MUTEX_ENTER(&hw_p->nxge_cfg_lock); /* * Make sure other instances from the same hardware * stop sending PIO and in quiescent state. */ for (i = 0; i < NXGE_MAX_PORTS; i++) { fnxgep = hw_p->nxge_p[i]; NXGE_DEBUG_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_niu_peu_reset: checking entry %d " "nxgep $%p", i, fnxgep)); #ifdef NXGE_DEBUG if (fnxgep) { NXGE_DEBUG_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_niu_peu_reset: entry %d (function %d) " "link timer id %d hw timer id %d", i, fnxgep->function_num, fnxgep->nxge_link_poll_timerid, fnxgep->nxge_timerid)); } #endif if (fnxgep && fnxgep != nxgep && (fnxgep->nxge_timerid || fnxgep->nxge_link_poll_timerid)) { NXGE_DEBUG_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_niu_peu_reset: checking $%p " "(function %d) timer ids", fnxgep, fnxgep->function_num)); for (j = 0; j < NXGE_WAIT_QUITE_RETRY; j++) { NXGE_DEBUG_MSG((nxgep, NXGE_ERR_CTL, "==> nxge_niu_peu_reset: waiting")); NXGE_DELAY(NXGE_WAIT_QUITE_TIME); if (!fnxgep->nxge_timerid && !fnxgep->nxge_link_poll_timerid) { break; } } NXGE_DELAY(NXGE_WAIT_QUITE_TIME); if (fnxgep->nxge_timerid || fnxgep->nxge_link_poll_timerid) { MUTEX_EXIT(&hw_p->nxge_cfg_lock); NXGE_ERROR_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_niu_peu_reset: cannot reset " "hardware (devices are still in use)")); return; } } } if ((hw_p->flags & COMMON_RESET_NIU_PCI) != COMMON_RESET_NIU_PCI) { hw_p->flags |= COMMON_RESET_NIU_PCI; rvalue = pci_config_get32(nxgep->dev_regs->nxge_pciregh, NXGE_PCI_PORT_LOGIC_OFFSET); NXGE_DEBUG_MSG((nxgep, NXGE_ERR_CTL, "nxge_niu_peu_reset: read offset 0x%x (%d) " "(data 0x%x)", NXGE_PCI_PORT_LOGIC_OFFSET, NXGE_PCI_PORT_LOGIC_OFFSET, rvalue)); rvalue |= NXGE_PCI_RESET_ALL; pci_config_put32(nxgep->dev_regs->nxge_pciregh, NXGE_PCI_PORT_LOGIC_OFFSET, rvalue); NXGE_DEBUG_MSG((nxgep, NXGE_ERR_CTL, "nxge_niu_peu_reset: RESETTING NIU: write NIU reset 0x%x", rvalue)); NXGE_DELAY(NXGE_PCI_RESET_WAIT); } MUTEX_EXIT(&hw_p->nxge_cfg_lock); NXGE_DEBUG_MSG((nxgep, NXGE_ERR_CTL, "<== nxge_niu_peu_reset")); } static void nxge_set_pci_replay_timeout(p_nxge_t nxgep) { p_dev_regs_t dev_regs; uint32_t value; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_set_pci_replay_timeout")); if (!nxge_set_replay_timer) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_set_pci_replay_timeout: will not change " "the timeout")); return; } dev_regs = nxgep->dev_regs; NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_set_pci_replay_timeout: dev_regs 0x%p pcireg 0x%p", dev_regs, dev_regs->nxge_pciregh)); if (dev_regs == NULL || (dev_regs->nxge_pciregh == NULL)) { NXGE_DEBUG_MSG((nxgep, DDI_CTL, "==> nxge_set_pci_replay_timeout: NULL dev_regs $%p or " "no PCI handle", dev_regs)); return; } value = (pci_config_get32(dev_regs->nxge_pciregh, PCI_REPLAY_TIMEOUT_CFG_OFFSET) | (nxge_replay_timeout << PCI_REPLAY_TIMEOUT_SHIFT)); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_set_pci_replay_timeout: replay timeout value before set 0x%x " "(timeout value to set 0x%x at offset 0x%x) value 0x%x", pci_config_get32(dev_regs->nxge_pciregh, PCI_REPLAY_TIMEOUT_CFG_OFFSET), nxge_replay_timeout, PCI_REPLAY_TIMEOUT_CFG_OFFSET, value)); pci_config_put32(dev_regs->nxge_pciregh, PCI_REPLAY_TIMEOUT_CFG_OFFSET, value); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "nxge_set_pci_replay_timeout: replay timeout value after set 0x%x", pci_config_get32(dev_regs->nxge_pciregh, PCI_REPLAY_TIMEOUT_CFG_OFFSET))); NXGE_DEBUG_MSG((nxgep, DDI_CTL, "<== nxge_set_pci_replay_timeout")); } /* * quiesce(9E) entry point. * * This function is called when the system is single-threaded at high * PIL with preemption disabled. Therefore, this function must not be * blocked. * * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure. * DDI_FAILURE indicates an error condition and should almost never happen. */ static int nxge_quiesce(dev_info_t *dip) { int instance = ddi_get_instance(dip); p_nxge_t nxgep = (p_nxge_t)ddi_get_soft_state(nxge_list, instance); if (nxgep == NULL) return (DDI_FAILURE); /* Turn off debugging */ nxge_debug_level = NO_DEBUG; nxgep->nxge_debug_level = NO_DEBUG; npi_debug_level = NO_DEBUG; /* * Stop link monitor only when linkchkmod is interrupt based */ if (nxgep->mac.linkchkmode == LINKCHK_INTR) { (void) nxge_link_monitor(nxgep, LINK_MONITOR_STOP); } (void) nxge_intr_hw_disable(nxgep); /* * Reset the receive MAC side. */ (void) nxge_rx_mac_disable(nxgep); /* Disable and soft reset the IPP */ if (!isLDOMguest(nxgep)) (void) nxge_ipp_disable(nxgep); /* * Reset the transmit/receive DMA side. */ (void) nxge_txdma_hw_mode(nxgep, NXGE_DMA_STOP); (void) nxge_rxdma_hw_mode(nxgep, NXGE_DMA_STOP); /* * Reset the transmit MAC side. */ (void) nxge_tx_mac_disable(nxgep); return (DDI_SUCCESS); }