/* * Solaris driver for ethernet cards based on the Macronix 98715 * * Copyright (c) 2007 by Garrett D'Amore . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mxfe.h" #include "mxfeimpl.h" /* * Driver globals. */ /* patchable debug flag ... must not be static! */ #ifdef DEBUG unsigned mxfe_debug = DWARN; #endif /* table of supported devices */ static mxfe_card_t mxfe_cards[] = { /* * Lite-On products */ { 0x11ad, 0xc115, 0, 0, "Lite-On LC82C115", MXFE_PNICII }, /* * Macronix chips */ { 0x10d9, 0x0531, 0x25, 0xff, "Macronix MX98715AEC", MXFE_98715AEC }, { 0x10d9, 0x0531, 0x20, 0xff, "Macronix MX98715A", MXFE_98715A }, { 0x10d9, 0x0531, 0x60, 0xff, "Macronix MX98715B", MXFE_98715B }, { 0x10d9, 0x0531, 0x30, 0xff, "Macronix MX98725", MXFE_98725 }, { 0x10d9, 0x0531, 0x00, 0xff, "Macronix MX98715", MXFE_98715 }, { 0x10d9, 0x0512, 0, 0, "Macronix MX98713", MXFE_98713 }, /* * Compex (relabeled Macronix products) */ { 0x11fc, 0x9881, 0x00, 0x00, "Compex 9881", MXFE_98713 }, { 0x11fc, 0x9881, 0x10, 0xff, "Compex 9881A", MXFE_98713A }, /* * Models listed here */ { 0x11ad, 0xc001, 0, 0, "Linksys LNE100TX", MXFE_PNICII }, { 0x2646, 0x000b, 0, 0, "Kingston KNE111TX", MXFE_PNICII }, { 0x1154, 0x0308, 0, 0, "Buffalo LGY-PCI-TXL", MXFE_98715AEC }, }; #define ETHERVLANMTU (ETHERMAX + 4) /* * Function prototypes */ static int mxfe_attach(dev_info_t *, ddi_attach_cmd_t); static int mxfe_detach(dev_info_t *, ddi_detach_cmd_t); static int mxfe_resume(dev_info_t *); static int mxfe_m_unicst(void *, const uint8_t *); static int mxfe_m_multicst(void *, boolean_t, const uint8_t *); static int mxfe_m_promisc(void *, boolean_t); static mblk_t *mxfe_m_tx(void *, mblk_t *); static int mxfe_m_stat(void *, uint_t, uint64_t *); static int mxfe_m_start(void *); static void mxfe_m_stop(void *); static int mxfe_m_getprop(void *, const char *, mac_prop_id_t, uint_t, uint_t, void *, uint_t *); static int mxfe_m_setprop(void *, const char *, mac_prop_id_t, uint_t, const void *); static unsigned mxfe_intr(caddr_t); static void mxfe_startmac(mxfe_t *); static void mxfe_stopmac(mxfe_t *); static void mxfe_resetrings(mxfe_t *); static boolean_t mxfe_initialize(mxfe_t *); static void mxfe_startall(mxfe_t *); static void mxfe_stopall(mxfe_t *); static void mxfe_resetall(mxfe_t *); static mxfe_txbuf_t *mxfe_alloctxbuf(mxfe_t *); static void mxfe_destroytxbuf(mxfe_txbuf_t *); static mxfe_rxbuf_t *mxfe_allocrxbuf(mxfe_t *); static void mxfe_destroyrxbuf(mxfe_rxbuf_t *); static void mxfe_send_setup(mxfe_t *); static boolean_t mxfe_send(mxfe_t *, mblk_t *); static int mxfe_allocrxring(mxfe_t *); static void mxfe_freerxring(mxfe_t *); static int mxfe_alloctxring(mxfe_t *); static void mxfe_freetxring(mxfe_t *); static void mxfe_error(dev_info_t *, char *, ...); static uint8_t mxfe_sromwidth(mxfe_t *); static uint16_t mxfe_readsromword(mxfe_t *, unsigned); static void mxfe_readsrom(mxfe_t *, unsigned, unsigned, void *); static void mxfe_getfactaddr(mxfe_t *, uchar_t *); static uint8_t mxfe_miireadbit(mxfe_t *); static void mxfe_miiwritebit(mxfe_t *, uint8_t); static void mxfe_miitristate(mxfe_t *); static uint16_t mxfe_miiread(mxfe_t *, int, int); static void mxfe_miiwrite(mxfe_t *, int, int, uint16_t); static uint16_t mxfe_miireadgeneral(mxfe_t *, int, int); static void mxfe_miiwritegeneral(mxfe_t *, int, int, uint16_t); static uint16_t mxfe_miiread98713(mxfe_t *, int, int); static void mxfe_miiwrite98713(mxfe_t *, int, int, uint16_t); static void mxfe_startphy(mxfe_t *); static void mxfe_stopphy(mxfe_t *); static void mxfe_startphymii(mxfe_t *); static void mxfe_startphynway(mxfe_t *); static void mxfe_startnway(mxfe_t *); static void mxfe_reportlink(mxfe_t *); static void mxfe_checklink(mxfe_t *); static void mxfe_checklinkmii(mxfe_t *); static void mxfe_checklinknway(mxfe_t *); static void mxfe_disableinterrupts(mxfe_t *); static void mxfe_enableinterrupts(mxfe_t *); static void mxfe_reclaim(mxfe_t *); static mblk_t *mxfe_receive(mxfe_t *); #ifdef DEBUG static void mxfe_dprintf(mxfe_t *, const char *, int, char *, ...); #endif #define KIOIP KSTAT_INTR_PTR(mxfep->mxfe_intrstat) static mac_callbacks_t mxfe_m_callbacks = { MC_SETPROP | MC_GETPROP, mxfe_m_stat, mxfe_m_start, mxfe_m_stop, mxfe_m_promisc, mxfe_m_multicst, mxfe_m_unicst, mxfe_m_tx, NULL, /* mc_resources */ NULL, /* mc_ioctl */ NULL, /* mc_getcapab */ NULL, /* mc_open */ NULL, /* mc_close */ mxfe_m_setprop, mxfe_m_getprop }; /* * Stream information */ DDI_DEFINE_STREAM_OPS(mxfe_devops, nulldev, nulldev, mxfe_attach, mxfe_detach, nodev, NULL, D_MP, NULL, ddi_quiesce_not_supported); /* * Module linkage information. */ static struct modldrv mxfe_modldrv = { &mod_driverops, /* drv_modops */ "Macronix Fast Ethernet", /* drv_linkinfo */ &mxfe_devops /* drv_dev_ops */ }; static struct modlinkage mxfe_modlinkage = { MODREV_1, /* ml_rev */ { &mxfe_modldrv, NULL } /* ml_linkage */ }; /* * Device attributes. */ static ddi_device_acc_attr_t mxfe_devattr = { DDI_DEVICE_ATTR_V0, DDI_STRUCTURE_LE_ACC, DDI_STRICTORDER_ACC }; static ddi_device_acc_attr_t mxfe_bufattr = { DDI_DEVICE_ATTR_V0, DDI_NEVERSWAP_ACC, DDI_STRICTORDER_ACC }; static ddi_dma_attr_t mxfe_dma_attr = { DMA_ATTR_V0, /* dma_attr_version */ 0, /* dma_attr_addr_lo */ 0xFFFFFFFFU, /* dma_attr_addr_hi */ 0x7FFFFFFFU, /* dma_attr_count_max */ 4, /* dma_attr_align */ 0x3F, /* dma_attr_burstsizes */ 1, /* dma_attr_minxfer */ 0xFFFFFFFFU, /* dma_attr_maxxfer */ 0xFFFFFFFFU, /* dma_attr_seg */ 1, /* dma_attr_sgllen */ 1, /* dma_attr_granular */ 0 /* dma_attr_flags */ }; /* * Tx buffers can be arbitrarily aligned. Additionally, they can * cross a page boundary, so we use the two buffer addresses of the * chip to provide a two-entry scatter-gather list. */ static ddi_dma_attr_t mxfe_dma_txattr = { DMA_ATTR_V0, /* dma_attr_version */ 0, /* dma_attr_addr_lo */ 0xFFFFFFFFU, /* dma_attr_addr_hi */ 0x7FFFFFFFU, /* dma_attr_count_max */ 1, /* dma_attr_align */ 0x3F, /* dma_attr_burstsizes */ 1, /* dma_attr_minxfer */ 0xFFFFFFFFU, /* dma_attr_maxxfer */ 0xFFFFFFFFU, /* dma_attr_seg */ 2, /* dma_attr_sgllen */ 1, /* dma_attr_granular */ 0 /* dma_attr_flags */ }; /* * Ethernet addresses. */ static uchar_t mxfe_broadcast[ETHERADDRL] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; /* * DDI entry points. */ int _init(void) { int rv; mac_init_ops(&mxfe_devops, "mxfe"); if ((rv = mod_install(&mxfe_modlinkage)) != DDI_SUCCESS) { mac_fini_ops(&mxfe_devops); } return (rv); } int _fini(void) { int rv; if ((rv = mod_remove(&mxfe_modlinkage)) == DDI_SUCCESS) { mac_fini_ops(&mxfe_devops); } return (rv); } int _info(struct modinfo *modinfop) { return (mod_info(&mxfe_modlinkage, modinfop)); } int mxfe_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { mxfe_t *mxfep; mac_register_t *macp; int inst = ddi_get_instance(dip); ddi_acc_handle_t pci; uint16_t venid; uint16_t devid; uint16_t revid; uint16_t svid; uint16_t ssid; uint16_t cachesize; mxfe_card_t *cardp; int i; switch (cmd) { case DDI_RESUME: return (mxfe_resume(dip)); case DDI_ATTACH: break; default: return (DDI_FAILURE); } /* this card is a bus master, reject any slave-only slot */ if (ddi_slaveonly(dip) == DDI_SUCCESS) { mxfe_error(dip, "slot does not support PCI bus-master"); return (DDI_FAILURE); } /* PCI devices shouldn't generate hilevel interrupts */ if (ddi_intr_hilevel(dip, 0) != 0) { mxfe_error(dip, "hilevel interrupts not supported"); return (DDI_FAILURE); } if (pci_config_setup(dip, &pci) != DDI_SUCCESS) { mxfe_error(dip, "unable to setup PCI config handle"); return (DDI_FAILURE); } venid = pci_config_get16(pci, PCI_VID); devid = pci_config_get16(pci, PCI_DID); revid = pci_config_get16(pci, PCI_RID); svid = pci_config_get16(pci, PCI_SVID); ssid = pci_config_get16(pci, PCI_SSID); /* * the last entry in the card table matches every possible * card, so the for-loop always terminates properly. */ cardp = NULL; for (i = 0; i < (sizeof (mxfe_cards) / sizeof (mxfe_card_t)); i++) { if ((venid == mxfe_cards[i].card_venid) && (devid == mxfe_cards[i].card_devid) && ((revid & mxfe_cards[i].card_revmask) == mxfe_cards[i].card_revid)) { cardp = &mxfe_cards[i]; } if ((svid == mxfe_cards[i].card_venid) && (ssid == mxfe_cards[i].card_devid) && ((revid & mxfe_cards[i].card_revmask) == mxfe_cards[i].card_revid)) { cardp = &mxfe_cards[i]; break; } } if (cardp == NULL) { pci_config_teardown(&pci); mxfe_error(dip, "Unable to identify PCI card"); return (DDI_FAILURE); } if (ddi_prop_update_string(DDI_DEV_T_NONE, dip, "model", cardp->card_cardname) != DDI_PROP_SUCCESS) { pci_config_teardown(&pci); mxfe_error(dip, "Unable to create model property"); return (DDI_FAILURE); } /* * Grab the PCI cachesize -- we use this to program the * cache-optimization bus access bits. */ cachesize = pci_config_get8(pci, PCI_CLS); /* this cannot fail */ mxfep = kmem_zalloc(sizeof (mxfe_t), KM_SLEEP); ddi_set_driver_private(dip, mxfep); /* get the interrupt block cookie */ if (ddi_get_iblock_cookie(dip, 0, &mxfep->mxfe_icookie) != DDI_SUCCESS) { mxfe_error(dip, "ddi_get_iblock_cookie failed"); pci_config_teardown(&pci); kmem_free(mxfep, sizeof (mxfe_t)); return (DDI_FAILURE); } mxfep->mxfe_dip = dip; mxfep->mxfe_cardp = cardp; mxfep->mxfe_phyaddr = -1; mxfep->mxfe_cachesize = cachesize; /* default properties */ mxfep->mxfe_adv_aneg = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "adv_autoneg_cap", 1); mxfep->mxfe_adv_100T4 = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "adv_100T4_cap", 1); mxfep->mxfe_adv_100fdx = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "adv_100fdx_cap", 1); mxfep->mxfe_adv_100hdx = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "adv_100hdx_cap", 1); mxfep->mxfe_adv_10fdx = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "adv_10fdx_cap", 1); mxfep->mxfe_adv_10hdx = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "adv_10hdx_cap", 1); DBG(DPCI, "PCI vendor id = %x", venid); DBG(DPCI, "PCI device id = %x", devid); DBG(DPCI, "PCI revision id = %x", revid); DBG(DPCI, "PCI cachesize = %d", cachesize); DBG(DPCI, "PCI COMM = %x", pci_config_get8(pci, PCI_CMD)); DBG(DPCI, "PCI STAT = %x", pci_config_get8(pci, PCI_STAT)); mutex_init(&mxfep->mxfe_xmtlock, NULL, MUTEX_DRIVER, mxfep->mxfe_icookie); mutex_init(&mxfep->mxfe_intrlock, NULL, MUTEX_DRIVER, mxfep->mxfe_icookie); /* * Enable bus master, IO space, and memory space accesses. */ pci_config_put16(pci, PCI_CMD, pci_config_get16(pci, PCI_CMD) | PCI_CMD_BME | PCI_CMD_MAE | PCI_CMD_MWIE); /* we're done with this now, drop it */ pci_config_teardown(&pci); /* * Initialize interrupt kstat. This should not normally fail, since * we don't use a persistent stat. We do it this way to avoid having * to test for it at run time on the hot path. */ mxfep->mxfe_intrstat = kstat_create("mxfe", inst, "intr", "controller", KSTAT_TYPE_INTR, 1, 0); if (mxfep->mxfe_intrstat == NULL) { mxfe_error(dip, "kstat_create failed"); goto failed; } kstat_install(mxfep->mxfe_intrstat); /* * Map in the device registers. */ if (ddi_regs_map_setup(dip, 1, (caddr_t *)&mxfep->mxfe_regs, 0, 0, &mxfe_devattr, &mxfep->mxfe_regshandle)) { mxfe_error(dip, "ddi_regs_map_setup failed"); goto failed; } /* * Allocate DMA resources (descriptor rings and buffers). */ if ((mxfe_allocrxring(mxfep) != DDI_SUCCESS) || (mxfe_alloctxring(mxfep) != DDI_SUCCESS)) { mxfe_error(dip, "unable to allocate DMA resources"); goto failed; } /* Initialize the chip. */ mutex_enter(&mxfep->mxfe_intrlock); mutex_enter(&mxfep->mxfe_xmtlock); if (!mxfe_initialize(mxfep)) { mutex_exit(&mxfep->mxfe_xmtlock); mutex_exit(&mxfep->mxfe_intrlock); goto failed; } mutex_exit(&mxfep->mxfe_xmtlock); mutex_exit(&mxfep->mxfe_intrlock); /* Determine the number of address bits to our EEPROM. */ mxfep->mxfe_sromwidth = mxfe_sromwidth(mxfep); /* * Get the factory ethernet address. This becomes the current * ethernet address (it can be overridden later via ifconfig). */ mxfe_getfactaddr(mxfep, mxfep->mxfe_curraddr); mxfep->mxfe_promisc = B_FALSE; /* * Establish interrupt handler. */ if (ddi_add_intr(dip, 0, NULL, NULL, mxfe_intr, (caddr_t)mxfep) != DDI_SUCCESS) { mxfe_error(dip, "unable to add interrupt"); goto failed; } /* TODO: do the power management stuff */ if ((macp = mac_alloc(MAC_VERSION)) == NULL) { mxfe_error(dip, "mac_alloc failed"); goto failed; } macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; macp->m_driver = mxfep; macp->m_dip = dip; macp->m_src_addr = mxfep->mxfe_curraddr; macp->m_callbacks = &mxfe_m_callbacks; macp->m_min_sdu = 0; macp->m_max_sdu = ETHERMTU; macp->m_margin = VLAN_TAGSZ; if (mac_register(macp, &mxfep->mxfe_mh) == DDI_SUCCESS) { mac_free(macp); return (DDI_SUCCESS); } /* failed to register with MAC */ mac_free(macp); failed: if (mxfep->mxfe_icookie != NULL) { ddi_remove_intr(dip, 0, mxfep->mxfe_icookie); } if (mxfep->mxfe_intrstat) { kstat_delete(mxfep->mxfe_intrstat); } mutex_destroy(&mxfep->mxfe_intrlock); mutex_destroy(&mxfep->mxfe_xmtlock); mxfe_freerxring(mxfep); mxfe_freetxring(mxfep); if (mxfep->mxfe_regshandle != NULL) { ddi_regs_map_free(&mxfep->mxfe_regshandle); } kmem_free(mxfep, sizeof (mxfe_t)); return (DDI_FAILURE); } int mxfe_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { mxfe_t *mxfep; mxfep = ddi_get_driver_private(dip); if (mxfep == NULL) { mxfe_error(dip, "no soft state in detach!"); return (DDI_FAILURE); } switch (cmd) { case DDI_DETACH: if (mac_unregister(mxfep->mxfe_mh) != 0) { return (DDI_FAILURE); } /* make sure hardware is quiesced */ mutex_enter(&mxfep->mxfe_intrlock); mutex_enter(&mxfep->mxfe_xmtlock); mxfep->mxfe_flags &= ~MXFE_RUNNING; mxfe_stopall(mxfep); mutex_exit(&mxfep->mxfe_xmtlock); mutex_exit(&mxfep->mxfe_intrlock); /* clean up and shut down device */ ddi_remove_intr(dip, 0, mxfep->mxfe_icookie); /* clean up kstats */ kstat_delete(mxfep->mxfe_intrstat); ddi_prop_remove_all(dip); /* free up any left over buffers or DMA resources */ mxfe_freerxring(mxfep); mxfe_freetxring(mxfep); ddi_regs_map_free(&mxfep->mxfe_regshandle); mutex_destroy(&mxfep->mxfe_intrlock); mutex_destroy(&mxfep->mxfe_xmtlock); kmem_free(mxfep, sizeof (mxfe_t)); return (DDI_SUCCESS); case DDI_SUSPEND: /* quiesce the hardware */ mutex_enter(&mxfep->mxfe_intrlock); mutex_enter(&mxfep->mxfe_xmtlock); mxfep->mxfe_flags |= MXFE_SUSPENDED; mxfe_stopall(mxfep); mutex_exit(&mxfep->mxfe_xmtlock); mutex_exit(&mxfep->mxfe_intrlock); return (DDI_SUCCESS); default: return (DDI_FAILURE); } } int mxfe_resume(dev_info_t *dip) { mxfe_t *mxfep; if ((mxfep = ddi_get_driver_private(dip)) == NULL) { return (DDI_FAILURE); } mutex_enter(&mxfep->mxfe_intrlock); mutex_enter(&mxfep->mxfe_xmtlock); mxfep->mxfe_flags &= ~MXFE_SUSPENDED; /* re-initialize chip */ if (!mxfe_initialize(mxfep)) { mxfe_error(mxfep->mxfe_dip, "unable to resume chip!"); mxfep->mxfe_flags |= MXFE_SUSPENDED; mutex_exit(&mxfep->mxfe_intrlock); mutex_exit(&mxfep->mxfe_xmtlock); return (DDI_SUCCESS); } /* start the chip */ if (mxfep->mxfe_flags & MXFE_RUNNING) { mxfe_startall(mxfep); } /* drop locks */ mutex_exit(&mxfep->mxfe_xmtlock); mutex_exit(&mxfep->mxfe_intrlock); return (DDI_SUCCESS); } /*ARGSUSED*/ int mxfe_m_multicst(void *arg, boolean_t add, const uint8_t *macaddr) { /* we already receive all multicast frames */ return (0); } int mxfe_m_promisc(void *arg, boolean_t on) { mxfe_t *mxfep = arg; /* exclusive access to the card while we reprogram it */ mutex_enter(&mxfep->mxfe_intrlock); mutex_enter(&mxfep->mxfe_xmtlock); /* save current promiscuous mode state for replay in resume */ mxfep->mxfe_promisc = on; if ((mxfep->mxfe_flags & (MXFE_RUNNING|MXFE_SUSPENDED)) == MXFE_RUNNING) { if (on) SETBIT(mxfep, CSR_NAR, NAR_RX_PROMISC); else CLRBIT(mxfep, CSR_NAR, NAR_RX_PROMISC); } mutex_exit(&mxfep->mxfe_xmtlock); mutex_exit(&mxfep->mxfe_intrlock); return (0); } int mxfe_m_unicst(void *arg, const uint8_t *macaddr) { mxfe_t *mxfep = arg; mutex_enter(&mxfep->mxfe_intrlock); mutex_enter(&mxfep->mxfe_xmtlock); bcopy(macaddr, mxfep->mxfe_curraddr, ETHERADDRL); mxfe_resetall(mxfep); mutex_exit(&mxfep->mxfe_intrlock); mutex_exit(&mxfep->mxfe_xmtlock); return (0); } mblk_t * mxfe_m_tx(void *arg, mblk_t *mp) { mxfe_t *mxfep = arg; mblk_t *nmp; mutex_enter(&mxfep->mxfe_xmtlock); if (mxfep->mxfe_flags & MXFE_SUSPENDED) { mutex_exit(&mxfep->mxfe_xmtlock); return (mp); } while (mp != NULL) { nmp = mp->b_next; mp->b_next = NULL; if (!mxfe_send(mxfep, mp)) { mp->b_next = nmp; break; } mp = nmp; } mutex_exit(&mxfep->mxfe_xmtlock); return (mp); } /* * Hardware management. */ boolean_t mxfe_initialize(mxfe_t *mxfep) { int i; unsigned val; uint32_t par, nar; ASSERT(mutex_owned(&mxfep->mxfe_intrlock)); ASSERT(mutex_owned(&mxfep->mxfe_xmtlock)); DBG(DCHATTY, "resetting!"); SETBIT(mxfep, CSR_PAR, PAR_RESET); for (i = 1; i < 10; i++) { drv_usecwait(5); val = GETCSR(mxfep, CSR_PAR); if (!(val & PAR_RESET)) { break; } } if (i == 10) { mxfe_error(mxfep->mxfe_dip, "timed out waiting for reset!"); return (B_FALSE); } /* initialize busctl register */ par = PAR_BAR | PAR_MRME | PAR_MRLE | PAR_MWIE; /* set the cache alignment if its supported */ switch (mxfep->mxfe_cachesize) { case 8: par |= PAR_CALIGN_8; break; case 16: par |= PAR_CALIGN_16; break; case 32: par |= PAR_CALIGN_32; break; default: par &= ~(PAR_MWIE | PAR_MRME | PAR_MRLE); } /* leave the burst length at zero, indicating infinite burst */ PUTCSR(mxfep, CSR_PAR, par); mxfe_resetrings(mxfep); /* clear the lost packet counter (cleared on read) */ (void) GETCSR(mxfep, CSR_LPC); /* a few other NAR bits */ nar = GETCSR(mxfep, CSR_NAR); nar &= ~NAR_RX_HO; /* disable hash only filtering */ nar |= NAR_RX_HP; /* hash perfect forwarding */ nar |= NAR_RX_MULTI; /* receive all multicast */ nar |= NAR_SF; /* store-and-forward */ if (mxfep->mxfe_promisc) { nar |= NAR_RX_PROMISC; } else { nar &= ~NAR_RX_PROMISC; } PUTCSR(mxfep, CSR_NAR, nar); mxfe_send_setup(mxfep); return (B_TRUE); } /* * Serial EEPROM access - inspired by the FreeBSD implementation. */ uint8_t mxfe_sromwidth(mxfe_t *mxfep) { int i; int eeread; uint8_t addrlen = 8; eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP; PUTCSR(mxfep, CSR_SPR, eeread & ~SPR_SROM_CHIP); drv_usecwait(1); PUTCSR(mxfep, CSR_SPR, eeread); /* command bits first */ for (i = 4; i != 0; i >>= 1) { unsigned val = (SROM_READCMD & i) ? SPR_SROM_DIN : 0; PUTCSR(mxfep, CSR_SPR, eeread | val); drv_usecwait(1); PUTCSR(mxfep, CSR_SPR, eeread | val | SPR_SROM_CLOCK); drv_usecwait(1); } PUTCSR(mxfep, CSR_SPR, eeread); for (addrlen = 1; addrlen <= 12; addrlen++) { PUTCSR(mxfep, CSR_SPR, eeread | SPR_SROM_CLOCK); drv_usecwait(1); if (!(GETCSR(mxfep, CSR_SPR) & SPR_SROM_DOUT)) { PUTCSR(mxfep, CSR_SPR, eeread); drv_usecwait(1); break; } PUTCSR(mxfep, CSR_SPR, eeread); drv_usecwait(1); } /* turn off accesses to the EEPROM */ PUTCSR(mxfep, CSR_SPR, eeread &~ SPR_SROM_CHIP); DBG(DSROM, "detected srom width = %d bits", addrlen); return ((addrlen < 4 || addrlen > 12) ? 6 : addrlen); } /* * The words in EEPROM are stored in little endian order. We * shift bits out in big endian order, though. This requires * a byte swap on some platforms. */ uint16_t mxfe_readsromword(mxfe_t *mxfep, unsigned romaddr) { int i; uint16_t word = 0; uint16_t retval; int eeread; uint8_t addrlen; int readcmd; uchar_t *ptr; eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP; addrlen = mxfep->mxfe_sromwidth; readcmd = (SROM_READCMD << addrlen) | romaddr; if (romaddr >= (1 << addrlen)) { /* too big to fit! */ return (0); } PUTCSR(mxfep, CSR_SPR, eeread & ~SPR_SROM_CHIP); PUTCSR(mxfep, CSR_SPR, eeread); /* command and address bits */ for (i = 4 + addrlen; i >= 0; i--) { short val = (readcmd & (1 << i)) ? SPR_SROM_DIN : 0; PUTCSR(mxfep, CSR_SPR, eeread | val); drv_usecwait(1); PUTCSR(mxfep, CSR_SPR, eeread | val | SPR_SROM_CLOCK); drv_usecwait(1); } PUTCSR(mxfep, CSR_SPR, eeread); for (i = 0; i < 16; i++) { PUTCSR(mxfep, CSR_SPR, eeread | SPR_SROM_CLOCK); drv_usecwait(1); word <<= 1; if (GETCSR(mxfep, CSR_SPR) & SPR_SROM_DOUT) { word |= 1; } PUTCSR(mxfep, CSR_SPR, eeread); drv_usecwait(1); } /* turn off accesses to the EEPROM */ PUTCSR(mxfep, CSR_SPR, eeread &~ SPR_SROM_CHIP); /* * Fix up the endianness thing. Note that the values * are stored in little endian format on the SROM. */ DBG(DSROM, "got value %d from SROM (before swap)", word); ptr = (uchar_t *)&word; retval = (ptr[1] << 8) | ptr[0]; return (retval); } void mxfe_readsrom(mxfe_t *mxfep, unsigned romaddr, unsigned len, void *dest) { char *ptr = dest; int i; uint16_t word; for (i = 0; i < len; i++) { word = mxfe_readsromword(mxfep, romaddr + i); bcopy(&word, ptr, 2); ptr += 2; DBG(DSROM, "word at %d is 0x%x", romaddr + i, word); } } void mxfe_getfactaddr(mxfe_t *mxfep, uchar_t *eaddr) { uint16_t word; uchar_t *ptr; /* first read to get the location of mac address in srom */ word = mxfe_readsromword(mxfep, SROM_ENADDR / 2); ptr = (uchar_t *)&word; word = (ptr[1] << 8) | ptr[0]; /* then read the actual mac address */ mxfe_readsrom(mxfep, word / 2, ETHERADDRL / 2, eaddr); DBG(DMACID, "factory ethernet address = %02x:%02x:%02x:%02x:%02x:%02x", eaddr[0], eaddr[1], eaddr[2], eaddr[3], eaddr[4], eaddr[5]); } void mxfe_startphy(mxfe_t *mxfep) { switch (MXFE_MODEL(mxfep)) { case MXFE_98713A: mxfe_startphymii(mxfep); break; default: mxfe_startphynway(mxfep); break; } } void mxfe_stopphy(mxfe_t *mxfep) { uint32_t nar; int i; /* stop the phy timer */ PUTCSR(mxfep, CSR_TIMER, 0); switch (MXFE_MODEL(mxfep)) { case MXFE_98713A: for (i = 0; i < 32; i++) { mxfe_miiwrite(mxfep, mxfep->mxfe_phyaddr, MII_CONTROL, MII_CONTROL_PWRDN | MII_CONTROL_ISOLATE); } break; default: DBG(DPHY, "resetting SIA"); PUTCSR(mxfep, CSR_SIA, SIA_RESET); drv_usecwait(500); CLRBIT(mxfep, CSR_TCTL, TCTL_PWR | TCTL_ANE); nar = GETCSR(mxfep, CSR_NAR); nar &= ~(NAR_PORTSEL | NAR_PCS | NAR_SCR | NAR_FDX); nar |= NAR_SPEED; PUTCSR(mxfep, CSR_NAR, nar); break; } /* * mark the link state unknown */ if (!mxfep->mxfe_resetting) { mxfep->mxfe_linkup = LINK_STATE_UNKNOWN; mxfep->mxfe_ifspeed = 0; mxfep->mxfe_duplex = LINK_DUPLEX_UNKNOWN; if (mxfep->mxfe_flags & MXFE_RUNNING) mxfe_reportlink(mxfep); } } /* * NWay support. */ void mxfe_startnway(mxfe_t *mxfep) { unsigned nar; unsigned tctl; unsigned restart; /* this should not happen in a healthy system */ if (mxfep->mxfe_nwaystate != MXFE_NOLINK) { DBG(DWARN, "link start called out of state (%x)", mxfep->mxfe_nwaystate); return; } if (mxfep->mxfe_adv_aneg == 0) { /* not done for forced mode */ return; } nar = GETCSR(mxfep, CSR_NAR); restart = nar & (NAR_TX_ENABLE | NAR_RX_ENABLE); nar &= ~restart; if (restart != 0) mxfe_stopmac(mxfep); nar |= NAR_SCR | NAR_PCS | NAR_HBD; nar &= ~(NAR_FDX); tctl = GETCSR(mxfep, CSR_TCTL); tctl &= ~(TCTL_100FDX | TCTL_100HDX | TCTL_HDX); if (mxfep->mxfe_adv_100fdx) { tctl |= TCTL_100FDX; } if (mxfep->mxfe_adv_100hdx) { tctl |= TCTL_100HDX; } if (mxfep->mxfe_adv_10fdx) { nar |= NAR_FDX; } if (mxfep->mxfe_adv_10hdx) { tctl |= TCTL_HDX; } tctl |= TCTL_PWR | TCTL_ANE | TCTL_LTE | TCTL_RSQ; /* possibly we should add in support for PAUSE frames */ DBG(DPHY, "writing nar = 0x%x", nar); PUTCSR(mxfep, CSR_NAR, nar); DBG(DPHY, "writing tctl = 0x%x", tctl); PUTCSR(mxfep, CSR_TCTL, tctl); /* restart autonegotation */ DBG(DPHY, "writing tstat = 0x%x", TSTAT_ANS_START); PUTCSR(mxfep, CSR_TSTAT, TSTAT_ANS_START); /* restart tx/rx processes... */ if (restart != 0) mxfe_startmac(mxfep); /* Macronix initializations from Bolo Tsai */ PUTCSR(mxfep, CSR_MXMAGIC, 0x0b2c0000); PUTCSR(mxfep, CSR_ACOMP, 0x11000); mxfep->mxfe_nwaystate = MXFE_NWAYCHECK; } void mxfe_checklinknway(mxfe_t *mxfep) { unsigned tstat; uint16_t lpar; DBG(DPHY, "NWay check, state %x", mxfep->mxfe_nwaystate); tstat = GETCSR(mxfep, CSR_TSTAT); lpar = TSTAT_LPAR(tstat); mxfep->mxfe_anlpar = lpar; if (tstat & TSTAT_LPN) { mxfep->mxfe_aner |= MII_AN_EXP_LPCANAN; } else { mxfep->mxfe_aner &= ~(MII_AN_EXP_LPCANAN); } DBG(DPHY, "tstat(CSR12) = 0x%x", tstat); DBG(DPHY, "ANEG state = 0x%x", (tstat & TSTAT_ANS) >> 12); if ((tstat & TSTAT_ANS) != TSTAT_ANS_OK) { /* autoneg did not complete */ mxfep->mxfe_bmsr &= ~MII_STATUS_ANDONE; } else { mxfep->mxfe_bmsr |= ~MII_STATUS_ANDONE; } if ((tstat & TSTAT_100F) && (tstat & TSTAT_10F)) { mxfep->mxfe_linkup = LINK_STATE_DOWN; mxfep->mxfe_ifspeed = 0; mxfep->mxfe_duplex = LINK_DUPLEX_UNKNOWN; mxfep->mxfe_nwaystate = MXFE_NOLINK; mxfe_reportlink(mxfep); mxfe_startnway(mxfep); return; } /* * if the link is newly up, then we might need to set various * mode bits, or negotiate for parameters, etc. */ if (mxfep->mxfe_adv_aneg) { uint16_t anlpar; mxfep->mxfe_linkup = LINK_STATE_UP; anlpar = mxfep->mxfe_anlpar; if (tstat & TSTAT_LPN) { /* partner has NWay */ if ((anlpar & MII_ABILITY_100BASE_TX_FD) && mxfep->mxfe_adv_100fdx) { mxfep->mxfe_ifspeed = 100000000; mxfep->mxfe_duplex = LINK_DUPLEX_FULL; } else if ((anlpar & MII_ABILITY_100BASE_TX) && mxfep->mxfe_adv_100hdx) { mxfep->mxfe_ifspeed = 100000000; mxfep->mxfe_duplex = LINK_DUPLEX_HALF; } else if ((anlpar & MII_ABILITY_10BASE_T_FD) && mxfep->mxfe_adv_10fdx) { mxfep->mxfe_ifspeed = 10000000; mxfep->mxfe_duplex = LINK_DUPLEX_FULL; } else if ((anlpar & MII_ABILITY_10BASE_T) && mxfep->mxfe_adv_10hdx) { mxfep->mxfe_ifspeed = 10000000; mxfep->mxfe_duplex = LINK_DUPLEX_HALF; } else { mxfep->mxfe_ifspeed = 0; } } else { /* link partner does not have NWay */ /* just assume half duplex, since we can't detect */ mxfep->mxfe_duplex = LINK_DUPLEX_HALF; if (!(tstat & TSTAT_100F)) { DBG(DPHY, "Partner doesn't have NWAY"); mxfep->mxfe_ifspeed = 100000000; } else { mxfep->mxfe_ifspeed = 10000000; } } } else { /* forced modes */ mxfep->mxfe_linkup = LINK_STATE_UP; if (mxfep->mxfe_adv_100fdx) { mxfep->mxfe_ifspeed = 100000000; mxfep->mxfe_duplex = LINK_DUPLEX_FULL; } else if (mxfep->mxfe_adv_100hdx) { mxfep->mxfe_ifspeed = 100000000; mxfep->mxfe_duplex = LINK_DUPLEX_HALF; } else if (mxfep->mxfe_adv_10fdx) { mxfep->mxfe_ifspeed = 10000000; mxfep->mxfe_duplex = LINK_DUPLEX_FULL; } else if (mxfep->mxfe_adv_10hdx) { mxfep->mxfe_ifspeed = 10000000; mxfep->mxfe_duplex = LINK_DUPLEX_HALF; } else { mxfep->mxfe_ifspeed = 0; } } mxfe_reportlink(mxfep); mxfep->mxfe_nwaystate = MXFE_GOODLINK; } void mxfe_startphynway(mxfe_t *mxfep) { /* take NWay and PHY out of reset */ PUTCSR(mxfep, CSR_SIA, SIA_NRESET); drv_usecwait(500); mxfep->mxfe_nwaystate = MXFE_NOLINK; mxfep->mxfe_bmsr = MII_STATUS_CANAUTONEG | MII_STATUS_100_BASEX_FD | MII_STATUS_100_BASEX | MII_STATUS_10_FD | MII_STATUS_10; mxfep->mxfe_cap_aneg = mxfep->mxfe_cap_100fdx = mxfep->mxfe_cap_100hdx = mxfep->mxfe_cap_10fdx = mxfep->mxfe_cap_10hdx = 1; /* lie about the transceiver... its not really 802.3u compliant */ mxfep->mxfe_phyaddr = 0; mxfep->mxfe_phyinuse = XCVR_100X; mxfep->mxfe_phyid = 0; /* 100-T4 not supported with NWay */ mxfep->mxfe_adv_100T4 = 0; mxfep->mxfe_cap_100T4 = 0; /* make sure at least one valid mode is selected */ if ((!mxfep->mxfe_adv_100fdx) && (!mxfep->mxfe_adv_100hdx) && (!mxfep->mxfe_adv_10fdx) && (!mxfep->mxfe_adv_10hdx)) { mxfe_error(mxfep->mxfe_dip, "No valid link mode selected."); mxfe_error(mxfep->mxfe_dip, "Powering down PHY."); mxfe_stopphy(mxfep); mxfep->mxfe_linkup = LINK_STATE_DOWN; if (mxfep->mxfe_flags & MXFE_RUNNING) mxfe_reportlink(mxfep); return; } if (mxfep->mxfe_adv_aneg == 0) { /* forced mode */ unsigned nar; unsigned tctl; nar = GETCSR(mxfep, CSR_NAR); tctl = GETCSR(mxfep, CSR_TCTL); ASSERT((nar & (NAR_TX_ENABLE | NAR_RX_ENABLE)) == 0); nar &= ~(NAR_FDX | NAR_PORTSEL | NAR_SCR | NAR_SPEED); tctl &= ~TCTL_ANE; if (mxfep->mxfe_adv_100fdx) { nar |= NAR_PORTSEL | NAR_PCS | NAR_SCR | NAR_FDX; } else if (mxfep->mxfe_adv_100hdx) { nar |= NAR_PORTSEL | NAR_PCS | NAR_SCR; } else if (mxfep->mxfe_adv_10fdx) { nar |= NAR_FDX | NAR_SPEED; } else { /* mxfep->mxfe_adv_10hdx */ nar |= NAR_SPEED; } PUTCSR(mxfep, CSR_NAR, nar); PUTCSR(mxfep, CSR_TCTL, tctl); /* Macronix initializations from Bolo Tsai */ PUTCSR(mxfep, CSR_MXMAGIC, 0x0b2c0000); PUTCSR(mxfep, CSR_ACOMP, 0x11000); } else { mxfe_startnway(mxfep); } PUTCSR(mxfep, CSR_TIMER, TIMER_LOOP | (MXFE_LINKTIMER * 1000 / TIMER_USEC)); } /* * MII management. */ void mxfe_startphymii(mxfe_t *mxfep) { unsigned phyaddr; unsigned bmcr; unsigned bmsr; unsigned anar; unsigned phyidr1; unsigned phyidr2; int retries; int cnt; mxfep->mxfe_phyaddr = -1; /* search for first PHY we can find */ for (phyaddr = 0; phyaddr < 32; phyaddr++) { bmsr = mxfe_miiread(mxfep, phyaddr, MII_STATUS); if ((bmsr != 0) && (bmsr != 0xffff)) { mxfep->mxfe_phyaddr = phyaddr; break; } } phyidr1 = mxfe_miiread(mxfep, phyaddr, MII_PHYIDH); phyidr2 = mxfe_miiread(mxfep, phyaddr, MII_PHYIDL); mxfep->mxfe_phyid = (phyidr1 << 16) | (phyidr2); /* * Generally, all Macronix based devices use an internal * 100BASE-TX internal transceiver. If we ever run into a * variation on this, then the following logic will need to be * enhanced. * * One could question the value of the XCVR_INUSE field in the * MII statistics. */ if (bmsr & MII_STATUS_100_BASE_T4) { mxfep->mxfe_phyinuse = XCVR_100T4; } else { mxfep->mxfe_phyinuse = XCVR_100X; } /* assume we support everything to start */ mxfep->mxfe_cap_aneg = mxfep->mxfe_cap_100T4 = mxfep->mxfe_cap_100fdx = mxfep->mxfe_cap_100hdx = mxfep->mxfe_cap_10fdx = mxfep->mxfe_cap_10hdx = 1; DBG(DPHY, "phy at %d: %x,%x", phyaddr, phyidr1, phyidr2); DBG(DPHY, "bmsr = %x", mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_STATUS)); DBG(DPHY, "anar = %x", mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_AN_ADVERT)); DBG(DPHY, "anlpar = %x", mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_AN_LPABLE)); DBG(DPHY, "aner = %x", mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_AN_EXPANSION)); DBG(DPHY, "resetting phy"); /* we reset the phy block */ mxfe_miiwrite(mxfep, phyaddr, MII_CONTROL, MII_CONTROL_RESET); /* * wait for it to complete -- 500usec is still to short to * bother getting the system clock involved. */ drv_usecwait(500); for (retries = 0; retries < 10; retries++) { if (mxfe_miiread(mxfep, phyaddr, MII_CONTROL) & MII_CONTROL_RESET) { drv_usecwait(500); continue; } break; } if (retries == 100) { mxfe_error(mxfep->mxfe_dip, "timeout waiting on phy to reset"); return; } DBG(DPHY, "phy reset complete"); bmsr = mxfe_miiread(mxfep, phyaddr, MII_STATUS); bmcr = mxfe_miiread(mxfep, phyaddr, MII_CONTROL); anar = mxfe_miiread(mxfep, phyaddr, MII_AN_ADVERT); anar &= ~(MII_ABILITY_100BASE_T4 | MII_ABILITY_100BASE_TX_FD | MII_ABILITY_100BASE_TX | MII_ABILITY_10BASE_T_FD | MII_ABILITY_10BASE_T); /* disable modes not supported in hardware */ if (!(bmsr & MII_STATUS_100_BASE_T4)) { mxfep->mxfe_adv_100T4 = 0; mxfep->mxfe_cap_100T4 = 0; } if (!(bmsr & MII_STATUS_100_BASEX_FD)) { mxfep->mxfe_adv_100fdx = 0; mxfep->mxfe_cap_100fdx = 0; } if (!(bmsr & MII_STATUS_100_BASEX)) { mxfep->mxfe_adv_100hdx = 0; mxfep->mxfe_cap_100hdx = 0; } if (!(bmsr & MII_STATUS_10_FD)) { mxfep->mxfe_adv_10fdx = 0; mxfep->mxfe_cap_10fdx = 0; } if (!(bmsr & MII_STATUS_10)) { mxfep->mxfe_adv_10hdx = 0; mxfep->mxfe_cap_10hdx = 0; } if (!(bmsr & MII_STATUS_CANAUTONEG)) { mxfep->mxfe_adv_aneg = 0; mxfep->mxfe_cap_aneg = 0; } cnt = 0; if (mxfep->mxfe_adv_100T4) { anar |= MII_ABILITY_100BASE_T4; cnt++; } if (mxfep->mxfe_adv_100fdx) { anar |= MII_ABILITY_100BASE_TX_FD; cnt++; } if (mxfep->mxfe_adv_100hdx) { anar |= MII_ABILITY_100BASE_TX; cnt++; } if (mxfep->mxfe_adv_10fdx) { anar |= MII_ABILITY_10BASE_T_FD; cnt++; } if (mxfep->mxfe_adv_10hdx) { anar |= MII_ABILITY_10BASE_T; cnt++; } /* * Make certain at least one valid link mode is selected. */ if (!cnt) { mxfe_error(mxfep->mxfe_dip, "No valid link mode selected."); mxfe_error(mxfep->mxfe_dip, "Powering down PHY."); mxfe_stopphy(mxfep); mxfep->mxfe_linkup = LINK_STATE_DOWN; if (mxfep->mxfe_flags & MXFE_RUNNING) mxfe_reportlink(mxfep); return; } if ((mxfep->mxfe_adv_aneg) && (bmsr & MII_STATUS_CANAUTONEG)) { DBG(DPHY, "using autoneg mode"); bmcr = (MII_CONTROL_ANE | MII_CONTROL_RSAN); } else { DBG(DPHY, "using forced mode"); if (mxfep->mxfe_adv_100fdx) { bmcr = (MII_CONTROL_100MB | MII_CONTROL_FDUPLEX); } else if (mxfep->mxfe_adv_100hdx) { bmcr = MII_CONTROL_100MB; } else if (mxfep->mxfe_adv_10fdx) { bmcr = MII_CONTROL_FDUPLEX; } else { /* 10HDX */ bmcr = 0; } } DBG(DPHY, "programming anar to 0x%x", anar); mxfe_miiwrite(mxfep, phyaddr, MII_AN_ADVERT, anar); DBG(DPHY, "programming bmcr to 0x%x", bmcr); mxfe_miiwrite(mxfep, phyaddr, MII_CONTROL, bmcr); /* * schedule a query of the link status */ PUTCSR(mxfep, CSR_TIMER, TIMER_LOOP | (MXFE_LINKTIMER * 1000 / TIMER_USEC)); } void mxfe_reportlink(mxfe_t *mxfep) { int changed = 0; if (mxfep->mxfe_ifspeed != mxfep->mxfe_lastifspeed) { mxfep->mxfe_lastifspeed = mxfep->mxfe_ifspeed; changed++; } if (mxfep->mxfe_duplex != mxfep->mxfe_lastduplex) { mxfep->mxfe_lastduplex = mxfep->mxfe_duplex; changed++; } if (mxfep->mxfe_linkup != mxfep->mxfe_lastlinkup) { mxfep->mxfe_lastlinkup = mxfep->mxfe_linkup; changed++; } if (changed) mac_link_update(mxfep->mxfe_mh, mxfep->mxfe_linkup); } void mxfe_checklink(mxfe_t *mxfep) { if ((mxfep->mxfe_flags & MXFE_RUNNING) == 0) return; if ((mxfep->mxfe_txstall_time != 0) && (gethrtime() > mxfep->mxfe_txstall_time) && (mxfep->mxfe_txavail != MXFE_TXRING)) { mxfep->mxfe_txstall_time = 0; mxfe_error(mxfep->mxfe_dip, "TX stall detected!"); mxfe_resetall(mxfep); return; } switch (MXFE_MODEL(mxfep)) { case MXFE_98713A: mxfe_checklinkmii(mxfep); break; default: mxfe_checklinknway(mxfep); } } void mxfe_checklinkmii(mxfe_t *mxfep) { /* read MII state registers */ uint16_t bmsr; uint16_t bmcr; uint16_t anar; uint16_t anlpar; uint16_t aner; /* read this twice, to clear latched link state */ bmsr = mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_STATUS); bmsr = mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_STATUS); bmcr = mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_CONTROL); anar = mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_AN_ADVERT); anlpar = mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_AN_LPABLE); aner = mxfe_miiread(mxfep, mxfep->mxfe_phyaddr, MII_AN_EXPANSION); mxfep->mxfe_bmsr = bmsr; mxfep->mxfe_anlpar = anlpar; mxfep->mxfe_aner = aner; if (bmsr & MII_STATUS_REMFAULT) { mxfe_error(mxfep->mxfe_dip, "Remote fault detected."); } if (bmsr & MII_STATUS_JABBERING) { mxfe_error(mxfep->mxfe_dip, "Jabber condition detected."); } if ((bmsr & MII_STATUS_LINKUP) == 0) { /* no link */ mxfep->mxfe_ifspeed = 0; mxfep->mxfe_duplex = LINK_DUPLEX_UNKNOWN; mxfep->mxfe_linkup = LINK_STATE_DOWN; mxfe_reportlink(mxfep); return; } DBG(DCHATTY, "link up!"); mxfep->mxfe_linkup = LINK_STATE_UP; if (!(bmcr & MII_CONTROL_ANE)) { /* forced mode */ if (bmcr & MII_CONTROL_100MB) { mxfep->mxfe_ifspeed = 100000000; } else { mxfep->mxfe_ifspeed = 10000000; } if (bmcr & MII_CONTROL_FDUPLEX) { mxfep->mxfe_duplex = LINK_DUPLEX_FULL; } else { mxfep->mxfe_duplex = LINK_DUPLEX_HALF; } } else if ((!(bmsr & MII_STATUS_CANAUTONEG)) || (!(bmsr & MII_STATUS_ANDONE))) { mxfep->mxfe_ifspeed = 0; mxfep->mxfe_duplex = LINK_DUPLEX_UNKNOWN; } else if (anar & anlpar & MII_ABILITY_100BASE_TX_FD) { mxfep->mxfe_ifspeed = 100000000; mxfep->mxfe_duplex = LINK_DUPLEX_FULL; } else if (anar & anlpar & MII_ABILITY_100BASE_T4) { mxfep->mxfe_ifspeed = 100000000; mxfep->mxfe_duplex = LINK_DUPLEX_HALF; } else if (anar & anlpar & MII_ABILITY_100BASE_TX) { mxfep->mxfe_ifspeed = 100000000; mxfep->mxfe_duplex = LINK_DUPLEX_HALF; } else if (anar & anlpar & MII_ABILITY_10BASE_T_FD) { mxfep->mxfe_ifspeed = 10000000; mxfep->mxfe_duplex = LINK_DUPLEX_FULL; } else if (anar & anlpar & MII_ABILITY_10BASE_T) { mxfep->mxfe_ifspeed = 10000000; mxfep->mxfe_duplex = LINK_DUPLEX_HALF; } else { mxfep->mxfe_ifspeed = 0; mxfep->mxfe_duplex = LINK_DUPLEX_UNKNOWN; } mxfe_reportlink(mxfep); } void mxfe_miitristate(mxfe_t *mxfep) { unsigned val = SPR_SROM_WRITE | SPR_MII_CTRL; PUTCSR(mxfep, CSR_SPR, val); drv_usecwait(1); PUTCSR(mxfep, CSR_SPR, val | SPR_MII_CLOCK); drv_usecwait(1); } void mxfe_miiwritebit(mxfe_t *mxfep, uint8_t bit) { unsigned val = bit ? SPR_MII_DOUT : 0; PUTCSR(mxfep, CSR_SPR, val); drv_usecwait(1); PUTCSR(mxfep, CSR_SPR, val | SPR_MII_CLOCK); drv_usecwait(1); } uint8_t mxfe_miireadbit(mxfe_t *mxfep) { unsigned val = SPR_MII_CTRL | SPR_SROM_READ; uint8_t bit; PUTCSR(mxfep, CSR_SPR, val); drv_usecwait(1); bit = (GETCSR(mxfep, CSR_SPR) & SPR_MII_DIN) ? 1 : 0; PUTCSR(mxfep, CSR_SPR, val | SPR_MII_CLOCK); drv_usecwait(1); return (bit); } uint16_t mxfe_miiread(mxfe_t *mxfep, int phy, int reg) { switch (MXFE_MODEL(mxfep)) { case MXFE_98713A: return (mxfe_miiread98713(mxfep, phy, reg)); default: return (0xffff); } } uint16_t mxfe_miireadgeneral(mxfe_t *mxfep, int phy, int reg) { uint16_t value = 0; int i; /* send the 32 bit preamble */ for (i = 0; i < 32; i++) { mxfe_miiwritebit(mxfep, 1); } /* send the start code - 01b */ mxfe_miiwritebit(mxfep, 0); mxfe_miiwritebit(mxfep, 1); /* send the opcode for read, - 10b */ mxfe_miiwritebit(mxfep, 1); mxfe_miiwritebit(mxfep, 0); /* next we send the 5 bit phy address */ for (i = 0x10; i > 0; i >>= 1) { mxfe_miiwritebit(mxfep, (phy & i) ? 1 : 0); } /* the 5 bit register address goes next */ for (i = 0x10; i > 0; i >>= 1) { mxfe_miiwritebit(mxfep, (reg & i) ? 1 : 0); } /* turnaround - tristate followed by logic 0 */ mxfe_miitristate(mxfep); mxfe_miiwritebit(mxfep, 0); /* read the 16 bit register value */ for (i = 0x8000; i > 0; i >>= 1) { value <<= 1; value |= mxfe_miireadbit(mxfep); } mxfe_miitristate(mxfep); return (value); } uint16_t mxfe_miiread98713(mxfe_t *mxfep, int phy, int reg) { unsigned nar; uint16_t retval; /* * like an ordinary MII, but we have to turn off portsel while * we read it. */ nar = GETCSR(mxfep, CSR_NAR); PUTCSR(mxfep, CSR_NAR, nar & ~NAR_PORTSEL); retval = mxfe_miireadgeneral(mxfep, phy, reg); PUTCSR(mxfep, CSR_NAR, nar); return (retval); } void mxfe_miiwrite(mxfe_t *mxfep, int phy, int reg, uint16_t val) { switch (MXFE_MODEL(mxfep)) { case MXFE_98713A: mxfe_miiwrite98713(mxfep, phy, reg, val); break; default: break; } } void mxfe_miiwritegeneral(mxfe_t *mxfep, int phy, int reg, uint16_t val) { int i; /* send the 32 bit preamble */ for (i = 0; i < 32; i++) { mxfe_miiwritebit(mxfep, 1); } /* send the start code - 01b */ mxfe_miiwritebit(mxfep, 0); mxfe_miiwritebit(mxfep, 1); /* send the opcode for write, - 01b */ mxfe_miiwritebit(mxfep, 0); mxfe_miiwritebit(mxfep, 1); /* next we send the 5 bit phy address */ for (i = 0x10; i > 0; i >>= 1) { mxfe_miiwritebit(mxfep, (phy & i) ? 1 : 0); } /* the 5 bit register address goes next */ for (i = 0x10; i > 0; i >>= 1) { mxfe_miiwritebit(mxfep, (reg & i) ? 1 : 0); } /* turnaround - tristate followed by logic 0 */ mxfe_miitristate(mxfep); mxfe_miiwritebit(mxfep, 0); /* now write out our data (16 bits) */ for (i = 0x8000; i > 0; i >>= 1) { mxfe_miiwritebit(mxfep, (val & i) ? 1 : 0); } /* idle mode */ mxfe_miitristate(mxfep); } void mxfe_miiwrite98713(mxfe_t *mxfep, int phy, int reg, uint16_t val) { unsigned nar; /* * like an ordinary MII, but we have to turn off portsel while * we read it. */ nar = GETCSR(mxfep, CSR_NAR); PUTCSR(mxfep, CSR_NAR, nar & ~NAR_PORTSEL); mxfe_miiwritegeneral(mxfep, phy, reg, val); PUTCSR(mxfep, CSR_NAR, nar); } int mxfe_m_start(void *arg) { mxfe_t *mxfep = arg; /* grab exclusive access to the card */ mutex_enter(&mxfep->mxfe_intrlock); mutex_enter(&mxfep->mxfe_xmtlock); mxfe_startall(mxfep); mxfep->mxfe_flags |= MXFE_RUNNING; mutex_exit(&mxfep->mxfe_xmtlock); mutex_exit(&mxfep->mxfe_intrlock); return (0); } void mxfe_m_stop(void *arg) { mxfe_t *mxfep = arg; /* exclusive access to the hardware! */ mutex_enter(&mxfep->mxfe_intrlock); mutex_enter(&mxfep->mxfe_xmtlock); mxfe_stopall(mxfep); mxfep->mxfe_flags &= ~MXFE_RUNNING; mutex_exit(&mxfep->mxfe_xmtlock); mutex_exit(&mxfep->mxfe_intrlock); } void mxfe_startmac(mxfe_t *mxfep) { /* verify exclusive access to the card */ ASSERT(mutex_owned(&mxfep->mxfe_intrlock)); ASSERT(mutex_owned(&mxfep->mxfe_xmtlock)); /* start the card */ SETBIT(mxfep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE); if (mxfep->mxfe_txavail != MXFE_TXRING) PUTCSR(mxfep, CSR_TDR, 0); /* tell the mac that we are ready to go! */ if (mxfep->mxfe_flags & MXFE_RUNNING) mac_tx_update(mxfep->mxfe_mh); } void mxfe_stopmac(mxfe_t *mxfep) { int i; /* exclusive access to the hardware! */ ASSERT(mutex_owned(&mxfep->mxfe_intrlock)); ASSERT(mutex_owned(&mxfep->mxfe_xmtlock)); CLRBIT(mxfep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE); /* * A 1518 byte frame at 10Mbps takes about 1.2 msec to drain. * We just add up to the nearest msec (2), which should be * plenty to complete. * * Note that some chips never seem to indicate the transition to * the stopped state properly. Experience shows that we can safely * proceed anyway, after waiting the requisite timeout. */ for (i = 2000; i != 0; i -= 10) { if ((GETCSR(mxfep, CSR_SR) & (SR_TX_STATE | SR_RX_STATE)) == 0) break; drv_usecwait(10); } /* prevent an interrupt */ PUTCSR(mxfep, CSR_SR, INT_RXSTOPPED | INT_TXSTOPPED); } void mxfe_resetrings(mxfe_t *mxfep) { int i; /* now we need to reset the pointers... */ PUTCSR(mxfep, CSR_RDB, 0); PUTCSR(mxfep, CSR_TDB, 0); /* reset the descriptor ring pointers */ mxfep->mxfe_rxhead = 0; mxfep->mxfe_txreclaim = 0; mxfep->mxfe_txsend = 0; mxfep->mxfe_txavail = MXFE_TXRING; /* set up transmit descriptor ring */ for (i = 0; i < MXFE_TXRING; i++) { mxfe_desc_t *tmdp = &mxfep->mxfe_txdescp[i]; unsigned control = 0; if (i == (MXFE_TXRING - 1)) { control |= TXCTL_ENDRING; } PUTTXDESC(mxfep, tmdp->desc_status, 0); PUTTXDESC(mxfep, tmdp->desc_control, control); PUTTXDESC(mxfep, tmdp->desc_buffer1, 0); PUTTXDESC(mxfep, tmdp->desc_buffer2, 0); SYNCTXDESC(mxfep, i, DDI_DMA_SYNC_FORDEV); } PUTCSR(mxfep, CSR_TDB, mxfep->mxfe_txdesc_paddr); /* make the receive buffers available */ for (i = 0; i < MXFE_RXRING; i++) { mxfe_rxbuf_t *rxb = mxfep->mxfe_rxbufs[i]; mxfe_desc_t *rmdp = &mxfep->mxfe_rxdescp[i]; unsigned control; control = MXFE_BUFSZ & RXCTL_BUFLEN1; if (i == (MXFE_RXRING - 1)) { control |= RXCTL_ENDRING; } PUTRXDESC(mxfep, rmdp->desc_buffer1, rxb->rxb_paddr); PUTRXDESC(mxfep, rmdp->desc_buffer2, 0); PUTRXDESC(mxfep, rmdp->desc_control, control); PUTRXDESC(mxfep, rmdp->desc_status, RXSTAT_OWN); SYNCRXDESC(mxfep, i, DDI_DMA_SYNC_FORDEV); } PUTCSR(mxfep, CSR_RDB, mxfep->mxfe_rxdesc_paddr); } void mxfe_stopall(mxfe_t *mxfep) { mxfe_disableinterrupts(mxfep); mxfe_stopmac(mxfep); /* stop the phy */ mxfe_stopphy(mxfep); } void mxfe_startall(mxfe_t *mxfep) { ASSERT(mutex_owned(&mxfep->mxfe_intrlock)); ASSERT(mutex_owned(&mxfep->mxfe_xmtlock)); /* make sure interrupts are disabled to begin */ mxfe_disableinterrupts(mxfep); /* initialize the chip */ (void) mxfe_initialize(mxfep); /* now we can enable interrupts */ mxfe_enableinterrupts(mxfep); /* start up the phy */ mxfe_startphy(mxfep); /* start up the mac */ mxfe_startmac(mxfep); } void mxfe_resetall(mxfe_t *mxfep) { mxfep->mxfe_resetting = B_TRUE; mxfe_stopall(mxfep); mxfep->mxfe_resetting = B_FALSE; mxfe_startall(mxfep); } mxfe_txbuf_t * mxfe_alloctxbuf(mxfe_t *mxfep) { ddi_dma_cookie_t dmac; unsigned ncookies; mxfe_txbuf_t *txb; size_t len; txb = kmem_zalloc(sizeof (*txb), KM_SLEEP); if (ddi_dma_alloc_handle(mxfep->mxfe_dip, &mxfe_dma_txattr, DDI_DMA_SLEEP, NULL, &txb->txb_dmah) != DDI_SUCCESS) { return (NULL); } if (ddi_dma_mem_alloc(txb->txb_dmah, MXFE_BUFSZ, &mxfe_bufattr, DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &txb->txb_buf, &len, &txb->txb_acch) != DDI_SUCCESS) { return (NULL); } if (ddi_dma_addr_bind_handle(txb->txb_dmah, NULL, txb->txb_buf, len, DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &dmac, &ncookies) != DDI_DMA_MAPPED) { return (NULL); } txb->txb_paddr = dmac.dmac_address; return (txb); } void mxfe_destroytxbuf(mxfe_txbuf_t *txb) { if (txb != NULL) { if (txb->txb_paddr) (void) ddi_dma_unbind_handle(txb->txb_dmah); if (txb->txb_acch) ddi_dma_mem_free(&txb->txb_acch); if (txb->txb_dmah) ddi_dma_free_handle(&txb->txb_dmah); kmem_free(txb, sizeof (*txb)); } } mxfe_rxbuf_t * mxfe_allocrxbuf(mxfe_t *mxfep) { mxfe_rxbuf_t *rxb; size_t len; unsigned ccnt; ddi_dma_cookie_t dmac; rxb = kmem_zalloc(sizeof (*rxb), KM_SLEEP); if (ddi_dma_alloc_handle(mxfep->mxfe_dip, &mxfe_dma_attr, DDI_DMA_SLEEP, NULL, &rxb->rxb_dmah) != DDI_SUCCESS) { kmem_free(rxb, sizeof (*rxb)); return (NULL); } if (ddi_dma_mem_alloc(rxb->rxb_dmah, MXFE_BUFSZ, &mxfe_bufattr, DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &rxb->rxb_buf, &len, &rxb->rxb_acch) != DDI_SUCCESS) { ddi_dma_free_handle(&rxb->rxb_dmah); kmem_free(rxb, sizeof (*rxb)); return (NULL); } if (ddi_dma_addr_bind_handle(rxb->rxb_dmah, NULL, rxb->rxb_buf, len, DDI_DMA_READ | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &dmac, &ccnt) != DDI_DMA_MAPPED) { ddi_dma_mem_free(&rxb->rxb_acch); ddi_dma_free_handle(&rxb->rxb_dmah); kmem_free(rxb, sizeof (*rxb)); return (NULL); } rxb->rxb_paddr = dmac.dmac_address; return (rxb); } void mxfe_destroyrxbuf(mxfe_rxbuf_t *rxb) { if (rxb != NULL) { (void) ddi_dma_unbind_handle(rxb->rxb_dmah); ddi_dma_mem_free(&rxb->rxb_acch); ddi_dma_free_handle(&rxb->rxb_dmah); kmem_free(rxb, sizeof (*rxb)); } } /* * Allocate receive resources. */ int mxfe_allocrxring(mxfe_t *mxfep) { int rval; int i; size_t size; size_t len; ddi_dma_cookie_t dmac; unsigned ncookies; caddr_t kaddr; size = MXFE_RXRING * sizeof (mxfe_desc_t); rval = ddi_dma_alloc_handle(mxfep->mxfe_dip, &mxfe_dma_attr, DDI_DMA_SLEEP, NULL, &mxfep->mxfe_rxdesc_dmah); if (rval != DDI_SUCCESS) { mxfe_error(mxfep->mxfe_dip, "unable to allocate DMA handle for rx descriptors"); return (DDI_FAILURE); } rval = ddi_dma_mem_alloc(mxfep->mxfe_rxdesc_dmah, size, &mxfe_devattr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len, &mxfep->mxfe_rxdesc_acch); if (rval != DDI_SUCCESS) { mxfe_error(mxfep->mxfe_dip, "unable to allocate DMA memory for rx descriptors"); return (DDI_FAILURE); } rval = ddi_dma_addr_bind_handle(mxfep->mxfe_rxdesc_dmah, NULL, kaddr, size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dmac, &ncookies); if (rval != DDI_DMA_MAPPED) { mxfe_error(mxfep->mxfe_dip, "unable to bind DMA for rx descriptors"); return (DDI_FAILURE); } /* because of mxfe_dma_attr */ ASSERT(ncookies == 1); /* we take the 32-bit physical address out of the cookie */ mxfep->mxfe_rxdesc_paddr = dmac.dmac_address; mxfep->mxfe_rxdescp = (void *)kaddr; /* allocate buffer pointers (not the buffers themselves, yet) */ mxfep->mxfe_rxbufs = kmem_zalloc(MXFE_RXRING * sizeof (mxfe_rxbuf_t *), KM_SLEEP); /* now allocate rx buffers */ for (i = 0; i < MXFE_RXRING; i++) { mxfe_rxbuf_t *rxb = mxfe_allocrxbuf(mxfep); if (rxb == NULL) return (DDI_FAILURE); mxfep->mxfe_rxbufs[i] = rxb; } return (DDI_SUCCESS); } /* * Allocate transmit resources. */ int mxfe_alloctxring(mxfe_t *mxfep) { int rval; int i; size_t size; size_t len; ddi_dma_cookie_t dmac; unsigned ncookies; caddr_t kaddr; size = MXFE_TXRING * sizeof (mxfe_desc_t); rval = ddi_dma_alloc_handle(mxfep->mxfe_dip, &mxfe_dma_attr, DDI_DMA_SLEEP, NULL, &mxfep->mxfe_txdesc_dmah); if (rval != DDI_SUCCESS) { mxfe_error(mxfep->mxfe_dip, "unable to allocate DMA handle for tx descriptors"); return (DDI_FAILURE); } rval = ddi_dma_mem_alloc(mxfep->mxfe_txdesc_dmah, size, &mxfe_devattr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len, &mxfep->mxfe_txdesc_acch); if (rval != DDI_SUCCESS) { mxfe_error(mxfep->mxfe_dip, "unable to allocate DMA memory for tx descriptors"); return (DDI_FAILURE); } rval = ddi_dma_addr_bind_handle(mxfep->mxfe_txdesc_dmah, NULL, kaddr, size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dmac, &ncookies); if (rval != DDI_DMA_MAPPED) { mxfe_error(mxfep->mxfe_dip, "unable to bind DMA for tx descriptors"); return (DDI_FAILURE); } /* because of mxfe_dma_attr */ ASSERT(ncookies == 1); /* we take the 32-bit physical address out of the cookie */ mxfep->mxfe_txdesc_paddr = dmac.dmac_address; mxfep->mxfe_txdescp = (void *)kaddr; /* allocate buffer pointers (not the buffers themselves, yet) */ mxfep->mxfe_txbufs = kmem_zalloc(MXFE_TXRING * sizeof (mxfe_txbuf_t *), KM_SLEEP); /* now allocate tx buffers */ for (i = 0; i < MXFE_TXRING; i++) { mxfe_txbuf_t *txb = mxfe_alloctxbuf(mxfep); if (txb == NULL) return (DDI_FAILURE); /* stick it in the stack */ mxfep->mxfe_txbufs[i] = txb; } return (DDI_SUCCESS); } void mxfe_freerxring(mxfe_t *mxfep) { int i; for (i = 0; i < MXFE_RXRING; i++) { mxfe_destroyrxbuf(mxfep->mxfe_rxbufs[i]); } if (mxfep->mxfe_rxbufs) { kmem_free(mxfep->mxfe_rxbufs, MXFE_RXRING * sizeof (mxfe_rxbuf_t *)); } if (mxfep->mxfe_rxdesc_paddr) (void) ddi_dma_unbind_handle(mxfep->mxfe_rxdesc_dmah); if (mxfep->mxfe_rxdesc_acch) ddi_dma_mem_free(&mxfep->mxfe_rxdesc_acch); if (mxfep->mxfe_rxdesc_dmah) ddi_dma_free_handle(&mxfep->mxfe_rxdesc_dmah); } void mxfe_freetxring(mxfe_t *mxfep) { int i; for (i = 0; i < MXFE_TXRING; i++) { mxfe_destroytxbuf(mxfep->mxfe_txbufs[i]); } if (mxfep->mxfe_txbufs) { kmem_free(mxfep->mxfe_txbufs, MXFE_TXRING * sizeof (mxfe_txbuf_t *)); } if (mxfep->mxfe_txdesc_paddr) (void) ddi_dma_unbind_handle(mxfep->mxfe_txdesc_dmah); if (mxfep->mxfe_txdesc_acch) ddi_dma_mem_free(&mxfep->mxfe_txdesc_acch); if (mxfep->mxfe_txdesc_dmah) ddi_dma_free_handle(&mxfep->mxfe_txdesc_dmah); } /* * Interrupt service routine. */ unsigned mxfe_intr(caddr_t arg) { mxfe_t *mxfep = (void *)arg; uint32_t status; mblk_t *mp = NULL; mutex_enter(&mxfep->mxfe_intrlock); if (mxfep->mxfe_flags & MXFE_SUSPENDED) { /* we cannot receive interrupts! */ mutex_exit(&mxfep->mxfe_intrlock); return (DDI_INTR_UNCLAIMED); } /* check interrupt status bits, did we interrupt? */ status = GETCSR(mxfep, CSR_SR) & INT_ALL; if (status == 0) { KIOIP->intrs[KSTAT_INTR_SPURIOUS]++; mutex_exit(&mxfep->mxfe_intrlock); return (DDI_INTR_UNCLAIMED); } /* ack the interrupt */ PUTCSR(mxfep, CSR_SR, status); KIOIP->intrs[KSTAT_INTR_HARD]++; if (!(mxfep->mxfe_flags & MXFE_RUNNING)) { /* not running, don't touch anything */ mutex_exit(&mxfep->mxfe_intrlock); return (DDI_INTR_CLAIMED); } if (status & INT_RXOK) { /* receive packets */ mp = mxfe_receive(mxfep); } if (status & INT_TXOK) { /* transmit completed */ mutex_enter(&mxfep->mxfe_xmtlock); mxfe_reclaim(mxfep); mutex_exit(&mxfep->mxfe_xmtlock); } if (((status & (INT_TIMER|INT_ANEG)) != 0) || ((mxfep->mxfe_linkup == LINK_STATE_UP) && ((status & (INT_10LINK|INT_100LINK)) != 0))) { /* rescan the link */ mutex_enter(&mxfep->mxfe_xmtlock); mxfe_checklink(mxfep); mutex_exit(&mxfep->mxfe_xmtlock); } if (status & (INT_RXSTOPPED|INT_TXSTOPPED|INT_RXNOBUF| INT_RXJABBER|INT_TXJABBER|INT_TXUNDERFLOW)) { if (status & (INT_RXJABBER | INT_TXJABBER)) { mxfep->mxfe_jabber++; } DBG(DWARN, "resetting mac, status %x", status); mutex_enter(&mxfep->mxfe_xmtlock); mxfe_resetall(mxfep); mutex_exit(&mxfep->mxfe_xmtlock); } if (status & INT_BUSERR) { switch (status & SR_BERR_TYPE) { case SR_BERR_PARITY: mxfe_error(mxfep->mxfe_dip, "PCI parity error"); break; case SR_BERR_TARGET_ABORT: mxfe_error(mxfep->mxfe_dip, "PCI target abort"); break; case SR_BERR_MASTER_ABORT: mxfe_error(mxfep->mxfe_dip, "PCI master abort"); break; default: mxfe_error(mxfep->mxfe_dip, "Unknown PCI error"); break; } /* reset the chip in an attempt to fix things */ mutex_enter(&mxfep->mxfe_xmtlock); mxfe_resetall(mxfep); mutex_exit(&mxfep->mxfe_xmtlock); } mutex_exit(&mxfep->mxfe_intrlock); /* * Send up packets. We do this outside of the intrlock. */ if (mp) { mac_rx(mxfep->mxfe_mh, NULL, mp); } return (DDI_INTR_CLAIMED); } void mxfe_enableinterrupts(mxfe_t *mxfep) { unsigned mask = INT_WANTED; if (mxfep->mxfe_wantw) mask |= INT_TXOK; if (MXFE_MODEL(mxfep) != MXFE_98713A) mask |= INT_LINKSTATUS; DBG(DINTR, "setting int mask to 0x%x", mask); PUTCSR(mxfep, CSR_IER, mask); } void mxfe_disableinterrupts(mxfe_t *mxfep) { /* disable further interrupts */ PUTCSR(mxfep, CSR_IER, 0); /* clear any pending interrupts */ PUTCSR(mxfep, CSR_SR, INT_ALL); } void mxfe_send_setup(mxfe_t *mxfep) { mxfe_txbuf_t *txb; mxfe_desc_t *tmdp; ASSERT(mutex_owned(&mxfep->mxfe_xmtlock)); /* setup frame -- must be at head of list -- guaranteed by caller! */ ASSERT(mxfep->mxfe_txsend == 0); txb = mxfep->mxfe_txbufs[0]; tmdp = &mxfep->mxfe_txdescp[0]; bzero(txb->txb_buf, MXFE_SETUP_LEN); /* program the unicast address */ txb->txb_buf[156] = mxfep->mxfe_curraddr[0]; txb->txb_buf[157] = mxfep->mxfe_curraddr[1]; txb->txb_buf[160] = mxfep->mxfe_curraddr[2]; txb->txb_buf[161] = mxfep->mxfe_curraddr[3]; txb->txb_buf[164] = mxfep->mxfe_curraddr[4]; txb->txb_buf[165] = mxfep->mxfe_curraddr[5]; /* make sure that the hardware can see it */ SYNCTXBUF(txb, MXFE_SETUP_LEN, DDI_DMA_SYNC_FORDEV); PUTTXDESC(mxfep, tmdp->desc_control, TXCTL_FIRST | TXCTL_LAST | TXCTL_INTCMPLTE | TXCTL_HASHPERF | TXCTL_SETUP | MXFE_SETUP_LEN); PUTTXDESC(mxfep, tmdp->desc_buffer1, txb->txb_paddr); PUTTXDESC(mxfep, tmdp->desc_buffer2, 0); PUTTXDESC(mxfep, tmdp->desc_status, TXSTAT_OWN); /* sync the descriptor out to the device */ SYNCTXDESC(mxfep, 0, DDI_DMA_SYNC_FORDEV); /* * wake up the chip ... inside the lock to protect against DR suspend, * etc. */ PUTCSR(mxfep, CSR_TDR, 0); mxfep->mxfe_txsend++; mxfep->mxfe_txavail--; /* * Program promiscuous mode. */ if (mxfep->mxfe_promisc) { SETBIT(mxfep, CSR_NAR, NAR_RX_PROMISC); } else { CLRBIT(mxfep, CSR_NAR, NAR_RX_PROMISC); } } boolean_t mxfe_send(mxfe_t *mxfep, mblk_t *mp) { size_t len; mxfe_txbuf_t *txb; mxfe_desc_t *tmd; uint32_t control; int txsend; ASSERT(mutex_owned(&mxfep->mxfe_xmtlock)); ASSERT(mp != NULL); len = msgsize(mp); if (len > ETHERVLANMTU) { DBG(DXMIT, "frame too long: %d", len); mxfep->mxfe_macxmt_errors++; freemsg(mp); return (B_TRUE); } if (mxfep->mxfe_txavail < MXFE_TXRECLAIM) mxfe_reclaim(mxfep); if (mxfep->mxfe_txavail == 0) { /* no more tmds */ mxfep->mxfe_wantw = B_TRUE; /* enable TX interrupt */ mxfe_enableinterrupts(mxfep); return (B_FALSE); } txsend = mxfep->mxfe_txsend; /* * For simplicity, we just do a copy into a preallocated * DMA buffer. */ txb = mxfep->mxfe_txbufs[txsend]; mcopymsg(mp, txb->txb_buf); /* frees mp! */ /* * Statistics. */ mxfep->mxfe_opackets++; mxfep->mxfe_obytes += len; if (txb->txb_buf[0] & 0x1) { if (bcmp(txb->txb_buf, mxfe_broadcast, ETHERADDRL) != 0) mxfep->mxfe_multixmt++; else mxfep->mxfe_brdcstxmt++; } /* note len is already known to be a small unsigned */ control = len | TXCTL_FIRST | TXCTL_LAST | TXCTL_INTCMPLTE; if (txsend == (MXFE_TXRING - 1)) control |= TXCTL_ENDRING; tmd = &mxfep->mxfe_txdescp[txsend]; SYNCTXBUF(txb, len, DDI_DMA_SYNC_FORDEV); PUTTXDESC(mxfep, tmd->desc_control, control); PUTTXDESC(mxfep, tmd->desc_buffer1, txb->txb_paddr); PUTTXDESC(mxfep, tmd->desc_buffer2, 0); PUTTXDESC(mxfep, tmd->desc_status, TXSTAT_OWN); /* sync the descriptor out to the device */ SYNCTXDESC(mxfep, txsend, DDI_DMA_SYNC_FORDEV); /* * Note the new values of txavail and txsend. */ mxfep->mxfe_txavail--; mxfep->mxfe_txsend = (txsend + 1) % MXFE_TXRING; /* * It should never, ever take more than 5 seconds to drain * the ring. If it happens, then we are stuck! */ mxfep->mxfe_txstall_time = gethrtime() + (5 * 1000000000ULL); /* * wake up the chip ... inside the lock to protect against DR suspend, * etc. */ PUTCSR(mxfep, CSR_TDR, 0); return (B_TRUE); } /* * Reclaim buffers that have completed transmission. */ void mxfe_reclaim(mxfe_t *mxfep) { mxfe_desc_t *tmdp; while (mxfep->mxfe_txavail != MXFE_TXRING) { uint32_t status; uint32_t control; int index = mxfep->mxfe_txreclaim; tmdp = &mxfep->mxfe_txdescp[index]; /* sync it before we read it */ SYNCTXDESC(mxfep, index, DDI_DMA_SYNC_FORKERNEL); control = GETTXDESC(mxfep, tmdp->desc_control); status = GETTXDESC(mxfep, tmdp->desc_status); if (status & TXSTAT_OWN) { /* chip is still working on it, we're done */ break; } mxfep->mxfe_txavail++; mxfep->mxfe_txreclaim = (index + 1) % MXFE_TXRING; /* in the most common successful case, all bits are clear */ if (status == 0) continue; if (((control & TXCTL_SETUP) != 0) || ((control & TXCTL_LAST) == 0)) { /* no interesting statistics here */ continue; } if (status & TXSTAT_TXERR) { mxfep->mxfe_errxmt++; if (status & TXSTAT_JABBER) { /* transmit jabber timeout */ mxfep->mxfe_macxmt_errors++; } if (status & (TXSTAT_CARRLOST | TXSTAT_NOCARR)) { mxfep->mxfe_carrier_errors++; } if (status & TXSTAT_UFLOW) { mxfep->mxfe_underflow++; } if (status & TXSTAT_LATECOL) { mxfep->mxfe_tx_late_collisions++; } if (status & TXSTAT_EXCOLL) { mxfep->mxfe_ex_collisions++; mxfep->mxfe_collisions += 16; } } if (status & TXSTAT_DEFER) { mxfep->mxfe_defer_xmts++; } /* collision counting */ if (TXCOLLCNT(status) == 1) { mxfep->mxfe_collisions++; mxfep->mxfe_first_collisions++; } else if (TXCOLLCNT(status)) { mxfep->mxfe_collisions += TXCOLLCNT(status); mxfep->mxfe_multi_collisions += TXCOLLCNT(status); } } if (mxfep->mxfe_txavail >= MXFE_TXRESCHED) { if (mxfep->mxfe_wantw) { /* * we were able to reclaim some packets, so * disable tx interrupts */ mxfep->mxfe_wantw = B_FALSE; mxfe_enableinterrupts(mxfep); mac_tx_update(mxfep->mxfe_mh); } } } mblk_t * mxfe_receive(mxfe_t *mxfep) { unsigned len; mxfe_rxbuf_t *rxb; mxfe_desc_t *rmd; uint32_t status; mblk_t *mpchain, **mpp, *mp; int head, cnt; mpchain = NULL; mpp = &mpchain; head = mxfep->mxfe_rxhead; /* limit the number of packets we process to a ring size */ for (cnt = 0; cnt < MXFE_RXRING; cnt++) { DBG(DRECV, "receive at index %d", head); rmd = &mxfep->mxfe_rxdescp[head]; rxb = mxfep->mxfe_rxbufs[head]; SYNCRXDESC(mxfep, head, DDI_DMA_SYNC_FORKERNEL); status = GETRXDESC(mxfep, rmd->desc_status); if (status & RXSTAT_OWN) { /* chip is still chewing on it */ break; } /* discard the ethernet frame checksum */ len = RXLENGTH(status) - ETHERFCSL; DBG(DRECV, "recv length %d, status %x", len, status); if ((status & (RXSTAT_ERRS | RXSTAT_FIRST | RXSTAT_LAST)) != (RXSTAT_FIRST | RXSTAT_LAST)) { mxfep->mxfe_errrcv++; /* * Abnormal status bits detected, analyze further. */ if ((status & (RXSTAT_LAST|RXSTAT_FIRST)) != (RXSTAT_LAST|RXSTAT_FIRST)) { DBG(DRECV, "rx packet overspill"); if (status & RXSTAT_FIRST) { mxfep->mxfe_toolong_errors++; } } else if (status & RXSTAT_DESCERR) { mxfep->mxfe_macrcv_errors++; } else if (status & RXSTAT_RUNT) { mxfep->mxfe_runt++; } else if (status & RXSTAT_COLLSEEN) { /* this should really be rx_late_collisions */ mxfep->mxfe_macrcv_errors++; } else if (status & RXSTAT_DRIBBLE) { mxfep->mxfe_align_errors++; } else if (status & RXSTAT_CRCERR) { mxfep->mxfe_fcs_errors++; } else if (status & RXSTAT_OFLOW) { mxfep->mxfe_overflow++; } } else if (len > ETHERVLANMTU) { mxfep->mxfe_errrcv++; mxfep->mxfe_toolong_errors++; } /* * At this point, the chip thinks the packet is OK. */ else { mp = allocb(len + MXFE_HEADROOM, 0); if (mp == NULL) { mxfep->mxfe_errrcv++; mxfep->mxfe_norcvbuf++; goto skip; } /* sync the buffer before we look at it */ SYNCRXBUF(rxb, len, DDI_DMA_SYNC_FORKERNEL); mp->b_rptr += MXFE_HEADROOM; mp->b_wptr = mp->b_rptr + len; bcopy((char *)rxb->rxb_buf, mp->b_rptr, len); mxfep->mxfe_ipackets++; mxfep->mxfe_rbytes += len; if (status & RXSTAT_GROUP) { if (bcmp(mp->b_rptr, mxfe_broadcast, ETHERADDRL) == 0) mxfep->mxfe_brdcstrcv++; else mxfep->mxfe_multircv++; } *mpp = mp; mpp = &mp->b_next; } skip: /* return ring entry to the hardware */ PUTRXDESC(mxfep, rmd->desc_status, RXSTAT_OWN); SYNCRXDESC(mxfep, head, DDI_DMA_SYNC_FORDEV); /* advance to next RMD */ head = (head + 1) % MXFE_RXRING; } mxfep->mxfe_rxhead = head; return (mpchain); } int mxfe_m_stat(void *arg, uint_t stat, uint64_t *val) { mxfe_t *mxfep = arg; mutex_enter(&mxfep->mxfe_xmtlock); if ((mxfep->mxfe_flags & (MXFE_RUNNING|MXFE_SUSPENDED)) == MXFE_RUNNING) mxfe_reclaim(mxfep); mutex_exit(&mxfep->mxfe_xmtlock); switch (stat) { case MAC_STAT_IFSPEED: *val = mxfep->mxfe_ifspeed; break; case MAC_STAT_MULTIRCV: *val = mxfep->mxfe_multircv; break; case MAC_STAT_BRDCSTRCV: *val = mxfep->mxfe_brdcstrcv; break; case MAC_STAT_MULTIXMT: *val = mxfep->mxfe_multixmt; break; case MAC_STAT_BRDCSTXMT: *val = mxfep->mxfe_brdcstxmt; break; case MAC_STAT_IPACKETS: *val = mxfep->mxfe_ipackets; break; case MAC_STAT_RBYTES: *val = mxfep->mxfe_rbytes; break; case MAC_STAT_OPACKETS: *val = mxfep->mxfe_opackets; break; case MAC_STAT_OBYTES: *val = mxfep->mxfe_obytes; break; case MAC_STAT_NORCVBUF: *val = mxfep->mxfe_norcvbuf; break; case MAC_STAT_NOXMTBUF: *val = mxfep->mxfe_noxmtbuf; break; case MAC_STAT_COLLISIONS: *val = mxfep->mxfe_collisions; break; case MAC_STAT_IERRORS: *val = mxfep->mxfe_errrcv; break; case MAC_STAT_OERRORS: *val = mxfep->mxfe_errxmt; break; case ETHER_STAT_LINK_DUPLEX: *val = mxfep->mxfe_duplex; break; case ETHER_STAT_ALIGN_ERRORS: *val = mxfep->mxfe_align_errors; break; case ETHER_STAT_FCS_ERRORS: *val = mxfep->mxfe_fcs_errors; break; case ETHER_STAT_SQE_ERRORS: *val = mxfep->mxfe_sqe_errors; break; case ETHER_STAT_DEFER_XMTS: *val = mxfep->mxfe_defer_xmts; break; case ETHER_STAT_FIRST_COLLISIONS: *val = mxfep->mxfe_first_collisions; break; case ETHER_STAT_MULTI_COLLISIONS: *val = mxfep->mxfe_multi_collisions; break; case ETHER_STAT_TX_LATE_COLLISIONS: *val = mxfep->mxfe_tx_late_collisions; break; case ETHER_STAT_EX_COLLISIONS: *val = mxfep->mxfe_ex_collisions; break; case ETHER_STAT_MACXMT_ERRORS: *val = mxfep->mxfe_macxmt_errors; break; case ETHER_STAT_CARRIER_ERRORS: *val = mxfep->mxfe_carrier_errors; break; case ETHER_STAT_TOOLONG_ERRORS: *val = mxfep->mxfe_toolong_errors; break; case ETHER_STAT_MACRCV_ERRORS: *val = mxfep->mxfe_macrcv_errors; break; case MAC_STAT_OVERFLOWS: *val = mxfep->mxfe_overflow; break; case MAC_STAT_UNDERFLOWS: *val = mxfep->mxfe_underflow; break; case ETHER_STAT_TOOSHORT_ERRORS: *val = mxfep->mxfe_runt; break; case ETHER_STAT_JABBER_ERRORS: *val = mxfep->mxfe_jabber; break; case ETHER_STAT_ADV_CAP_100T4: *val = mxfep->mxfe_adv_100T4; break; case ETHER_STAT_LP_CAP_100T4: *val = (mxfep->mxfe_anlpar & MII_ABILITY_100BASE_T4) ? 1 : 0; break; case ETHER_STAT_CAP_100T4: *val = mxfep->mxfe_cap_100T4; break; case ETHER_STAT_CAP_100FDX: *val = mxfep->mxfe_cap_100fdx; break; case ETHER_STAT_CAP_100HDX: *val = mxfep->mxfe_cap_100hdx; break; case ETHER_STAT_CAP_10FDX: *val = mxfep->mxfe_cap_10fdx; break; case ETHER_STAT_CAP_10HDX: *val = mxfep->mxfe_cap_10hdx; break; case ETHER_STAT_CAP_AUTONEG: *val = mxfep->mxfe_cap_aneg; break; case ETHER_STAT_LINK_AUTONEG: *val = ((mxfep->mxfe_adv_aneg != 0) && ((mxfep->mxfe_aner & MII_AN_EXP_LPCANAN) != 0)); break; case ETHER_STAT_ADV_CAP_100FDX: *val = mxfep->mxfe_adv_100fdx; break; case ETHER_STAT_ADV_CAP_100HDX: *val = mxfep->mxfe_adv_100hdx; break; case ETHER_STAT_ADV_CAP_10FDX: *val = mxfep->mxfe_adv_10fdx; break; case ETHER_STAT_ADV_CAP_10HDX: *val = mxfep->mxfe_adv_10hdx; break; case ETHER_STAT_ADV_CAP_AUTONEG: *val = mxfep->mxfe_adv_aneg; break; case ETHER_STAT_LP_CAP_100FDX: *val = (mxfep->mxfe_anlpar & MII_ABILITY_100BASE_TX_FD) ? 1 : 0; break; case ETHER_STAT_LP_CAP_100HDX: *val = (mxfep->mxfe_anlpar & MII_ABILITY_100BASE_TX) ? 1 : 0; break; case ETHER_STAT_LP_CAP_10FDX: *val = (mxfep->mxfe_anlpar & MII_ABILITY_10BASE_T_FD) ? 1 : 0; break; case ETHER_STAT_LP_CAP_10HDX: *val = (mxfep->mxfe_anlpar & MII_ABILITY_10BASE_T) ? 1 : 0; break; case ETHER_STAT_LP_CAP_AUTONEG: *val = (mxfep->mxfe_aner & MII_AN_EXP_LPCANAN) ? 1 : 0; break; case ETHER_STAT_XCVR_ADDR: *val = mxfep->mxfe_phyaddr; break; case ETHER_STAT_XCVR_ID: *val = mxfep->mxfe_phyid; break; case ETHER_STAT_XCVR_INUSE: *val = mxfep->mxfe_phyinuse; break; default: return (ENOTSUP); } return (0); } /*ARGSUSED*/ int mxfe_m_getprop(void *arg, const char *name, mac_prop_id_t num, uint_t flags, uint_t sz, void *val, uint_t *perm) { mxfe_t *mxfep = arg; int err = 0; boolean_t dfl = flags & MAC_PROP_DEFAULT; if (sz == 0) return (EINVAL); *perm = MAC_PROP_PERM_RW; switch (num) { case MAC_PROP_DUPLEX: *perm = MAC_PROP_PERM_READ; if (sz >= sizeof (link_duplex_t)) { bcopy(&mxfep->mxfe_duplex, val, sizeof (link_duplex_t)); } else { err = EINVAL; } break; case MAC_PROP_SPEED: *perm = MAC_PROP_PERM_READ; if (sz >= sizeof (uint64_t)) { bcopy(&mxfep->mxfe_ifspeed, val, sizeof (uint64_t)); } else { err = EINVAL; } break; case MAC_PROP_AUTONEG: *(uint8_t *)val = dfl ? mxfep->mxfe_cap_aneg : mxfep->mxfe_adv_aneg; break; case MAC_PROP_ADV_100FDX_CAP: *perm = MAC_PROP_PERM_READ; *(uint8_t *)val = dfl ? mxfep->mxfe_cap_100fdx : mxfep->mxfe_adv_100fdx; break; case MAC_PROP_EN_100FDX_CAP: *(uint8_t *)val = dfl ? mxfep->mxfe_cap_100fdx : mxfep->mxfe_adv_100fdx; break; case MAC_PROP_ADV_100HDX_CAP: *perm = MAC_PROP_PERM_READ; *(uint8_t *)val = dfl ? mxfep->mxfe_cap_100hdx : mxfep->mxfe_adv_100hdx; break; case MAC_PROP_EN_100HDX_CAP: *(uint8_t *)val = dfl ? mxfep->mxfe_cap_100hdx : mxfep->mxfe_adv_100hdx; break; case MAC_PROP_ADV_10FDX_CAP: *perm = MAC_PROP_PERM_READ; *(uint8_t *)val = dfl ? mxfep->mxfe_cap_10fdx : mxfep->mxfe_adv_10fdx; break; case MAC_PROP_EN_10FDX_CAP: *(uint8_t *)val = dfl ? mxfep->mxfe_cap_10fdx : mxfep->mxfe_adv_10fdx; break; case MAC_PROP_ADV_10HDX_CAP: *perm = MAC_PROP_PERM_READ; *(uint8_t *)val = dfl ? mxfep->mxfe_cap_10hdx : mxfep->mxfe_adv_10hdx; break; case MAC_PROP_EN_10HDX_CAP: *(uint8_t *)val = dfl ? mxfep->mxfe_cap_10hdx : mxfep->mxfe_adv_10hdx; break; case MAC_PROP_ADV_100T4_CAP: *perm = MAC_PROP_PERM_READ; *(uint8_t *)val = dfl ? mxfep->mxfe_cap_100T4 : mxfep->mxfe_adv_100T4; break; case MAC_PROP_EN_100T4_CAP: *(uint8_t *)val = dfl ? mxfep->mxfe_cap_100T4 : mxfep->mxfe_adv_100T4; break; default: err = ENOTSUP; } return (err); } /*ARGSUSED*/ int mxfe_m_setprop(void *arg, const char *name, mac_prop_id_t num, uint_t sz, const void *val) { mxfe_t *mxfep = arg; uint8_t *advp; uint8_t *capp; switch (num) { case MAC_PROP_EN_100FDX_CAP: advp = &mxfep->mxfe_adv_100fdx; capp = &mxfep->mxfe_cap_100fdx; break; case MAC_PROP_EN_100HDX_CAP: advp = &mxfep->mxfe_adv_100hdx; capp = &mxfep->mxfe_cap_100hdx; break; case MAC_PROP_EN_10FDX_CAP: advp = &mxfep->mxfe_adv_10fdx; capp = &mxfep->mxfe_cap_10fdx; break; case MAC_PROP_EN_10HDX_CAP: advp = &mxfep->mxfe_adv_10hdx; capp = &mxfep->mxfe_cap_10hdx; break; case MAC_PROP_EN_100T4_CAP: advp = &mxfep->mxfe_adv_100T4; capp = &mxfep->mxfe_cap_100T4; break; case MAC_PROP_AUTONEG: advp = &mxfep->mxfe_adv_aneg; capp = &mxfep->mxfe_cap_aneg; break; default: return (ENOTSUP); } if (*capp == 0) /* ensure phy can support value */ return (ENOTSUP); mutex_enter(&mxfep->mxfe_intrlock); mutex_enter(&mxfep->mxfe_xmtlock); if (*advp != *(const uint8_t *)val) { *advp = *(const uint8_t *)val; if ((mxfep->mxfe_flags & (MXFE_RUNNING|MXFE_SUSPENDED)) == MXFE_RUNNING) { /* * This re-initializes the phy, but it also * restarts transmit and receive rings. * Needless to say, changing the link * parameters is destructive to traffic in * progress. */ mxfe_resetall(mxfep); } } mutex_exit(&mxfep->mxfe_xmtlock); mutex_exit(&mxfep->mxfe_intrlock); return (0); } /* * Debugging and error reporting. */ void mxfe_error(dev_info_t *dip, char *fmt, ...) { va_list ap; char buf[256]; va_start(ap, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, ap); va_end(ap); if (dip) { cmn_err(CE_WARN, "%s%d: %s", ddi_driver_name(dip), ddi_get_instance(dip), buf); } else { cmn_err(CE_WARN, "mxfe: %s", buf); } } #ifdef DEBUG void mxfe_dprintf(mxfe_t *mxfep, const char *func, int level, char *fmt, ...) { va_list ap; va_start(ap, fmt); if (mxfe_debug & level) { char tag[64]; char buf[256]; if (mxfep && mxfep->mxfe_dip) { (void) snprintf(tag, sizeof (tag), "%s%d", ddi_driver_name(mxfep->mxfe_dip), ddi_get_instance(mxfep->mxfe_dip)); } else { (void) snprintf(tag, sizeof (tag), "mxfe"); } (void) snprintf(buf, sizeof (buf), "%s: %s: %s\n", tag, func, fmt); vcmn_err(CE_CONT, buf, ap); } va_end(ap); } #endif