/* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2007, Intel Corporation * All rights reserved. */ /* * Sun elects to use this software under the BSD license. */ /* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU Geeral Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * Contact Information: * James P. Ketrenos * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _IWK_HW_H_ #define _IWK_HW_H_ #ifdef __cplusplus extern "C" { #endif /* * maximum scatter/gather */ #define IWK_MAX_SCATTER (10) /* * Flow Handler Definitions */ #define FH_MEM_LOWER_BOUND (0x1000) #define FH_MEM_UPPER_BOUND (0x1EF0) #define IWK_FH_REGS_LOWER_BOUND (0x1000) #define IWK_FH_REGS_UPPER_BOUND (0x2000) /* * TFDB Area - TFDs buffer table */ #define FH_MEM_TFDB_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x000) #define FH_MEM_TFDB_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0x900) /* * channels 0 - 8 */ #define FH_MEM_TFDB_CHNL_BUF0(x) (FH_MEM_TFDB_LOWER_BOUND + (x) * 0x100) #define FH_MEM_TFDB_CHNL_BUF1(x) (FH_MEM_TFDB_LOWER_BOUND + 0x80 + (x) * 0x100) /* * TFDIB Area - TFD Immediate Buffer */ #define FH_MEM_TFDIB_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x900) #define FH_MEM_TFDIB_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0x958) /* * channels 0 - 10 */ #define FH_MEM_TFDIB_CHNL(x) (FH_MEM_TFDIB_LOWER_BOUND + (x) * 0x8) /* * TFDIB registers used in Service Mode */ #define FH_MEM_TFDIB_CHNL9_REG0 (FH_MEM_TFDIB_CHNL(9)) #define FH_MEM_TFDIB_CHNL9_REG1 (FH_MEM_TFDIB_CHNL(9) + 4) #define FH_MEM_TFDIB_CHNL10_REG0 (FH_MEM_TFDIB_CHNL(10)) #define FH_MEM_TFDIB_CHNL10_REG1 (FH_MEM_TFDIB_CHNL(10) + 4) /* * Tx service channels */ #define FH_MEM_TFDIB_DRAM_ADDR_LSB_MASK (0xFFFFFFFF) #define FH_MEM_TFDIB_DRAM_ADDR_MSB_MASK (0xF00000000) #define FH_MEM_TFDIB_TB_LENGTH_MASK (0x0001FFFF) /* bits 16:0 */ #define FH_MEM_TFDIB_DRAM_ADDR_LSB_BITSHIFT (0) #define FH_MEM_TFDIB_DRAM_ADDR_MSB_BITSHIFT (32) #define FH_MEM_TFDIB_TB_LENGTH_BITSHIFT (0) #define FH_MEM_TFDIB_REG0_ADDR_MASK (0xFFFFFFFF) #define FH_MEM_TFDIB_REG1_ADDR_MASK (0xF0000000) #define FH_MEM_TFDIB_REG1_LENGTH_MASK (0x0001FFFF) #define FH_MEM_TFDIB_REG0_ADDR_BITSHIFT (0) #define FH_MEM_TFDIB_REG1_ADDR_BITSHIFT (28) #define FH_MEM_TFDIB_REG1_LENGTH_BITSHIFT (0) /* * TRB Area - Transmit Request Buffers */ #define FH_MEM_TRB_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x0958) #define FH_MEM_TRB_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0x0980) /* * channels 0 - 8 */ #define FH_MEM_TRB_CHNL(x) (FH_MEM_TRB_LOWER_BOUND + (x) * 0x4) /* * Keep-Warm (KW) buffer base address. * * Driver must allocate a 4KByte buffer that is used by 4965 for keeping the * host DRAM powered on (via dummy accesses to DRAM) to maintain low-latency * DRAM access when 4965 is Txing or Rxing. The dummy accesses prevent host * from going into a power-savings mode that would cause higher DRAM latency, * and possible data over/under-runs, before all Tx/Rx is complete. * * Driver loads IWK_FH_KW_MEM_ADDR_REG with the physical address (bits 35:4) * of the buffer, which must be 4K aligned. Once this is set up, the 4965 * automatically invokes keep-warm accesses when normal accesses might not * be sufficient to maintain fast DRAM response. * * Bit fields: * 31-0: Keep-warm buffer physical base address [35:4], must be 4K aligned */ #define IWK_FH_KW_MEM_ADDR_REG (FH_MEM_LOWER_BOUND + 0x97C) /* * STAGB Area - Scheduler TAG Buffer */ #define FH_MEM_STAGB_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x980) #define FH_MEM_STAGB_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0x9D0) /* * channels 0 - 8 */ #define FH_MEM_STAGB_0(x) (FH_MEM_STAGB_LOWER_BOUND + (x) * 0x8) #define FH_MEM_STAGB_1(x) (FH_MEM_STAGB_LOWER_BOUND + 0x4 + (x) * 0x8) /* * Tx service channels */ #define FH_MEM_SRAM_ADDR_9 (FH_MEM_STAGB_LOWER_BOUND + 0x048) #define FH_MEM_SRAM_ADDR_10 (FH_MEM_STAGB_LOWER_BOUND + 0x04C) #define FH_MEM_STAGB_SRAM_ADDR_MASK (0x00FFFFFF) /* * TFD Circular Buffers Base (CBBC) addresses * * 4965 has 16 base pointer registers, one for each of 16 host-DRAM-resident * circular buffers (CBs/queues) containing Transmit Frame Descriptors (TFDs) * (see struct iwk_tfd_frame). These 16 pointer registers are offset by 0x04 * bytes from one another. Each TFD circular buffer in DRAM must be 256-byte * aligned (address bits 0-7 must be 0). * * Bit fields in each pointer register: * 27-0: TFD CB physical base address [35:8], must be 256-byte aligned */ #define FH_MEM_CBBC_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x9D0) #define FH_MEM_CBBC_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xA10) /* * queues 0 - 15 */ #define FH_MEM_CBBC_QUEUE(x) (FH_MEM_CBBC_LOWER_BOUND + (x) * 0x4) /* * TAGR Area - TAG reconstruct table */ #define FH_MEM_TAGR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xA10) #define FH_MEM_TAGR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xA70) /* * TDBGR Area - Tx Debug Registers */ #define FH_MEM_TDBGR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x0A70) #define FH_MEM_TDBGR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0x0B20) /* * channels 0 - 10 */ #define FH_MEM_TDBGR_CHNL(x) (FH_MEM_TDBGR_LOWER_BOUND + (x) * 0x10) #define FH_MEM_TDBGR_CHNL_REG_0(x) (FH_MEM_TDBGR_CHNL(x)) #define FH_MEM_TDBGR_CHNL_REG_1(x) (FH_MEM_TDBGR_CHNL_REG_0(x) + 0x4) #define FH_MEM_TDBGR_CHNL_BYTES_TO_FIFO_MASK (0x000FFFFF) #define FH_MEM_TDBGR_CHNL_BYTES_TO_FIFO_BITSHIFT (0) /* * RDBUF Area */ #define FH_MEM_RDBUF_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xB80) #define FH_MEM_RDBUF_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xBC0) #define FH_MEM_RDBUF_CHNL0 (FH_MEM_RDBUF_LOWER_BOUND) /* * Rx SRAM Control and Status Registers (RSCSR) * * These registers provide handshake between driver and 4965 for the Rx queue * (this queue handles *all* command responses, notifications, Rx data, etc. * sent from 4965 uCode to host driver). Unlike Tx, there is only one Rx * queue, and only one Rx DMA/FIFO channel. Also unlike Tx, which can * concatenate up to 20 DRAM buffers to form a Tx frame, each Receive Buffer * Descriptor (RBD) points to only one Rx Buffer (RB); there is a 1:1 * mapping between RBDs and RBs. * * Driver must allocate host DRAM memory for the following, and set the * physical address of each into 4965 registers: * * 1) Receive Buffer Descriptor (RBD) circular buffer (CB), typically with 256 * entries (although any power of 2, up to 4096, is selectable by driver). * Each entry (1 dword) points to a receive buffer (RB) of consistent size * (typically 4K, although 8K or 16K are also selectable by driver). * Driver sets up RB size and number of RBDs in the CB via Rx config * register FH_MEM_RCSR_CHNL0_CONFIG_REG. * * Bit fields within one RBD: * 27-0: Receive Buffer physical address bits [35:8], 256-byte aligned. * * Driver sets physical address [35:8] of base of RBD circular buffer * into FH_RSCSR_CHNL0_RBDCB_BASE_REG [27:0]. * * 2) Rx status buffer, 8 bytes, in which 4965 indicates which Rx Buffers * (RBs) have been filled, via a "write pointer", actually the index of * the RB's corresponding RBD within the circular buffer. Driver sets * physical address [35:4] into FH_RSCSR_CHNL0_STTS_WPTR_REG [31:0]. * * Bit fields in lower dword of Rx status buffer (upper dword not used * by driver; see struct iwk_shared, val0): * 31-12: Not used by driver * 11- 0: Index of last filled Rx buffer descriptor * (4965 writes, driver reads this value) * * As the driver prepares Receive Buffers (RBs) for 4965 to fill, driver must * enter pointers to these RBs into contiguous RBD circular buffer entries, * and update the 4965's "write" index register, FH_RSCSR_CHNL0_RBDCB_WPTR_REG. * * This "write" index corresponds to the *next* RBD that the driver will make * available, i.e. one RBD past the the tail of the ready-to-fill RBDs within * the circular buffer. This value should initially be 0 (before preparing any * RBs), should be 8 after preparing the first 8 RBs (for example), and must * wrap back to 0 at the end of the circular buffer (but don't wrap before * "read" index has advanced past 1! See below). * NOTE: 4965 EXPECTS THE WRITE INDEX TO BE INCREMENTED IN MULTIPLES OF 8. * * As the 4965 fills RBs (referenced from contiguous RBDs within the circular * buffer), it updates the Rx status buffer in DRAM, 2) described above, * to tell the driver the index of the latest filled RBD. The driver must * read this "read" index from DRAM after receiving an Rx interrupt from 4965. * * The driver must also internally keep track of a third index, which is the * next RBD to process. When receiving an Rx interrupt, driver should process * all filled but unprocessed RBs up to, but not including, the RB * corresponding to the "read" index. For example, if "read" index becomes "1", * driver may process the RB pointed to by RBD 0. Depending on volume of * traffic, there may be many RBs to process. * * If read index == write index, 4965 thinks there is no room to put new data. * Due to this, the maximum number of filled RBs is 255, instead of 256. To * be safe, make sure that there is a gap of at least 2 RBDs between "write" * and "read" indexes; that is, make sure that there are no more than 254 * buffers waiting to be filled. */ #define FH_MEM_RSCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xBC0) #define FH_MEM_RSCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xC00) #define FH_MEM_RSCSR_CHNL0 (FH_MEM_RSCSR_LOWER_BOUND) #define FH_MEM_RSCSR_CHNL1 (FH_MEM_RSCSR_LOWER_BOUND + 0x020) /* * Physical base address of 8-byte Rx Status buffer. * Bit fields: * 31-0: Rx status buffer physical base address [35:4], must 16-byte aligned. */ #define FH_RSCSR_CHNL0_STTS_WPTR_REG (FH_MEM_RSCSR_CHNL0) /* * Physical base address of Rx Buffer Descriptor Circular Buffer. * Bit fields: * 27-0: RBD CD physical base address [35:8], must be 256-byte aligned. */ #define FH_RSCSR_CHNL0_RBDCB_BASE_REG (FH_MEM_RSCSR_CHNL0 + 0x004) /* * Rx write pointer (index, really!). * Bit fields: * 11-0: Index of driver's most recent prepared-to-be-filled RBD, + 1. * NOTE: For 256-entry circular buffer, use only bits [7:0]. */ #define FH_RSCSR_CHNL0_RBDCB_WPTR_REG (FH_MEM_RSCSR_CHNL0 + 0x008) #define FH_RSCSR_CHNL0_RBDCB_RPTR_REG (FH_MEM_RSCSR_CHNL0 + 0x00c) #define FH_RSCSR_FRAME_SIZE_MASK (0x00000FFF) /* bits 0-11 */ /* * RSCSR registers used in Service mode */ #define FH_RSCSR_CHNL1_RB_WPTR_REG (FH_MEM_RSCSR_CHNL1) #define FH_RSCSR_CHNL1_RB_WPTR_OFFSET_REG (FH_MEM_RSCSR_CHNL1 + 0x004) #define FH_RSCSR_CHNL1_RB_CHUNK_NUM_REG (FH_MEM_RSCSR_CHNL1 + 0x008) #define FH_RSCSR_CHNL1_SRAM_ADDR_REG (FH_MEM_RSCSR_CHNL1 + 0x00C) /* * Rx Config/Status Registers (RCSR) * Rx Config Reg for channel 0 (only channel used) * * Driver must initialize FH_MEM_RCSR_CHNL0_CONFIG_REG as follows for * normal operation (see bit fields). * * Clearing FH_MEM_RCSR_CHNL0_CONFIG_REG to 0 turns off Rx DMA. * Driver should poll FH_MEM_RSSR_RX_STATUS_REG for * FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (bit 24) before continuing. * * Bit fields: * 31-30: Rx DMA channel enable: '00' off/pause, '01' pause at end of frame, * '10' operate normally * 29-24: reserved * 23-20: # RBDs in circular buffer = 2^value; use "8" for 256 RBDs (normal), * min "5" for 32 RBDs, max "12" for 4096 RBDs. * 19-18: reserved * 17-16: size of each receive buffer; '00' 4K (normal), '01' 8K, * '10' 12K, '11' 16K. * 15-14: reserved * 13-12: IRQ destination; '00' none, '01' host driver (normal operation) * 11- 4: timeout for closing Rx buffer and interrupting host (units 32 usec) * typical value 0x10 (about 1/2 msec) * 3- 0: reserved */ #define FH_MEM_RCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC00) #define FH_MEM_RCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xCC0) #define FH_MEM_RCSR_CHNL0 (FH_MEM_RCSR_LOWER_BOUND) #define FH_MEM_RCSR_CHNL1 (FH_MEM_RCSR_LOWER_BOUND + 0x020) #define FH_MEM_RCSR_CHNL0_CONFIG_REG (FH_MEM_RCSR_CHNL0) #define FH_MEM_RCSR_CHNL0_CREDIT_REG (FH_MEM_RCSR_CHNL0 + 0x004) #define FH_MEM_RCSR_CHNL0_RBD_STTS_REG (FH_MEM_RCSR_CHNL0 + 0x008) #define FH_MEM_RCSR_CHNL0_RB_STTS_REG (FH_MEM_RCSR_CHNL0 + 0x00C) #define FH_MEM_RCSR_CHNL0_RXPD_STTS_REG (FH_MEM_RCSR_CHNL0 + 0x010) #define FH_MEM_RCSR_CHNL0_RBD_STTS_FRAME_RB_CNT_MASK (0x7FFFFFF0) /* * RCSR registers used in Service mode */ #define FH_MEM_RCSR_CHNL1_CONFIG_REG (FH_MEM_RCSR_CHNL1) #define FH_MEM_RCSR_CHNL1_RB_STTS_REG (FH_MEM_RCSR_CHNL1 + 0x00C) #define FH_MEM_RCSR_CHNL1_RX_PD_STTS_REG (FH_MEM_RCSR_CHNL1 + 0x010) /* * Rx Shared Status Registers (RSSR) * * After stopping Rx DMA channel (writing 0 to FH_MEM_RCSR_CHNL0_CONFIG_REG), * driver must poll FH_MEM_RSSR_RX_STATUS_REG until Rx channel is idle. * * Bit fields: * 24: 1 = Channel 0 is idle * * FH_MEM_RSSR_SHARED_CTRL_REG and FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV contain * default values that should not be altered by the driver. */ #define FH_MEM_RSSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC40) #define FH_MEM_RSSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xD00) #define FH_MEM_RSSR_SHARED_CTRL_REG (FH_MEM_RSSR_LOWER_BOUND) #define FH_MEM_RSSR_RX_STATUS_REG (FH_MEM_RSSR_LOWER_BOUND + 0x004) #define FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV (FH_MEM_RSSR_LOWER_BOUND + 0x008) /* * Transmit DMA Channel Control/Status Registers (TCSR) * * 4965 has one configuration register for each of 8 Tx DMA/FIFO channels * supported in hardware; config regs are separated by 0x20 bytes. * * To use a Tx DMA channel, driver must initialize its * IWK_FH_TCSR_CHNL_TX_CONFIG_REG(chnl) with: * * IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | * IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL * * All other bits should be 0. * * Bit fields: * 31-30: Tx DMA channel enable: '00' off/pause, '01' pause at end of frame, * '10' operate normally * 29- 4: Reserved, set to "0" * 3: Enable internal DMA requests (1, normal operation), disable (0) * 2- 0: Reserved, set to "0" */ #define IWK_FH_TCSR_LOWER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0xD00) #define IWK_FH_TCSR_UPPER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0xE60) #define IWK_FH_TCSR_CHNL_NUM (7) #define IWK_FH_TCSR_CHNL_TX_CONFIG_REG(_chnl) \ (IWK_FH_TCSR_LOWER_BOUND + 0x20 * _chnl) #define IWK_FH_TCSR_CHNL_TX_CREDIT_REG(_chnl) \ (IWK_FH_TCSR_LOWER_BOUND + 0x20 * _chnl + 0x4) #define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG(_chnl) \ (IWK_FH_TCSR_LOWER_BOUND + 0x20 * _chnl + 0x8) /* * Tx Shared Status Registers (TSSR) * * After stopping Tx DMA channel (writing 0 to * IWK_FH_TCSR_CHNL_TX_CONFIG_REG(chnl)), driver must poll * IWK_FH_TSSR_TX_STATUS_REG until selected Tx channel is idle * (channel's buffers empty | no pending requests). * * Bit fields: * 31-24: 1 = Channel buffers empty (channel 7:0) * 23-16: 1 = No pending requests (channel 7:0) */ #define IWK_FH_TSSR_LOWER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0xEA0) #define IWK_FH_TSSR_UPPER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0xEC0) #define IWK_FH_TSSR_TX_MSG_CONFIG_REG (IWK_FH_TSSR_LOWER_BOUND + 0x008) #define IWK_FH_TSSR_TX_STATUS_REG (IWK_FH_TSSR_LOWER_BOUND + 0x010) #define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TXPD_ON (0xFF000000) #define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_TXPD_ON (0x00FF0000) #define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_64B (0x00000000) #define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_128B (0x00000400) #define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_256B (0x00000800) #define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_512B (0x00000C00) #define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TFD_ON (0x00000100) #define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_CBB_ON (0x00000080) #define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RSP_WAIT_TH (0x00000020) #define IWK_FH_TSSR_TX_MSG_CONFIG_REG_VAL_RSP_WAIT_TH (0x00000005) #define IWK_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_chnl) \ ((1 << (_chnl)) << 24) #define IWK_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_chnl) \ ((1 << (_chnl)) << 16) #define IWK_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_chnl) \ (IWK_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_chnl) | \ IWK_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_chnl)) /* * SRVC */ #define IWK_FH_SRVC_LOWER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0x9C8) #define IWK_FH_SRVC_UPPER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0x9D0) #define IWK_FH_SRVC_CHNL_SRAM_ADDR_REG(_chnl) \ (IWK_FH_SRVC_LOWER_BOUND + (_chnl - 9) * 0x4) /* * TFDIB */ #define IWK_FH_TFDIB_LOWER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0x900) #define IWK_FH_TFDIB_UPPER_BOUND (IWK_FH_REGS_LOWER_BOUND + 0x958) #define IWK_FH_TFDIB_CTRL0_REG(_chnl) \ (IWK_FH_TFDIB_LOWER_BOUND + 0x8 * _chnl) #define IWK_FH_TFDIB_CTRL1_REG(_chnl) \ (IWK_FH_TFDIB_LOWER_BOUND + 0x8 * _chnl + 0x4) #define IWK_FH_SRVC_CHNL (9) #define IWK_FH_TFDIB_CTRL1_REG_POS_MSB (28) /* * Debug Monitor Area */ #define FH_MEM_DM_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xEE0) #define FH_MEM_DM_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xEF0) #define FH_MEM_DM_CONTROL_MASK_REG (FH_MEM_DM_LOWER_BOUND) #define FH_MEM_DM_CONTROL_START_REG (FH_MEM_DM_LOWER_BOUND + 0x004) #define FH_MEM_DM_CONTROL_STATUS_REG (FH_MEM_DM_LOWER_BOUND + 0x008) #define FH_MEM_DM_MONITOR_REG (FH_MEM_DM_LOWER_BOUND + 0x00C) #define FH_TB1_ADDR_LOW_MASK (0xFFFFFFFF) /* bits 31:0 */ #define FH_TB1_ADDR_HIGH_MASK (0xF00000000) /* bits 35:32 */ #define FH_TB2_ADDR_LOW_MASK (0x0000FFFF) /* bits 15:0 */ #define FH_TB2_ADDR_HIGH_MASK (0xFFFFF0000) /* bits 35:16 */ #define FH_TB1_ADDR_LOW_BITSHIFT (0) #define FH_TB1_ADDR_HIGH_BITSHIFT (32) #define FH_TB2_ADDR_LOW_BITSHIFT (0) #define FH_TB2_ADDR_HIGH_BITSHIFT (16) #define FH_TB1_LENGTH_MASK (0x00000FFF) /* bits 11:0 */ #define FH_TB2_LENGTH_MASK (0x00000FFF) /* bits 11:0 */ /* * number of FH channels including 2 service mode */ #define NUM_OF_FH_CHANNELS (10) /* * ctrl field bitology */ #define FH_TFD_CTRL_PADDING_MASK (0xC0000000) /* bits 31:30 */ #define FH_TFD_CTRL_NUMTB_MASK (0x1F000000) /* bits 28:24 */ #define FH_TFD_CTRL_PADDING_BITSHIFT (30) #define FH_TFD_CTRL_NUMTB_BITSHIFT (24) #define FH_TFD_GET_NUM_TBS(ctrl) \ ((ctrl & FH_TFD_CTRL_NUMTB_MASK) >> FH_TFD_CTRL_NUMTB_BITSHIFT) #define FH_TFD_GET_PADDING(ctrl) \ ((ctrl & FH_TFD_CTRL_PADDING_MASK) >> FH_TFD_CTRL_PADDING_BITSHIFT) /* TCSR: tx_config register values */ #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF (0x00000000) #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_DRIVER (0x00000001) #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_ARC (0x00000002) #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE_VAL (0x00000000) #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL (0x00000008) #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_NOINT (0x00000000) #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD (0x00100000) #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD (0x00200000) #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT (0x00000000) #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_ENDTFD (0x00400000) #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_IFTFD (0x00800000) #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000) #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE_EOF (0x40000000) #define IWK_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000) #define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_EMPTY (0x00000000) #define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_WAIT (0x00002000) #define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID (0x00000003) #define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG_BIT_TFDB_WPTR (0x00000001) #define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM (20) #define IWK_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX (12) /* * CBB table */ #define FH_CBB_ADDR_MASK 0x0FFFFFFF /* bits 27:0 */ #define FH_CBB_ADDR_BIT_SHIFT (8) /* * RCSR: channel 0 rx_config register defines */ #define FH_RCSR_CHNL0_RX_CONFIG_DMA_CHNL_EN_MASK (0xC0000000) /* bits 30-31 */ #define FH_RCSR_CHNL0_RX_CONFIG_RBDBC_SIZE_MASK (0x00F00000) /* bits 20-23 */ #define FH_RCSR_CHNL0_RX_CONFIG_RB_SIZE_MASK (0x00030000) /* bits 16-17 */ #define FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MASK (0x00008000) /* bit 15 */ #define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_MASK (0x00001000) /* bit 12 */ #define FH_RCSR_CHNL0_RX_CONFIG_RB_TIMEOUT_MASK (0x00000FF0) /* bit 4-11 */ #define FH_RCSR_RX_CONFIG_RBDCB_SIZE_BITSHIFT (20) #define FH_RCSR_RX_CONFIG_RB_SIZE_BITSHIFT (16) #define FH_RCSR_GET_RDBC_SIZE(reg) \ ((reg & FH_RCSR_RX_CONFIG_RDBC_SIZE_MASK) >> \ FH_RCSR_RX_CONFIG_RDBC_SIZE_BITSHIFT) /* * RCSR: channel 1 rx_config register defines */ #define FH_RCSR_CHNL1_RX_CONFIG_DMA_CHNL_EN_MASK (0xC0000000) /* bits 30-31 */ #define FH_RCSR_CHNL1_RX_CONFIG_IRQ_DEST_MASK (0x00003000) /* bits 12-13 */ /* * RCSR: rx_config register values */ #define FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_VAL (0x00000000) #define FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_EOF_VAL (0x40000000) #define FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL (0x80000000) #define FH_RCSR_RX_CONFIG_SINGLE_FRAME_MODE (0x00008000) #define FH_RCSR_RX_CONFIG_RDRBD_DISABLE_VAL (0x00000000) #define FH_RCSR_RX_CONFIG_RDRBD_ENABLE_VAL (0x20000000) #define IWK_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K (0x00000000) /* * RCSR channel 0 config register values */ #define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_NO_INT_VAL (0x00000000) #define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000) /* * RCSR channel 1 config register values */ #define FH_RCSR_CHNL1_RX_CONFIG_IRQ_DEST_NO_INT_VAL (0x00000000) #define FH_RCSR_CHNL1_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000) #define FH_RCSR_CHNL1_RX_CONFIG_IRQ_DEST_INT_RTC_VAL (0x00002000) #define FH_RCSR_CHNL1_RX_CONFIG_IRQ_DEST_INT_HOST_RTC_VAL (0x00003000) /* * RCSR: rb status register defines */ #define FH_RCSR_RB_BYTE_TO_SEND_MASK (0x0001FFFF) /* bits 0-16 */ /* * RSCSR: defs used in normal mode */ #define FH_RSCSR_CHNL0_RBDCB_WPTR_MASK (0x00000FFF) /* bits 0-11 */ /* * RSCSR: defs used in service mode */ #define FH_RSCSR_CHNL1_SRAM_ADDR_MASK (0x00FFFFFF) /* bits 0-23 */ #define FH_RSCSR_CHNL1_RB_WPTR_MASK (0x0FFFFFFF) /* bits 0-27 */ #define FH_RSCSR_CHNL1_RB_WPTR_OFFSET_MASK (0x000000FF) /* bits 0-7 */ /* * RSSR: RX Enable Error IRQ to Driver register defines */ #define FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV_NO_RBD (0x00400000) /* bit 22 */ #define FH_DRAM2SRAM_DRAM_ADDR_HIGH_MASK (0xFFFFFFF00) /* bits 8-35 */ #define FH_DRAM2SRAM_DRAM_ADDR_LOW_MASK (0x000000FF) /* bits 0-7 */ #define FH_DRAM2SRAM_DRAM_ADDR_HIGH_BITSHIFT (8) /* bits 8-35 */ /* * RX DRAM status regs definitions */ #define FH_RX_RB_NUM_MASK (0x00000FFF) /* bits 0-11 */ #define FH_RX_FRAME_NUM_MASK (0x0FFF0000) /* bits 16-27 */ #define FH_RX_RB_NUM_BITSHIFT (0) #define FH_RX_FRAME_NUM_BITSHIFT (16) /* * Tx Scheduler * * The Tx Scheduler selects the next frame to be transmitted, chosing TFDs * (Transmit Frame Descriptors) from up to 16 circular queues resident in * host DRAM. It steers each frame's Tx command (which contains the frame * data) through one of up to 7 prioritized Tx DMA FIFO channels within the * device. A queue maps to only one (selectable by driver) Tx DMA channel, * but one DMA channel may take input from several queues. * * Tx DMA channels have dedicated purposes. For 4965, and are used as follows: * BMC TODO: CONFIRM channel assignments, esp for 0/1 * * 0 -- EDCA BK (background) frames, lowest priority * 1 -- EDCA BE (best effort) frames, normal priority * 2 -- EDCA VI (video) frames, higher priority * 3 -- EDCA VO (voice) and management frames, highest priority * 4 -- Commands (e.g. RXON, etc.) * 5 -- HCCA short frames * 6 -- HCCA long frames * 7 -- not used by driver (device-internal only) * * Driver should normally map queues 0-6 to Tx DMA/FIFO channels 0-6. * In addition, driver can map queues 7-15 to Tx DMA/FIFO channels 0-3 to * support 11n aggregation via EDCA DMA channels. BMC confirm. * * The driver sets up each queue to work in one of two modes: * * 1) Scheduler-Ack, in which the scheduler automatically supports a * block-ack (BA) window of up to 64 TFDs. In this mode, each queue * contains TFDs for a unique combination of Recipient Address (RA) * and Traffic Identifier (TID), that is, traffic of a given * Quality-Of-Service (QOS) priority, destined for a single station. * * In scheduler-ack mode, the scheduler keeps track of the Tx status of * each frame within the BA window, including whether it's been transmitted, * and whether it's been acknowledged by the receiving station. The device * automatically processes block-acks received from the receiving STA, * and reschedules un-acked frames to be retransmitted (successful * Tx completion may end up being out-of-order). * * The driver must maintain the queue's Byte Count table in host DRAM * (struct iwk_sched_queue_byte_cnt_tbl) for this mode. * This mode does not support fragmentation. * * 2) FIFO (a.k.a. non-Scheduler-ACK), in which each TFD is processed in order. * The device may automatically retry Tx, but will retry only one frame * at a time, until receiving ACK from receiving station, or reaching * retry limit and giving up. * * The command queue (#4) must use this mode! * This mode does not require use of the Byte Count table in host DRAM. * * Driver controls scheduler operation via 3 means: * 1) Scheduler registers * 2) Shared scheduler data base in internal 4956 SRAM * 3) Shared data in host DRAM * * Initialization: * * When loading, driver should allocate memory for: * 1) 16 TFD circular buffers, each with space for (typically) 256 TFDs. * 2) 16 Byte Count circular buffers in 16 KBytes contiguous memory * (1024 bytes for each queue). * * After receiving "Alive" response from uCode, driver must initialize * the following (especially for queue #4, the command queue, otherwise * the driver can't issue commands!): * * 1) 4965's scheduler data base area in SRAM: * a) Read SRAM address of data base area from SCD_SRAM_BASE_ADDR * b) Clear and Init SCD_CONTEXT_DATA_OFFSET area (size 128 bytes) * c) Clear SCD_TX_STTS_BITMAP_OFFSET area (size 256 bytes) * d) Clear (BMC and init?) SCD_TRANSLATE_TBL_OFFSET (size 32 bytes) * * 2) Init SCD_DRAM_BASE_ADDR with physical base of Tx byte count circular * buffer array, allocated by driver in host DRAM. * * 3) */ /* * Max Tx window size is the max number of contiguous TFDs that the scheduler * can keep track of at one time when creating block-ack chains of frames. * Note that "64" matches the number of ack bits in a block-ack. * Driver should use SCD_WIN_SIZE and SCD_FRAME_LIMIT values to initialize * SCD_CONTEXT_QUEUE_OFFSET(x) values. */ #define SCD_WIN_SIZE 64 #define SCD_FRAME_LIMIT 10 /* * Memory mapped registers ... access via HBUS_TARG_PRPH regs */ #define SCD_START_OFFSET 0xa02c00 /* * 4965 tells driver SRAM address for internal scheduler structs via this reg. * Value is valid only after "Alive" response from uCode. */ #define SCD_SRAM_BASE_ADDR (SCD_START_OFFSET + 0x0) /* * Driver may need to update queue-empty bits after changing queue's * write and read pointers (indexes) during (re-)initialization (i.e. when * scheduler is not tracking what's happening). * Bit fields: * 31-16: Write mask -- 1: update empty bit, 0: don't change empty bit * 15-00: Empty state, one for each queue -- 1: empty, 0: non-empty * NOTE BMC: THIS REGISTER NOT USED BY LINUX DRIVER. */ #define SCD_EMPTY_BITS (SCD_START_OFFSET + 0x4) /* * Physical base address of array of byte count (BC) circular buffers (CBs). * Each Tx queue has a BC CB in host DRAM to support Scheduler-ACK mode. * This register points to BC CB for queue 0, must be on 1024-byte boundary. * Others are spaced by 1024 bytes. * Each BC CB is 2 bytes * (256 + 64) = 740 bytes, followed by 384 bytes pad. * (Index into a queue's BC CB) = (index into queue's TFD CB) = (SSN & 0xff). * Bit fields: * 25-00: Byte Count CB physical address [35:10], must be 1024-byte aligned. */ #define SCD_DRAM_BASE_ADDR (SCD_START_OFFSET + 0x10) #define SCD_AIT (SCD_START_OFFSET + 0x18) /* * Enables any/all Tx DMA/FIFO channels. * Scheduler generates requests for only the active channels. * Set this to 0xff to enable all 8 channels (normal usage). * Bit fields: * 7- 0: Enable (1), disable (0), one bit for each channel 0-7 */ #define SCD_TXFACT (SCD_START_OFFSET + 0x1c) /* * Queue (x) Write Pointers (indexes, really!), one for each Tx queue. * Initialized and updated by driver as new TFDs are added to queue. * NOTE: If using Block Ack, index must correspond to frame's * Start Sequence Number; index = (SSN & 0xff) * NOTE BMC: Alternative to HBUS_TARG_WRPTR, which is what Linux driver uses? */ #define SCD_QUEUE_WRPTR(x) (SCD_START_OFFSET + 0x24 + (x) * 4) /* * Queue (x) Read Pointers (indexes, really!), one for each Tx queue. * For FIFO mode, index indicates next frame to transmit. * For Scheduler-ACK mode, index indicates first frame in Tx window. * Initialized by driver, updated by scheduler. */ #define SCD_QUEUE_RDPTR(x) (SCD_START_OFFSET + 0x64 + (x) * 4) #define SCD_SETQUEUENUM (SCD_START_OFFSET + 0xa4) #define SCD_SET_TXSTAT_TXED (SCD_START_OFFSET + 0xa8) #define SCD_SET_TXSTAT_DONE (SCD_START_OFFSET + 0xac) #define SCD_SET_TXSTAT_NOT_SCHD (SCD_START_OFFSET + 0xb0) #define SCD_DECREASE_CREDIT (SCD_START_OFFSET + 0xb4) #define SCD_DECREASE_SCREDIT (SCD_START_OFFSET + 0xb8) #define SCD_LOAD_CREDIT (SCD_START_OFFSET + 0xbc) #define SCD_LOAD_SCREDIT (SCD_START_OFFSET + 0xc0) #define SCD_BAR (SCD_START_OFFSET + 0xc4) #define SCD_BAR_DW0 (SCD_START_OFFSET + 0xc8) #define SCD_BAR_DW1 (SCD_START_OFFSET + 0xcc) /* * Select which queues work in chain mode (1) vs. not (0). * Use chain mode to build chains of aggregated frames. * Bit fields: * 31-16: Reserved * 15-00: Mode, one bit for each queue -- 1: Chain mode, 0: one-at-a-time * NOTE: If driver sets up queue for chain mode, it should be also set up * Scheduler-ACK mode as well, via SCD_QUEUE_STATUS_BITS(x). */ #define SCD_QUEUECHAIN_SEL (SCD_START_OFFSET + 0xd0) #define SCD_QUERY_REQ (SCD_START_OFFSET + 0xd8) #define SCD_QUERY_RES (SCD_START_OFFSET + 0xdc) #define SCD_PENDING_FRAMES (SCD_START_OFFSET + 0xe0) /* * Select which queues interrupt driver when read pointer (index) increments. * Bit fields: * 31-16: Reserved * 15-00: Interrupt enable, one bit for each queue -- 1: enabled, 0: disabled * NOTE BMC: THIS FUNCTIONALITY IS APPARENTLY A NO-OP. */ #define SCD_INTERRUPT_MASK (SCD_START_OFFSET + 0xe4) #define SCD_INTERRUPT_THRESHOLD (SCD_START_OFFSET + 0xe8) #define SCD_QUERY_MIN_FRAME_SIZE (SCD_START_OFFSET + 0x100) /* * Queue search status registers. One for each queue. * Sets up queue mode and assigns queue to Tx DMA channel. * Bit fields: * 19-10: Write mask/enable bits for bits 0-9 * 9: Driver should init to "0" * 8: Scheduler-ACK mode (1), non-Scheduler-ACK (i.e. FIFO) mode (0). * Driver should init to "1" for aggregation mode, or "0" otherwise. * 7-6: Driver should init to "0" * 5: Window Size Left; indicates whether scheduler can request * another TFD, based on window size, etc. Driver should init * this bit to "1" for aggregation mode, or "0" for non-agg. * 4-1: Tx FIFO to use (range 0-7). * 0: Queue is active (1), not active (0). * Other bits should be written as "0" * * NOTE: If enabling Scheduler-ACK mode, chain mode should also be enabled * via SCD_QUEUECHAIN_SEL. */ #define SCD_QUEUE_STATUS_BITS(x) (SCD_START_OFFSET + 0x104 + (x) * 4) /* * 4965 internal SRAM structures for scheduler, shared with driver ... * Driver should clear and initialize the following areas after receiving * "Alive" response from 4965 uCode, i.e. after initial * uCode load, or after a uCode load done for error recovery: * * SCD_CONTEXT_DATA_OFFSET (size 128 bytes) * SCD_TX_STTS_BITMAP_OFFSET (size 256 bytes) * SCD_TRANSLATE_TBL_OFFSET (size 32 bytes) * * Driver reads base address of this scheduler area from SCD_SRAM_BASE_ADDR. * All OFFSET values must be added to this base address. * Use HBUS_TARG_MEM_* registers to access SRAM. */ /* * Queue context. One 8-byte entry for each of 16 queues. * * Driver should clear this entire area (size 0x80) to 0 after receiving * "Alive" notification from uCode. Additionally, driver should init * each queue's entry as follows: * * LS Dword bit fields: * 0-06: Max Tx window size for Scheduler-ACK. Driver should init to 64. * * MS Dword bit fields: * 16-22: Frame limit. Driver should init to 10 (0xa). * * Driver should init all other bits to 0. * * Init must be done after driver receives "Alive" response from 4965 uCode, * and when setting up queue for aggregation. */ #define SCD_CONTEXT_DATA_OFFSET 0x380 /* * Tx Status Bitmap * * Driver should clear this entire area (size 0x100) to 0 after receiving * "Alive" notification from uCode. Area is used only by device itself; * no other support (besides clearing) is required from driver. */ #define SCD_TX_STTS_BITMAP_OFFSET 0x400 /* * RAxTID to queue translation mapping. * * When queue is in Scheduler-ACK mode, frames placed in a that queue must be * for only one combination of receiver address (RA) and traffic ID (TID), i.e. * one QOS priority level destined for one station (for this link, not final * destination). The SCD_TRANSLATE_TABLE area provides 16 16-bit mappings, * one for each of the 16 queues. If queue is not in Scheduler-ACK mode, the * device ignores the mapping value. * * Bit fields, for each 16-bit map: * 15-9: Reserved, set to 0 * 8-4: Index into device's station table for recipient station * 3-0: Traffic ID (tid), range 0-15 * * Driver should clear this entire area (size 32 bytes) to 0 after receiving * "Alive" notification from uCode. To update a 16-bit map value, driver * must read a dword-aligned value from device SRAM, replace the 16-bit map * value of interest, and write the dword value back into device SRAM. */ #define SCD_TRANSLATE_TBL_OFFSET 0x500 #define SCD_CONTEXT_QUEUE_OFFSET(x) (SCD_CONTEXT_DATA_OFFSET + ((x) * 8)) #define SCD_TRANSLATE_TBL_OFFSET_QUEUE(x) \ ((SCD_TRANSLATE_TBL_OFFSET + ((x) * 2)) & 0xfffffffc) /* * Mask to enable contiguous Tx DMA/FIFO channels between "lo" and "hi". */ #define SCD_TXFACT_REG_TXFIFO_MASK(lo, hi) \ ((1<<(hi))|((1<<(hi))-(1<<(lo)))) #define SCD_MODE_REG_BIT_SEARCH_MODE (1<<0) #define SCD_MODE_REG_BIT_SBYP_MODE (1<<1) #define SCD_TXFIFO_POS_TID (0) #define SCD_TXFIFO_POS_RA (4) #define SCD_QUEUE_STTS_REG_POS_ACTIVE (0) #define SCD_QUEUE_STTS_REG_POS_TXF (1) #define SCD_QUEUE_STTS_REG_POS_WSL (5) #define SCD_QUEUE_STTS_REG_POS_SCD_ACK (8) #define SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (10) #define SCD_QUEUE_STTS_REG_MSK (0x0007FC00) #define SCD_QUEUE_RA_TID_MAP_RATID_MSK (0x01FF) #define SCD_QUEUE_CTX_REG1_WIN_SIZE_POS (0) #define SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK (0x0000007F) #define SCD_QUEUE_CTX_REG1_CREDIT_POS (8) #define SCD_QUEUE_CTX_REG1_CREDIT_MSK (0x00FFFF00) #define SCD_QUEUE_CTX_REG1_SUPER_CREDIT_POS (24) #define SCD_QUEUE_CTX_REG1_SUPER_CREDIT_MSK (0xFF000000) #define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16) #define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000) #define CSR_HW_IF_CONFIG_REG_BIT_KEDRON_R (0x00000010) #define CSR_HW_IF_CONFIG_REG_MSK_BOARD_VER (0x00000C00) #define CSR_HW_IF_CONFIG_REG_BIT_MAC_SI (0x00000100) #define CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI (0x00000200) #define CSR_HW_IF_CONFIG_REG_EEP_SEM (0x00200000) /* IWK-END */ #define RX_RES_PHY_CNT 14 #define STATISTICS_FLG_CLEAR (0x1) #define STATISTICS_FLG_DISABLE_NOTIFICATION (0x2) #define STATISTICS_REPLY_FLG_CLEAR (0x1) #define STATISTICS_REPLY_FLG_BAND_24G_MSK (0x2) #define STATISTICS_REPLY_FLG_TGJ_NARROW_BAND_MSK (0x4) #define STATISTICS_REPLY_FLG_FAT_MODE_MSK (0x8) #define RX_PHY_FLAGS_ANTENNAE_OFFSET (4) #define RX_PHY_FLAGS_ANTENNAE_MASK (0x70) /* * Register and values */ #define CSR_BASE (0x0) #define HBUS_BASE (0x400) #define HBUS_TARG_MBX_C (HBUS_BASE+0x030) /* * CSR (control and status registers) */ #define CSR_SW_VER (CSR_BASE+0x000) #define CSR_HW_IF_CONFIG_REG (CSR_BASE+0x000) /* hardware interface config */ #define CSR_INT_COALESCING (CSR_BASE+0x004) /* accum ints, 32-usec units */ #define CSR_INT (CSR_BASE+0x008) /* host interrupt status/ack */ #define CSR_INT_MASK (CSR_BASE+0x00c) /* host interrupt enable */ #define CSR_FH_INT_STATUS (CSR_BASE+0x010) /* busmaster int status/ack */ #define CSR_GPIO_IN (CSR_BASE+0x018) /* read external chip pins */ #define CSR_RESET (CSR_BASE+0x020) /* busmaster enable, NMI, etc */ #define CSR_GP_CNTRL (CSR_BASE+0x024) /* 0x028 - reserved */ #define CSR_EEPROM_REG (CSR_BASE+0x02c) #define CSR_EEPROM_GP (CSR_BASE+0x030) #define CSR_UCODE_DRV_GP1 (CSR_BASE+0x054) #define CSR_UCODE_DRV_GP1_SET (CSR_BASE+0x058) #define CSR_UCODE_DRV_GP1_CLR (CSR_BASE+0x05c) #define CSR_UCODE_DRV_GP2 (CSR_BASE+0x060) #define CSR_GIO_CHICKEN_BITS (CSR_BASE+0x100) #define CSR_ANA_PLL_CFG (CSR_BASE+0x20c) #define CSR_HW_REV_WA_REG (CSR_BASE+0x22C) /* * BSM (Bootstrap State Machine) */ #define BSM_BASE (CSR_BASE + 0x3400) #define BSM_WR_CTRL_REG (BSM_BASE + 0x000) /* ctl and status */ #define BSM_WR_MEM_SRC_REG (BSM_BASE + 0x004) /* source in BSM mem */ #define BSM_WR_MEM_DST_REG (BSM_BASE + 0x008) /* dest in SRAM mem */ #define BSM_WR_DWCOUNT_REG (BSM_BASE + 0x00C) /* bytes */ #define BSM_WR_STATUS_REG (BSM_BASE + 0x010) /* bit 0: 1 == done */ /* * pointers and size regs for bootstrap load and data SRAM save */ #define BSM_DRAM_INST_PTR_REG (BSM_BASE + 0x090) #define BSM_DRAM_INST_BYTECOUNT_REG (BSM_BASE + 0x094) #define BSM_DRAM_DATA_PTR_REG (BSM_BASE + 0x098) #define BSM_DRAM_DATA_BYTECOUNT_REG (BSM_BASE + 0x09C) /* * BSM special memory, stays powered during power-save sleeps */ #define BSM_SRAM_LOWER_BOUND (CSR_BASE + 0x3800) #define BSM_SRAM_SIZE (1024) /* * card static random access memory (SRAM) for processor data and instructs */ #define RTC_INST_LOWER_BOUND (0x00000) #define ALM_RTC_INST_UPPER_BOUND (0x14000) #define RTC_DATA_LOWER_BOUND (0x800000) #define ALM_RTC_DATA_UPPER_BOUND (0x808000) /* * HBUS (Host-side bus) */ #define HBUS_TARG_MEM_RADDR (HBUS_BASE+0x00c) #define HBUS_TARG_MEM_WADDR (HBUS_BASE+0x010) #define HBUS_TARG_MEM_WDAT (HBUS_BASE+0x018) #define HBUS_TARG_MEM_RDAT (HBUS_BASE+0x01c) #define HBUS_TARG_PRPH_WADDR (HBUS_BASE+0x044) #define HBUS_TARG_PRPH_RADDR (HBUS_BASE+0x048) #define HBUS_TARG_PRPH_WDAT (HBUS_BASE+0x04c) #define HBUS_TARG_PRPH_RDAT (HBUS_BASE+0x050) #define HBUS_TARG_WRPTR (HBUS_BASE+0x060) /* * HW I/F configuration */ #define CSR_HW_IF_CONFIG_REG_BIT_ALMAGOR_MB (0x00000100) #define CSR_HW_IF_CONFIG_REG_BIT_ALMAGOR_MM (0x00000200) #define CSR_HW_IF_CONFIG_REG_BIT_SKU_MRC (0x00000400) #define CSR_HW_IF_CONFIG_REG_BIT_BOARD_TYPE (0x00000800) #define CSR_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_A (0x00000000) #define CSR_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_B (0x00001000) #define CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP (0x00000001) #define CSR_UCODE_SW_BIT_RFKILL (0x00000002) #define CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED (0x00000004) #define CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT (0x00000008) #define CSR_GPIO_IN_BIT_AUX_POWER (0x00000200) #define CSR_GPIO_IN_VAL_VAUX_PWR_SRC (0x00000000) #define CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX (0x00800000) #define CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER (0x20000000) #define CSR_GPIO_IN_VAL_VMAIN_PWR_SRC CSR_GPIO_IN_BIT_AUX_POWER #define PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT (0x80000000) /* * interrupt flags in INTA, set by uCode or hardware (e.g. dma), * acknowledged (reset) by host writing "1" to flagged bits. */ #define BIT_INT_FH_RX \ (((uint32_t)1) << 31) /* Rx DMA, cmd responses, FH_INT[17:16] */ #define BIT_INT_ERR (1<<29) /* DMA hardware error FH_INT[31] */ #define BIT_INT_FH_TX (1<<27) /* Tx DMA FH_INT[1:0] */ #define BIT_INT_MAC_CLK_ACTV (1<<26) /* NIC controller's clock toggled on/off */ #define BIT_INT_SWERROR (1<<25) /* uCode error */ #define BIT_INT_RF_KILL (1<<7) /* HW RFKILL switch GP_CNTRL[27] toggled */ #define BIT_INT_CT_KILL (1<<6) /* Critical temp (chip too hot) rfkill */ #define BIT_INT_SW_RX (1<<3) /* Rx, command responses, 3945 */ #define BIT_INT_WAKEUP (1<<1) /* NIC controller waking up (pwr mgmt) */ #define BIT_INT_ALIVE (1<<0) /* uCode interrupts once it initializes */ #define CSR_INI_SET_MASK (BIT_INT_FH_RX | \ BIT_INT_ERR | \ BIT_INT_FH_TX | \ BIT_INT_SWERROR | \ BIT_INT_RF_KILL | \ BIT_INT_SW_RX | \ BIT_INT_WAKEUP | \ BIT_INT_ALIVE) /* * interrupt flags in FH (flow handler) (PCI busmaster DMA) */ #define BIT_FH_INT_ERR (((uint32_t)1) << 31) /* Error */ #define BIT_FH_INT_HI_PRIOR (1<<30) /* High priority Rx,bypass coalescing */ #define BIT_FH_INT_RX_CHNL2 (1<<18) /* Rx channel 2 (3945 only) */ #define BIT_FH_INT_RX_CHNL1 (1<<17) /* Rx channel 1 */ #define BIT_FH_INT_RX_CHNL0 (1<<16) /* Rx channel 0 */ #define BIT_FH_INT_TX_CHNL6 (1<<6) /* Tx channel 6 (3945 only) */ #define BIT_FH_INT_TX_CHNL1 (1<<1) /* Tx channel 1 */ #define BIT_FH_INT_TX_CHNL0 (1<<0) /* Tx channel 0 */ #define FH_INT_RX_MASK (BIT_FH_INT_HI_PRIOR | \ BIT_FH_INT_RX_CHNL2 | \ BIT_FH_INT_RX_CHNL1 | \ BIT_FH_INT_RX_CHNL0) #define FH_INT_TX_MASK (BIT_FH_INT_TX_CHNL6 | \ BIT_FH_INT_TX_CHNL1 | \ BIT_FH_INT_TX_CHNL0) /* * RESET */ #define CSR_RESET_REG_FLAG_NEVO_RESET (0x00000001) #define CSR_RESET_REG_FLAG_FORCE_NMI (0x00000002) #define CSR_RESET_REG_FLAG_SW_RESET (0x00000080) #define CSR_RESET_REG_FLAG_MASTER_DISABLED (0x00000100) #define CSR_RESET_REG_FLAG_STOP_MASTER (0x00000200) /* * GP (general purpose) CONTROL */ #define CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY (0x00000001) #define CSR_GP_CNTRL_REG_FLAG_INIT_DONE (0x00000004) #define CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ (0x00000008) #define CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP (0x00000010) #define CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN (0x00000001) #define CSR_GP_CNTRL_REG_MSK_POWER_SAVE_TYPE (0x07000000) #define CSR_GP_CNTRL_REG_FLAG_MAC_POWER_SAVE (0x04000000) #define CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW (0x08000000) /* * APMG (power management) constants */ #define APMG_CLK_CTRL_REG (0x003000) #define ALM_APMG_CLK_EN (0x003004) #define ALM_APMG_CLK_DIS (0x003008) #define ALM_APMG_PS_CTL (0x00300c) #define ALM_APMG_PCIDEV_STT (0x003010) #define ALM_APMG_RFKILL (0x003014) #define ALM_APMG_LARC_INT (0x00301c) #define ALM_APMG_LARC_INT_MSK (0x003020) #define APMG_CLK_REG_VAL_DMA_CLK_RQT (0x00000200) #define APMG_CLK_REG_VAL_BSM_CLK_RQT (0x00000800) #define APMG_PS_CTRL_REG_VAL_ALM_R_RESET_REQ (0x04000000) #define APMG_DEV_STATE_REG_VAL_L1_ACTIVE_DISABLE (0x00000800) #define APMG_PS_CTRL_REG_MSK_POWER_SRC (0x03000000) #define APMG_PS_CTRL_REG_VAL_POWER_SRC_VMAIN (0x00000000) #define APMG_PS_CTRL_REG_VAL_POWER_SRC_VAUX (0x01000000) /* * BSM (bootstrap state machine) */ /* * start boot load now */ #define BSM_WR_CTRL_REG_BIT_START (0x80000000) /* * enable boot after power up */ #define BSM_WR_CTRL_REG_BIT_START_EN (0x40000000) /* * DBM */ #define ALM_FH_SRVC_CHNL (6) #define ALM_FH_RCSR_RX_CONFIG_REG_POS_RBDC_SIZE (20) #define ALM_FH_RCSR_RX_CONFIG_REG_POS_IRQ_RBTH (4) #define ALM_FH_RCSR_RX_CONFIG_REG_BIT_WR_STTS_EN (0x08000000) #define ALM_FH_RCSR_RX_CONFIG_REG_VAL_DMA_CHNL_EN_ENABLE (0x80000000) #define ALM_FH_RCSR_RX_CONFIG_REG_VAL_RDRBD_EN_ENABLE (0x20000000) #define ALM_FH_RCSR_RX_CONFIG_REG_VAL_MAX_FRAG_SIZE_128 (0x01000000) #define ALM_FH_RCSR_RX_CONFIG_REG_VAL_IRQ_DEST_INT_HOST (0x00001000) #define ALM_FH_RCSR_RX_CONFIG_REG_VAL_MSG_MODE_FH (0x00000000) #define ALM_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF (0x00000000) #define ALM_FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_DRIVER (0x00000001) #define ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE_VAL (0x00000000) #define ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL (0x00000008) #define ALM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD (0x00200000) #define ALM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT (0x00000000) #define ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000) #define ALM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000) #define ALM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID (0x00004000) #define ALM_FH_TCSR_CHNL_TX_BUF_STS_REG_BIT_TFDB_WPTR (0x00000001) #define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TXPD_ON (0xFF000000) #define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_TXPD_ON (0x00FF0000) #define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_128B (0x00000400) #define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TFD_ON (0x00000100) #define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_CBB_ON (0x00000080) #define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RSP_WAIT_TH (0x00000020) #define ALM_FH_TSSR_TX_MSG_CONFIG_REG_VAL_RSP_WAIT_TH (0x00000005) #define ALM_TB_MAX_BYTES_COUNT (0xFFF0) #define ALM_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_channel) \ ((1LU << _channel) << 24) #define ALM_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_channel) \ ((1LU << _channel) << 16) #define ALM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_channel) \ (ALM_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_channel) | \ ALM_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_channel)) #define PCI_CFG_REV_ID_BIT_BASIC_SKU (0x40) /* bit 6 */ #define PCI_CFG_REV_ID_BIT_RTP (0x80) /* bit 7 */ #define HBUS_TARG_MBX_C_REG_BIT_CMD_BLOCKED (0x00000004) #define TFD_QUEUE_MIN 0 #define TFD_QUEUE_MAX 6 #define TFD_QUEUE_SIZE_MAX (256) /* * spectrum and channel data structures */ #define IWK_NUM_SCAN_RATES (2) #define IWK_SCAN_FLAG_24GHZ (1<<0) #define IWK_SCAN_FLAG_52GHZ (1<<1) #define IWK_SCAN_FLAG_ACTIVE (1<<2) #define IWK_SCAN_FLAG_DIRECT (1<<3) #define IWK_MAX_CMD_SIZE 1024 #define IWK_DEFAULT_TX_RETRY 15 #define IWK_MAX_TX_RETRY 16 #define RFD_SIZE 4 #define NUM_TFD_CHUNKS 4 #define RX_QUEUE_SIZE 256 #define RX_QUEUE_SIZE_LOG 8 /* * TX Queue Flag Definitions */ /* * use short preamble */ #define DCT_FLAG_LONG_PREAMBLE 0x00 #define DCT_FLAG_SHORT_PREAMBLE 0x04 /* * ACK rx is expected to follow */ #define DCT_FLAG_ACK_REQD 0x80 #define IWK_MB_DISASSOCIATE_THRESHOLD_DEFAULT 24 #define IWK_MB_ROAMING_THRESHOLD_DEFAULT 8 #define IWK_REAL_RATE_RX_PACKET_THRESHOLD 300 /* * QoS definitions */ #define CW_MIN_OFDM 15 #define CW_MAX_OFDM 1023 #define CW_MIN_CCK 31 #define CW_MAX_CCK 1023 #define QOS_TX0_CW_MIN_OFDM CW_MIN_OFDM #define QOS_TX1_CW_MIN_OFDM CW_MIN_OFDM #define QOS_TX2_CW_MIN_OFDM ((CW_MIN_OFDM + 1) / 2 - 1) #define QOS_TX3_CW_MIN_OFDM ((CW_MIN_OFDM + 1) / 4 - 1) #define QOS_TX0_CW_MIN_CCK CW_MIN_CCK #define QOS_TX1_CW_MIN_CCK CW_MIN_CCK #define QOS_TX2_CW_MIN_CCK ((CW_MIN_CCK + 1) / 2 - 1) #define QOS_TX3_CW_MIN_CCK ((CW_MIN_CCK + 1) / 4 - 1) #define QOS_TX0_CW_MAX_OFDM CW_MAX_OFDM #define QOS_TX1_CW_MAX_OFDM CW_MAX_OFDM #define QOS_TX2_CW_MAX_OFDM CW_MIN_OFDM #define QOS_TX3_CW_MAX_OFDM ((CW_MIN_OFDM + 1) / 2 - 1) #define QOS_TX0_CW_MAX_CCK CW_MAX_CCK #define QOS_TX1_CW_MAX_CCK CW_MAX_CCK #define QOS_TX2_CW_MAX_CCK CW_MIN_CCK #define QOS_TX3_CW_MAX_CCK ((CW_MIN_CCK + 1) / 2 - 1) #define QOS_TX0_AIFS (3) #define QOS_TX1_AIFS (7) #define QOS_TX2_AIFS (2) #define QOS_TX3_AIFS (2) #define QOS_TX0_ACM 0 #define QOS_TX1_ACM 0 #define QOS_TX2_ACM 0 #define QOS_TX3_ACM 0 #define QOS_TX0_TXOP_LIMIT_CCK 0 #define QOS_TX1_TXOP_LIMIT_CCK 0 #define QOS_TX2_TXOP_LIMIT_CCK 6016 #define QOS_TX3_TXOP_LIMIT_CCK 3264 #define QOS_TX0_TXOP_LIMIT_OFDM 0 #define QOS_TX1_TXOP_LIMIT_OFDM 0 #define QOS_TX2_TXOP_LIMIT_OFDM 3008 #define QOS_TX3_TXOP_LIMIT_OFDM 1504 #define DEF_TX0_CW_MIN_OFDM CW_MIN_OFDM #define DEF_TX1_CW_MIN_OFDM CW_MIN_OFDM #define DEF_TX2_CW_MIN_OFDM CW_MIN_OFDM #define DEF_TX3_CW_MIN_OFDM CW_MIN_OFDM #define DEF_TX0_CW_MIN_CCK CW_MIN_CCK #define DEF_TX1_CW_MIN_CCK CW_MIN_CCK #define DEF_TX2_CW_MIN_CCK CW_MIN_CCK #define DEF_TX3_CW_MIN_CCK CW_MIN_CCK #define DEF_TX0_CW_MAX_OFDM CW_MAX_OFDM #define DEF_TX1_CW_MAX_OFDM CW_MAX_OFDM #define DEF_TX2_CW_MAX_OFDM CW_MAX_OFDM #define DEF_TX3_CW_MAX_OFDM CW_MAX_OFDM #define DEF_TX0_CW_MAX_CCK CW_MAX_CCK #define DEF_TX1_CW_MAX_CCK CW_MAX_CCK #define DEF_TX2_CW_MAX_CCK CW_MAX_CCK #define DEF_TX3_CW_MAX_CCK CW_MAX_CCK #define DEF_TX0_AIFS (2) #define DEF_TX1_AIFS (2) #define DEF_TX2_AIFS (2) #define DEF_TX3_AIFS (2) #define DEF_TX0_ACM (0) #define DEF_TX1_ACM (0) #define DEF_TX2_ACM (0) #define DEF_TX3_ACM (0) #define DEF_TX0_TXOP_LIMIT_CCK (0) #define DEF_TX1_TXOP_LIMIT_CCK (0) #define DEF_TX2_TXOP_LIMIT_CCK (0) #define DEF_TX3_TXOP_LIMIT_CCK (0) #define DEF_TX0_TXOP_LIMIT_OFDM (0) #define DEF_TX1_TXOP_LIMIT_OFDM (0) #define DEF_TX2_TXOP_LIMIT_OFDM (0) #define DEF_TX3_TXOP_LIMIT_OFDM (0) #define QOS_QOS_SETS (3) #define QOS_PARAM_SET_ACTIVE (0) #define QOS_PARAM_SET_DEF_CCK (1) #define QOS_PARAM_SET_DEF_OFDM (2) #define CTRL_QOS_NO_ACK (0x0020) #define DCT_FLAG_EXT_QOS_ENABLED (0x10) #define IWK_TX_QUEUE_AC0 (0) #define IWK_TX_QUEUE_AC1 (1) #define IWK_TX_QUEUE_AC2 (2) #define IWK_TX_QUEUE_AC3 (3) #define IWK_TX_QUEUE_HCCA_1 (5) #define IWK_TX_QUEUE_HCCA_2 (6) #define U32_PAD(n) ((4-(n%4))%4) #define AC_BE_TID_MASK 0x9 /* TID 0 and 3 */ #define AC_BK_TID_MASK 0x6 /* TID 1 and 2 */ /* * Generic queue structure * * Contains common data for Rx and Tx queues */ #define TFD_CTL_COUNT_SET(n) (n<<24) #define TFD_CTL_COUNT_GET(ctl) ((ctl>>24) & 7) #define TFD_CTL_PAD_SET(n) (n<<28) #define TFD_CTL_PAD_GET(ctl) (ctl>>28) #define TFD_TX_CMD_SLOTS 64 #define TFD_CMD_SLOTS 32 /* * Tx/Rx Queues * * Most communication between driver and 4965 is via queues of data buffers. * For example, all commands that the driver issues to device's embedded * controller (uCode) are via the command queue (one of the Tx queues). All * uCode command responses/replies/notifications, including Rx frames, are * conveyed from uCode to driver via the Rx queue. * * Most support for these queues, including handshake support, resides in * structures in host DRAM, shared between the driver and the device. When * allocating this memory, the driver must make sure that data written by * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's * cache memory), so DRAM and cache are consistent, and the device can * immediately see changes made by the driver. * * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via * up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array * in DRAM containing 256 Transmit Frame Descriptors (TFDs). */ #define IWK_MAX_WIN_SIZE 64 #define IWK_QUEUE_SIZE 256 #define IWK_NUM_FIFOS 7 #define IWK_NUM_QUEUES 6 #define IWK_CMD_QUEUE_NUM 4 #define IWK_KW_SIZE 0x1000 /* 4k */ struct iwk_rate { union { struct { uint8_t rate; uint8_t flags; uint16_t ext_flags; } s; uint32_t rate_n_flags; } r; }; struct iwk_dram_scratch { uint8_t try_cnt; uint8_t bt_kill_cnt; uint16_t reserved; }; /* * START TEMPERATURE */ /* * 4965 temperature calculation. * * The driver must calculate the device temperature before calculating * a txpower setting (amplifier gain is temperature dependent). The * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration * values used for the life of the driver, and one of which (R4) is the * real-time temperature indicator. * * uCode provides all 4 values to the driver via the "initialize alive" * notification (see struct iwk_init_alive_resp). After the runtime uCode * image loads, uCode updates the R4 value via statistics notifications * (see STATISTICS_NOTIFICATION), which occur after each received beacon * when associated, or can be requested via REPLY_STATISTICS_CMD. * * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver * must sign-extend to 32 bits before applying formula below. * * Formula: * * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8 * * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is * an additional correction, which should be centered around 0 degrees * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for * centering the 97/100 correction around 0 degrees K. * * Add 273 to Kelvin value to find degrees Celsius, for comparing current * temperature with factory-measured temperatures when calculating txpower * settings. */ #define TEMPERATURE_CALIB_KELVIN_OFFSET 8 #define TEMPERATURE_CALIB_A_VAL 259 /* * Limit range of calculated temperature to be between these Kelvin values */ #define IWK_TX_POWER_TEMPERATURE_MIN (263) #define IWK_TX_POWER_TEMPERATURE_MAX (410) #define IWK_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \ (((t) < IWK_TX_POWER_TEMPERATURE_MIN) || \ ((t) > IWK_TX_POWER_TEMPERATURE_MAX)) /* * END TEMPERATURE */ /* * START TXPOWER */ /* * 4965 txpower calculations rely on information from three sources: * * 1) EEPROM * 2) "initialize" alive notification * 3) statistics notifications * * EEPROM data consists of: * * 1) Regulatory information (max txpower and channel usage flags) is provided * separately for each channel that can possibly supported by 4965. * 40 MHz wide (.11n fat) channels are listed separately from 20 MHz * (legacy) channels. * * See struct iwk_eeprom_channel for format, and struct iwk_eeprom for * locations in EEPROM. * * 2) Factory txpower calibration information is provided separately for * sub-bands of contiguous channels. 2.4GHz has just one sub-band, * but 5 GHz has several sub-bands. * * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided. * * See struct iwk_eeprom_calib_info (and the tree of structures contained * within it) for format, and struct iwk_eeprom for locations in EEPROM. * * "Initialization alive" notification (see struct iwk_init_alive_resp) * consists of: * * 1) Temperature calculation parameters. * * 2) Power supply voltage measurement. * * 3) Tx gain compensation to balance 2 transmitters for MIMO use. * * Statistics notifications deliver: * * 1) Current values for temperature param R4. */ /* * To calculate a txpower setting for a given desired target txpower, channel, * modulation bit rate, and transmitter chain (4965 has 2 transmitters to * support MIMO and transmit diversity), driver must do the following: * * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel. * Do not exceed regulatory limit; reduce target txpower if necessary. * * If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31), * 2 transmitters will be used simultaneously; driver must reduce the * regulatory limit by 3 dB (half-power) for each transmitter, so the * combined total output of the 2 transmitters is within regulatory limits. * * * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]); * reduce target txpower if necessary. * * Backoff values below are in 1/2 dB units (equivalent to steps in * txpower gain tables): * * OFDM 6 - 36 MBit: 10 steps (5 dB) * OFDM 48 MBit: 15 steps (7.5 dB) * OFDM 54 MBit: 17 steps (8.5 dB) * OFDM 60 MBit: 20 steps (10 dB) * CCK all rates: 10 steps (5 dB) * * Backoff values apply to saturation txpower on a per-transmitter basis; * when using MIMO (2 transmitters), each transmitter uses the same * saturation level provided in EEPROM, and the same backoff values; * no reduction (such as with regulatory txpower limits) is required. * * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel * widths and 40 Mhz (.11n fat) channel widths; there is no separate * factory measurement for fat channels. * * The result of this step is the final target txpower. The rest of * the steps figure out the proper settings for the device. * * * 3) Determine (EEPROM) calibration subband for the target channel, by * comparing against first and last channels in each subband * (see struct iwk_eeprom_calib_subband_info). * * * 4) Linearly interpolate (EEPROM) factory calibration measurement sets, * referencing the 2 factory-measured (sample) channels within the subband. * * Interpolation is based on difference between target channel's frequency * and the sample channels' frequencies. Since channel numbers are based * on frequency (5 MHz between each channel number), this is equivalent * to interpolating based on channel number differences. * * Note that the sample channels may or may not be the channels at the * edges of the subband. The target channel may be "outside" of the * span of the sampled channels. * * Driver may choose the pair (for 2 Tx chains) of measurements (see * struct iwk_eeprom_calib_ch_info) for which the actual measured * txpower comes closest to the desired txpower. Usually, though, * the middle set of measurements is closest to the regulatory limits, * and is therefore a good choice for all txpower calculations. * * Driver should interpolate both members of the chosen measurement pair, * i.e. for both Tx chains (radio transmitters), unless the driver knows * that only one of the chains will be used (e.g. only one tx antenna * connected, but this should be unusual). * * Driver should interpolate factory values for temperature, gain table * index, and actual power. The power amplifier detector values are * not used by the driver. * * If the target channel happens to be one of the sample channels, the * results should agree with the sample channel's measurements! * * * 5) Find difference between desired txpower and (interpolated) * factory-measured txpower. Using (interpolated) factory gain table index * as a starting point, adjust this index lower to increase txpower, * or higher to decrease txpower, until the target txpower is reached. * Each step in the gain table is 1/2 dB. * * For example, if factory measured txpower is 16 dBm, and target txpower * is 13 dBm, add 6 steps to the factory gain index to reduce txpower * by 3 dB. * * * 6) Find difference between current device temperature and (interpolated) * factory-measured temperature for sub-band. Factory values are in * degrees Celsius. To calculate current temperature, see comments for * "4965 temperature calculation". * * If current temperature is higher than factory temperature, driver must * increase gain (lower gain table index), and vice versa. * * Temperature affects gain differently for different channels: * * 2.4 GHz all channels: 3.5 degrees per half-dB step * 5 GHz channels 34-43: 4.5 degrees per half-dB step * 5 GHz channels >= 44: 4.0 degrees per half-dB step * * NOTE: Temperature can increase rapidly when transmitting, especially * with heavy traffic at high txpowers. Driver should update * temperature calculations often under these conditions to * maintain strong txpower in the face of rising temperature. * * * 7) Find difference between current power supply voltage indicator * (from "initialize alive") and factory-measured power supply voltage * indicator (EEPROM). * * If the current voltage is higher (indicator is lower) than factory * voltage, gain should be reduced (gain table index increased) by: * * (eeprom - current) / 7 * * If the current voltage is lower (indicator is higher) than factory * voltage, gain should be increased (gain table index decreased) by: * * 2 * (current - eeprom) / 7 * * If number of index steps in either direction turns out to be > 2, * something is wrong ... just use 0. * * NOTE: Voltage compensation is independent of band/channel. * * NOTE: "Initialize" uCode measures current voltage, which is assumed * to be constant after this initial measurement. Voltage * compensation for txpower (number of steps in gain table) * may be calculated once and used until the next uCode bootload. * * * 8) If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31), * adjust txpower for each transmitter chain, so txpower is balanced * between the two chains. There are 5 pairs of tx_atten[group][chain] * values in "initialize alive", one pair for each of 5 channel ranges: * * Group 0: 5 GHz channel 34-43 * Group 1: 5 GHz channel 44-70 * Group 2: 5 GHz channel 71-124 * Group 3: 5 GHz channel 125-200 * Group 4: 2.4 GHz all channels * * Add the tx_atten[group][chain] value to the index for the target chain. * The values are signed, but are in pairs of 0 and a non-negative number, * so as to reduce gain (if necessary) of the "hotter" channel. This * avoids any need to double-check for regulatory compliance after * this step. * * * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation * value to the index: * * Hardware rev B: 9 steps (4.5 dB) * Hardware rev C: 5 steps (2.5 dB) * * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG, * bits [3:2], 1 = B, 2 = C. * * NOTE: This compensation is in addition to any saturation backoff that * might have been applied in an earlier step. * * * 10) Select the gain table, based on band (2.4 vs 5 GHz). * * Limit the adjusted index to stay within the table! * * * 11) Read gain table entries for DSP and radio gain, place into appropriate * location(s) in command. */ enum { HT_IE_EXT_CHANNEL_NONE = 0, HT_IE_EXT_CHANNEL_ABOVE, HT_IE_EXT_CHANNEL_INVALID, HT_IE_EXT_CHANNEL_BELOW, HT_IE_EXT_CHANNEL_MAX }; enum { CALIB_CH_GROUP_1 = 0, CALIB_CH_GROUP_2 = 1, CALIB_CH_GROUP_3 = 2, CALIB_CH_GROUP_4 = 3, CALIB_CH_GROUP_5 = 4, CALIB_CH_GROUP_MAX }; #define POWER_TABLE_NUM_HT_OFDM_ENTRIES (32) /* * Temperature calibration offset is 3% 0C in Kelvin */ #define TEMPERATURE_CALIB_KELVIN_OFFSET 8 #define TEMPERATURE_CALIB_A_VAL 259 #define IWK_TX_POWER_TEMPERATURE_MIN (263) #define IWK_TX_POWER_TEMPERATURE_MAX (410) #define IWK_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \ (((t) < IWK_TX_POWER_TEMPERATURE_MIN) || \ ((t) > IWK_TX_POWER_TEMPERATURE_MAX)) #define IWK_TX_POWER_ILLEGAL_TEMPERATURE (300) #define IWK_TX_POWER_TEMPERATURE_DIFFERENCE (2) /* * When MIMO is used (2 transmitters operating simultaneously), driver should * limit each transmitter to deliver a max of 3 dB below the regulatory limit * for the device. That is, half power for each transmitter, so total power * is within regulatory limits. * * The value "6" represents number of steps in gain table to reduce power. * Each step is 1/2 dB. */ #define IWK_TX_POWER_MIMO_REGULATORY_COMPENSATION (6) /* * Limit range of txpower output target to be between these values */ #define IWK_TX_POWER_TARGET_POWER_MIN (0) /* 0 dBm = 1 milliwatt */ #define IWK_TX_POWER_TARGET_POWER_MAX (16) /* 16 dBm */ /* * timeout equivalent to 3 minutes */ #define IWK_TX_POWER_TIMELIMIT_NOCALIB 1800000000 /* * CCK gain compensation. * * When calculating txpowers for CCK, after making sure that the target power * is within regulatory and saturation limits, driver must additionally * back off gain by adding these values to the gain table index. */ #define IWK_TX_POWER_CCK_COMPENSATION (9) #define IWK_TX_POWER_CCK_COMPENSATION_B_STEP (9) #define IWK_TX_POWER_CCK_COMPENSATION_C_STEP (5) /* * 4965 power supply voltage compensation */ #define TX_POWER_IWK_VOLTAGE_CODES_PER_03V (7) /* * Gain tables. * * The following tables contain pair of values for setting txpower, i.e. * gain settings for the output of the device's digital signal processor (DSP), * and for the analog gain structure of the transmitter. * * Each entry in the gain tables represents a step of 1/2 dB. Note that these * are *relative* steps, not indications of absolute output power. Output * power varies with temperature, voltage, and channel frequency, and also * requires consideration of average power (to satisfy regulatory constraints), * and peak power (to avoid distortion of the output signal). * * Each entry contains two values: * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained * linear value that multiplies the output of the digital signal processor, * before being sent to the analog radio. * 2) Radio gain. This sets the analog gain of the radio Tx path. * It is a coarser setting, and behaves in a logarithmic (dB) fashion. * * EEPROM contains factory calibration data for txpower. This maps actual * measured txpower levels to gain settings in the "well known" tables * below ("well-known" means here that both factory calibration *and* the * driver work with the same table). * * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table * has an extension (into negative indexes), in case the driver needs to * boost power setting for high device temperatures (higher than would be * present during factory calibration). A 5 Ghz EEPROM index of "40" * corresponds to the 49th entry in the table used by the driver. */ #define MIN_TX_GAIN_INDEX (0) #define MIN_TX_GAIN_INDEX_52GHZ_EXT (-9) #define MAX_TX_GAIN_INDEX_52GHZ (98) #define MIN_TX_GAIN_52GHZ (98) #define MAX_TX_GAIN_INDEX_24GHZ (98) #define MIN_TX_GAIN_24GHZ (98) #define MAX_TX_GAIN (0) #define MAX_TX_GAIN_52GHZ_EXT (-9) /* * 2.4 GHz gain table * * Index Dsp gain Radio gain * 0 110 0x3f * 1 104 0x3f * 2 98 0x3f * 3 110 0x3e * 4 104 0x3e * 5 98 0x3e * 6 110 0x3d * 7 104 0x3d * 8 98 0x3d * 9 110 0x3c * 10 104 0x3c * 11 98 0x3c * 12 110 0x3b * 13 104 0x3b * 14 98 0x3b * 15 110 0x3a * 16 104 0x3a * 17 98 0x3a * 18 110 0x39 * 19 104 0x39 * 20 98 0x39 * 21 110 0x38 * 22 104 0x38 * 23 98 0x38 * 24 110 0x37 * 25 104 0x37 * 26 98 0x37 * 27 110 0x36 * 28 104 0x36 * 29 98 0x36 * 30 110 0x35 * 31 104 0x35 * 32 98 0x35 * 33 110 0x34 * 34 104 0x34 * 35 98 0x34 * 36 110 0x33 * 37 104 0x33 * 38 98 0x33 * 39 110 0x32 * 40 104 0x32 * 41 98 0x32 * 42 110 0x31 * 43 104 0x31 * 44 98 0x31 * 45 110 0x30 * 46 104 0x30 * 47 98 0x30 * 48 110 0x6 * 49 104 0x6 * 50 98 0x6 * 51 110 0x5 * 52 104 0x5 * 53 98 0x5 * 54 110 0x4 * 55 104 0x4 * 56 98 0x4 * 57 110 0x3 * 58 104 0x3 * 59 98 0x3 * 60 110 0x2 * 61 104 0x2 * 62 98 0x2 * 63 110 0x1 * 64 104 0x1 * 65 98 0x1 * 66 110 0x0 * 67 104 0x0 * 68 98 0x0 * 69 97 0 * 70 96 0 * 71 95 0 * 72 94 0 * 73 93 0 * 74 92 0 * 75 91 0 * 76 90 0 * 77 89 0 * 78 88 0 * 79 87 0 * 80 86 0 * 81 85 0 * 82 84 0 * 83 83 0 * 84 82 0 * 85 81 0 * 86 80 0 * 87 79 0 * 88 78 0 * 89 77 0 * 90 76 0 * 91 75 0 * 92 74 0 * 93 73 0 * 94 72 0 * 95 71 0 * 96 70 0 * 97 69 0 * 98 68 0 */ /* * 5 GHz gain table * * Index Dsp gain Radio gain * -9 123 0x3F * -8 117 0x3F * -7 110 0x3F * -6 104 0x3F * -5 98 0x3F * -4 110 0x3E * -3 104 0x3E * -2 98 0x3E * -1 110 0x3D * 0 104 0x3D * 1 98 0x3D * 2 110 0x3C * 3 104 0x3C * 4 98 0x3C * 5 110 0x3B * 6 104 0x3B * 7 98 0x3B * 8 110 0x3A * 9 104 0x3A * 10 98 0x3A * 11 110 0x39 * 12 104 0x39 * 13 98 0x39 * 14 110 0x38 * 15 104 0x38 * 16 98 0x38 * 17 110 0x37 * 18 104 0x37 * 19 98 0x37 * 20 110 0x36 * 21 104 0x36 * 22 98 0x36 * 23 110 0x35 * 24 104 0x35 * 25 98 0x35 * 26 110 0x34 * 27 104 0x34 * 28 98 0x34 * 29 110 0x33 * 30 104 0x33 * 31 98 0x33 * 32 110 0x32 * 33 104 0x32 * 34 98 0x32 * 35 110 0x31 * 36 104 0x31 * 37 98 0x31 * 38 110 0x30 * 39 104 0x30 * 40 98 0x30 * 41 110 0x25 * 42 104 0x25 * 43 98 0x25 * 44 110 0x24 * 45 104 0x24 * 46 98 0x24 * 47 110 0x23 * 48 104 0x23 * 49 98 0x23 * 50 110 0x22 * 51 104 0x18 * 52 98 0x18 * 53 110 0x17 * 54 104 0x17 * 55 98 0x17 * 56 110 0x16 * 57 104 0x16 * 58 98 0x16 * 59 110 0x15 * 60 104 0x15 * 61 98 0x15 * 62 110 0x14 * 63 104 0x14 * 64 98 0x14 * 65 110 0x13 * 66 104 0x13 * 67 98 0x13 * 68 110 0x12 * 69 104 0x08 * 70 98 0x08 * 71 110 0x07 * 72 104 0x07 * 73 98 0x07 * 74 110 0x06 * 75 104 0x06 * 76 98 0x06 * 77 110 0x05 * 78 104 0x05 * 79 98 0x05 * 80 110 0x04 * 81 104 0x04 * 82 98 0x04 * 83 110 0x03 * 84 104 0x03 * 85 98 0x03 * 86 110 0x02 * 87 104 0x02 * 88 98 0x02 * 89 110 0x01 * 90 104 0x01 * 91 98 0x01 * 92 110 0x00 * 93 104 0x00 * 94 98 0x00 * 95 93 0x00 * 96 88 0x00 * 97 83 0x00 * 98 78 0x00 */ /* * Sanity checks and default values for EEPROM regulatory levels. * If EEPROM values fall outside MIN/MAX range, use default values. * * Regulatory limits refer to the maximum average txpower allowed by * regulatory agencies in the geographies in which the device is meant * to be operated. These limits are SKU-specific (i.e. geography-specific), * and channel-specific; each channel has an individual regulatory limit * listed in the EEPROM. * * Units are in half-dBm (i.e. "34" means 17 dBm). */ #define IWK_TX_POWER_DEFAULT_REGULATORY_24 (34) #define IWK_TX_POWER_DEFAULT_REGULATORY_52 (34) #define IWK_TX_POWER_REGULATORY_MIN (0) #define IWK_TX_POWER_REGULATORY_MAX (34) /* * Sanity checks and default values for EEPROM saturation levels. * If EEPROM values fall outside MIN/MAX range, use default values. * * Saturation is the highest level that the output power amplifier can produce * without significant clipping distortion. This is a "peak" power level. * Different types of modulation (i.e. various "rates", and OFDM vs. CCK) * require differing amounts of backoff, relative to their average power output, * in order to avoid clipping distortion. * * Driver must make sure that it is violating neither the saturation limit, * nor the regulatory limit, when calculating Tx power settings for various * rates. * * Units are in half-dBm (i.e. "38" means 19 dBm). */ #define IWK_TX_POWER_DEFAULT_SATURATION_24 (38) #define IWK_TX_POWER_DEFAULT_SATURATION_52 (38) #define IWK_TX_POWER_SATURATION_MIN (20) #define IWK_TX_POWER_SATURATION_MAX (50) /* * dv *0.4 = dt; so that 5 degrees temperature diff equals * 12.5 in voltage diff */ #define IWK_TX_TEMPERATURE_UPDATE_LIMIT 9 #define IWK_INVALID_CHANNEL (0xffffffff) #define IWK_TX_POWER_REGITRY_BIT (2) #define MIN_IWK_TX_POWER_CALIB_DUR (100) #define IWK_CCK_FROM_OFDM_POWER_DIFF (-5) #define IWK_CCK_FROM_OFDM_INDEX_DIFF (9) /* * Number of entries in the gain table */ #define POWER_GAIN_NUM_ENTRIES 78 #define TX_POW_MAX_SESSION_NUM 5 /* * timeout equivalent to 3 minutes */ #define TX_IWK_TIMELIMIT_NOCALIB 1800000000 /* * Kedron TX_CALIB_STATES */ #define IWK_TX_CALIB_STATE_SEND_TX 0x00000001 #define IWK_TX_CALIB_WAIT_TX_RESPONSE 0x00000002 #define IWK_TX_CALIB_ENABLED 0x00000004 #define IWK_TX_CALIB_XVT_ON 0x00000008 #define IWK_TX_CALIB_TEMPERATURE_CORRECT 0x00000010 #define IWK_TX_CALIB_WORKING_WITH_XVT 0x00000020 #define IWK_TX_CALIB_XVT_PERIODICAL 0x00000040 #define NUM_IWK_TX_CALIB_SETTINS 5 /* Number of tx correction groups */ #define IWK_MIN_POWER_IN_VP_TABLE 1 /* 0.5dBm multiplied by 2 */ /* 20dBm - multiplied by 2 - because entries are for each 0.5dBm */ #define IWK_MAX_POWER_IN_VP_TABLE 40 #define IWK_STEP_IN_VP_TABLE 1 /* 0.5dB - multiplied by 2 */ #define IWK_NUM_POINTS_IN_VPTABLE \ (1 + IWK_MAX_POWER_IN_VP_TABLE - IWK_MIN_POWER_IN_VP_TABLE) #define MIN_TX_GAIN_INDEX (0) #define MAX_TX_GAIN_INDEX_52GHZ (98) #define MIN_TX_GAIN_52GHZ (98) #define MAX_TX_GAIN_INDEX_24GHZ (98) #define MIN_TX_GAIN_24GHZ (98) #define MAX_TX_GAIN (0) /* * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance) * and thermal Txpower calibration. * * When calculating txpower, driver must compensate for current device * temperature; higher temperature requires higher gain. Driver must calculate * current temperature (see "4965 temperature calculation"), then compare vs. * factory calibration temperature in EEPROM; if current temperature is higher * than factory temperature, driver must *increase* gain by proportions shown * in table below. If current temperature is lower than factory, driver must * *decrease* gain. * * Different frequency ranges require different compensation, as shown below. */ /* * Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */ #define CALIB_IWK_TX_ATTEN_GR1_FCH 34 #define CALIB_IWK_TX_ATTEN_GR1_LCH 43 /* * Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */ #define CALIB_IWK_TX_ATTEN_GR2_FCH 44 #define CALIB_IWK_TX_ATTEN_GR2_LCH 70 /* * Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */ #define CALIB_IWK_TX_ATTEN_GR3_FCH 71 #define CALIB_IWK_TX_ATTEN_GR3_LCH 124 /* * Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */ #define CALIB_IWK_TX_ATTEN_GR4_FCH 125 #define CALIB_IWK_TX_ATTEN_GR4_LCH 200 /* * Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */ #define CALIB_IWK_TX_ATTEN_GR5_FCH 1 #define CALIB_IWK_TX_ATTEN_GR5_LCH 20 struct iwk_tx_power { uint8_t tx_gain; /* gain for analog radio */ uint8_t dsp_atten; /* gain for DSP */ }; struct tx_power_dual_stream { uint16_t ramon_tx_gain; uint16_t dsp_predis_atten; }; union tx_power_dual_stream_u { struct tx_power_dual_stream s; uint32_t dw; }; struct iwk_tx_power_db { union tx_power_dual_stream_u ht_ofdm_power[POWER_TABLE_NUM_HT_OFDM_ENTRIES]; union tx_power_dual_stream_u legacy_cck_power; }; typedef struct iwk_tx_power_table_cmd { uint8_t band; uint8_t channel_normal_width; uint16_t channel; struct iwk_tx_power_db tx_power; } iwk_tx_power_table_cmd_t; typedef struct iwk_channel_switch_cmd { uint8_t band; uint8_t expect_beacon; uint16_t channel; uint32_t rxon_flags; uint32_t rxon_filter_flags; uint32_t switch_time; struct iwk_tx_power_db tx_power; } iwk_channel_switch_cmd_t; struct iwk_channel_switch_notif { uint16_t band; uint16_t channel; uint32_t status; }; /* * END TXPOWER */ /* * HT flags */ #define RXON_FLG_CONTROL_CHANNEL_LOCATION_MSK 0x400000 #define RXON_FLG_CONTROL_CHANNEL_LOC_LOW_MSK 0x000000 #define RXON_FLG_CONTROL_CHANNEL_LOC_HIGH_MSK 0x400000 #define RXON_FLG_HT_OPERATING_MODE_POS (23) #define RXON_FLG_HT_PROT_MSK 0x800000 #define RXON_FLG_FAT_PROT_MSK 0x1000000 #define RXON_FLG_CHANNEL_MODE_POS (25) #define RXON_FLG_CHANNEL_MODE_MSK 0x06000000 #define RXON_FLG_CHANNEL_MODE_LEGACY_MSK 0x00000000 #define RXON_FLG_CHANNEL_MODE_PURE_40_MSK 0x02000000 #define RXON_FLG_CHANNEL_MODE_MIXED_MSK 0x04000000 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK (0x1<<0) #define RXON_RX_CHAIN_VALID_MSK (0x7<<1) #define RXON_RX_CHAIN_VALID_POS (1) #define RXON_RX_CHAIN_FORCE_SEL_MSK (0x7<<4) #define RXON_RX_CHAIN_FORCE_SEL_POS (4) #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK (0x7<<7) #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7) #define RXON_RX_CHAIN_CNT_MSK (0x3<<10) #define RXON_RX_CHAIN_CNT_POS (10) #define RXON_RX_CHAIN_MIMO_CNT_MSK (0x3<<12) #define RXON_RX_CHAIN_MIMO_CNT_POS (12) #define RXON_RX_CHAIN_MIMO_FORCE_MSK (0x1<<14) #define RXON_RX_CHAIN_MIMO_FORCE_POS (14) #define MCS_DUP_6M_PLCP 0x20 /* * OFDM HT rate masks */ #define R_MCS_6M_MSK 0x1 #define R_MCS_12M_MSK 0x2 #define R_MCS_18M_MSK 0x4 #define R_MCS_24M_MSK 0x8 #define R_MCS_36M_MSK 0x10 #define R_MCS_48M_MSK 0x20 #define R_MCS_54M_MSK 0x40 #define R_MCS_60M_MSK 0x80 #define R_MCS_12M_DUAL_MSK 0x100 #define R_MCS_24M_DUAL_MSK 0x200 #define R_MCS_36M_DUAL_MSK 0x400 #define R_MCS_48M_DUAL_MSK 0x800 #define RATE_MCS_CODE_MSK 0x7 #define RATE_MCS_MIMO_POS 3 #define RATE_MCS_MIMO_MSK 0x8 #define RATE_MCS_HT_DUP_POS 5 #define RATE_MCS_HT_DUP_MSK 0x20 #define RATE_MCS_FLAGS_POS 8 #define RATE_MCS_HT_POS 8 #define RATE_MCS_HT_MSK 0x100 #define RATE_MCS_CCK_POS 9 #define RATE_MCS_CCK_MSK 0x200 #define RATE_MCS_GF_POS 10 #define RATE_MCS_GF_MSK 0x400 #define RATE_MCS_FAT_POS 11 #define RATE_MCS_FAT_MSK 0x800 #define RATE_MCS_DUP_POS 12 #define RATE_MCS_DUP_MSK 0x1000 #define RATE_MCS_SGI_POS 13 #define RATE_MCS_SGI_MSK 0x2000 #define EEPROM_SEM_TIMEOUT 10 #define EEPROM_SEM_RETRY_LIMIT 1000 /* * Antenna masks: * bit14:15 01 B inactive, A active * 10 B active, A inactive * 11 Both active */ #define RATE_MCS_ANT_A_POS 14 #define RATE_MCS_ANT_B_POS 15 #define RATE_MCS_ANT_A_MSK 0x4000 #define RATE_MCS_ANT_B_MSK 0x8000 #define RATE_MCS_ANT_AB_MSK 0xc000 #define is_legacy(tbl) (((tbl) == LQ_G) || ((tbl) == LQ_A)) #define is_siso(tbl) (((tbl) == LQ_SISO)) #define is_mimo(tbl) (((tbl) == LQ_MIMO)) #define is_Ht(tbl) (is_siso(tbl) || is_mimo(tbl)) #define is_a_band(tbl) (((tbl) == LQ_A)) #define is_g_and(tbl) (((tbl) == LQ_G)) /* * RS_NEW_API: only TLC_RTS remains and moved to bit 0 */ #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1<<0) #define LINK_QUAL_AC_NUM 4 #define LINK_QUAL_MAX_RETRY_NUM 16 #define LINK_QUAL_ANT_A_MSK (1<<0) #define LINK_QUAL_ANT_B_MSK (1<<1) #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK) struct iwk_link_qual_general_params { uint8_t flags; uint8_t mimo_delimiter; uint8_t single_stream_ant_msk; uint8_t dual_stream_ant_msk; uint8_t start_rate_index[LINK_QUAL_AC_NUM]; }; struct iwk_link_qual_agg_params { uint16_t agg_time_limit; uint8_t agg_dis_start_th; uint8_t agg_frame_cnt_limit; uint32_t reserved; }; typedef struct iwk_link_quality_cmd { uint8_t sta_id; uint8_t reserved1; uint16_t control; struct iwk_link_qual_general_params general_params; struct iwk_link_qual_agg_params agg_params; uint32_t rate_n_flags[LINK_QUAL_MAX_RETRY_NUM]; uint32_t reserved2; } iwk_link_quality_cmd_t; typedef struct iwk_rx_phy_res { uint8_t non_cfg_phy_cnt; /* non configurable DSP phy data byte count */ uint8_t cfg_phy_cnt; /* configurable DSP phy data byte count */ uint8_t stat_id; /* configurable DSP phy data set ID */ uint8_t reserved1; uint32_t timestampl; /* TSF at on air rise */ uint32_t timestamph; uint32_t beacon_time_stamp; /* beacon at on-air rise */ uint16_t phy_flags; /* general phy flags: band, modulation, ... */ uint16_t channel; /* channel number */ uint16_t non_cfg_phy[RX_RES_PHY_CNT]; /* upto 14 phy entries */ uint32_t reserved2; struct iwk_rate rate; /* rate in ucode internal format */ uint16_t byte_count; /* frame's byte-count */ uint16_t reserved3; } iwk_rx_phy_res_t; struct iwk_rx_mpdu_res_start { uint16_t byte_count; uint16_t reserved; }; #define IWK_AGC_DB_MASK (0x3f80) /* MASK(7,13) */ #define IWK_AGC_DB_POS (7) /* * Fixed (non-configurable) rx data from phy */ struct iwk_rx_non_cfg_phy { uint16_t ant_selection; /* ant A bit 4, ant B bit 5, ant C bit 6 */ uint16_t agc_info; /* agc code 0:6, agc dB 7:13, reserved 14:15 */ uint8_t rssi_info[6]; /* we use even entries, 0/2/4 for A/B/C rssi */ uint8_t pad[2]; }; /* * Byte Count Table Entry * * Bit fields: * 15-12: reserved * 11- 0: total to-be-transmitted byte count of frame (does not include command) */ struct iwk_queue_byte_cnt_entry { uint16_t val; }; /* * Byte Count table * * Each Tx queue uses a byte-count table containing 320 entries: * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that * duplicate the first 64 entries (to avoid wrap-around within a Tx window; * max Tx window is 64 TFDs). * * When driver sets up a new TFD, it must also enter the total byte count * of the frame to be transmitted into the corresponding entry in the byte * count table for the chosen Tx queue. If the TFD index is 0-63, the driver * must duplicate the byte count entry in corresponding index 256-319. * * "dont_care" padding puts each byte count table on a 1024-byte boundary; * 4965 assumes tables are separated by 1024 bytes. */ struct iwk_sched_queue_byte_cnt_tbl { struct iwk_queue_byte_cnt_entry tfd_offset[IWK_QUEUE_SIZE + IWK_MAX_WIN_SIZE]; uint8_t dont_care[1024 - (IWK_QUEUE_SIZE + IWK_MAX_WIN_SIZE) * sizeof (uint16_t)]; }; /* * struct iwk_shared, handshake area for Tx and Rx * * For convenience in allocating memory, this structure combines 2 areas of * DRAM which must be shared between driver and 4965. These do not need to * be combined, if better allocation would result from keeping them separate: * TODO: Split these; carried over from 3945, doesn't work well for 4965. * * 1) The Tx byte count tables occupy 1024 bytes each (16 KBytes total for * 16 queues). Driver uses SCD_DRAM_BASE_ADDR to tell 4965 where to find * the first of these tables. 4965 assumes tables are 1024 bytes apart. * * 2) The Rx status (val0 and val1) occupies only 8 bytes. Driver uses * FH_RSCSR_CHNL0_STTS_WPTR_REG to tell 4965 where to find this area. * Driver reads val0 to determine the latest Receive Buffer Descriptor (RBD) * that has been filled by the 4965. * * Bit fields val0: * 31-12: Not used * 11- 0: Index of last filled Rx buffer descriptor (4965 writes, driver reads) * * Bit fields val1: * 31- 0: Not used */ typedef struct iwk_shared { struct iwk_sched_queue_byte_cnt_tbl queues_byte_cnt_tbls[IWK_NUM_QUEUES]; uint32_t val0; uint32_t val1; uint32_t padding1; /* so that allocation will be aligned to 16B */ uint32_t padding2; } iwk_shared_t; /* * struct iwk_tfd_frame_data * * Describes up to 2 buffers containing (contiguous) portions of a Tx frame. * Each buffer must be on dword boundary. * Up to 10 iwk_tfd_frame_data structures, describing up to 20 buffers, * may be filled within a TFD (iwk_tfd_frame). * * Bit fields in tb1_addr: * 31- 0: Tx buffer 1 address bits [31:0] * * Bit fields in val1: * 31-16: Tx buffer 2 address bits [15:0] * 15- 4: Tx buffer 1 length (bytes) * 3- 0: Tx buffer 1 address bits [32:32] * * Bit fields in val2: * 31-20: Tx buffer 2 length (bytes) * 19- 0: Tx buffer 2 address bits [35:16] */ struct iwk_tfd_frame_data { uint32_t tb1_addr; uint32_t val1; uint32_t val2; }; typedef struct iwk_tx_desc { uint32_t val0; struct iwk_tfd_frame_data pa[10]; uint32_t reserved; } iwk_tx_desc_t; typedef struct iwk_tx_stat { uint8_t frame_count; uint8_t bt_kill_count; uint8_t nrts; uint8_t ntries; struct iwk_rate rate; uint16_t duration; uint16_t reserved; uint32_t pa_power1; uint32_t pa_power2; uint32_t status; } iwk_tx_stat_t; struct iwk_cmd_header { uint8_t type; uint8_t flags; uint8_t idx; uint8_t qid; }; typedef struct iwk_rx_desc { uint32_t len; struct iwk_cmd_header hdr; } iwk_rx_desc_t; typedef struct iwk_rx_stat { uint8_t len; uint8_t id; uint8_t rssi; /* received signal strength */ uint8_t agc; /* access gain control */ uint16_t signal; uint16_t noise; } iwk_rx_stat_t; typedef struct iwk_rx_head { uint16_t chan; uint16_t flags; uint8_t reserved; uint8_t rate; uint16_t len; } iwk_rx_head_t; typedef struct iwk_rx_tail { uint32_t flags; uint32_t timestampl; uint32_t timestamph; uint32_t tbeacon; } iwk_rx_tail_t; enum { IWK_AP_ID = 0, IWK_MULTICAST_ID, IWK_STA_ID, IWK_BROADCAST_ID = 31, IWK_STATION_COUNT = 32, IWK_INVALID_STATION }; /* * key flags */ enum { STA_KEY_FLG_ENCRYPT_MSK = 0x7, STA_KEY_FLG_NO_ENC = 0x0, STA_KEY_FLG_WEP = 0x1, STA_KEY_FLG_CCMP = 0x2, STA_KEY_FLG_TKIP = 0x3, STA_KEY_FLG_KEYID_POS = 8, STA_KEY_FLG_INVALID = 0x0800, }; /* * modify flags */ enum { STA_MODIFY_KEY_MASK = 0x01, STA_MODIFY_TID_DISABLE_TX = 0x02, STA_MODIFY_TX_RATE_MSK = 0x04 }; enum { RX_RES_STATUS_NO_CRC32_ERROR = (1 << 0), RX_RES_STATUS_NO_RXE_OVERFLOW = (1 << 1), }; enum { RX_RES_PHY_FLAGS_BAND_24_MSK = (1 << 0), RX_RES_PHY_FLAGS_MOD_CCK_MSK = (1 << 1), RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK = (1 << 2), RX_RES_PHY_FLAGS_NARROW_BAND_MSK = (1 << 3), RX_RES_PHY_FLAGS_ANTENNA_MSK = 0xf0, RX_RES_STATUS_SEC_TYPE_MSK = (0x7 << 8), RX_RES_STATUS_SEC_TYPE_NONE = (STA_KEY_FLG_NO_ENC << 8), RX_RES_STATUS_SEC_TYPE_WEP = (STA_KEY_FLG_WEP << 8), RX_RES_STATUS_SEC_TYPE_TKIP = (STA_KEY_FLG_TKIP << 8), RX_RES_STATUS_SEC_TYPE_CCMP = (STA_KEY_FLG_CCMP << 8), RX_RES_STATUS_DECRYPT_TYPE_MSK = (0x3 << 11), RX_RES_STATUS_NOT_DECRYPT = (0x0 << 11), RX_RES_STATUS_DECRYPT_OK = (0x3 << 11), RX_RES_STATUS_BAD_ICV_MIC = (0x1 << 11), RX_RES_STATUS_BAD_KEY_TTAK = (0x2 << 11), }; enum { REPLY_ALIVE = 0x1, REPLY_ERROR = 0x2, /* RXON state commands */ REPLY_RXON = 0x10, REPLY_RXON_ASSOC = 0x11, REPLY_QOS_PARAM = 0x13, REPLY_RXON_TIMING = 0x14, /* Multi-Station support */ REPLY_ADD_STA = 0x18, REPLY_REMOVE_ALL_STA = 0x1a, /* RX, TX */ REPLY_TX = 0x1c, /* timers commands */ REPLY_BCON = 0x27, REPLY_SHUTDOWN = 0x40, /* MISC commands */ REPLY_RATE_SCALE = 0x47, REPLY_LEDS_CMD = 0x48, REPLY_TX_LINK_QUALITY_CMD = 0x4e, /* 802.11h related */ RADAR_NOTIFICATION = 0x70, REPLY_QUIET_CMD = 0x71, REPLY_CHANNEL_SWITCH = 0x72, CHANNEL_SWITCH_NOTIFICATION = 0x73, REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74, SPECTRUM_MEASURE_NOTIFICATION = 0x75, /* Power Management *** */ POWER_TABLE_CMD = 0x77, PM_SLEEP_NOTIFICATION = 0x7A, PM_DEBUG_STATISTIC_NOTIFIC = 0x7B, /* Scan commands and notifications */ REPLY_SCAN_CMD = 0x80, REPLY_SCAN_ABORT_CMD = 0x81, SCAN_START_NOTIFICATION = 0x82, SCAN_RESULTS_NOTIFICATION = 0x83, SCAN_COMPLETE_NOTIFICATION = 0x84, /* IBSS/AP commands */ BEACON_NOTIFICATION = 0x90, REPLY_TX_BEACON = 0x91, WHO_IS_AWAKE_NOTIFICATION = 0x94, QUIET_NOTIFICATION = 0x96, REPLY_TX_PWR_TABLE_CMD = 0x97, MEASURE_ABORT_NOTIFICATION = 0x99, REPLY_CALIBRATION_TUNE = 0x9a, /* BT config command */ REPLY_BT_CONFIG = 0x9b, REPLY_STATISTICS_CMD = 0x9c, STATISTICS_NOTIFICATION = 0x9d, /* RF-KILL commands and notifications *** */ REPLY_CARD_STATE_CMD = 0xa0, CARD_STATE_NOTIFICATION = 0xa1, /* Missed beacons notification */ MISSED_BEACONS_NOTIFICATION = 0xa2, MISSED_BEACONS_NOTIFICATION_TH_CMD = 0xa3, REPLY_CT_KILL_CONFIG_CMD = 0xa4, SENSITIVITY_CMD = 0xa8, REPLY_PHY_CALIBRATION_CMD = 0xb0, REPLY_4965_RX = 0xc3, REPLY_RX_PHY_CMD = 0xc0, REPLY_RX_MPDU_CMD = 0xc1, REPLY_COMPRESSED_BA = 0xc5, REPLY_MAX = 0xff }; typedef struct iwk_cmd { struct iwk_cmd_header hdr; uint8_t data[1024]; } iwk_cmd_t; /* * Alive Command & Response */ #define UCODE_VALID_OK (0x1) #define INITIALIZE_SUBTYPE (9) struct iwk_alive_resp { uint8_t ucode_minor; uint8_t ucode_major; uint16_t reserved1; uint8_t sw_rev[8]; uint8_t ver_type; uint8_t ver_subtype; uint16_t reserved2; uint32_t log_event_table_ptr; uint32_t error_event_table_ptr; uint32_t timestamp; uint32_t is_valid; }; struct iwk_init_alive_resp { struct iwk_alive_resp s; /* calibration values from "initialize" uCode */ uint32_t voltage; /* signed */ uint32_t therm_r1[2]; /* signed 1st for normal, 2nd for FAT channel */ uint32_t therm_r2[2]; /* signed */ uint32_t therm_r3[2]; /* signed */ uint32_t therm_r4[2]; /* signed */ /* * signed MIMO gain comp, 5 freq groups, 2 Tx chains */ uint32_t tx_atten[5][2]; }; /* * Rx config defines & structure */ /* * rx_config device types */ enum { RXON_DEV_TYPE_AP = 1, RXON_DEV_TYPE_ESS = 3, RXON_DEV_TYPE_IBSS = 4, RXON_DEV_TYPE_SNIFFER = 6, }; /* * rx_config flags */ enum { /* band & modulation selection */ RXON_FLG_BAND_24G_MSK = (1 << 0), RXON_FLG_CCK_MSK = (1 << 1), /* auto detection enable */ RXON_FLG_AUTO_DETECT_MSK = (1 << 2), /* TGg protection when tx */ RXON_FLG_TGG_PROTECT_MSK = (1 << 3), /* cck short slot & preamble */ RXON_FLG_SHORT_SLOT_MSK = (1 << 4), RXON_FLG_SHORT_PREAMBLE_MSK = (1 << 5), /* antenna selection */ RXON_FLG_DIS_DIV_MSK = (1 << 7), RXON_FLG_ANT_SEL_MSK = 0x0f00, RXON_FLG_ANT_A_MSK = (1 << 8), RXON_FLG_ANT_B_MSK = (1 << 9), /* radar detection enable */ RXON_FLG_RADAR_DETECT_MSK = (1 << 12), RXON_FLG_TGJ_NARROW_BAND_MSK = (1 << 13), /* * rx response to host with 8-byte TSF * (according to ON_AIR deassertion) */ RXON_FLG_TSF2HOST_MSK = (1 << 15) }; /* * rx_config filter flags */ enum { /* accept all data frames */ RXON_FILTER_PROMISC_MSK = (1 << 0), /* pass control & management to host */ RXON_FILTER_CTL2HOST_MSK = (1 << 1), /* accept multi-cast */ RXON_FILTER_ACCEPT_GRP_MSK = (1 << 2), /* don't decrypt uni-cast frames */ RXON_FILTER_DIS_DECRYPT_MSK = (1 << 3), /* don't decrypt multi-cast frames */ RXON_FILTER_DIS_GRP_DECRYPT_MSK = (1 << 4), /* STA is associated */ RXON_FILTER_ASSOC_MSK = (1 << 5), /* transfer to host non bssid beacons in associated state */ RXON_FILTER_BCON_AWARE_MSK = (1 << 6) }; /* * structure for RXON Command & Response */ typedef struct iwk_rxon_cmd { uint8_t node_addr[IEEE80211_ADDR_LEN]; uint16_t reserved1; uint8_t bssid[IEEE80211_ADDR_LEN]; uint16_t reserved2; uint8_t wlap_bssid[IEEE80211_ADDR_LEN]; uint16_t reserved3; uint8_t dev_type; uint8_t air_propagation; uint16_t rx_chain; uint8_t ofdm_basic_rates; uint8_t cck_basic_rates; uint16_t assoc_id; uint32_t flags; uint32_t filter_flags; uint16_t chan; uint8_t ofdm_ht_single_stream_basic_rates; uint8_t ofdm_ht_dual_stream_basic_rates; } iwk_rxon_cmd_t; typedef struct iwk_compressed_ba_resp { uint32_t sta_addr_lo32; uint16_t sta_addr_hi16; uint16_t reserved; uint8_t sta_id; uint8_t tid; uint16_t ba_seq_ctl; uint32_t ba_bitmap0; uint32_t ba_bitmap1; uint16_t scd_flow; uint16_t scd_ssn; } iwk_compressed_ba_resp_t; #define PHY_CALIBRATE_DIFF_GAIN_CMD (7) #define HD_TABLE_SIZE (11) /* * Param table within SENSITIVITY_CMD */ #define HD_MIN_ENERGY_CCK_DET_INDEX (0) #define HD_MIN_ENERGY_OFDM_DET_INDEX (1) #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2) #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3) #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4) #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5) #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6) #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7) #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8) #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9) #define HD_OFDM_ENERGY_TH_IN_INDEX (10) typedef struct iwk_sensitivity_cmd { uint16_t control; uint16_t table[HD_TABLE_SIZE]; } iwk_sensitivity_cmd_t; typedef struct iwk_calibration_cmd { uint8_t opCode; uint8_t flags; uint16_t reserved; char diff_gain_a; char diff_gain_b; char diff_gain_c; uint8_t reserved1; } iwk_calibation_cmd_t; typedef struct iwk_missed_beacon_notif { uint32_t consequtive_missed_beacons; uint32_t total_missed_becons; uint32_t num_expected_beacons; uint32_t num_recvd_beacons; } iwk_missed_beacon_notif_t; typedef struct iwk_ct_kill_config { uint32_t reserved; uint32_t critical_temperature_M; uint32_t critical_temperature_R; } iwk_ct_kill_config_t; /* * structure for command IWK_CMD_ASSOCIATE */ typedef struct iwk_assoc { uint32_t flags; uint32_t filter; uint8_t ofdm_mask; uint8_t cck_mask; uint8_t ofdm_ht_single_stream_basic_rates; uint8_t ofdm_ht_dual_stream_basic_rates; uint16_t rx_chain_select_flags; uint16_t reserved; } iwk_assoc_t; /* * structure for command IWK_CMD_SET_WME */ typedef struct iwk_wme_setup { uint32_t flags; struct { uint16_t cwmin; uint16_t cwmax; uint8_t aifsn; uint8_t reserved; uint16_t txop; } ac[WME_NUM_AC]; } iwk_wme_setup_t; /* * structure for command IWK_CMD_TSF */ typedef struct iwk_cmd_tsf { uint32_t timestampl; uint32_t timestamph; uint16_t bintval; uint16_t atim; uint32_t binitval; uint16_t lintval; uint16_t reserved; } iwk_cmd_tsf_t; /* * structure for IWK_CMD_ADD_NODE */ typedef struct iwk_add_sta { uint8_t control; uint8_t reserved1[3]; uint8_t bssid[IEEE80211_ADDR_LEN]; uint16_t reserved2; uint8_t id; uint8_t sta_mask; uint16_t reserved3; uint16_t key_flags; uint8_t tkip; uint8_t reserved4; uint16_t ttak[5]; uint8_t keyp; uint8_t reserved5; uint8_t key[16]; uint32_t flags; uint32_t mask; uint16_t tid; union { struct { uint8_t rate; uint8_t flags; } s; uint16_t rate_n_flags; } tx_rate; uint8_t add_imm; uint8_t del_imm; uint16_t add_imm_start; uint32_t reserved7; } iwk_add_sta_t; /* * Tx flags */ enum { TX_CMD_FLG_RTS_MSK = (1 << 1), TX_CMD_FLG_CTS_MSK = (1 << 2), TX_CMD_FLG_ACK_MSK = (1 << 3), TX_CMD_FLG_STA_RATE_MSK = (1 << 4), TX_CMD_FLG_IMM_BA_RSP_MASK = (1 << 6), TX_CMD_FLG_FULL_TXOP_PROT_MSK = (1 << 7), TX_CMD_FLG_ANT_SEL_MSK = 0xf00, TX_CMD_FLG_ANT_A_MSK = (1 << 8), TX_CMD_FLG_ANT_B_MSK = (1 << 9), /* ucode ignores BT priority for this frame */ TX_CMD_FLG_BT_DIS_MSK = (1 << 12), /* ucode overrides sequence control */ TX_CMD_FLG_SEQ_CTL_MSK = (1 << 13), /* signal that this frame is non-last MPDU */ TX_CMD_FLG_MORE_FRAG_MSK = (1 << 14), /* calculate TSF in outgoing frame */ TX_CMD_FLG_TSF_MSK = (1 << 16), /* activate TX calibration. */ TX_CMD_FLG_CALIB_MSK = (1 << 17), /* * signals that 2 bytes pad was inserted * after the MAC header */ TX_CMD_FLG_MH_PAD_MSK = (1 << 20), /* HCCA-AP - disable duration overwriting. */ TX_CMD_FLG_DUR_MSK = (1 << 25), }; /* * TX command security control */ #define TX_CMD_SEC_CCM 0x2 #define TX_CMD_SEC_TKIP 0x3 /* * structure for command IWK_CMD_TX_DATA */ typedef struct iwk_tx_cmd { uint16_t len; uint16_t next_frame_len; uint32_t tx_flags; struct iwk_dram_scratch scratch; struct iwk_rate rate; uint8_t sta_id; uint8_t sec_ctl; uint8_t initial_rate_index; uint8_t reserved; uint8_t key[16]; uint16_t next_frame_flags; uint16_t reserved2; union { uint32_t life_time; uint32_t attempt; } stop_time; uint32_t dram_lsb_ptr; uint8_t dram_msb_ptr; uint8_t rts_retry_limit; uint8_t data_retry_limit; uint8_t tid_tspec; union { uint16_t pm_frame_timeout; uint16_t attempt_duration; } timeout; uint16_t driver_txop; } iwk_tx_cmd_t; /* * structure for command "TX beacon" */ typedef struct iwk_tx_beacon_cmd { iwk_tx_cmd_t config; uint16_t tim_idx; uint8_t tim_size; uint8_t reserved; uint8_t bcon_frame[2342]; } iwk_tx_beacon_cmd_t; /* * LEDs Command & Response * REPLY_LEDS_CMD = 0x48 (command, has simple generic response) * * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field), * this command turns it on or off, or sets up a periodic blinking cycle. */ typedef struct iwk_led_cmd { uint32_t interval; /* "interval" in uSec */ uint8_t id; /* 1: Activity, 2: Link, 3: Tech */ /* * # intervals off while blinking; * "0", with > 0 "on" value, turns LED on */ uint8_t off; /* * # intervals on while blinking; * "0", regardless of "off", turns LED off */ uint8_t on; uint8_t reserved; } iwk_led_cmd_t; /* * structure for IWK_CMD_SET_POWER_MODE */ typedef struct iwk_powertable_cmd { uint16_t flags; uint8_t keep_alive_seconds; uint8_t debug_flags; uint32_t rx_timeout; uint32_t tx_timeout; uint32_t sleep[5]; uint32_t keep_alive_beacons; } iwk_powertable_cmd_t; struct iwk_ssid_ie { uint8_t id; uint8_t len; uint8_t ssid[32]; }; /* * structure for command IWK_CMD_SCAN */ typedef struct iwk_scan_hdr { uint16_t len; uint8_t reserved1; uint8_t nchan; /* * dwell only this long on quiet chnl * (active scan) */ uint16_t quiet_time; uint16_t quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */ uint16_t good_crc_th; /* passive -> active promotion threshold */ uint16_t rx_chain; /* * max usec to be out of associated (service) * chnl */ uint32_t max_out_time; /* * pause scan this long when returning to svc * chnl. * 3945 -- 31:24 # beacons, 19:0 additional usec, * 4965 -- 31:22 # beacons, 21:0 additional usec. */ uint32_t suspend_time; uint32_t flags; uint32_t filter_flags; struct iwk_tx_cmd tx_cmd; struct iwk_ssid_ie direct_scan[4]; /* followed by probe request body */ /* followed by nchan x iwk_scan_chan */ } iwk_scan_hdr_t; typedef struct iwk_scan_chan { uint8_t type; uint8_t chan; struct iwk_tx_power tpc; uint16_t active_dwell; /* dwell time */ uint16_t passive_dwell; /* dwell time */ } iwk_scan_chan_t; /* * structure for IWK_CMD_BLUETOOTH */ typedef struct iwk_bt_cmd { uint8_t flags; uint8_t lead_time; uint8_t max_kill; uint8_t reserved; uint32_t kill_ack_mask; uint32_t kill_cts_mask; } iwk_bt_cmd_t; /* * firmware image header */ typedef struct iwk_firmware_hdr { uint32_t version; uint32_t textsz; uint32_t datasz; uint32_t init_textsz; uint32_t init_datasz; uint32_t bootsz; } iwk_firmware_hdr_t; /* * structure for IWK_START_SCAN notification */ typedef struct iwk_start_scan { uint32_t timestampl; uint32_t timestamph; uint32_t tbeacon; uint8_t chan; uint8_t band; uint16_t reserved; uint32_t status; } iwk_start_scan_t; #define IWK_READ(sc, reg) \ ddi_get32((sc)->sc_handle, (uint32_t *)((sc)->sc_base + (reg))) #define IWK_WRITE(sc, reg, val) \ ddi_put32((sc)->sc_handle, (uint32_t *)((sc)->sc_base + (reg)), (val)) #ifdef __cplusplus } #endif #endif /* _IWK_HW_H_ */