/* * Solaris driver for ethernet cards based on the ADMtek Centaur * * Copyright (c) 2007 by Garrett D'Amore . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "afe.h" #include "afeimpl.h" /* * Driver globals. */ /* patchable debug flag ... must not be static! */ #ifdef DEBUG unsigned afe_debug = DWARN; #endif /* table of supported devices */ static afe_card_t afe_cards[] = { /* * ADMtek Centaur and Comet */ { 0x1317, 0x0981, "ADMtek AL981", MODEL_COMET }, { 0x1317, 0x0985, "ADMtek AN983", MODEL_CENTAUR }, { 0x1317, 0x1985, "ADMtek AN985", MODEL_CENTAUR }, { 0x1317, 0x9511, "ADMtek ADM9511", MODEL_CENTAUR }, { 0x1317, 0x9513, "ADMtek ADM9513", MODEL_CENTAUR }, /* * Accton just relabels other companies' controllers */ { 0x1113, 0x1216, "Accton EN5251", MODEL_CENTAUR }, /* * Models listed here. */ { 0x10b7, 0x9300, "3Com 3CSOHO100B-TX", MODEL_CENTAUR }, { 0x1113, 0xec02, "SMC SMC1244TX", MODEL_CENTAUR }, { 0x10b8, 0x1255, "SMC SMC1255TX", MODEL_CENTAUR }, { 0x111a, 0x1020, "Siemens SpeedStream PCI 10/100", MODEL_CENTAUR }, { 0x1113, 0x1207, "Accton EN1207F", MODEL_CENTAUR }, { 0x1113, 0x2242, "Accton EN2242", MODEL_CENTAUR }, { 0x1113, 0x2220, "Accton EN2220", MODEL_CENTAUR }, { 0x1113, 0x9216, "3M VOL-N100VF+TX", MODEL_CENTAUR }, { 0x1317, 0x0574, "Linksys LNE100TX", MODEL_CENTAUR }, { 0x1317, 0x0570, "Linksys NC100", MODEL_CENTAUR }, { 0x1385, 0x511a, "Netgear FA511", MODEL_CENTAUR }, { 0x13d1, 0xab02, "AboCom FE2500", MODEL_CENTAUR }, { 0x13d1, 0xab03, "AboCom PCM200", MODEL_CENTAUR }, { 0x13d1, 0xab08, "AboCom FE2500MX", MODEL_CENTAUR }, { 0x1414, 0x0001, "Microsoft MN-120", MODEL_CENTAUR }, { 0x16ec, 0x00ed, "U.S. Robotics USR997900", MODEL_CENTAUR }, { 0x1734, 0x100c, "Fujitsu-Siemens D1961", MODEL_CENTAUR }, { 0x1737, 0xab08, "Linksys PCMPC200", MODEL_CENTAUR }, { 0x1737, 0xab09, "Linksys PCM200", MODEL_CENTAUR }, { 0x17b3, 0xab08, "Hawking PN672TX", MODEL_CENTAUR }, }; #define ETHERVLANMTU (ETHERMAX + 4) /* * Function prototypes */ static int afe_attach(dev_info_t *, ddi_attach_cmd_t); static int afe_detach(dev_info_t *, ddi_detach_cmd_t); static int afe_resume(dev_info_t *); static int afe_m_unicst(void *, const uint8_t *); static int afe_m_multicst(void *, boolean_t, const uint8_t *); static int afe_m_promisc(void *, boolean_t); static mblk_t *afe_m_tx(void *, mblk_t *); static int afe_m_stat(void *, uint_t, uint64_t *); static int afe_m_start(void *); static void afe_m_stop(void *); static int afe_m_getprop(void *, const char *, mac_prop_id_t, uint_t, uint_t, void *); static int afe_m_setprop(void *, const char *, mac_prop_id_t, uint_t, const void *); static unsigned afe_intr(caddr_t); static void afe_startmac(afe_t *); static void afe_stopmac(afe_t *); static void afe_resetrings(afe_t *); static boolean_t afe_initialize(afe_t *); static void afe_startall(afe_t *); static void afe_stopall(afe_t *); static void afe_resetall(afe_t *); static afe_txbuf_t *afe_alloctxbuf(afe_t *); static void afe_destroytxbuf(afe_txbuf_t *); static afe_rxbuf_t *afe_allocrxbuf(afe_t *); static void afe_destroyrxbuf(afe_rxbuf_t *); static boolean_t afe_send(afe_t *, mblk_t *); static int afe_allocrxring(afe_t *); static void afe_freerxring(afe_t *); static int afe_alloctxring(afe_t *); static void afe_freetxring(afe_t *); static void afe_error(dev_info_t *, char *, ...); static void afe_setrxfilt(afe_t *); static uint8_t afe_sromwidth(afe_t *); static uint16_t afe_readsromword(afe_t *, unsigned); static void afe_readsrom(afe_t *, unsigned, unsigned, char *); static void afe_getfactaddr(afe_t *, uchar_t *); static uint8_t afe_miireadbit(afe_t *); static void afe_miiwritebit(afe_t *, uint8_t); static void afe_miitristate(afe_t *); static uint16_t afe_miiread(afe_t *, int, int); static void afe_miiwrite(afe_t *, int, int, uint16_t); static uint16_t afe_miireadgeneral(afe_t *, int, int); static void afe_miiwritegeneral(afe_t *, int, int, uint16_t); static uint16_t afe_miireadcomet(afe_t *, int, int); static void afe_miiwritecomet(afe_t *, int, int, uint16_t); static int afe_getmiibit(afe_t *, uint16_t, uint16_t); static void afe_startphy(afe_t *); static void afe_stopphy(afe_t *); static void afe_reportlink(afe_t *); static void afe_checklink(afe_t *); static void afe_checklinkcomet(afe_t *); static void afe_checklinkcentaur(afe_t *); static void afe_checklinkmii(afe_t *); static void afe_disableinterrupts(afe_t *); static void afe_enableinterrupts(afe_t *); static void afe_reclaim(afe_t *); static mblk_t *afe_receive(afe_t *); #ifdef DEBUG static void afe_dprintf(afe_t *, const char *, int, char *, ...); #endif #define KIOIP KSTAT_INTR_PTR(afep->afe_intrstat) static mac_callbacks_t afe_m_callbacks = { MC_SETPROP | MC_GETPROP, afe_m_stat, afe_m_start, afe_m_stop, afe_m_promisc, afe_m_multicst, afe_m_unicst, afe_m_tx, NULL, /* mc_resources */ NULL, /* mc_ioctl */ NULL, /* mc_getcapab */ NULL, /* mc_open */ NULL, /* mc_close */ afe_m_setprop, afe_m_getprop, }; /* * Stream information */ DDI_DEFINE_STREAM_OPS(afe_devops, nulldev, nulldev, afe_attach, afe_detach, nodev, NULL, D_MP, NULL); /* * Module linkage information. */ static struct modldrv afe_modldrv = { &mod_driverops, /* drv_modops */ "ADMtek Fast Ethernet", /* drv_linkinfo */ &afe_devops /* drv_dev_ops */ }; static struct modlinkage afe_modlinkage = { MODREV_1, /* ml_rev */ { &afe_modldrv, NULL } /* ml_linkage */ }; /* * Device attributes. */ static ddi_device_acc_attr_t afe_devattr = { DDI_DEVICE_ATTR_V0, DDI_STRUCTURE_LE_ACC, DDI_STRICTORDER_ACC }; static ddi_device_acc_attr_t afe_bufattr = { DDI_DEVICE_ATTR_V0, DDI_NEVERSWAP_ACC, DDI_STRICTORDER_ACC }; static ddi_dma_attr_t afe_dma_attr = { DMA_ATTR_V0, /* dma_attr_version */ 0, /* dma_attr_addr_lo */ 0xFFFFFFFFU, /* dma_attr_addr_hi */ 0x7FFFFFFFU, /* dma_attr_count_max */ 4, /* dma_attr_align */ 0x3F, /* dma_attr_burstsizes */ 1, /* dma_attr_minxfer */ 0xFFFFFFFFU, /* dma_attr_maxxfer */ 0xFFFFFFFFU, /* dma_attr_seg */ 1, /* dma_attr_sgllen */ 1, /* dma_attr_granular */ 0 /* dma_attr_flags */ }; /* * Tx buffers can be arbitrarily aligned. Additionally, they can * cross a page boundary, so we use the two buffer addresses of the * chip to provide a two-entry scatter-gather list. */ static ddi_dma_attr_t afe_dma_txattr = { DMA_ATTR_V0, /* dma_attr_version */ 0, /* dma_attr_addr_lo */ 0xFFFFFFFFU, /* dma_attr_addr_hi */ 0x7FFFFFFFU, /* dma_attr_count_max */ 1, /* dma_attr_align */ 0x3F, /* dma_attr_burstsizes */ 1, /* dma_attr_minxfer */ 0xFFFFFFFFU, /* dma_attr_maxxfer */ 0xFFFFFFFFU, /* dma_attr_seg */ 2, /* dma_attr_sgllen */ 1, /* dma_attr_granular */ 0 /* dma_attr_flags */ }; /* * Ethernet addresses. */ static uchar_t afe_broadcast[ETHERADDRL] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; /* * DDI entry points. */ int _init(void) { int rv; mac_init_ops(&afe_devops, "afe"); if ((rv = mod_install(&afe_modlinkage)) != DDI_SUCCESS) { mac_fini_ops(&afe_devops); } return (rv); } int _fini(void) { int rv; if ((rv = mod_remove(&afe_modlinkage)) == DDI_SUCCESS) { mac_fini_ops(&afe_devops); } return (rv); } int _info(struct modinfo *modinfop) { return (mod_info(&afe_modlinkage, modinfop)); } int afe_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { afe_t *afep; mac_register_t *macp; int inst = ddi_get_instance(dip); ddi_acc_handle_t pci; uint16_t venid; uint16_t devid; uint16_t svid; uint16_t ssid; uint16_t cachesize; afe_card_t *cardp; int i; switch (cmd) { case DDI_RESUME: return (afe_resume(dip)); case DDI_ATTACH: break; default: return (DDI_FAILURE); } /* this card is a bus master, reject any slave-only slot */ if (ddi_slaveonly(dip) == DDI_SUCCESS) { afe_error(dip, "slot does not support PCI bus-master"); return (DDI_FAILURE); } /* PCI devices shouldn't generate hilevel interrupts */ if (ddi_intr_hilevel(dip, 0) != 0) { afe_error(dip, "hilevel interrupts not supported"); return (DDI_FAILURE); } if (pci_config_setup(dip, &pci) != DDI_SUCCESS) { afe_error(dip, "unable to setup PCI config handle"); return (DDI_FAILURE); } venid = pci_config_get16(pci, PCI_VID); devid = pci_config_get16(pci, PCI_DID); svid = pci_config_get16(pci, PCI_SVID); ssid = pci_config_get16(pci, PCI_SSID); /* * Note: ADMtek boards seem to misprogram themselves with bogus * timings, which do not seem to work properly on SPARC. We * reprogram them zero (but only if they appear to be broken), * which seems to at least work. Its unclear that this is a * legal or wise practice to me, but it certainly works better * than the original values. (I would love to hear * suggestions for better values, or a better strategy.) */ if ((pci_config_get8(pci, PCI_MINGNT) == 0xff) && (pci_config_get8(pci, PCI_MAXLAT) == 0xff)) { pci_config_put8(pci, PCI_MINGNT, 0); pci_config_put8(pci, PCI_MAXLAT, 0); } /* * the last entry in the card table matches every possible * card, so the for-loop always terminates properly. */ cardp = NULL; for (i = 0; i < (sizeof (afe_cards) / sizeof (afe_card_t)); i++) { if ((venid == afe_cards[i].card_venid) && (devid == afe_cards[i].card_devid)) { cardp = &afe_cards[i]; } if ((svid == afe_cards[i].card_venid) && (ssid == afe_cards[i].card_devid)) { cardp = &afe_cards[i]; break; } } if (cardp == NULL) { pci_config_teardown(&pci); afe_error(dip, "Unable to identify PCI card"); return (DDI_FAILURE); } if (ddi_prop_update_string(DDI_DEV_T_NONE, dip, "model", cardp->card_cardname) != DDI_PROP_SUCCESS) { pci_config_teardown(&pci); afe_error(dip, "Unable to create model property"); return (DDI_FAILURE); } /* * Grab the PCI cachesize -- we use this to program the * cache-optimization bus access bits. */ cachesize = pci_config_get8(pci, PCI_CLS); /* this cannot fail */ afep = kmem_zalloc(sizeof (afe_t), KM_SLEEP); ddi_set_driver_private(dip, afep); /* get the interrupt block cookie */ if (ddi_get_iblock_cookie(dip, 0, &afep->afe_icookie) != DDI_SUCCESS) { afe_error(dip, "ddi_get_iblock_cookie failed"); pci_config_teardown(&pci); kmem_free(afep, sizeof (afe_t)); return (DDI_FAILURE); } afep->afe_dip = dip; afep->afe_cardp = cardp; afep->afe_phyaddr = -1; afep->afe_cachesize = cachesize; /* default properties */ afep->afe_adv_aneg = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "adv_autoneg_cap", 1); afep->afe_adv_100T4 = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "adv_100T4_cap", 1); afep->afe_adv_100fdx = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "adv_100fdx_cap", 1); afep->afe_adv_100hdx = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "adv_100hdx_cap", 1); afep->afe_adv_10fdx = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "adv_10fdx_cap", 1); afep->afe_adv_10hdx = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "adv_10hdx_cap", 1); afep->afe_forcefiber = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "fiber", 0); DBG(DPCI, "PCI vendor id = %x", venid); DBG(DPCI, "PCI device id = %x", devid); DBG(DPCI, "PCI cachesize = %d", cachesize); DBG(DPCI, "PCI COMM = %x", pci_config_get8(pci, PCI_CMD)); DBG(DPCI, "PCI STAT = %x", pci_config_get8(pci, PCI_STAT)); mutex_init(&afep->afe_xmtlock, NULL, MUTEX_DRIVER, afep->afe_icookie); mutex_init(&afep->afe_intrlock, NULL, MUTEX_DRIVER, afep->afe_icookie); /* * Enable bus master, IO space, and memory space accesses. */ pci_config_put16(pci, PCI_CMD, pci_config_get16(pci, PCI_CMD) | PCI_CMD_BME | PCI_CMD_MAE); /* we're done with this now, drop it */ pci_config_teardown(&pci); /* * Initialize interrupt kstat. This should not normally fail, since * we don't use a persistent stat. We do it this way to avoid having * to test for it at run time on the hot path. */ afep->afe_intrstat = kstat_create("afe", inst, "intr", "controller", KSTAT_TYPE_INTR, 1, 0); if (afep->afe_intrstat == NULL) { afe_error(dip, "kstat_create failed"); goto failed; } kstat_install(afep->afe_intrstat); /* * Map in the device registers. */ if (ddi_regs_map_setup(dip, 1, (caddr_t *)&afep->afe_regs, 0, 0, &afe_devattr, &afep->afe_regshandle)) { afe_error(dip, "ddi_regs_map_setup failed"); goto failed; } /* * Allocate DMA resources (descriptor rings and buffers). */ if ((afe_allocrxring(afep) != DDI_SUCCESS) || (afe_alloctxring(afep) != DDI_SUCCESS)) { afe_error(dip, "unable to allocate DMA resources"); goto failed; } /* Initialize the chip. */ mutex_enter(&afep->afe_intrlock); mutex_enter(&afep->afe_xmtlock); if (!afe_initialize(afep)) { mutex_exit(&afep->afe_xmtlock); mutex_exit(&afep->afe_intrlock); goto failed; } mutex_exit(&afep->afe_xmtlock); mutex_exit(&afep->afe_intrlock); /* Determine the number of address bits to our EEPROM. */ afep->afe_sromwidth = afe_sromwidth(afep); /* * Get the factory ethernet address. This becomes the current * ethernet address (it can be overridden later via ifconfig). */ afe_getfactaddr(afep, afep->afe_curraddr); afep->afe_promisc = B_FALSE; /* make sure we add configure the initial filter */ (void) afe_m_unicst(afep, afep->afe_curraddr); (void) afe_m_multicst(afep, B_TRUE, afe_broadcast); /* * Establish interrupt handler. */ if (ddi_add_intr(dip, 0, NULL, NULL, afe_intr, (caddr_t)afep) != DDI_SUCCESS) { afe_error(dip, "unable to add interrupt"); goto failed; } /* TODO: do the power management stuff */ if ((macp = mac_alloc(MAC_VERSION)) == NULL) { afe_error(dip, "mac_alloc failed"); goto failed; } macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; macp->m_driver = afep; macp->m_dip = dip; macp->m_src_addr = afep->afe_curraddr; macp->m_callbacks = &afe_m_callbacks; macp->m_min_sdu = 0; macp->m_max_sdu = ETHERMTU; macp->m_margin = VLAN_TAGSZ; if (mac_register(macp, &afep->afe_mh) == DDI_SUCCESS) { mac_free(macp); return (DDI_SUCCESS); } /* failed to register with MAC */ mac_free(macp); failed: if (afep->afe_icookie != NULL) { ddi_remove_intr(dip, 0, afep->afe_icookie); } if (afep->afe_intrstat) { kstat_delete(afep->afe_intrstat); } mutex_destroy(&afep->afe_intrlock); mutex_destroy(&afep->afe_xmtlock); afe_freerxring(afep); afe_freetxring(afep); if (afep->afe_regshandle != NULL) { ddi_regs_map_free(&afep->afe_regshandle); } kmem_free(afep, sizeof (afe_t)); return (DDI_FAILURE); } int afe_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { afe_t *afep; afep = ddi_get_driver_private(dip); if (afep == NULL) { afe_error(dip, "no soft state in detach!"); return (DDI_FAILURE); } switch (cmd) { case DDI_DETACH: if (mac_unregister(afep->afe_mh) != 0) { return (DDI_FAILURE); } /* make sure hardware is quiesced */ mutex_enter(&afep->afe_intrlock); mutex_enter(&afep->afe_xmtlock); afep->afe_flags &= ~AFE_RUNNING; afe_stopall(afep); mutex_exit(&afep->afe_xmtlock); mutex_exit(&afep->afe_intrlock); /* clean up and shut down device */ ddi_remove_intr(dip, 0, afep->afe_icookie); /* clean up kstats */ kstat_delete(afep->afe_intrstat); ddi_prop_remove_all(dip); /* free up any left over buffers or DMA resources */ afe_freerxring(afep); afe_freetxring(afep); ddi_regs_map_free(&afep->afe_regshandle); mutex_destroy(&afep->afe_intrlock); mutex_destroy(&afep->afe_xmtlock); kmem_free(afep, sizeof (afe_t)); return (DDI_SUCCESS); case DDI_SUSPEND: /* quiesce the hardware */ mutex_enter(&afep->afe_intrlock); mutex_enter(&afep->afe_xmtlock); afep->afe_flags |= AFE_SUSPENDED; afe_stopall(afep); mutex_exit(&afep->afe_xmtlock); mutex_exit(&afep->afe_intrlock); return (DDI_SUCCESS); default: return (DDI_FAILURE); } } int afe_resume(dev_info_t *dip) { afe_t *afep; if ((afep = ddi_get_driver_private(dip)) == NULL) { return (DDI_FAILURE); } mutex_enter(&afep->afe_intrlock); mutex_enter(&afep->afe_xmtlock); afep->afe_flags &= ~AFE_SUSPENDED; /* re-initialize chip */ if (!afe_initialize(afep)) { afe_error(afep->afe_dip, "unable to resume chip!"); afep->afe_flags |= AFE_SUSPENDED; mutex_exit(&afep->afe_intrlock); mutex_exit(&afep->afe_xmtlock); return (DDI_SUCCESS); } /* start the chip */ if (afep->afe_flags & AFE_RUNNING) { afe_startall(afep); } /* drop locks */ mutex_exit(&afep->afe_xmtlock); mutex_exit(&afep->afe_intrlock); return (DDI_SUCCESS); } void afe_setrxfilt(afe_t *afep) { unsigned rxen, pa0, pa1; if (afep->afe_flags & AFE_SUSPENDED) { /* don't touch a suspended interface */ return; } rxen = GETCSR(afep, CSR_NAR) & NAR_RX_ENABLE; /* stop receiver */ if (rxen) { afe_stopmac(afep); } /* program promiscuous mode */ if (afep->afe_promisc) SETBIT(afep, CSR_NAR, NAR_RX_PROMISC); else CLRBIT(afep, CSR_NAR, NAR_RX_PROMISC); /* program mac address */ pa0 = (afep->afe_curraddr[3] << 24) | (afep->afe_curraddr[2] << 16) | (afep->afe_curraddr[1] << 8) | afep->afe_curraddr[0]; pa1 = (afep->afe_curraddr[5] << 8) | afep->afe_curraddr[4]; DBG(DMACID, "programming PAR0 with %x", pa0); DBG(DMACID, "programming PAR1 with %x", pa1); PUTCSR(afep, CSR_PAR0, pa0); PUTCSR(afep, CSR_PAR1, pa1); if (rxen) { SETBIT(afep, CSR_NAR, rxen); } DBG(DMACID, "programming MAR0 = %x", afep->afe_mctab[0]); DBG(DMACID, "programming MAR1 = %x", afep->afe_mctab[1]); /* program multicast filter */ if (AFE_MODEL(afep) == MODEL_COMET) { if (afep->afe_mctab[0] || afep->afe_mctab[1]) { SETBIT(afep, CSR_NAR, NAR_RX_MULTI); } else { CLRBIT(afep, CSR_NAR, NAR_RX_MULTI); } } else { CLRBIT(afep, CSR_NAR, NAR_RX_MULTI); PUTCSR(afep, CSR_MAR0, afep->afe_mctab[0]); PUTCSR(afep, CSR_MAR1, afep->afe_mctab[1]); } /* restart receiver */ if (rxen) { afe_startmac(afep); } } int afe_m_multicst(void *arg, boolean_t add, const uint8_t *macaddr) { afe_t *afep = arg; int index; uint32_t crc; uint32_t bit; uint32_t newval, oldval; CRC32(crc, macaddr, ETHERADDRL, -1U, crc32_table); crc %= AFE_MCHASH; /* bit within a 32-bit word */ index = crc / 32; bit = (1 << (crc % 32)); mutex_enter(&afep->afe_intrlock); mutex_enter(&afep->afe_xmtlock); newval = oldval = afep->afe_mctab[index]; if (add) { afep->afe_mccount[crc]++; if (afep->afe_mccount[crc] == 1) newval |= bit; } else { afep->afe_mccount[crc]--; if (afep->afe_mccount[crc] == 0) newval &= ~bit; } if (newval != oldval) { afep->afe_mctab[index] = newval; afe_setrxfilt(afep); } mutex_exit(&afep->afe_xmtlock); mutex_exit(&afep->afe_intrlock); return (0); } int afe_m_promisc(void *arg, boolean_t on) { afe_t *afep = arg; /* exclusive access to the card while we reprogram it */ mutex_enter(&afep->afe_intrlock); mutex_enter(&afep->afe_xmtlock); /* save current promiscuous mode state for replay in resume */ afep->afe_promisc = on; afe_setrxfilt(afep); mutex_exit(&afep->afe_xmtlock); mutex_exit(&afep->afe_intrlock); return (0); } int afe_m_unicst(void *arg, const uint8_t *macaddr) { afe_t *afep = arg; /* exclusive access to the card while we reprogram it */ mutex_enter(&afep->afe_intrlock); mutex_enter(&afep->afe_xmtlock); bcopy(macaddr, afep->afe_curraddr, ETHERADDRL); afe_setrxfilt(afep); mutex_exit(&afep->afe_xmtlock); mutex_exit(&afep->afe_intrlock); return (0); } mblk_t * afe_m_tx(void *arg, mblk_t *mp) { afe_t *afep = arg; mblk_t *nmp; mutex_enter(&afep->afe_xmtlock); if (afep->afe_flags & AFE_SUSPENDED) { while ((nmp = mp) != NULL) { afep->afe_carrier_errors++; mp = mp->b_next; freemsg(nmp); } mutex_exit(&afep->afe_xmtlock); return (NULL); } while (mp != NULL) { nmp = mp->b_next; mp->b_next = NULL; if (!afe_send(afep, mp)) { mp->b_next = nmp; break; } mp = nmp; } mutex_exit(&afep->afe_xmtlock); return (mp); } /* * Hardware management. */ static boolean_t afe_initialize(afe_t *afep) { int i; unsigned val; uint32_t par, nar; ASSERT(mutex_owned(&afep->afe_intrlock)); ASSERT(mutex_owned(&afep->afe_xmtlock)); DBG(DCHATTY, "resetting!"); SETBIT(afep, CSR_PAR, PAR_RESET); for (i = 1; i < 10; i++) { drv_usecwait(5); val = GETCSR(afep, CSR_PAR); if (!(val & PAR_RESET)) { break; } } if (i == 10) { afe_error(afep->afe_dip, "timed out waiting for reset!"); return (B_FALSE); } /* * Updated Centaur data sheets show that the Comet and Centaur are * alike here (contrary to earlier versions of the data sheet). */ /* XXX:? chip problems */ /* par = PAR_MRLE | PAR_MRME | PAR_MWIE; */ par = 0; switch (afep->afe_cachesize) { case 8: par |= PAR_CALIGN_8 | PAR_BURST_8; break; case 16: par |= PAR_CALIGN_16 | PAR_BURST_16; break; case 32: par |= PAR_CALIGN_32 | PAR_BURST_32; break; default: par |= PAR_BURST_32; par &= ~(PAR_MWIE | PAR_MRLE | PAR_MRME); break; } PUTCSR(afep, CSR_PAR, par); /* enable transmit underrun auto-recovery */ SETBIT(afep, CSR_CR, CR_TXURAUTOR); afe_resetrings(afep); /* clear the lost packet counter (cleared on read) */ (void) GETCSR(afep, CSR_LPC); nar = GETCSR(afep, CSR_NAR); nar &= ~NAR_TR; /* clear tx threshold */ nar |= NAR_SF; /* store-and-forward */ nar |= NAR_HBD; /* disable SQE test */ PUTCSR(afep, CSR_NAR, nar); afe_setrxfilt(afep); return (B_TRUE); } /* * Serial EEPROM access - inspired by the FreeBSD implementation. */ uint8_t afe_sromwidth(afe_t *afep) { int i; uint32_t eeread; uint8_t addrlen = 8; eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP; PUTCSR(afep, CSR_SPR, eeread & ~SPR_SROM_CHIP); drv_usecwait(1); PUTCSR(afep, CSR_SPR, eeread); /* command bits first */ for (i = 4; i != 0; i >>= 1) { unsigned val = (SROM_READCMD & i) ? SPR_SROM_DIN : 0; PUTCSR(afep, CSR_SPR, eeread | val); drv_usecwait(1); PUTCSR(afep, CSR_SPR, eeread | val | SPR_SROM_CLOCK); drv_usecwait(1); } PUTCSR(afep, CSR_SPR, eeread); for (addrlen = 1; addrlen <= 12; addrlen++) { PUTCSR(afep, CSR_SPR, eeread | SPR_SROM_CLOCK); drv_usecwait(1); if (!(GETCSR(afep, CSR_SPR) & SPR_SROM_DOUT)) { PUTCSR(afep, CSR_SPR, eeread); drv_usecwait(1); break; } PUTCSR(afep, CSR_SPR, eeread); drv_usecwait(1); } /* turn off accesses to the EEPROM */ PUTCSR(afep, CSR_SPR, eeread &~ SPR_SROM_CHIP); DBG(DSROM, "detected srom width = %d bits", addrlen); return ((addrlen < 4 || addrlen > 12) ? 6 : addrlen); } /* * The words in EEPROM are stored in little endian order. We * shift bits out in big endian order, though. This requires * a byte swap on some platforms. */ uint16_t afe_readsromword(afe_t *afep, unsigned romaddr) { int i; uint16_t word = 0; uint16_t retval; int eeread; uint8_t addrlen; int readcmd; uchar_t *ptr; eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP; addrlen = afep->afe_sromwidth; readcmd = (SROM_READCMD << addrlen) | romaddr; if (romaddr >= (1 << addrlen)) { /* too big to fit! */ return (0); } PUTCSR(afep, CSR_SPR, eeread & ~SPR_SROM_CHIP); PUTCSR(afep, CSR_SPR, eeread); /* command and address bits */ for (i = 4 + addrlen; i >= 0; i--) { short val = (readcmd & (1 << i)) ? SPR_SROM_DIN : 0; PUTCSR(afep, CSR_SPR, eeread | val); drv_usecwait(1); PUTCSR(afep, CSR_SPR, eeread | val | SPR_SROM_CLOCK); drv_usecwait(1); } PUTCSR(afep, CSR_SPR, eeread); for (i = 0; i < 16; i++) { PUTCSR(afep, CSR_SPR, eeread | SPR_SROM_CLOCK); drv_usecwait(1); word <<= 1; if (GETCSR(afep, CSR_SPR) & SPR_SROM_DOUT) { word |= 1; } PUTCSR(afep, CSR_SPR, eeread); drv_usecwait(1); } /* turn off accesses to the EEPROM */ PUTCSR(afep, CSR_SPR, eeread &~ SPR_SROM_CHIP); /* * Fix up the endianness thing. Note that the values * are stored in little endian format on the SROM. */ ptr = (uchar_t *)&word; retval = (ptr[1] << 8) | ptr[0]; return (retval); } void afe_readsrom(afe_t *afep, unsigned romaddr, unsigned len, char *dest) { int i; uint16_t word; uint16_t *ptr = (uint16_t *)((void *)dest); for (i = 0; i < len; i++) { word = afe_readsromword(afep, romaddr + i); *ptr = word; ptr++; } } void afe_getfactaddr(afe_t *afep, uchar_t *eaddr) { afe_readsrom(afep, SROM_ENADDR, ETHERADDRL / 2, (char *)eaddr); DBG(DMACID, "factory ethernet address = %02x:%02x:%02x:%02x:%02x:%02x", eaddr[0], eaddr[1], eaddr[2], eaddr[3], eaddr[4], eaddr[5]); } /* * MII management. */ void afe_startphy(afe_t *afep) { unsigned phyaddr; unsigned bmcr; unsigned bmsr; unsigned anar; unsigned phyidr1; unsigned phyidr2; unsigned nosqe = 0; int retries; int fiber; int cnt; /* ADMtek devices just use the PHY at address 1 */ afep->afe_phyaddr = phyaddr = 1; phyidr1 = afe_miiread(afep, phyaddr, MII_PHYIDH); phyidr2 = afe_miiread(afep, phyaddr, MII_PHYIDL); if ((phyidr1 == 0x0022) && ((phyidr2 & 0xfff0) == 0x5410)) { nosqe = 1; /* only 983B has fiber support */ afep->afe_flags |= AFE_HASFIBER; } afep->afe_phyid = (phyidr1 << 16) | phyidr2; DBG(DPHY, "phy at %d: %x,%x", phyaddr, phyidr1, phyidr2); DBG(DPHY, "bmsr = %x", afe_miiread(afep, afep->afe_phyaddr, MII_STATUS)); DBG(DPHY, "anar = %x", afe_miiread(afep, afep->afe_phyaddr, MII_AN_ADVERT)); DBG(DPHY, "anlpar = %x", afe_miiread(afep, afep->afe_phyaddr, MII_AN_LPABLE)); DBG(DPHY, "aner = %x", afe_miiread(afep, afep->afe_phyaddr, MII_AN_EXPANSION)); DBG(DPHY, "resetting phy"); /* we reset the phy block */ afe_miiwrite(afep, phyaddr, MII_CONTROL, MII_CONTROL_RESET); /* * wait for it to complete -- 500usec is still to short to * bother getting the system clock involved. */ drv_usecwait(500); for (retries = 0; retries < 10; retries++) { if (afe_miiread(afep, phyaddr, MII_CONTROL) & MII_CONTROL_RESET) { drv_usecwait(500); continue; } break; } if (retries == 100) { afe_error(afep->afe_dip, "timeout waiting on phy to reset"); return; } DBG(DPHY, "phy reset complete"); bmsr = afe_miiread(afep, phyaddr, MII_STATUS); anar = afe_miiread(afep, phyaddr, MII_AN_ADVERT); anar &= ~(MII_ABILITY_100BASE_T4 | MII_ABILITY_100BASE_TX_FD | MII_ABILITY_100BASE_TX | MII_ABILITY_10BASE_T_FD | MII_ABILITY_10BASE_T); fiber = 0; /* if fiber is being forced, and device supports fiber... */ if (afep->afe_flags & AFE_HASFIBER) { uint16_t mcr; DBG(DPHY, "device supports 100BaseFX"); mcr = afe_miiread(afep, phyaddr, PHY_MCR); switch (afep->afe_forcefiber) { case 0: /* UTP Port */ DBG(DPHY, "forcing twpair"); mcr &= ~MCR_FIBER; fiber = 0; break; case 1: /* Fiber Port */ DBG(DPHY, "forcing 100BaseFX"); mcr |= MCR_FIBER; bmcr = (MII_CONTROL_100MB | MII_CONTROL_FDUPLEX); fiber = 1; break; default: DBG(DPHY, "checking for 100BaseFX link"); /* fiber is 100 Mb FDX */ afe_miiwrite(afep, phyaddr, MII_CONTROL, MII_CONTROL_100MB | MII_CONTROL_FDUPLEX); drv_usecwait(50); mcr = afe_miiread(afep, phyaddr, PHY_MCR); mcr |= MCR_FIBER; afe_miiwrite(afep, phyaddr, PHY_MCR, mcr); drv_usecwait(500); /* if fiber is active, use it */ if ((afe_miiread(afep, phyaddr, MII_STATUS) & MII_STATUS_LINKUP)) { bmcr = MII_CONTROL_100MB | MII_CONTROL_FDUPLEX; fiber = 1; } else { mcr &= ~MCR_FIBER; fiber = 0; } break; } afe_miiwrite(afep, phyaddr, PHY_MCR, mcr); drv_usecwait(500); } if (fiber) { /* fiber only supports 100FDX(?) */ bmsr &= ~(MII_STATUS_100_BASE_T4 | MII_STATUS_100_BASEX | MII_STATUS_10_FD | MII_STATUS_10); bmsr |= MII_STATUS_100_BASEX_FD; } /* assume full support for everything to start */ afep->afe_cap_aneg = afep->afe_cap_100T4 = afep->afe_cap_100fdx = afep->afe_cap_100hdx = afep->afe_cap_10fdx = afep->afe_cap_10hdx = 1; /* disable modes not supported in hardware */ if (!(bmsr & MII_STATUS_100_BASEX_FD)) { afep->afe_adv_100fdx = 0; afep->afe_cap_100fdx = 0; } if (!(bmsr & MII_STATUS_100_BASE_T4)) { afep->afe_adv_100T4 = 0; afep->afe_cap_100T4 = 0; } if (!(bmsr & MII_STATUS_100_BASEX)) { afep->afe_adv_100hdx = 0; afep->afe_cap_100hdx = 0; } if (!(bmsr & MII_STATUS_10_FD)) { afep->afe_adv_10fdx = 0; afep->afe_cap_10fdx = 0; } if (!(bmsr & MII_STATUS_10)) { afep->afe_adv_10hdx = 0; afep->afe_cap_10hdx = 0; } if (!(bmsr & MII_STATUS_CANAUTONEG)) { afep->afe_adv_aneg = 0; afep->afe_cap_aneg = 0; } cnt = 0; if (afep->afe_adv_100fdx) { anar |= MII_ABILITY_100BASE_TX_FD; cnt++; } if (afep->afe_adv_100T4) { anar |= MII_ABILITY_100BASE_T4; cnt++; } if (afep->afe_adv_100hdx) { anar |= MII_ABILITY_100BASE_TX; cnt++; } if (afep->afe_adv_10fdx) { anar |= MII_ABILITY_10BASE_T_FD; cnt++; } if (afep->afe_adv_10hdx) { anar |= MII_ABILITY_10BASE_T; cnt++; } /* * Make certain at least one valid link mode is selected. */ if (!cnt) { afe_error(afep->afe_dip, "No valid link mode selected."); afe_error(afep->afe_dip, "Powering down PHY."); afe_stopphy(afep); afep->afe_linkup = LINK_STATE_DOWN; if (afep->afe_flags & AFE_RUNNING) afe_reportlink(afep); return; } if (fiber) { bmcr = MII_CONTROL_100MB | MII_CONTROL_FDUPLEX; } else if ((afep->afe_adv_aneg) && (bmsr & MII_STATUS_CANAUTONEG)) { DBG(DPHY, "using autoneg mode"); bmcr = (MII_CONTROL_ANE | MII_CONTROL_RSAN); } else { DBG(DPHY, "using forced mode"); if (afep->afe_adv_100fdx) { bmcr = (MII_CONTROL_100MB | MII_CONTROL_FDUPLEX); } else if (afep->afe_adv_100hdx) { bmcr = MII_CONTROL_100MB; } else if (afep->afe_adv_10fdx) { bmcr = MII_CONTROL_FDUPLEX; } else { /* 10HDX */ bmcr = 0; } } DBG(DPHY, "programming anar to 0x%x", anar); afe_miiwrite(afep, phyaddr, MII_AN_ADVERT, anar); DBG(DPHY, "programming bmcr to 0x%x", bmcr); afe_miiwrite(afep, phyaddr, MII_CONTROL, bmcr); if (nosqe) { uint16_t pilr; /* * work around for errata 983B_0416 -- duplex light flashes * in 10 HDX. we just disable SQE testing on the device. */ pilr = afe_miiread(afep, phyaddr, PHY_PILR); pilr |= PILR_NOSQE; afe_miiwrite(afep, phyaddr, PHY_PILR, pilr); } /* * schedule a query of the link status */ PUTCSR(afep, CSR_TIMER, TIMER_LOOP | (AFE_LINKTIMER * 1000 / TIMER_USEC)); } void afe_stopphy(afe_t *afep) { /* stop the phy timer */ PUTCSR(afep, CSR_TIMER, 0); /* * phy in isolate & powerdown mode... */ afe_miiwrite(afep, afep->afe_phyaddr, MII_CONTROL, MII_CONTROL_PWRDN | MII_CONTROL_ISOLATE); /* * mark the link state unknown */ if (!afep->afe_resetting) { afep->afe_linkup = LINK_STATE_UNKNOWN; afep->afe_ifspeed = 0; afep->afe_duplex = LINK_DUPLEX_UNKNOWN; if (afep->afe_flags & AFE_RUNNING) afe_reportlink(afep); } } void afe_reportlink(afe_t *afep) { int changed = 0; if (afep->afe_ifspeed != afep->afe_lastifspeed) { afep->afe_lastifspeed = afep->afe_ifspeed; changed++; } if (afep->afe_duplex != afep->afe_lastduplex) { afep->afe_lastduplex = afep->afe_duplex; changed++; } if (changed) mac_link_update(afep->afe_mh, afep->afe_linkup); } void afe_checklink(afe_t *afep) { if ((afep->afe_flags & AFE_RUNNING) == 0) return; if ((afep->afe_txstall_time != 0) && (gethrtime() > afep->afe_txstall_time) && (afep->afe_txavail != AFE_TXRING)) { afep->afe_txstall_time = 0; afe_error(afep->afe_dip, "TX stall detected!"); afe_resetall(afep); return; } switch (AFE_MODEL(afep)) { case MODEL_COMET: afe_checklinkcomet(afep); break; case MODEL_CENTAUR: afe_checklinkcentaur(afep); break; } } void afe_checklinkcomet(afe_t *afep) { uint16_t xciis; int reinit = 0; xciis = GETCSR16(afep, CSR_XCIIS); if (xciis & XCIIS_PDF) { afe_error(afep->afe_dip, "Parallel detection fault detected!"); } if (xciis & XCIIS_RF) { afe_error(afep->afe_dip, "Remote fault detected."); } if (xciis & XCIIS_LFAIL) { if (afep->afe_linkup == LINK_STATE_UP) { reinit++; } afep->afe_ifspeed = 0; afep->afe_linkup = LINK_STATE_DOWN; afep->afe_duplex = LINK_DUPLEX_UNKNOWN; afe_reportlink(afep); if (reinit) { afe_startphy(afep); } return; } afep->afe_linkup = LINK_STATE_UP; afep->afe_ifspeed = (xciis & XCIIS_SPEED) ? 100000000 : 10000000; if (xciis & XCIIS_DUPLEX) { afep->afe_duplex = LINK_DUPLEX_FULL; } else { afep->afe_duplex = LINK_DUPLEX_HALF; } afe_reportlink(afep); } void afe_checklinkcentaur(afe_t *afep) { unsigned opmode; int reinit = 0; opmode = GETCSR(afep, CSR_OPM); if ((opmode & OPM_MODE) == OPM_MACONLY) { DBG(DPHY, "Centaur running in MAC-only mode"); afe_checklinkmii(afep); return; } DBG(DPHY, "Centaur running in single chip mode"); if ((opmode & OPM_LINK) == 0) { if (afep->afe_linkup == LINK_STATE_UP) { reinit++; } afep->afe_ifspeed = 0; afep->afe_duplex = LINK_DUPLEX_UNKNOWN; afep->afe_linkup = LINK_STATE_DOWN; afe_reportlink(afep); if (reinit) { afe_startphy(afep); } return; } afep->afe_linkup = LINK_STATE_UP; afep->afe_ifspeed = (opmode & OPM_SPEED) ? 100000000 : 10000000; if (opmode & OPM_DUPLEX) { afep->afe_duplex = LINK_DUPLEX_FULL; } else { afep->afe_duplex = LINK_DUPLEX_HALF; } afe_reportlink(afep); } void afe_checklinkmii(afe_t *afep) { /* read MII state registers */ uint16_t bmsr; uint16_t bmcr; uint16_t anar; uint16_t anlpar; int reinit = 0; /* read this twice, to clear latched link state */ bmsr = afe_miiread(afep, afep->afe_phyaddr, MII_STATUS); bmsr = afe_miiread(afep, afep->afe_phyaddr, MII_STATUS); bmcr = afe_miiread(afep, afep->afe_phyaddr, MII_CONTROL); anar = afe_miiread(afep, afep->afe_phyaddr, MII_AN_ADVERT); anlpar = afe_miiread(afep, afep->afe_phyaddr, MII_AN_LPABLE); if (bmsr & MII_STATUS_REMFAULT) { afe_error(afep->afe_dip, "Remote fault detected."); } if (bmsr & MII_STATUS_JABBERING) { afe_error(afep->afe_dip, "Jabber condition detected."); } if ((bmsr & MII_STATUS_LINKUP) == 0) { /* no link */ if (afep->afe_linkup == LINK_STATE_UP) { reinit = 1; } afep->afe_ifspeed = 0; afep->afe_duplex = LINK_DUPLEX_UNKNOWN; afep->afe_linkup = LINK_STATE_DOWN; afe_reportlink(afep); if (reinit) { afe_startphy(afep); } return; } DBG(DCHATTY, "link up!"); afep->afe_linkup = LINK_STATE_UP; if (!(bmcr & MII_CONTROL_ANE)) { /* forced mode */ if (bmcr & MII_CONTROL_100MB) { afep->afe_ifspeed = 100000000; } else { afep->afe_ifspeed = 10000000; } if (bmcr & MII_CONTROL_FDUPLEX) { afep->afe_duplex = LINK_DUPLEX_FULL; } else { afep->afe_duplex = LINK_DUPLEX_HALF; } } else if ((!(bmsr & MII_STATUS_CANAUTONEG)) || (!(bmsr & MII_STATUS_ANDONE))) { afep->afe_ifspeed = 0; afep->afe_duplex = LINK_DUPLEX_UNKNOWN; } else if (anar & anlpar & MII_ABILITY_100BASE_TX_FD) { afep->afe_ifspeed = 100000000; afep->afe_duplex = LINK_DUPLEX_FULL; } else if (anar & anlpar & MII_ABILITY_100BASE_T4) { afep->afe_ifspeed = 100000000; afep->afe_duplex = LINK_DUPLEX_HALF; } else if (anar & anlpar & MII_ABILITY_100BASE_TX) { afep->afe_ifspeed = 100000000; afep->afe_duplex = LINK_DUPLEX_HALF; } else if (anar & anlpar & MII_ABILITY_10BASE_T_FD) { afep->afe_ifspeed = 10000000; afep->afe_duplex = LINK_DUPLEX_FULL; } else if (anar & anlpar & MII_ABILITY_10BASE_T) { afep->afe_ifspeed = 10000000; afep->afe_duplex = LINK_DUPLEX_HALF; } else { afep->afe_ifspeed = 0; afep->afe_duplex = LINK_DUPLEX_UNKNOWN; } afe_reportlink(afep); } void afe_miitristate(afe_t *afep) { uint32_t val = SPR_SROM_WRITE | SPR_MII_CTRL; PUTCSR(afep, CSR_SPR, val); drv_usecwait(1); PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK); drv_usecwait(1); } void afe_miiwritebit(afe_t *afep, uint8_t bit) { uint32_t val = bit ? SPR_MII_DOUT : 0; PUTCSR(afep, CSR_SPR, val); drv_usecwait(1); PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK); drv_usecwait(1); } uint8_t afe_miireadbit(afe_t *afep) { uint32_t val = SPR_MII_CTRL | SPR_SROM_READ; uint8_t bit; PUTCSR(afep, CSR_SPR, val); drv_usecwait(1); bit = (GETCSR(afep, CSR_SPR) & SPR_MII_DIN) ? 1 : 0; PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK); drv_usecwait(1); return (bit); } uint16_t afe_miiread(afe_t *afep, int phy, int reg) { /* * ADMtek bugs ignore address decode bits -- they only * support PHY at 1. */ if (phy != 1) { return (0xffff); } switch (AFE_MODEL(afep)) { case MODEL_COMET: return (afe_miireadcomet(afep, phy, reg)); case MODEL_CENTAUR: return (afe_miireadgeneral(afep, phy, reg)); } return (0xffff); } uint16_t afe_miireadgeneral(afe_t *afep, int phy, int reg) { uint16_t value = 0; int i; /* send the 32 bit preamble */ for (i = 0; i < 32; i++) { afe_miiwritebit(afep, 1); } /* send the start code - 01b */ afe_miiwritebit(afep, 0); afe_miiwritebit(afep, 1); /* send the opcode for read, - 10b */ afe_miiwritebit(afep, 1); afe_miiwritebit(afep, 0); /* next we send the 5 bit phy address */ for (i = 0x10; i > 0; i >>= 1) { afe_miiwritebit(afep, (phy & i) ? 1 : 0); } /* the 5 bit register address goes next */ for (i = 0x10; i > 0; i >>= 1) { afe_miiwritebit(afep, (reg & i) ? 1 : 0); } /* turnaround - tristate followed by logic 0 */ afe_miitristate(afep); afe_miiwritebit(afep, 0); /* read the 16 bit register value */ for (i = 0x8000; i > 0; i >>= 1) { value <<= 1; value |= afe_miireadbit(afep); } afe_miitristate(afep); return (value); } uint16_t afe_miireadcomet(afe_t *afep, int phy, int reg) { if (phy != 1) { return (0xffff); } switch (reg) { case MII_CONTROL: reg = CSR_BMCR; break; case MII_STATUS: reg = CSR_BMSR; break; case MII_PHYIDH: reg = CSR_PHYIDR1; break; case MII_PHYIDL: reg = CSR_PHYIDR2; break; case MII_AN_ADVERT: reg = CSR_ANAR; break; case MII_AN_LPABLE: reg = CSR_ANLPAR; break; case MII_AN_EXPANSION: reg = CSR_ANER; break; default: return (0); } return (GETCSR16(afep, reg) & 0xFFFF); } void afe_miiwrite(afe_t *afep, int phy, int reg, uint16_t val) { /* * ADMtek bugs ignore address decode bits -- they only * support PHY at 1. */ if (phy != 1) { return; } switch (AFE_MODEL(afep)) { case MODEL_COMET: afe_miiwritecomet(afep, phy, reg, val); break; case MODEL_CENTAUR: afe_miiwritegeneral(afep, phy, reg, val); break; } } void afe_miiwritegeneral(afe_t *afep, int phy, int reg, uint16_t val) { int i; /* send the 32 bit preamble */ for (i = 0; i < 32; i++) { afe_miiwritebit(afep, 1); } /* send the start code - 01b */ afe_miiwritebit(afep, 0); afe_miiwritebit(afep, 1); /* send the opcode for write, - 01b */ afe_miiwritebit(afep, 0); afe_miiwritebit(afep, 1); /* next we send the 5 bit phy address */ for (i = 0x10; i > 0; i >>= 1) { afe_miiwritebit(afep, (phy & i) ? 1 : 0); } /* the 5 bit register address goes next */ for (i = 0x10; i > 0; i >>= 1) { afe_miiwritebit(afep, (reg & i) ? 1 : 0); } /* turnaround - tristate followed by logic 0 */ afe_miitristate(afep); afe_miiwritebit(afep, 0); /* now write out our data (16 bits) */ for (i = 0x8000; i > 0; i >>= 1) { afe_miiwritebit(afep, (val & i) ? 1 : 0); } /* idle mode */ afe_miitristate(afep); } void afe_miiwritecomet(afe_t *afep, int phy, int reg, uint16_t val) { if (phy != 1) { return; } switch (reg) { case MII_CONTROL: reg = CSR_BMCR; break; case MII_STATUS: reg = CSR_BMSR; break; case MII_PHYIDH: reg = CSR_PHYIDR1; break; case MII_PHYIDL: reg = CSR_PHYIDR2; break; case MII_AN_ADVERT: reg = CSR_ANAR; break; case MII_AN_LPABLE: reg = CSR_ANLPAR; break; case MII_AN_EXPANSION: reg = CSR_ANER; break; default: return; } PUTCSR16(afep, reg, val); } int afe_m_start(void *arg) { afe_t *afep = arg; /* grab exclusive access to the card */ mutex_enter(&afep->afe_intrlock); mutex_enter(&afep->afe_xmtlock); afe_startall(afep); afep->afe_flags |= AFE_RUNNING; mutex_exit(&afep->afe_xmtlock); mutex_exit(&afep->afe_intrlock); return (0); } void afe_m_stop(void *arg) { afe_t *afep = arg; /* exclusive access to the hardware! */ mutex_enter(&afep->afe_intrlock); mutex_enter(&afep->afe_xmtlock); afe_stopall(afep); afep->afe_flags &= ~AFE_RUNNING; mutex_exit(&afep->afe_xmtlock); mutex_exit(&afep->afe_intrlock); } void afe_startmac(afe_t *afep) { /* verify exclusive access to the card */ ASSERT(mutex_owned(&afep->afe_intrlock)); ASSERT(mutex_owned(&afep->afe_xmtlock)); /* start the card */ SETBIT(afep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE); if (afep->afe_txavail != AFE_TXRING) PUTCSR(afep, CSR_TDR, 0); /* tell the mac that we are ready to go! */ if (afep->afe_flags & AFE_RUNNING) mac_tx_update(afep->afe_mh); } void afe_stopmac(afe_t *afep) { int i; /* exclusive access to the hardware! */ ASSERT(mutex_owned(&afep->afe_intrlock)); ASSERT(mutex_owned(&afep->afe_xmtlock)); CLRBIT(afep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE); /* * A 1518 byte frame at 10Mbps takes about 1.2 msec to drain. * We just add up to the nearest msec (2), which should be * plenty to complete. * * Note that some chips never seem to indicate the transition to * the stopped state properly. Experience shows that we can safely * proceed anyway, after waiting the requisite timeout. */ for (i = 2000; i != 0; i -= 10) { if ((GETCSR(afep, CSR_SR) & (SR_TX_STATE | SR_RX_STATE)) == 0) break; drv_usecwait(10); } /* prevent an interrupt */ PUTCSR(afep, CSR_SR2, INT_RXSTOPPED | INT_TXSTOPPED); } void afe_resetrings(afe_t *afep) { int i; /* now we need to reset the pointers... */ PUTCSR(afep, CSR_RDB, 0); PUTCSR(afep, CSR_TDB, 0); /* reset the descriptor ring pointers */ afep->afe_rxhead = 0; afep->afe_txreclaim = 0; afep->afe_txsend = 0; afep->afe_txavail = AFE_TXRING; /* set up transmit descriptor ring */ for (i = 0; i < AFE_TXRING; i++) { afe_desc_t *tmdp = &afep->afe_txdescp[i]; unsigned control = 0; if (i == (AFE_TXRING - 1)) { control |= TXCTL_ENDRING; } PUTTXDESC(afep, tmdp->desc_status, 0); PUTTXDESC(afep, tmdp->desc_control, control); PUTTXDESC(afep, tmdp->desc_buffer1, 0); PUTTXDESC(afep, tmdp->desc_buffer2, 0); SYNCTXDESC(afep, i, DDI_DMA_SYNC_FORDEV); } PUTCSR(afep, CSR_TDB, afep->afe_txdesc_paddr); /* make the receive buffers available */ for (i = 0; i < AFE_RXRING; i++) { afe_rxbuf_t *rxb = afep->afe_rxbufs[i]; afe_desc_t *rmdp = &afep->afe_rxdescp[i]; unsigned control; control = AFE_BUFSZ & RXCTL_BUFLEN1; if (i == (AFE_RXRING - 1)) { control |= RXCTL_ENDRING; } PUTRXDESC(afep, rmdp->desc_buffer1, rxb->rxb_paddr); PUTRXDESC(afep, rmdp->desc_buffer2, 0); PUTRXDESC(afep, rmdp->desc_control, control); PUTRXDESC(afep, rmdp->desc_status, RXSTAT_OWN); SYNCRXDESC(afep, i, DDI_DMA_SYNC_FORDEV); } PUTCSR(afep, CSR_RDB, afep->afe_rxdesc_paddr); } void afe_stopall(afe_t *afep) { afe_disableinterrupts(afep); afe_stopmac(afep); /* stop the phy */ afe_stopphy(afep); } void afe_startall(afe_t *afep) { ASSERT(mutex_owned(&afep->afe_intrlock)); ASSERT(mutex_owned(&afep->afe_xmtlock)); /* make sure interrupts are disabled to begin */ afe_disableinterrupts(afep); /* initialize the chip */ (void) afe_initialize(afep); /* now we can enable interrupts */ afe_enableinterrupts(afep); /* start up the phy */ afe_startphy(afep); /* start up the mac */ afe_startmac(afep); } void afe_resetall(afe_t *afep) { afep->afe_resetting = B_TRUE; afe_stopall(afep); afep->afe_resetting = B_FALSE; afe_startall(afep); } afe_txbuf_t * afe_alloctxbuf(afe_t *afep) { ddi_dma_cookie_t dmac; unsigned ncookies; afe_txbuf_t *txb; size_t len; txb = kmem_zalloc(sizeof (*txb), KM_SLEEP); if (ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_txattr, DDI_DMA_SLEEP, NULL, &txb->txb_dmah) != DDI_SUCCESS) { return (NULL); } if (ddi_dma_mem_alloc(txb->txb_dmah, AFE_BUFSZ, &afe_bufattr, DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &txb->txb_buf, &len, &txb->txb_acch) != DDI_SUCCESS) { return (NULL); } if (ddi_dma_addr_bind_handle(txb->txb_dmah, NULL, txb->txb_buf, len, DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &dmac, &ncookies) != DDI_DMA_MAPPED) { return (NULL); } txb->txb_paddr = dmac.dmac_address; return (txb); } void afe_destroytxbuf(afe_txbuf_t *txb) { if (txb != NULL) { if (txb->txb_paddr) (void) ddi_dma_unbind_handle(txb->txb_dmah); if (txb->txb_acch) ddi_dma_mem_free(&txb->txb_acch); if (txb->txb_dmah) ddi_dma_free_handle(&txb->txb_dmah); kmem_free(txb, sizeof (*txb)); } } afe_rxbuf_t * afe_allocrxbuf(afe_t *afep) { afe_rxbuf_t *rxb; size_t len; unsigned ccnt; ddi_dma_cookie_t dmac; rxb = kmem_zalloc(sizeof (*rxb), KM_SLEEP); if (ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr, DDI_DMA_SLEEP, NULL, &rxb->rxb_dmah) != DDI_SUCCESS) { kmem_free(rxb, sizeof (*rxb)); return (NULL); } if (ddi_dma_mem_alloc(rxb->rxb_dmah, AFE_BUFSZ, &afe_bufattr, DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &rxb->rxb_buf, &len, &rxb->rxb_acch) != DDI_SUCCESS) { ddi_dma_free_handle(&rxb->rxb_dmah); kmem_free(rxb, sizeof (*rxb)); return (NULL); } if (ddi_dma_addr_bind_handle(rxb->rxb_dmah, NULL, rxb->rxb_buf, len, DDI_DMA_READ | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &dmac, &ccnt) != DDI_DMA_MAPPED) { ddi_dma_mem_free(&rxb->rxb_acch); ddi_dma_free_handle(&rxb->rxb_dmah); kmem_free(rxb, sizeof (*rxb)); return (NULL); } rxb->rxb_paddr = dmac.dmac_address; return (rxb); } void afe_destroyrxbuf(afe_rxbuf_t *rxb) { if (rxb) { (void) ddi_dma_unbind_handle(rxb->rxb_dmah); ddi_dma_mem_free(&rxb->rxb_acch); ddi_dma_free_handle(&rxb->rxb_dmah); kmem_free(rxb, sizeof (*rxb)); } } /* * Allocate receive resources. */ int afe_allocrxring(afe_t *afep) { int rval; int i; size_t size; size_t len; ddi_dma_cookie_t dmac; unsigned ncookies; caddr_t kaddr; size = AFE_RXRING * sizeof (afe_desc_t); rval = ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr, DDI_DMA_SLEEP, NULL, &afep->afe_rxdesc_dmah); if (rval != DDI_SUCCESS) { afe_error(afep->afe_dip, "unable to allocate DMA handle for rx descriptors"); return (DDI_FAILURE); } rval = ddi_dma_mem_alloc(afep->afe_rxdesc_dmah, size, &afe_devattr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len, &afep->afe_rxdesc_acch); if (rval != DDI_SUCCESS) { afe_error(afep->afe_dip, "unable to allocate DMA memory for rx descriptors"); return (DDI_FAILURE); } rval = ddi_dma_addr_bind_handle(afep->afe_rxdesc_dmah, NULL, kaddr, size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dmac, &ncookies); if (rval != DDI_DMA_MAPPED) { afe_error(afep->afe_dip, "unable to bind DMA for rx descriptors"); return (DDI_FAILURE); } /* because of afe_dma_attr */ ASSERT(ncookies == 1); /* we take the 32-bit physical address out of the cookie */ afep->afe_rxdesc_paddr = dmac.dmac_address; afep->afe_rxdescp = (void *)kaddr; /* allocate buffer pointers (not the buffers themselves, yet) */ afep->afe_rxbufs = kmem_zalloc(AFE_RXRING * sizeof (afe_rxbuf_t *), KM_SLEEP); /* now allocate rx buffers */ for (i = 0; i < AFE_RXRING; i++) { afe_rxbuf_t *rxb = afe_allocrxbuf(afep); if (rxb == NULL) return (DDI_FAILURE); afep->afe_rxbufs[i] = rxb; } return (DDI_SUCCESS); } /* * Allocate transmit resources. */ int afe_alloctxring(afe_t *afep) { int rval; int i; size_t size; size_t len; ddi_dma_cookie_t dmac; unsigned ncookies; caddr_t kaddr; size = AFE_TXRING * sizeof (afe_desc_t); rval = ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr, DDI_DMA_SLEEP, NULL, &afep->afe_txdesc_dmah); if (rval != DDI_SUCCESS) { afe_error(afep->afe_dip, "unable to allocate DMA handle for tx descriptors"); return (DDI_FAILURE); } rval = ddi_dma_mem_alloc(afep->afe_txdesc_dmah, size, &afe_devattr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len, &afep->afe_txdesc_acch); if (rval != DDI_SUCCESS) { afe_error(afep->afe_dip, "unable to allocate DMA memory for tx descriptors"); return (DDI_FAILURE); } rval = ddi_dma_addr_bind_handle(afep->afe_txdesc_dmah, NULL, kaddr, size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dmac, &ncookies); if (rval != DDI_DMA_MAPPED) { afe_error(afep->afe_dip, "unable to bind DMA for tx descriptors"); return (DDI_FAILURE); } /* because of afe_dma_attr */ ASSERT(ncookies == 1); /* we take the 32-bit physical address out of the cookie */ afep->afe_txdesc_paddr = dmac.dmac_address; afep->afe_txdescp = (void *)kaddr; /* allocate buffer pointers (not the buffers themselves, yet) */ afep->afe_txbufs = kmem_zalloc(AFE_TXRING * sizeof (afe_txbuf_t *), KM_SLEEP); /* now allocate tx buffers */ for (i = 0; i < AFE_TXRING; i++) { afe_txbuf_t *txb = afe_alloctxbuf(afep); if (txb == NULL) return (DDI_FAILURE); afep->afe_txbufs[i] = txb; } return (DDI_SUCCESS); } void afe_freerxring(afe_t *afep) { int i; for (i = 0; i < AFE_RXRING; i++) { afe_destroyrxbuf(afep->afe_rxbufs[i]); } if (afep->afe_rxbufs) { kmem_free(afep->afe_rxbufs, AFE_RXRING * sizeof (afe_rxbuf_t *)); } if (afep->afe_rxdesc_paddr) (void) ddi_dma_unbind_handle(afep->afe_rxdesc_dmah); if (afep->afe_rxdesc_acch) ddi_dma_mem_free(&afep->afe_rxdesc_acch); if (afep->afe_rxdesc_dmah) ddi_dma_free_handle(&afep->afe_rxdesc_dmah); } void afe_freetxring(afe_t *afep) { int i; for (i = 0; i < AFE_TXRING; i++) { afe_destroytxbuf(afep->afe_txbufs[i]); } if (afep->afe_txbufs) { kmem_free(afep->afe_txbufs, AFE_TXRING * sizeof (afe_txbuf_t *)); } if (afep->afe_txdesc_paddr) (void) ddi_dma_unbind_handle(afep->afe_txdesc_dmah); if (afep->afe_txdesc_acch) ddi_dma_mem_free(&afep->afe_txdesc_acch); if (afep->afe_txdesc_dmah) ddi_dma_free_handle(&afep->afe_txdesc_dmah); } /* * Interrupt service routine. */ unsigned afe_intr(caddr_t arg) { afe_t *afep = (void *)arg; uint32_t status; mblk_t *mp = NULL; mutex_enter(&afep->afe_intrlock); if (afep->afe_flags & AFE_SUSPENDED) { /* we cannot receive interrupts! */ mutex_exit(&afep->afe_intrlock); return (DDI_INTR_UNCLAIMED); } /* check interrupt status bits, did we interrupt? */ status = GETCSR(afep, CSR_SR2) & INT_ALL; if (status == 0) { KIOIP->intrs[KSTAT_INTR_SPURIOUS]++; mutex_exit(&afep->afe_intrlock); return (DDI_INTR_UNCLAIMED); } /* ack the interrupt */ PUTCSR(afep, CSR_SR2, status); KIOIP->intrs[KSTAT_INTR_HARD]++; if (!(afep->afe_flags & AFE_RUNNING)) { /* not running, don't touch anything */ mutex_exit(&afep->afe_intrlock); return (DDI_INTR_CLAIMED); } if (status & (INT_RXOK|INT_RXNOBUF)) { /* receive packets */ mp = afe_receive(afep); if (status & INT_RXNOBUF) PUTCSR(afep, CSR_RDR, 0); /* wake up chip */ } if (status & INT_TXOK) { /* transmit completed */ mutex_enter(&afep->afe_xmtlock); afe_reclaim(afep); mutex_exit(&afep->afe_xmtlock); } if (status & (INT_LINKCHG|INT_TIMER)) { mutex_enter(&afep->afe_xmtlock); afe_checklink(afep); mutex_exit(&afep->afe_xmtlock); } if (status & (INT_RXSTOPPED|INT_TXSTOPPED| INT_RXJABBER|INT_TXJABBER|INT_TXUNDERFLOW)) { if (status & (INT_RXJABBER | INT_TXJABBER)) { afep->afe_jabber++; } DBG(DWARN, "resetting mac, status %x", status); mutex_enter(&afep->afe_xmtlock); afe_resetall(afep); mutex_exit(&afep->afe_xmtlock); } if (status & INT_BUSERR) { switch (GETCSR(afep, CSR_SR) & SR_BERR_TYPE) { case SR_BERR_PARITY: afe_error(afep->afe_dip, "PCI parity error"); break; case SR_BERR_TARGET_ABORT: afe_error(afep->afe_dip, "PCI target abort"); break; case SR_BERR_MASTER_ABORT: afe_error(afep->afe_dip, "PCI master abort"); break; default: afe_error(afep->afe_dip, "Unknown PCI error"); break; } /* reset the chip in an attempt to fix things */ mutex_enter(&afep->afe_xmtlock); afe_resetall(afep); mutex_exit(&afep->afe_xmtlock); } mutex_exit(&afep->afe_intrlock); /* * Send up packets. We do this outside of the intrlock. */ if (mp) { mac_rx(afep->afe_mh, NULL, mp); } return (DDI_INTR_CLAIMED); } void afe_enableinterrupts(afe_t *afep) { unsigned mask = INT_WANTED; if (afep->afe_wantw) mask |= INT_TXOK; PUTCSR(afep, CSR_IER2, mask); if (AFE_MODEL(afep) == MODEL_COMET) { /* * On the Comet, this is the internal transceiver * interrupt. We program the Comet's built-in PHY to * enable certain interrupts. */ PUTCSR16(afep, CSR_XIE, XIE_LDE | XIE_ANCE); } } void afe_disableinterrupts(afe_t *afep) { /* disable further interrupts */ PUTCSR(afep, CSR_IER2, INT_NONE); /* clear any pending interrupts */ PUTCSR(afep, CSR_SR2, INT_ALL); } boolean_t afe_send(afe_t *afep, mblk_t *mp) { size_t len; afe_txbuf_t *txb; afe_desc_t *tmd; uint32_t control; int txsend; ASSERT(mutex_owned(&afep->afe_xmtlock)); ASSERT(mp != NULL); len = msgsize(mp); if (len > ETHERVLANMTU) { DBG(DXMIT, "frame too long: %d", len); afep->afe_macxmt_errors++; freemsg(mp); return (B_TRUE); } if (afep->afe_txavail < AFE_TXRECLAIM) afe_reclaim(afep); if (afep->afe_txavail == 0) { /* no more tmds */ afep->afe_wantw = B_TRUE; /* enable TX interrupt */ afe_enableinterrupts(afep); return (B_FALSE); } txsend = afep->afe_txsend; /* * For simplicity, we just do a copy into a preallocated * DMA buffer. */ txb = afep->afe_txbufs[txsend]; mcopymsg(mp, txb->txb_buf); /* frees mp! */ /* * Statistics. */ afep->afe_opackets++; afep->afe_obytes += len; if (txb->txb_buf[0] & 0x1) { if (bcmp(txb->txb_buf, afe_broadcast, ETHERADDRL) != 0) afep->afe_multixmt++; else afep->afe_brdcstxmt++; } /* note len is already known to be a small unsigned */ control = len | TXCTL_FIRST | TXCTL_LAST | TXCTL_INTCMPLTE; if (txsend == (AFE_TXRING - 1)) control |= TXCTL_ENDRING; tmd = &afep->afe_txdescp[txsend]; SYNCTXBUF(txb, len, DDI_DMA_SYNC_FORDEV); PUTTXDESC(afep, tmd->desc_control, control); PUTTXDESC(afep, tmd->desc_buffer1, txb->txb_paddr); PUTTXDESC(afep, tmd->desc_buffer2, 0); PUTTXDESC(afep, tmd->desc_status, TXSTAT_OWN); /* sync the descriptor out to the device */ SYNCTXDESC(afep, txsend, DDI_DMA_SYNC_FORDEV); /* * Note the new values of txavail and txsend. */ afep->afe_txavail--; afep->afe_txsend = (txsend + 1) % AFE_TXRING; /* * It should never, ever take more than 5 seconds to drain * the ring. If it happens, then we are stuck! */ afep->afe_txstall_time = gethrtime() + (5 * 1000000000ULL); /* * wake up the chip ... inside the lock to protect against DR suspend, * etc. */ PUTCSR(afep, CSR_TDR, 0); return (B_TRUE); } /* * Reclaim buffers that have completed transmission. */ void afe_reclaim(afe_t *afep) { afe_desc_t *tmdp; while (afep->afe_txavail != AFE_TXRING) { uint32_t status; uint32_t control; int index = afep->afe_txreclaim; tmdp = &afep->afe_txdescp[index]; /* sync it before we read it */ SYNCTXDESC(afep, index, DDI_DMA_SYNC_FORKERNEL); control = GETTXDESC(afep, tmdp->desc_control); status = GETTXDESC(afep, tmdp->desc_status); if (status & TXSTAT_OWN) { /* chip is still working on it, we're done */ break; } afep->afe_txavail++; afep->afe_txreclaim = (index + 1) % AFE_TXRING; /* in the most common successful case, all bits are clear */ if (status == 0) continue; if ((control & TXCTL_LAST) == 0) continue; if (status & TXSTAT_TXERR) { afep->afe_errxmt++; if (status & TXSTAT_JABBER) { /* transmit jabber timeout */ afep->afe_macxmt_errors++; } if (status & (TXSTAT_CARRLOST | TXSTAT_NOCARR)) { afep->afe_carrier_errors++; } if (status & TXSTAT_UFLOW) { afep->afe_underflow++; } if (status & TXSTAT_LATECOL) { afep->afe_tx_late_collisions++; } if (status & TXSTAT_EXCOLL) { afep->afe_ex_collisions++; afep->afe_collisions += 16; } } if (status & TXSTAT_DEFER) { afep->afe_defer_xmts++; } /* collision counting */ if (TXCOLLCNT(status) == 1) { afep->afe_collisions++; afep->afe_first_collisions++; } else if (TXCOLLCNT(status)) { afep->afe_collisions += TXCOLLCNT(status); afep->afe_multi_collisions += TXCOLLCNT(status); } } if (afep->afe_txavail >= AFE_TXRESCHED) { if (afep->afe_wantw) { /* * we were able to reclaim some packets, so * disable tx interrupts */ afep->afe_wantw = B_FALSE; afe_enableinterrupts(afep); mac_tx_update(afep->afe_mh); } } } mblk_t * afe_receive(afe_t *afep) { unsigned len; afe_rxbuf_t *rxb; afe_desc_t *rmd; uint32_t status; mblk_t *mpchain, **mpp, *mp; int head, cnt; mpchain = NULL; mpp = &mpchain; head = afep->afe_rxhead; /* limit the number of packets we process to a half ring size */ for (cnt = 0; cnt < AFE_RXRING / 2; cnt++) { DBG(DRECV, "receive at index %d", head); rmd = &afep->afe_rxdescp[head]; rxb = afep->afe_rxbufs[head]; SYNCRXDESC(afep, head, DDI_DMA_SYNC_FORKERNEL); status = GETRXDESC(afep, rmd->desc_status); if (status & RXSTAT_OWN) { /* chip is still chewing on it */ break; } /* discard the ethernet frame checksum */ len = RXLENGTH(status) - ETHERFCSL; DBG(DRECV, "recv length %d, status %x", len, status); if ((status & (RXSTAT_ERRS | RXSTAT_FIRST | RXSTAT_LAST)) != (RXSTAT_FIRST | RXSTAT_LAST)) { afep->afe_errrcv++; /* * Abnormal status bits detected, analyze further. */ if ((status & (RXSTAT_LAST|RXSTAT_FIRST)) != (RXSTAT_LAST|RXSTAT_FIRST)) { DBG(DRECV, "rx packet overspill"); if (status & RXSTAT_FIRST) { afep->afe_toolong_errors++; } } else if (status & RXSTAT_DESCERR) { afep->afe_macrcv_errors++; } else if (status & RXSTAT_RUNT) { afep->afe_runt++; } else if (status & RXSTAT_COLLSEEN) { /* this should really be rx_late_collisions */ afep->afe_macrcv_errors++; } else if (status & RXSTAT_DRIBBLE) { afep->afe_align_errors++; } else if (status & RXSTAT_CRCERR) { afep->afe_fcs_errors++; } else if (status & RXSTAT_OFLOW) { afep->afe_overflow++; } } else if (len > ETHERVLANMTU) { afep->afe_errrcv++; afep->afe_toolong_errors++; } /* * At this point, the chip thinks the packet is OK. */ else { mp = allocb(len + AFE_HEADROOM, 0); if (mp == NULL) { afep->afe_errrcv++; afep->afe_norcvbuf++; goto skip; } /* sync the buffer before we look at it */ SYNCRXBUF(rxb, len, DDI_DMA_SYNC_FORKERNEL); mp->b_rptr += AFE_HEADROOM; mp->b_wptr = mp->b_rptr + len; bcopy((char *)rxb->rxb_buf, mp->b_rptr, len); afep->afe_ipackets++; afep->afe_rbytes += len; if (status & RXSTAT_GROUP) { if (bcmp(mp->b_rptr, afe_broadcast, ETHERADDRL) == 0) afep->afe_brdcstrcv++; else afep->afe_multircv++; } *mpp = mp; mpp = &mp->b_next; } skip: /* return ring entry to the hardware */ PUTRXDESC(afep, rmd->desc_status, RXSTAT_OWN); SYNCRXDESC(afep, head, DDI_DMA_SYNC_FORDEV); /* advance to next RMD */ head = (head + 1) % AFE_RXRING; } afep->afe_rxhead = head; return (mpchain); } int afe_getmiibit(afe_t *afep, uint16_t reg, uint16_t bit) { unsigned val; mutex_enter(&afep->afe_xmtlock); if (afep->afe_flags & AFE_SUSPENDED) { mutex_exit(&afep->afe_xmtlock); /* device is suspended */ return (0); } val = afe_miiread(afep, afep->afe_phyaddr, reg); mutex_exit(&afep->afe_xmtlock); return (val & bit ? 1 : 0); } #define GETMIIBIT(reg, bit) afe_getmiibit(afep, reg, bit) int afe_m_stat(void *arg, uint_t stat, uint64_t *val) { afe_t *afep = arg; mutex_enter(&afep->afe_xmtlock); if ((afep->afe_flags & (AFE_RUNNING|AFE_SUSPENDED)) == AFE_RUNNING) afe_reclaim(afep); mutex_exit(&afep->afe_xmtlock); switch (stat) { case MAC_STAT_IFSPEED: *val = afep->afe_ifspeed; break; case MAC_STAT_MULTIRCV: *val = afep->afe_multircv; break; case MAC_STAT_BRDCSTRCV: *val = afep->afe_brdcstrcv; break; case MAC_STAT_MULTIXMT: *val = afep->afe_multixmt; break; case MAC_STAT_BRDCSTXMT: *val = afep->afe_brdcstxmt; break; case MAC_STAT_IPACKETS: *val = afep->afe_ipackets; break; case MAC_STAT_RBYTES: *val = afep->afe_rbytes; break; case MAC_STAT_OPACKETS: *val = afep->afe_opackets; break; case MAC_STAT_OBYTES: *val = afep->afe_obytes; break; case MAC_STAT_NORCVBUF: *val = afep->afe_norcvbuf; break; case MAC_STAT_NOXMTBUF: *val = 0; break; case MAC_STAT_COLLISIONS: *val = afep->afe_collisions; break; case MAC_STAT_IERRORS: *val = afep->afe_errrcv; break; case MAC_STAT_OERRORS: *val = afep->afe_errxmt; break; case ETHER_STAT_LINK_DUPLEX: *val = afep->afe_duplex; break; case ETHER_STAT_ALIGN_ERRORS: *val = afep->afe_align_errors; break; case ETHER_STAT_FCS_ERRORS: *val = afep->afe_fcs_errors; break; case ETHER_STAT_SQE_ERRORS: *val = afep->afe_sqe_errors; break; case ETHER_STAT_DEFER_XMTS: *val = afep->afe_defer_xmts; break; case ETHER_STAT_FIRST_COLLISIONS: *val = afep->afe_first_collisions; break; case ETHER_STAT_MULTI_COLLISIONS: *val = afep->afe_multi_collisions; break; case ETHER_STAT_TX_LATE_COLLISIONS: *val = afep->afe_tx_late_collisions; break; case ETHER_STAT_EX_COLLISIONS: *val = afep->afe_ex_collisions; break; case ETHER_STAT_MACXMT_ERRORS: *val = afep->afe_macxmt_errors; break; case ETHER_STAT_CARRIER_ERRORS: *val = afep->afe_carrier_errors; break; case ETHER_STAT_TOOLONG_ERRORS: *val = afep->afe_toolong_errors; break; case ETHER_STAT_MACRCV_ERRORS: *val = afep->afe_macrcv_errors; break; case MAC_STAT_OVERFLOWS: *val = afep->afe_overflow; break; case MAC_STAT_UNDERFLOWS: *val = afep->afe_underflow; break; case ETHER_STAT_TOOSHORT_ERRORS: *val = afep->afe_runt; break; case ETHER_STAT_JABBER_ERRORS: *val = afep->afe_jabber; break; case ETHER_STAT_CAP_100T4: *val = afep->afe_cap_100T4; break; case ETHER_STAT_CAP_100FDX: *val = afep->afe_cap_100fdx; break; case ETHER_STAT_CAP_100HDX: *val = afep->afe_cap_100hdx; break; case ETHER_STAT_CAP_10FDX: *val = afep->afe_cap_10fdx; break; case ETHER_STAT_CAP_10HDX: *val = afep->afe_cap_10hdx; break; case ETHER_STAT_CAP_AUTONEG: *val = afep->afe_cap_aneg; break; case ETHER_STAT_LINK_AUTONEG: *val = ((afep->afe_adv_aneg != 0) && (GETMIIBIT(MII_AN_LPABLE, MII_AN_EXP_LPCANAN) != 0)); break; case ETHER_STAT_ADV_CAP_100T4: *val = afep->afe_adv_100T4; break; case ETHER_STAT_ADV_CAP_100FDX: *val = afep->afe_adv_100fdx; break; case ETHER_STAT_ADV_CAP_100HDX: *val = afep->afe_adv_100hdx; break; case ETHER_STAT_ADV_CAP_10FDX: *val = afep->afe_adv_10fdx; break; case ETHER_STAT_ADV_CAP_10HDX: *val = afep->afe_adv_10hdx; break; case ETHER_STAT_ADV_CAP_AUTONEG: *val = afep->afe_adv_aneg; break; case ETHER_STAT_LP_CAP_100T4: *val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_100BASE_T4); break; case ETHER_STAT_LP_CAP_100FDX: *val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_100BASE_TX_FD); break; case ETHER_STAT_LP_CAP_100HDX: *val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_100BASE_TX); break; case ETHER_STAT_LP_CAP_10FDX: *val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_10BASE_T_FD); break; case ETHER_STAT_LP_CAP_10HDX: *val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_10BASE_T); break; case ETHER_STAT_LP_CAP_AUTONEG: *val = GETMIIBIT(MII_AN_EXPANSION, MII_AN_EXP_LPCANAN); break; case ETHER_STAT_XCVR_ADDR: *val = afep->afe_phyaddr; break; case ETHER_STAT_XCVR_ID: *val = afep->afe_phyid; break; default: return (ENOTSUP); } return (0); } /*ARGSUSED*/ int afe_m_getprop(void *arg, const char *name, mac_prop_id_t num, uint_t flags, uint_t sz, void *val) { afe_t *afep = arg; int err = 0; boolean_t dfl = flags & DLD_DEFAULT; if (sz == 0) return (EINVAL); switch (num) { case DLD_PROP_DUPLEX: if (sz >= sizeof (link_duplex_t)) { bcopy(&afep->afe_duplex, val, sizeof (link_duplex_t)); } else { err = EINVAL; } break; case DLD_PROP_SPEED: if (sz >= sizeof (uint64_t)) { bcopy(&afep->afe_ifspeed, val, sizeof (uint64_t)); } else { err = EINVAL; } break; case DLD_PROP_AUTONEG: *(uint8_t *)val = dfl ? afep->afe_cap_aneg : afep->afe_adv_aneg; break; #if 0 case DLD_PROP_ADV_1000FDX_CAP: case DLD_PROP_EN_1000FDX_CAP: case DLD_PROP_ADV_1000HDX_CAP: case DLD_PROP_EN_1000HDX_CAP: /* We don't support gigabit! */ *(uint8_t *)val = 0; break; #endif case DLD_PROP_ADV_100FDX_CAP: case DLD_PROP_EN_100FDX_CAP: *(uint8_t *)val = dfl ? afep->afe_cap_100fdx : afep->afe_adv_100fdx; break; case DLD_PROP_ADV_100HDX_CAP: case DLD_PROP_EN_100HDX_CAP: *(uint8_t *)val = dfl ? afep->afe_cap_100hdx : afep->afe_adv_100hdx; break; case DLD_PROP_ADV_10FDX_CAP: case DLD_PROP_EN_10FDX_CAP: *(uint8_t *)val = dfl ? afep->afe_cap_10fdx : afep->afe_adv_10fdx; break; case DLD_PROP_ADV_10HDX_CAP: case DLD_PROP_EN_10HDX_CAP: *(uint8_t *)val = dfl ? afep->afe_cap_10hdx : afep->afe_adv_10hdx; break; case DLD_PROP_ADV_100T4_CAP: case DLD_PROP_EN_100T4_CAP: *(uint8_t *)val = dfl ? afep->afe_cap_100T4 : afep->afe_adv_100T4; break; default: err = ENOTSUP; } return (err); } /*ARGSUSED*/ int afe_m_setprop(void *arg, const char *name, mac_prop_id_t num, uint_t sz, const void *val) { afe_t *afep = arg; uint8_t *advp; uint8_t *capp; switch (num) { case DLD_PROP_EN_100FDX_CAP: advp = &afep->afe_adv_100fdx; capp = &afep->afe_cap_100fdx; break; case DLD_PROP_EN_100HDX_CAP: advp = &afep->afe_adv_100hdx; capp = &afep->afe_cap_100hdx; break; case DLD_PROP_EN_10FDX_CAP: advp = &afep->afe_adv_10fdx; capp = &afep->afe_cap_10fdx; break; case DLD_PROP_EN_10HDX_CAP: advp = &afep->afe_adv_10hdx; capp = &afep->afe_cap_10hdx; break; case DLD_PROP_EN_100T4_CAP: advp = &afep->afe_adv_100T4; capp = &afep->afe_cap_100T4; break; case DLD_PROP_AUTONEG: advp = &afep->afe_adv_aneg; capp = &afep->afe_cap_aneg; break; default: return (ENOTSUP); } if (*capp == 0) /* ensure phy can support value */ return (ENOTSUP); mutex_enter(&afep->afe_intrlock); mutex_enter(&afep->afe_xmtlock); if (*advp != *(const uint8_t *)val) { *advp = *(const uint8_t *)val; if ((afep->afe_flags & (AFE_RUNNING|AFE_SUSPENDED)) == AFE_RUNNING) { /* * This re-initializes the phy, but it also * restarts transmit and receive rings. * Needless to say, changing the link * parameters is destructive to traffic in * progress. */ afe_resetall(afep); } } mutex_exit(&afep->afe_xmtlock); mutex_exit(&afep->afe_intrlock); return (0); } /* * Debugging and error reporting. */ void afe_error(dev_info_t *dip, char *fmt, ...) { va_list ap; char buf[256]; va_start(ap, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, ap); va_end(ap); if (dip) { cmn_err(CE_WARN, "%s%d: %s", ddi_driver_name(dip), ddi_get_instance(dip), buf); } else { cmn_err(CE_WARN, "afe: %s", buf); } } #ifdef DEBUG void afe_dprintf(afe_t *afep, const char *func, int level, char *fmt, ...) { va_list ap; va_start(ap, fmt); if (afe_debug & level) { char tag[64]; char buf[256]; if (afep && afep->afe_dip) { (void) snprintf(tag, sizeof (tag), "%s%d", ddi_driver_name(afep->afe_dip), ddi_get_instance(afep->afe_dip)); } else { (void) snprintf(tag, sizeof (tag), "afe"); } (void) snprintf(buf, sizeof (buf), "%s: %s: %s\n", tag, func, fmt); vcmn_err(CE_CONT, buf, ap); } va_end(ap); } #endif