/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1990 Mentat Inc. */ #pragma ident "%Z%%M% %I% %E% SMI" const char udp_version[] = "%Z%%M% %I% %E% SMI"; #include #include #include #include #include #include #include #define _SUN_TPI_VERSION 2 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The ipsec_info.h header file is here since it has the definition for the * M_CTL message types used by IP to convey information to the ULP. The * ipsec_info.h needs the pfkeyv2.h, hence the latters presence. */ #include #include /* * Synchronization notes: * * UDP uses a combination of its internal perimeter, a global lock and * a set of bind hash locks to protect its data structures. Please see * the note above udp_mode_assertions for details about the internal * perimeter. * * When a UDP endpoint is bound to a local port, it is inserted into * a bind hash list. The list consists of an array of udp_fanout_t buckets. * The size of the array is controlled by the udp_bind_fanout_size variable. * This variable can be changed in /etc/system if the default value is * not large enough. Each bind hash bucket is protected by a per bucket * lock. It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t * structure. An UDP endpoint is removed from the bind hash list only * when it is being unbound or being closed. The per bucket lock also * protects a UDP endpoint's state changes. * * Plumbing notes: * * Both udp and ip are merged, but the streams plumbing is kept unchanged * in that udp is always pushed atop /dev/ip. This is done to preserve * backwards compatibility for certain applications which rely on such * plumbing geometry to do things such as issuing I_POP on the stream * in order to obtain direct access to /dev/ip, etc. * * All UDP processings happen in the /dev/ip instance; the udp module * instance does not possess any state about the endpoint, and merely * acts as a dummy module whose presence is to keep the streams plumbing * appearance unchanged. At open time /dev/ip allocates a conn_t that * happens to embed a udp_t. This stays dormant until the time udp is * pushed, which indicates to /dev/ip that it must convert itself from * an IP to a UDP endpoint. * * We only allow for the following plumbing cases: * * Normal: * /dev/ip is first opened and later udp is pushed directly on top. * This is the default action that happens when a udp socket or * /dev/udp is opened. The conn_t created by /dev/ip instance is * now shared and is marked with IPCL_UDP. * * SNMP-only: * udp is pushed on top of a module other than /dev/ip. When this * happens it will support only SNMP semantics. A new conn_t is * allocated and marked with IPCL_UDPMOD. * * The above cases imply that we don't support any intermediate module to * reside in between /dev/ip and udp -- in fact, we never supported such * scenario in the past as the inter-layer communication semantics have * always been private. Also note that the normal case allows for SNMP * requests to be processed in addition to the rest of UDP operations. * * The normal case plumbing is depicted by the following diagram: * * +---------------+---------------+ * | | | udp * | udp_wq | udp_rq | * | | UDP_RD | * | | | * +---------------+---------------+ * | ^ * v | * +---------------+---------------+ * | | | /dev/ip * | ip_wq | ip_rq | conn_t * | UDP_WR | | * | | | * +---------------+---------------+ * * Messages arriving at udp_wq from above will end up in ip_wq before * it gets processed, i.e. udp write entry points will advance udp_wq * and use its q_next value as ip_wq in order to use the conn_t that * is stored in its q_ptr. Likewise, messages generated by ip to the * module above udp will appear as if they are originated from udp_rq, * i.e. putnext() calls to the module above udp is done using the * udp_rq instead of ip_rq in order to avoid udp_rput() which does * nothing more than calling putnext(). * * The above implies the following rule of thumb: * * 1. udp_t is obtained from conn_t, which is created by the /dev/ip * instance and is stored in q_ptr of both ip_wq and ip_rq. There * is no direct reference to conn_t from either udp_wq or udp_rq. * * 2. Write-side entry points of udp can obtain the conn_t via the * Q_TO_CONN() macro, using the queue value obtain from UDP_WR(). * * 3. While in /dev/ip context, putnext() to the module above udp can * be done by supplying the queue value obtained from UDP_RD(). * */ static queue_t *UDP_WR(queue_t *); static queue_t *UDP_RD(queue_t *); udp_stat_t udp_statistics = { { "udp_ip_send", KSTAT_DATA_UINT64 }, { "udp_ip_ire_send", KSTAT_DATA_UINT64 }, { "udp_ire_null", KSTAT_DATA_UINT64 }, { "udp_drain", KSTAT_DATA_UINT64 }, { "udp_sock_fallback", KSTAT_DATA_UINT64 }, { "udp_rrw_busy", KSTAT_DATA_UINT64 }, { "udp_rrw_msgcnt", KSTAT_DATA_UINT64 }, { "udp_out_sw_cksum", KSTAT_DATA_UINT64 }, { "udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, { "udp_out_opt", KSTAT_DATA_UINT64 }, { "udp_out_err_notconn", KSTAT_DATA_UINT64 }, { "udp_out_err_output", KSTAT_DATA_UINT64 }, { "udp_out_err_tudr", KSTAT_DATA_UINT64 }, { "udp_in_pktinfo", KSTAT_DATA_UINT64 }, { "udp_in_recvdstaddr", KSTAT_DATA_UINT64 }, { "udp_in_recvopts", KSTAT_DATA_UINT64 }, { "udp_in_recvif", KSTAT_DATA_UINT64 }, { "udp_in_recvslla", KSTAT_DATA_UINT64 }, { "udp_in_recvucred", KSTAT_DATA_UINT64 }, { "udp_in_recvttl", KSTAT_DATA_UINT64 }, { "udp_in_recvhopopts", KSTAT_DATA_UINT64 }, { "udp_in_recvhoplimit", KSTAT_DATA_UINT64 }, { "udp_in_recvdstopts", KSTAT_DATA_UINT64 }, { "udp_in_recvrtdstopts", KSTAT_DATA_UINT64 }, { "udp_in_recvrthdr", KSTAT_DATA_UINT64 }, { "udp_in_recvpktinfo", KSTAT_DATA_UINT64 }, { "udp_in_recvtclass", KSTAT_DATA_UINT64 }, #ifdef DEBUG { "udp_data_conn", KSTAT_DATA_UINT64 }, { "udp_data_notconn", KSTAT_DATA_UINT64 }, #endif }; static kstat_t *udp_ksp; struct kmem_cache *udp_cache; /* * Bind hash list size and hash function. It has to be a power of 2 for * hashing. */ #define UDP_BIND_FANOUT_SIZE 512 #define UDP_BIND_HASH(lport) \ ((ntohs((uint16_t)lport)) & (udp_bind_fanout_size - 1)) /* UDP bind fanout hash structure. */ typedef struct udp_fanout_s { udp_t *uf_udp; kmutex_t uf_lock; #if defined(_LP64) || defined(_I32LPx) char uf_pad[48]; #else char uf_pad[56]; #endif } udp_fanout_t; uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE; /* udp_fanout_t *udp_bind_fanout. */ static udp_fanout_t *udp_bind_fanout; /* * This controls the rate some ndd info report functions can be used * by non-priviledged users. It stores the last time such info is * requested. When those report functions are called again, this * is checked with the current time and compare with the ndd param * udp_ndd_get_info_interval. */ static clock_t udp_last_ndd_get_info_time; #define NDD_TOO_QUICK_MSG \ "ndd get info rate too high for non-priviledged users, try again " \ "later.\n" #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" static void udp_addr_req(queue_t *q, mblk_t *mp); static void udp_bind(queue_t *q, mblk_t *mp); static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp); static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock); static int udp_build_hdrs(queue_t *q, udp_t *udp); static void udp_capability_req(queue_t *q, mblk_t *mp); static int udp_close(queue_t *q); static void udp_connect(queue_t *q, mblk_t *mp); static void udp_disconnect(queue_t *q, mblk_t *mp); static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error); static void udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t tlierr, int unixerr); static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static void udp_icmp_error(queue_t *q, mblk_t *mp); static void udp_icmp_error_ipv6(queue_t *q, mblk_t *mp); static void udp_info_req(queue_t *q, mblk_t *mp); static mblk_t *udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length); static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp); static int udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp, void *thisdg_attrs); static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name); static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static boolean_t udp_param_register(udpparam_t *udppa, int cnt); static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static int udp_pkt_set(uchar_t *invalp, uint_t inlen, boolean_t sticky, uchar_t **optbufp, uint_t *optlenp); static void udp_report_item(mblk_t *mp, udp_t *udp); static void udp_rput(queue_t *q, mblk_t *mp); static void udp_rput_other(queue_t *, mblk_t *); static int udp_rinfop(queue_t *q, infod_t *dp); static int udp_rrw(queue_t *q, struiod_t *dp); static void udp_rput_bind_ack(queue_t *q, mblk_t *mp); static int udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static void udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha); static void udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen, t_scalar_t err); static void udp_unbind(queue_t *q, mblk_t *mp); static in_port_t udp_update_next_port(in_port_t port, boolean_t random); static void udp_wput(queue_t *q, mblk_t *mp); static mblk_t *udp_output_v4(conn_t *, mblk_t *mp, ipaddr_t v4dst, uint16_t port, uint_t srcid, int *error); static mblk_t *udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, t_scalar_t tudr_optlen, int *error); static void udp_wput_other(queue_t *q, mblk_t *mp); static void udp_wput_iocdata(queue_t *q, mblk_t *mp); static void udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen); static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size); static void udp_kstat_init(void); static void udp_kstat_fini(void); static int udp_kstat_update(kstat_t *kp, int rw); static void udp_input_wrapper(void *arg, mblk_t *mp, void *arg2); static void udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2); static void udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2); static void udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2); static void udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len); static void udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing); static void udp_enter(conn_t *, mblk_t *, sqproc_t, uint8_t); static void udp_exit(conn_t *); static void udp_become_writer(conn_t *, mblk_t *, sqproc_t, uint8_t); #ifdef DEBUG static void udp_mode_assertions(udp_t *, int); #endif /* DEBUG */ major_t UDP6_MAJ; #define UDP6 "udp6" #define UDP_RECV_HIWATER (56 * 1024) #define UDP_RECV_LOWATER 128 #define UDP_XMIT_HIWATER (56 * 1024) #define UDP_XMIT_LOWATER 1024 static struct module_info udp_info = { UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER }; static struct qinit udp_rinit = { (pfi_t)udp_rput, NULL, udp_open, udp_close, NULL, &udp_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD }; static struct qinit udp_winit = { (pfi_t)udp_wput, NULL, NULL, NULL, NULL, &udp_info, NULL, NULL, NULL, STRUIOT_NONE }; /* Support for just SNMP if UDP is not pushed directly over device IP */ struct qinit udp_snmp_rinit = { (pfi_t)putnext, NULL, udp_open, ip_snmpmod_close, NULL, &udp_info, NULL, NULL, NULL, STRUIOT_NONE }; struct qinit udp_snmp_winit = { (pfi_t)ip_snmpmod_wput, NULL, udp_open, ip_snmpmod_close, NULL, &udp_info, NULL, NULL, NULL, STRUIOT_NONE }; struct streamtab udpinfo = { &udp_rinit, &udp_winit }; static sin_t sin_null; /* Zero address for quick clears */ static sin6_t sin6_null; /* Zero address for quick clears */ /* Hint not protected by any lock */ static in_port_t udp_g_next_port_to_try; /* * Extra privileged ports. In host byte order. */ #define UDP_NUM_EPRIV_PORTS 64 static int udp_g_num_epriv_ports = UDP_NUM_EPRIV_PORTS; static in_port_t udp_g_epriv_ports[UDP_NUM_EPRIV_PORTS] = { 2049, 4045 }; /* Only modified during _init and _fini thus no locking is needed. */ static IDP udp_g_nd; /* Points to table of UDP ND variables. */ /* MIB-2 stuff for SNMP */ static mib2_udp_t udp_mib; /* SNMP fixed size info */ static kstat_t *udp_mibkp; /* kstat exporting udp_mib data */ #define UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH) /* Default structure copied into T_INFO_ACK messages */ static struct T_info_ack udp_g_t_info_ack_ipv4 = { T_INFO_ACK, UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */ T_INVALID, /* ETSU_size. udp does not support expedited data. */ T_INVALID, /* CDATA_size. udp does not support connect data. */ T_INVALID, /* DDATA_size. udp does not support disconnect data. */ sizeof (sin_t), /* ADDR_size. */ 0, /* OPT_size - not initialized here */ UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */ T_CLTS, /* SERV_type. udp supports connection-less. */ TS_UNBND, /* CURRENT_state. This is set from udp_state. */ (XPG4_1|SENDZERO) /* PROVIDER_flag */ }; #define UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN) static struct T_info_ack udp_g_t_info_ack_ipv6 = { T_INFO_ACK, UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */ T_INVALID, /* ETSU_size. udp does not support expedited data. */ T_INVALID, /* CDATA_size. udp does not support connect data. */ T_INVALID, /* DDATA_size. udp does not support disconnect data. */ sizeof (sin6_t), /* ADDR_size. */ 0, /* OPT_size - not initialized here */ UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */ T_CLTS, /* SERV_type. udp supports connection-less. */ TS_UNBND, /* CURRENT_state. This is set from udp_state. */ (XPG4_1|SENDZERO) /* PROVIDER_flag */ }; /* largest UDP port number */ #define UDP_MAX_PORT 65535 /* * Table of ND variables supported by udp. These are loaded into udp_g_nd * in udp_open. * All of these are alterable, within the min/max values given, at run time. */ /* BEGIN CSTYLED */ udpparam_t udp_param_arr[] = { /*min max value name */ { 0L, 256, 32, "udp_wroff_extra" }, { 1L, 255, 255, "udp_ipv4_ttl" }, { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"}, { 1024, (32 * 1024), 1024, "udp_smallest_nonpriv_port" }, { 0, 1, 1, "udp_do_checksum" }, { 1024, UDP_MAX_PORT, (32 * 1024), "udp_smallest_anon_port" }, { 1024, UDP_MAX_PORT, UDP_MAX_PORT, "udp_largest_anon_port" }, { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER, "udp_xmit_hiwat"}, { 0, (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"}, { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER, "udp_recv_hiwat"}, { 65536, (1<<30), 2*1024*1024, "udp_max_buf"}, { 100, 60000, 1000, "udp_ndd_get_info_interval"}, }; /* END CSTYLED */ /* * The smallest anonymous port in the priviledged port range which UDP * looks for free port. Use in the option UDP_ANONPRIVBIND. */ static in_port_t udp_min_anonpriv_port = 512; /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ uint32_t udp_random_anon_port = 1; /* * Hook functions to enable cluster networking. * On non-clustered systems these vectors must always be NULL */ void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family, uint8_t *laddrp, in_port_t lport) = NULL; void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family, uint8_t *laddrp, in_port_t lport) = NULL; typedef union T_primitives *t_primp_t; #define UDP_ENQUEUE_MP(udp, mp, proc, tag) { \ ASSERT((mp)->b_prev == NULL && (mp)->b_queue == NULL); \ ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ (mp)->b_queue = (queue_t *)((uintptr_t)tag); \ (mp)->b_prev = (mblk_t *)proc; \ if ((udp)->udp_mphead == NULL) \ (udp)->udp_mphead = (mp); \ else \ (udp)->udp_mptail->b_next = (mp); \ (udp)->udp_mptail = (mp); \ (udp)->udp_mpcount++; \ } #define UDP_READERS_INCREF(udp) { \ ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ (udp)->udp_reader_count++; \ } #define UDP_READERS_DECREF(udp) { \ ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ (udp)->udp_reader_count--; \ if ((udp)->udp_reader_count == 0) \ cv_broadcast(&(udp)->udp_connp->conn_cv); \ } #define UDP_SQUEUE_DECREF(udp) { \ ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ (udp)->udp_squeue_count--; \ if ((udp)->udp_squeue_count == 0) \ cv_broadcast(&(udp)->udp_connp->conn_cv); \ } /* * Notes on UDP endpoint synchronization: * * UDP needs exclusive operation on a per endpoint basis, when executing * functions that modify the endpoint state. udp_rput_other() deals with * packets with IP options, and processing these packets end up having * to update the endpoint's option related state. udp_wput_other() deals * with control operations from the top, e.g. connect() that needs to * update the endpoint state. These could be synchronized using locks, * but the current version uses squeues for this purpose. squeues may * give performance improvement for certain cases such as connected UDP * sockets; thus the framework allows for using squeues. * * The perimeter routines are described as follows: * * udp_enter(): * Enter the UDP endpoint perimeter. * * udp_become_writer(): * Become exclusive on the UDP endpoint. Specifies a function * that will be called exclusively either immediately or later * when the perimeter is available exclusively. * * udp_exit(): * Exit the UDP perimeter. * * Entering UDP from the top or from the bottom must be done using * udp_enter(). No lock must be held while attempting to enter the UDP * perimeter. When finished, udp_exit() must be called to get out of * the perimeter. * * UDP operates in either MT_HOT mode or in SQUEUE mode. In MT_HOT mode, * multiple threads may enter a UDP endpoint concurrently. This is used * for sending and/or receiving normal data. Control operations and other * special cases call udp_become_writer() to become exclusive on a per * endpoint basis and this results in transitioning to SQUEUE mode. squeue * by definition serializes access to the conn_t. When there are no more * pending messages on the squeue for the UDP connection, the endpoint * reverts to MT_HOT mode. During the interregnum when not all MT threads * of an endpoint have finished, messages are queued in the UDP endpoint * and the UDP is in UDP_MT_QUEUED mode or UDP_QUEUED_SQUEUE mode. * * These modes have the following analogs: * * UDP_MT_HOT/udp_reader_count==0 none * UDP_MT_HOT/udp_reader_count>0 RW_READ_LOCK * UDP_MT_QUEUED RW_WRITE_WANTED * UDP_SQUEUE or UDP_QUEUED_SQUEUE RW_WRITE_LOCKED * * Stable modes: UDP_MT_HOT, UDP_SQUEUE * Transient modes: UDP_MT_QUEUED, UDP_QUEUED_SQUEUE * * While in stable modes, UDP keeps track of the number of threads * operating on the endpoint. The udp_reader_count variable represents * the number of threads entering the endpoint as readers while it is * in UDP_MT_HOT mode. Transitioning to UDP_SQUEUE happens when there * is only a single reader, i.e. when this counter drops to 1. Likewise, * udp_squeue_count represents the number of threads operating on the * endpoint's squeue while it is in UDP_SQUEUE mode. The mode transition * to UDP_MT_HOT happens after the last thread exits the endpoint, i.e. * when this counter drops to 0. * * The default mode is set to UDP_MT_HOT and UDP alternates between * UDP_MT_HOT and UDP_SQUEUE as shown in the state transition below. * * Mode transition: * ---------------------------------------------------------------- * old mode Event New mode * ---------------------------------------------------------------- * UDP_MT_HOT Call to udp_become_writer() UDP_SQUEUE * and udp_reader_count == 1 * * UDP_MT_HOT Call to udp_become_writer() UDP_MT_QUEUED * and udp_reader_count > 1 * * UDP_MT_QUEUED udp_reader_count drops to zero UDP_QUEUED_SQUEUE * * UDP_QUEUED_SQUEUE All messages enqueued on the UDP_SQUEUE * internal UDP queue successfully * moved to squeue AND udp_squeue_count != 0 * * UDP_QUEUED_SQUEUE All messages enqueued on the UDP_MT_HOT * internal UDP queue successfully * moved to squeue AND udp_squeue_count * drops to zero * * UDP_SQUEUE udp_squeue_count drops to zero UDP_MT_HOT * ---------------------------------------------------------------- */ static queue_t * UDP_WR(queue_t *q) { ASSERT(q->q_ptr == NULL && _OTHERQ(q)->q_ptr == NULL); ASSERT(WR(q)->q_next != NULL && WR(q)->q_next->q_ptr != NULL); ASSERT(IPCL_IS_UDP(Q_TO_CONN(WR(q)->q_next))); return (_WR(q)->q_next); } static queue_t * UDP_RD(queue_t *q) { ASSERT(q->q_ptr != NULL && _OTHERQ(q)->q_ptr != NULL); ASSERT(IPCL_IS_UDP(Q_TO_CONN(q))); ASSERT(RD(q)->q_next != NULL && RD(q)->q_next->q_ptr == NULL); return (_RD(q)->q_next); } #ifdef DEBUG #define UDP_MODE_ASSERTIONS(udp, caller) udp_mode_assertions(udp, caller) #else #define UDP_MODE_ASSERTIONS(udp, caller) #endif /* Invariants */ #ifdef DEBUG uint32_t udp_count[4]; /* Context of udp_mode_assertions */ #define UDP_ENTER 1 #define UDP_BECOME_WRITER 2 #define UDP_EXIT 3 static void udp_mode_assertions(udp_t *udp, int caller) { ASSERT(MUTEX_HELD(&udp->udp_connp->conn_lock)); switch (udp->udp_mode) { case UDP_MT_HOT: /* * Messages have not yet been enqueued on the internal queue, * otherwise we would have switched to UDP_MT_QUEUED. Likewise * by definition, there can't be any messages enqueued on the * squeue. The UDP could be quiescent, so udp_reader_count * could be zero at entry. */ ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0 && udp->udp_squeue_count == 0); ASSERT(caller == UDP_ENTER || udp->udp_reader_count != 0); udp_count[0]++; break; case UDP_MT_QUEUED: /* * The last MT thread to exit the udp perimeter empties the * internal queue and then switches the UDP to * UDP_QUEUED_SQUEUE mode. Since we are still in UDP_MT_QUEUED * mode, it means there must be at least 1 MT thread still in * the perimeter and at least 1 message on the internal queue. */ ASSERT(udp->udp_reader_count >= 1 && udp->udp_mphead != NULL && udp->udp_mpcount != 0 && udp->udp_squeue_count == 0); udp_count[1]++; break; case UDP_QUEUED_SQUEUE: /* * The switch has happened from MT to SQUEUE. So there can't * any MT threads. Messages could still pile up on the internal * queue until the transition is complete and we move to * UDP_SQUEUE mode. We can't assert on nonzero udp_squeue_count * since the squeue could drain any time. */ ASSERT(udp->udp_reader_count == 0); udp_count[2]++; break; case UDP_SQUEUE: /* * The transition is complete. Thre can't be any messages on * the internal queue. The udp could be quiescent or the squeue * could drain any time, so we can't assert on nonzero * udp_squeue_count during entry. Nor can we assert that * udp_reader_count is zero, since, a reader thread could have * directly become writer in line by calling udp_become_writer * without going through the queued states. */ ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0); ASSERT(caller == UDP_ENTER || udp->udp_squeue_count != 0); udp_count[3]++; break; } } #endif #define _UDP_ENTER(connp, mp, proc, tag) { \ udp_t *_udp = (connp)->conn_udp; \ \ mutex_enter(&(connp)->conn_lock); \ if ((connp)->conn_state_flags & CONN_CLOSING) { \ mutex_exit(&(connp)->conn_lock); \ freemsg(mp); \ } else { \ UDP_MODE_ASSERTIONS(_udp, UDP_ENTER); \ \ switch (_udp->udp_mode) { \ case UDP_MT_HOT: \ /* We can execute as reader right away. */ \ UDP_READERS_INCREF(_udp); \ mutex_exit(&(connp)->conn_lock); \ (*(proc))(connp, mp, (connp)->conn_sqp); \ break; \ \ case UDP_SQUEUE: \ /* \ * We are in squeue mode, send the \ * packet to the squeue \ */ \ _udp->udp_squeue_count++; \ CONN_INC_REF_LOCKED(connp); \ mutex_exit(&(connp)->conn_lock); \ squeue_enter((connp)->conn_sqp, mp, proc, \ connp, tag); \ break; \ \ case UDP_MT_QUEUED: \ case UDP_QUEUED_SQUEUE: \ /* \ * Some messages may have been enqueued \ * ahead of us. Enqueue the new message \ * at the tail of the internal queue to \ * preserve message ordering. \ */ \ UDP_ENQUEUE_MP(_udp, mp, proc, tag); \ mutex_exit(&(connp)->conn_lock); \ break; \ } \ } \ } static void udp_enter(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag) { _UDP_ENTER(connp, mp, proc, tag); } static void udp_become_writer(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag) { udp_t *udp; udp = connp->conn_udp; mutex_enter(&connp->conn_lock); UDP_MODE_ASSERTIONS(udp, UDP_BECOME_WRITER); switch (udp->udp_mode) { case UDP_MT_HOT: if (udp->udp_reader_count == 1) { /* * We are the only MT thread. Switch to squeue mode * immediately. */ udp->udp_mode = UDP_SQUEUE; udp->udp_squeue_count = 1; CONN_INC_REF_LOCKED(connp); mutex_exit(&connp->conn_lock); squeue_enter(connp->conn_sqp, mp, proc, connp, tag); return; } /* FALLTHRU */ case UDP_MT_QUEUED: /* Enqueue the packet internally in UDP */ udp->udp_mode = UDP_MT_QUEUED; UDP_ENQUEUE_MP(udp, mp, proc, tag); mutex_exit(&connp->conn_lock); return; case UDP_SQUEUE: case UDP_QUEUED_SQUEUE: /* * We are already exclusive. i.e. we are already * writer. Simply call the desired function. */ udp->udp_squeue_count++; mutex_exit(&connp->conn_lock); (*proc)(connp, mp, connp->conn_sqp); return; } } /* * Transition from MT mode to SQUEUE mode, when the last MT thread * is exiting the UDP perimeter. Move all messages from the internal * udp queue to the squeue. A better way would be to move all the * messages in one shot, this needs more support from the squeue framework */ static void udp_switch_to_squeue(udp_t *udp) { mblk_t *mp; mblk_t *mp_next; sqproc_t proc; uint8_t tag; conn_t *connp = udp->udp_connp; ASSERT(MUTEX_HELD(&connp->conn_lock)); ASSERT(udp->udp_mode == UDP_MT_QUEUED); while (udp->udp_mphead != NULL) { mp = udp->udp_mphead; udp->udp_mphead = NULL; udp->udp_mptail = NULL; udp->udp_mpcount = 0; udp->udp_mode = UDP_QUEUED_SQUEUE; mutex_exit(&connp->conn_lock); /* * It is best not to hold any locks across the calls * to squeue functions. Since we drop the lock we * need to go back and check the udp_mphead once again * after the squeue_fill and hence the while loop at * the top of this function */ for (; mp != NULL; mp = mp_next) { mp_next = mp->b_next; proc = (sqproc_t)mp->b_prev; tag = (uint8_t)((uintptr_t)mp->b_queue); mp->b_next = NULL; mp->b_prev = NULL; mp->b_queue = NULL; CONN_INC_REF(connp); udp->udp_squeue_count++; squeue_fill(connp->conn_sqp, mp, proc, connp, tag); } mutex_enter(&connp->conn_lock); } /* * udp_squeue_count of zero implies that the squeue has drained * even before we arrived here (i.e. after the squeue_fill above) */ udp->udp_mode = (udp->udp_squeue_count != 0) ? UDP_SQUEUE : UDP_MT_HOT; } #define _UDP_EXIT(connp) { \ udp_t *_udp = (connp)->conn_udp; \ \ mutex_enter(&(connp)->conn_lock); \ UDP_MODE_ASSERTIONS(_udp, UDP_EXIT); \ \ switch (_udp->udp_mode) { \ case UDP_MT_HOT: \ UDP_READERS_DECREF(_udp); \ mutex_exit(&(connp)->conn_lock); \ break; \ \ case UDP_SQUEUE: \ UDP_SQUEUE_DECREF(_udp); \ if (_udp->udp_squeue_count == 0) \ _udp->udp_mode = UDP_MT_HOT; \ mutex_exit(&(connp)->conn_lock); \ break; \ \ case UDP_MT_QUEUED: \ /* \ * If this is the last MT thread, we need to \ * switch to squeue mode \ */ \ UDP_READERS_DECREF(_udp); \ if (_udp->udp_reader_count == 0) \ udp_switch_to_squeue(_udp); \ mutex_exit(&(connp)->conn_lock); \ break; \ \ case UDP_QUEUED_SQUEUE: \ UDP_SQUEUE_DECREF(_udp); \ /* \ * Even if the udp_squeue_count drops to zero, we \ * don't want to change udp_mode to UDP_MT_HOT here. \ * The thread in udp_switch_to_squeue will take care \ * of the transition to UDP_MT_HOT, after emptying \ * any more new messages that have been enqueued in \ * udp_mphead. \ */ \ mutex_exit(&(connp)->conn_lock); \ break; \ } \ } static void udp_exit(conn_t *connp) { _UDP_EXIT(connp); } /* * Return the next anonymous port in the priviledged port range for * bind checking. */ static in_port_t udp_get_next_priv_port(void) { static in_port_t next_priv_port = IPPORT_RESERVED - 1; if (next_priv_port < udp_min_anonpriv_port) { next_priv_port = IPPORT_RESERVED - 1; } return (next_priv_port--); } /* UDP bind hash report triggered via the Named Dispatch mechanism. */ /* ARGSUSED */ static int udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { udp_fanout_t *udpf; int i; zoneid_t zoneid; conn_t *connp; udp_t *udp; connp = Q_TO_CONN(q); udp = connp->conn_udp; /* Refer to comments in udp_status_report(). */ if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { if (ddi_get_lbolt() - udp_last_ndd_get_info_time < drv_usectohz(udp_ndd_get_info_interval * 1000)) { (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); return (0); } } if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { /* The following may work even if we cannot get a large buf. */ (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); return (0); } (void) mi_mpprintf(mp, "UDP " MI_COL_HDRPAD_STR /* 12345678[89ABCDEF] */ " zone lport src addr dest addr port state"); /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ zoneid = connp->conn_zoneid; for (i = 0; i < udp_bind_fanout_size; i++) { udpf = &udp_bind_fanout[i]; mutex_enter(&udpf->uf_lock); /* Print the hash index. */ udp = udpf->uf_udp; if (zoneid != GLOBAL_ZONEID) { /* skip to first entry in this zone; might be none */ while (udp != NULL && udp->udp_connp->conn_zoneid != zoneid) udp = udp->udp_bind_hash; } if (udp != NULL) { uint_t print_len, buf_len; buf_len = mp->b_cont->b_datap->db_lim - mp->b_cont->b_wptr; print_len = snprintf((char *)mp->b_cont->b_wptr, buf_len, "%d\n", i); if (print_len < buf_len) { mp->b_cont->b_wptr += print_len; } else { mp->b_cont->b_wptr += buf_len; } for (; udp != NULL; udp = udp->udp_bind_hash) { if (zoneid == GLOBAL_ZONEID || zoneid == udp->udp_connp->conn_zoneid) udp_report_item(mp->b_cont, udp); } } mutex_exit(&udpf->uf_lock); } udp_last_ndd_get_info_time = ddi_get_lbolt(); return (0); } /* * Hash list removal routine for udp_t structures. */ static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock) { udp_t *udpnext; kmutex_t *lockp; if (udp->udp_ptpbhn == NULL) return; /* * Extract the lock pointer in case there are concurrent * hash_remove's for this instance. */ ASSERT(udp->udp_port != 0); if (!caller_holds_lock) { lockp = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)].uf_lock; ASSERT(lockp != NULL); mutex_enter(lockp); } if (udp->udp_ptpbhn != NULL) { udpnext = udp->udp_bind_hash; if (udpnext != NULL) { udpnext->udp_ptpbhn = udp->udp_ptpbhn; udp->udp_bind_hash = NULL; } *udp->udp_ptpbhn = udpnext; udp->udp_ptpbhn = NULL; } if (!caller_holds_lock) { mutex_exit(lockp); } } static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp) { udp_t **udpp; udp_t *udpnext; ASSERT(MUTEX_HELD(&uf->uf_lock)); if (udp->udp_ptpbhn != NULL) { udp_bind_hash_remove(udp, B_TRUE); } udpp = &uf->uf_udp; udpnext = udpp[0]; if (udpnext != NULL) { /* * If the new udp bound to the INADDR_ANY address * and the first one in the list is not bound to * INADDR_ANY we skip all entries until we find the * first one bound to INADDR_ANY. * This makes sure that applications binding to a * specific address get preference over those binding to * INADDR_ANY. */ if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) && !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) { while ((udpnext = udpp[0]) != NULL && !V6_OR_V4_INADDR_ANY( udpnext->udp_bound_v6src)) { udpp = &(udpnext->udp_bind_hash); } if (udpnext != NULL) udpnext->udp_ptpbhn = &udp->udp_bind_hash; } else { udpnext->udp_ptpbhn = &udp->udp_bind_hash; } } udp->udp_bind_hash = udpnext; udp->udp_ptpbhn = udpp; udpp[0] = udp; } /* * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message * passed to udp_wput. * It associates a port number and local address with the stream. * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP * protocol type (IPPROTO_UDP) placed in the message following the address. * A T_BIND_ACK message is passed upstream when ip acknowledges the request. * (Called as writer.) * * Note that UDP over IPv4 and IPv6 sockets can use the same port number * without setting SO_REUSEADDR. This is needed so that they * can be viewed as two independent transport protocols. * However, anonymouns ports are allocated from the same range to avoid * duplicating the udp_g_next_port_to_try. */ static void udp_bind(queue_t *q, mblk_t *mp) { sin_t *sin; sin6_t *sin6; mblk_t *mp1; in_port_t port; /* Host byte order */ in_port_t requested_port; /* Host byte order */ struct T_bind_req *tbr; int count; in6_addr_t v6src; boolean_t bind_to_req_port_only; int loopmax; udp_fanout_t *udpf; in_port_t lport; /* Network byte order */ zoneid_t zoneid; conn_t *connp; udp_t *udp; connp = Q_TO_CONN(q); udp = connp->conn_udp; if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "udp_bind: bad req, len %u", (uint_t)(mp->b_wptr - mp->b_rptr)); udp_err_ack(q, mp, TPROTO, 0); return; } if (udp->udp_state != TS_UNBND) { (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "udp_bind: bad state, %u", udp->udp_state); udp_err_ack(q, mp, TOUTSTATE, 0); return; } /* * Reallocate the message to make sure we have enough room for an * address and the protocol type. */ mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); if (!mp1) { udp_err_ack(q, mp, TSYSERR, ENOMEM); return; } mp = mp1; tbr = (struct T_bind_req *)mp->b_rptr; switch (tbr->ADDR_length) { case 0: /* Request for a generic port */ tbr->ADDR_offset = sizeof (struct T_bind_req); if (udp->udp_family == AF_INET) { tbr->ADDR_length = sizeof (sin_t); sin = (sin_t *)&tbr[1]; *sin = sin_null; sin->sin_family = AF_INET; mp->b_wptr = (uchar_t *)&sin[1]; } else { ASSERT(udp->udp_family == AF_INET6); tbr->ADDR_length = sizeof (sin6_t); sin6 = (sin6_t *)&tbr[1]; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; mp->b_wptr = (uchar_t *)&sin6[1]; } port = 0; break; case sizeof (sin_t): /* Complete IPv4 address */ sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, sizeof (sin_t)); if (sin == NULL || !OK_32PTR((char *)sin)) { udp_err_ack(q, mp, TSYSERR, EINVAL); return; } if (udp->udp_family != AF_INET || sin->sin_family != AF_INET) { udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); return; } port = ntohs(sin->sin_port); break; case sizeof (sin6_t): /* complete IPv6 address */ sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset, sizeof (sin6_t)); if (sin6 == NULL || !OK_32PTR((char *)sin6)) { udp_err_ack(q, mp, TSYSERR, EINVAL); return; } if (udp->udp_family != AF_INET6 || sin6->sin6_family != AF_INET6) { udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); return; } port = ntohs(sin6->sin6_port); break; default: /* Invalid request */ (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "udp_bind: bad ADDR_length length %u", tbr->ADDR_length); udp_err_ack(q, mp, TBADADDR, 0); return; } requested_port = port; if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ) bind_to_req_port_only = B_FALSE; else /* T_BIND_REQ and requested_port != 0 */ bind_to_req_port_only = B_TRUE; if (requested_port == 0) { /* * If the application passed in zero for the port number, it * doesn't care which port number we bind to. Get one in the * valid range. */ if (udp->udp_anon_priv_bind) { port = udp_get_next_priv_port(); } else { port = udp_update_next_port(udp_g_next_port_to_try, B_TRUE); } } else { /* * If the port is in the well-known privileged range, * make sure the caller was privileged. */ int i; boolean_t priv = B_FALSE; if (port < udp_smallest_nonpriv_port) { priv = B_TRUE; } else { for (i = 0; i < udp_g_num_epriv_ports; i++) { if (port == udp_g_epriv_ports[i]) { priv = B_TRUE; break; } } } if (priv) { cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); if (secpolicy_net_privaddr(cr, port) != 0) { udp_err_ack(q, mp, TACCES, 0); return; } } } /* * Copy the source address into our udp structure. This address * may still be zero; if so, IP will fill in the correct address * each time an outbound packet is passed to it. */ if (udp->udp_family == AF_INET) { ASSERT(sin != NULL); ASSERT(udp->udp_ipversion == IPV4_VERSION); udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + udp->udp_ip_snd_options_len; IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src); } else { ASSERT(sin6 != NULL); v6src = sin6->sin6_addr; if (IN6_IS_ADDR_V4MAPPED(&v6src)) { udp->udp_ipversion = IPV4_VERSION; udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + udp->udp_ip_snd_options_len; } else { udp->udp_ipversion = IPV6_VERSION; udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; } } /* * If udp_reuseaddr is not set, then we have to make sure that * the IP address and port number the application requested * (or we selected for the application) is not being used by * another stream. If another stream is already using the * requested IP address and port, the behavior depends on * "bind_to_req_port_only". If set the bind fails; otherwise we * search for any an unused port to bind to the the stream. * * As per the BSD semantics, as modified by the Deering multicast * changes, if udp_reuseaddr is set, then we allow multiple binds * to the same port independent of the local IP address. * * This is slightly different than in SunOS 4.X which did not * support IP multicast. Note that the change implemented by the * Deering multicast code effects all binds - not only binding * to IP multicast addresses. * * Note that when binding to port zero we ignore SO_REUSEADDR in * order to guarantee a unique port. */ count = 0; if (udp->udp_anon_priv_bind) { /* loopmax = (IPPORT_RESERVED-1) - udp_min_anonpriv_port + 1 */ loopmax = IPPORT_RESERVED - udp_min_anonpriv_port; } else { loopmax = udp_largest_anon_port - udp_smallest_anon_port + 1; } zoneid = connp->conn_zoneid; for (;;) { udp_t *udp1; boolean_t is_inaddr_any; boolean_t found_exclbind = B_FALSE; is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src); /* * Walk through the list of udp streams bound to * requested port with the same IP address. */ lport = htons(port); udpf = &udp_bind_fanout[UDP_BIND_HASH(lport)]; mutex_enter(&udpf->uf_lock); for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) { if (lport != udp1->udp_port || zoneid != udp1->udp_connp->conn_zoneid) continue; /* * If UDP_EXCLBIND is set for either the bound or * binding endpoint, the semantics of bind * is changed according to the following chart. * * spec = specified address (v4 or v6) * unspec = unspecified address (v4 or v6) * A = specified addresses are different for endpoints * * bound bind to allowed? * ------------------------------------- * unspec unspec no * unspec spec no * spec unspec no * spec spec yes if A */ if (udp1->udp_exclbind || udp->udp_exclbind) { if (V6_OR_V4_INADDR_ANY( udp1->udp_bound_v6src) || is_inaddr_any || IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, &v6src)) { found_exclbind = B_TRUE; break; } continue; } /* * Check ipversion to allow IPv4 and IPv6 sockets to * have disjoint port number spaces. */ if (udp->udp_ipversion != udp1->udp_ipversion) continue; /* * No difference depending on SO_REUSEADDR. * * If existing port is bound to a * non-wildcard IP address and * the requesting stream is bound to * a distinct different IP addresses * (non-wildcard, also), keep going. */ if (!is_inaddr_any && !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) && !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, &v6src)) { continue; } break; } if (!found_exclbind && (udp->udp_reuseaddr && requested_port != 0)) { break; } if (udp1 == NULL) { /* * No other stream has this IP address * and port number. We can use it. */ break; } mutex_exit(&udpf->uf_lock); if (bind_to_req_port_only) { /* * We get here only when requested port * is bound (and only first of the for() * loop iteration). * * The semantics of this bind request * require it to fail so we return from * the routine (and exit the loop). * */ udp_err_ack(q, mp, TADDRBUSY, 0); return; } if (udp->udp_anon_priv_bind) { port = udp_get_next_priv_port(); } else { if ((count == 0) && (requested_port != 0)) { /* * If the application wants us to find * a port, get one to start with. Set * requested_port to 0, so that we will * update udp_g_next_port_to_try below. */ port = udp_update_next_port( udp_g_next_port_to_try, B_TRUE); requested_port = 0; } else { port = udp_update_next_port(port + 1, B_FALSE); } } if (++count >= loopmax) { /* * We've tried every possible port number and * there are none available, so send an error * to the user. */ udp_err_ack(q, mp, TNOADDR, 0); return; } } /* * Copy the source address into our udp structure. This address * may still be zero; if so, ip will fill in the correct address * each time an outbound packet is passed to it. * If we are binding to a broadcast or multicast address udp_rput * will clear the source address when it receives the T_BIND_ACK. */ udp->udp_v6src = udp->udp_bound_v6src = v6src; udp->udp_port = lport; /* * Now reset the the next anonymous port if the application requested * an anonymous port, or we handed out the next anonymous port. */ if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) { udp_g_next_port_to_try = port + 1; } /* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */ if (udp->udp_family == AF_INET) { sin->sin_port = udp->udp_port; } else { int error; sin6->sin6_port = udp->udp_port; /* Rebuild the header template */ error = udp_build_hdrs(q, udp); if (error != 0) { mutex_exit(&udpf->uf_lock); udp_err_ack(q, mp, TSYSERR, error); return; } } udp->udp_state = TS_IDLE; udp_bind_hash_insert(udpf, udp); mutex_exit(&udpf->uf_lock); if (cl_inet_bind) { /* * Running in cluster mode - register bind information */ if (udp->udp_ipversion == IPV4_VERSION) { (*cl_inet_bind)(IPPROTO_UDP, AF_INET, (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), (in_port_t)udp->udp_port); } else { (*cl_inet_bind)(IPPROTO_UDP, AF_INET6, (uint8_t *)&(udp->udp_v6src), (in_port_t)udp->udp_port); } } /* Pass the protocol number in the message following the address. */ *mp->b_wptr++ = IPPROTO_UDP; if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { /* * Append a request for an IRE if udp_v6src not * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address). */ mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); if (!mp->b_cont) { udp_err_ack(q, mp, TSYSERR, ENOMEM); return; } mp->b_cont->b_wptr += sizeof (ire_t); mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; } if (udp->udp_family == AF_INET6) mp = ip_bind_v6(q, mp, connp, NULL); else mp = ip_bind_v4(q, mp, connp); if (mp != NULL) udp_rput_other(_RD(q), mp); else CONN_INC_REF(connp); } void udp_resume_bind(conn_t *connp, mblk_t *mp) { udp_enter(connp, mp, udp_resume_bind_cb, SQTAG_BIND_RETRY); } /* * This is called from ip_wput_nondata to resume a deferred UDP bind. */ /* ARGSUSED */ static void udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2) { conn_t *connp = arg; ASSERT(connp != NULL && IPCL_IS_UDP(connp)); udp_rput_other(connp->conn_rq, mp); CONN_OPER_PENDING_DONE(connp); udp_exit(connp); } /* * This routine handles each T_CONN_REQ message passed to udp. It * associates a default destination address with the stream. * * This routine sends down a T_BIND_REQ to IP with the following mblks: * T_BIND_REQ - specifying local and remote address/port * IRE_DB_REQ_TYPE - to get an IRE back containing ire_type and src * T_OK_ACK - for the T_CONN_REQ * T_CONN_CON - to keep the TPI user happy * * The connect completes in udp_rput. * When a T_BIND_ACK is received information is extracted from the IRE * and the two appended messages are sent to the TPI user. * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert * it to an error ack for the appropriate primitive. */ static void udp_connect(queue_t *q, mblk_t *mp) { sin6_t *sin6; sin_t *sin; struct T_conn_req *tcr; in6_addr_t v6dst; ipaddr_t v4dst; uint16_t dstport; uint32_t flowinfo; mblk_t *mp1, *mp2; udp_fanout_t *udpf; udp_t *udp, *udp1; udp = Q_TO_UDP(q); tcr = (struct T_conn_req *)mp->b_rptr; /* A bit of sanity checking */ if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) { udp_err_ack(q, mp, TPROTO, 0); return; } /* * This UDP must have bound to a port already before doing * a connect. */ if (udp->udp_state == TS_UNBND) { (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "udp_connect: bad state, %u", udp->udp_state); udp_err_ack(q, mp, TOUTSTATE, 0); return; } ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL); udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)]; if (udp->udp_state == TS_DATA_XFER) { /* Already connected - clear out state */ mutex_enter(&udpf->uf_lock); udp->udp_v6src = udp->udp_bound_v6src; udp->udp_state = TS_IDLE; mutex_exit(&udpf->uf_lock); } if (tcr->OPT_length != 0) { udp_err_ack(q, mp, TBADOPT, 0); return; } /* * Determine packet type based on type of address passed in * the request should contain an IPv4 or IPv6 address. * Make sure that address family matches the type of * family of the the address passed down */ switch (tcr->DEST_length) { default: udp_err_ack(q, mp, TBADADDR, 0); return; case sizeof (sin_t): sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, sizeof (sin_t)); if (sin == NULL || !OK_32PTR((char *)sin)) { udp_err_ack(q, mp, TSYSERR, EINVAL); return; } if (udp->udp_family != AF_INET || sin->sin_family != AF_INET) { udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); return; } v4dst = sin->sin_addr.s_addr; dstport = sin->sin_port; IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); ASSERT(udp->udp_ipversion == IPV4_VERSION); udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + udp->udp_ip_snd_options_len; break; case sizeof (sin6_t): sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, sizeof (sin6_t)); if (sin6 == NULL || !OK_32PTR((char *)sin6)) { udp_err_ack(q, mp, TSYSERR, EINVAL); return; } if (udp->udp_family != AF_INET6 || sin6->sin6_family != AF_INET6) { udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); return; } v6dst = sin6->sin6_addr; if (IN6_IS_ADDR_V4MAPPED(&v6dst)) { IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst); udp->udp_ipversion = IPV4_VERSION; udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + udp->udp_ip_snd_options_len; flowinfo = 0; } else { udp->udp_ipversion = IPV6_VERSION; udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; flowinfo = sin6->sin6_flowinfo; } dstport = sin6->sin6_port; break; } if (dstport == 0) { udp_err_ack(q, mp, TBADADDR, 0); return; } /* * Create a default IP header with no IP options. */ udp->udp_dstport = dstport; if (udp->udp_ipversion == IPV4_VERSION) { /* * Interpret a zero destination to mean loopback. * Update the T_CONN_REQ (sin/sin6) since it is used to * generate the T_CONN_CON. */ if (v4dst == INADDR_ANY) { v4dst = htonl(INADDR_LOOPBACK); IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); if (udp->udp_family == AF_INET) { sin->sin_addr.s_addr = v4dst; } else { sin6->sin6_addr = v6dst; } } udp->udp_v6dst = v6dst; udp->udp_flowinfo = 0; /* * If the destination address is multicast and * an outgoing multicast interface has been set, * use the address of that interface as our * source address if no source address has been set. */ if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY && CLASSD(v4dst) && udp->udp_multicast_if_addr != INADDR_ANY) { IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr, &udp->udp_v6src); } } else { ASSERT(udp->udp_ipversion == IPV6_VERSION); /* * Interpret a zero destination to mean loopback. * Update the T_CONN_REQ (sin/sin6) since it is used to * generate the T_CONN_CON. */ if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) { v6dst = ipv6_loopback; sin6->sin6_addr = v6dst; } udp->udp_v6dst = v6dst; udp->udp_flowinfo = flowinfo; /* * If the destination address is multicast and * an outgoing multicast interface has been set, * then the ip bind logic will pick the correct source * address (i.e. matching the outgoing multicast interface). */ } /* * Verify that the src/port/dst/port is unique for all * connections in TS_DATA_XFER */ mutex_enter(&udpf->uf_lock); for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) { if (udp1->udp_state != TS_DATA_XFER) continue; if (udp->udp_port != udp1->udp_port || udp->udp_ipversion != udp1->udp_ipversion || dstport != udp1->udp_dstport || !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) || !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst)) continue; mutex_exit(&udpf->uf_lock); udp_err_ack(q, mp, TBADADDR, 0); return; } udp->udp_state = TS_DATA_XFER; mutex_exit(&udpf->uf_lock); /* * Send down bind to IP to verify that there is a route * and to determine the source address. * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput. */ if (udp->udp_family == AF_INET) mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t)); else mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); if (mp1 == NULL) { udp_err_ack(q, mp, TSYSERR, ENOMEM); bind_failed: mutex_enter(&udpf->uf_lock); udp->udp_state = TS_IDLE; mutex_exit(&udpf->uf_lock); return; } /* * We also have to send a connection confirmation to * keep TLI happy. Prepare it for udp_rput. */ if (udp->udp_family == AF_INET) mp2 = mi_tpi_conn_con(NULL, (char *)sin, sizeof (*sin), NULL, 0); else mp2 = mi_tpi_conn_con(NULL, (char *)sin6, sizeof (*sin6), NULL, 0); if (mp2 == NULL) { freemsg(mp1); udp_err_ack(q, mp, TSYSERR, ENOMEM); goto bind_failed; } mp = mi_tpi_ok_ack_alloc(mp); if (mp == NULL) { /* Unable to reuse the T_CONN_REQ for the ack. */ freemsg(mp2); udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM); goto bind_failed; } /* Hang onto the T_OK_ACK and T_CONN_CON for later. */ linkb(mp1, mp); linkb(mp1, mp2); if (udp->udp_family == AF_INET) mp1 = ip_bind_v4(q, mp1, udp->udp_connp); else mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL); if (mp1 != NULL) udp_rput_other(_RD(q), mp1); else CONN_INC_REF(udp->udp_connp); } static int udp_close(queue_t *q) { conn_t *connp = Q_TO_CONN(UDP_WR(q)); udp_t *udp; queue_t *ip_rq = RD(UDP_WR(q)); ASSERT(connp != NULL && IPCL_IS_UDP(connp)); udp = connp->conn_udp; ip_quiesce_conn(connp); /* * Disable read-side synchronous stream * interface and drain any queued data. */ udp_rcv_drain(q, udp, B_TRUE); ASSERT(!udp->udp_direct_sockfs); qprocsoff(q); /* restore IP module's high and low water marks to default values */ ip_rq->q_hiwat = ip_rq->q_qinfo->qi_minfo->mi_hiwat; WR(ip_rq)->q_hiwat = WR(ip_rq)->q_qinfo->qi_minfo->mi_hiwat; WR(ip_rq)->q_lowat = WR(ip_rq)->q_qinfo->qi_minfo->mi_lowat; ASSERT(udp->udp_rcv_cnt == 0); ASSERT(udp->udp_rcv_msgcnt == 0); ASSERT(udp->udp_rcv_list_head == NULL); ASSERT(udp->udp_rcv_list_tail == NULL); /* connp is now single threaded. */ udp_close_free(connp); /* * Restore connp as an IP endpoint. We don't need * any locks since we are now single threaded */ connp->conn_flags &= ~IPCL_UDP; connp->conn_state_flags &= ~(CONN_CLOSING | CONN_CONDEMNED | CONN_QUIESCED); return (0); } /* * Called in the close path from IP (ip_quiesce_conn) to quiesce the conn */ void udp_quiesce_conn(conn_t *connp) { udp_t *udp = connp->conn_udp; if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) { /* * Running in cluster mode - register unbind information */ if (udp->udp_ipversion == IPV4_VERSION) { (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))), (in_port_t)udp->udp_port); } else { (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, (uint8_t *)(&(udp->udp_v6src)), (in_port_t)udp->udp_port); } } udp_bind_hash_remove(udp, B_FALSE); mutex_enter(&connp->conn_lock); while (udp->udp_reader_count != 0 || udp->udp_squeue_count != 0 || udp->udp_mode != UDP_MT_HOT) { cv_wait(&connp->conn_cv, &connp->conn_lock); } mutex_exit(&connp->conn_lock); } void udp_close_free(conn_t *connp) { udp_t *udp = connp->conn_udp; /* If there are any options associated with the stream, free them. */ if (udp->udp_ip_snd_options) { mi_free((char *)udp->udp_ip_snd_options); udp->udp_ip_snd_options = NULL; } if (udp->udp_ip_rcv_options) { mi_free((char *)udp->udp_ip_rcv_options); udp->udp_ip_rcv_options = NULL; } /* Free memory associated with sticky options */ if (udp->udp_sticky_hdrs_len != 0) { kmem_free(udp->udp_sticky_hdrs, udp->udp_sticky_hdrs_len); udp->udp_sticky_hdrs = NULL; udp->udp_sticky_hdrs_len = 0; } if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) { kmem_free(udp->udp_sticky_ipp.ipp_hopopts, udp->udp_sticky_ipp.ipp_hopoptslen); udp->udp_sticky_ipp.ipp_hopopts = NULL; } if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) { kmem_free(udp->udp_sticky_ipp.ipp_rtdstopts, udp->udp_sticky_ipp.ipp_rtdstoptslen); udp->udp_sticky_ipp.ipp_rtdstopts = NULL; } if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) { kmem_free(udp->udp_sticky_ipp.ipp_rthdr, udp->udp_sticky_ipp.ipp_rthdrlen); udp->udp_sticky_ipp.ipp_rthdr = NULL; } if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) { kmem_free(udp->udp_sticky_ipp.ipp_dstopts, udp->udp_sticky_ipp.ipp_dstoptslen); udp->udp_sticky_ipp.ipp_dstopts = NULL; } udp->udp_sticky_ipp.ipp_fields &= ~(IPPF_HOPOPTS|IPPF_RTDSTOPTS|IPPF_RTHDR|IPPF_DSTOPTS); udp->udp_connp = NULL; connp->conn_udp = NULL; kmem_cache_free(udp_cache, udp); } /* * This routine handles each T_DISCON_REQ message passed to udp * as an indicating that UDP is no longer connected. This results * in sending a T_BIND_REQ to IP to restore the binding to just * the local address/port. * * This routine sends down a T_BIND_REQ to IP with the following mblks: * T_BIND_REQ - specifying just the local address/port * T_OK_ACK - for the T_DISCON_REQ * * The disconnect completes in udp_rput. * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user. * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert * it to an error ack for the appropriate primitive. */ static void udp_disconnect(queue_t *q, mblk_t *mp) { udp_t *udp = Q_TO_UDP(q); mblk_t *mp1; udp_fanout_t *udpf; if (udp->udp_state != TS_DATA_XFER) { (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "udp_disconnect: bad state, %u", udp->udp_state); udp_err_ack(q, mp, TOUTSTATE, 0); return; } udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)]; mutex_enter(&udpf->uf_lock); udp->udp_v6src = udp->udp_bound_v6src; udp->udp_state = TS_IDLE; mutex_exit(&udpf->uf_lock); /* * Send down bind to IP to remove the full binding and revert * to the local address binding. */ if (udp->udp_family == AF_INET) mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t)); else mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t)); if (mp1 == NULL) { udp_err_ack(q, mp, TSYSERR, ENOMEM); return; } mp = mi_tpi_ok_ack_alloc(mp); if (mp == NULL) { /* Unable to reuse the T_DISCON_REQ for the ack. */ udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM); return; } if (udp->udp_family == AF_INET6) { int error; /* Rebuild the header template */ error = udp_build_hdrs(q, udp); if (error != 0) { udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error); freemsg(mp1); return; } } mutex_enter(&udpf->uf_lock); udp->udp_discon_pending = 1; mutex_exit(&udpf->uf_lock); /* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */ linkb(mp1, mp); if (udp->udp_family == AF_INET6) mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL); else mp1 = ip_bind_v4(q, mp1, udp->udp_connp); if (mp1 != NULL) udp_rput_other(_RD(q), mp1); else CONN_INC_REF(udp->udp_connp); } /* This routine creates a T_ERROR_ACK message and passes it upstream. */ static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) { if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) putnext(UDP_RD(q), mp); } /* Shorthand to generate and send TPI error acks to our client */ static void udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error, int sys_error) { struct T_error_ack *teackp; if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), M_PCPROTO, T_ERROR_ACK)) != NULL) { teackp = (struct T_error_ack *)mp->b_rptr; teackp->ERROR_prim = primitive; teackp->TLI_error = t_error; teackp->UNIX_error = sys_error; putnext(UDP_RD(q), mp); } } /*ARGSUSED*/ static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { int i; for (i = 0; i < udp_g_num_epriv_ports; i++) { if (udp_g_epriv_ports[i] != 0) (void) mi_mpprintf(mp, "%d ", udp_g_epriv_ports[i]); } return (0); } /* ARGSUSED */ static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; int i; /* * Fail the request if the new value does not lie within the * port number limits. */ if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || new_value >= 65536) { return (EINVAL); } /* Check if the value is already in the list */ for (i = 0; i < udp_g_num_epriv_ports; i++) { if (new_value == udp_g_epriv_ports[i]) { return (EEXIST); } } /* Find an empty slot */ for (i = 0; i < udp_g_num_epriv_ports; i++) { if (udp_g_epriv_ports[i] == 0) break; } if (i == udp_g_num_epriv_ports) { return (EOVERFLOW); } /* Set the new value */ udp_g_epriv_ports[i] = (in_port_t)new_value; return (0); } /* ARGSUSED */ static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; int i; /* * Fail the request if the new value does not lie within the * port number limits. */ if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || new_value >= 65536) { return (EINVAL); } /* Check that the value is already in the list */ for (i = 0; i < udp_g_num_epriv_ports; i++) { if (udp_g_epriv_ports[i] == new_value) break; } if (i == udp_g_num_epriv_ports) { return (ESRCH); } /* Clear the value */ udp_g_epriv_ports[i] = 0; return (0); } /* At minimum we need 4 bytes of UDP header */ #define ICMP_MIN_UDP_HDR 4 /* * udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP. * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. * Assumes that IP has pulled up everything up to and including the ICMP header. * An M_CTL could potentially come here from some other module (i.e. if UDP * is pushed on some module other than IP). Thus, if we find that the M_CTL * does not have enough ICMP information , following STREAMS conventions, * we send it upstream assuming it is an M_CTL we don't understand. */ static void udp_icmp_error(queue_t *q, mblk_t *mp) { icmph_t *icmph; ipha_t *ipha; int iph_hdr_length; udpha_t *udpha; sin_t sin; sin6_t sin6; mblk_t *mp1; int error = 0; size_t mp_size = MBLKL(mp); udp_t *udp = Q_TO_UDP(q); /* * Assume IP provides aligned packets - otherwise toss */ if (!OK_32PTR(mp->b_rptr)) { freemsg(mp); return; } /* * Verify that we have a complete IP header and the application has * asked for errors. If not, send it upstream. */ if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) { noticmpv4: putnext(UDP_RD(q), mp); return; } ipha = (ipha_t *)mp->b_rptr; /* * Verify IP version. Anything other than IPv4 or IPv6 packet is sent * upstream. ICMPv6 is handled in udp_icmp_error_ipv6. */ switch (IPH_HDR_VERSION(ipha)) { case IPV6_VERSION: udp_icmp_error_ipv6(q, mp); return; case IPV4_VERSION: break; default: goto noticmpv4; } /* Skip past the outer IP and ICMP headers */ iph_hdr_length = IPH_HDR_LENGTH(ipha); icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; /* * If we don't have the correct outer IP header length or if the ULP * is not IPPROTO_ICMP or if we don't have a complete inner IP header * send the packet upstream. */ if (iph_hdr_length < sizeof (ipha_t) || ipha->ipha_protocol != IPPROTO_ICMP || (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { goto noticmpv4; } ipha = (ipha_t *)&icmph[1]; /* Skip past the inner IP and find the ULP header */ iph_hdr_length = IPH_HDR_LENGTH(ipha); udpha = (udpha_t *)((char *)ipha + iph_hdr_length); /* * If we don't have the correct inner IP header length or if the ULP * is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR * bytes of UDP header, send it upstream. */ if (iph_hdr_length < sizeof (ipha_t) || ipha->ipha_protocol != IPPROTO_UDP || (uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) { goto noticmpv4; } switch (icmph->icmph_type) { case ICMP_DEST_UNREACHABLE: switch (icmph->icmph_code) { case ICMP_FRAGMENTATION_NEEDED: /* * IP has already adjusted the path MTU. * XXX Somehow pass MTU indication to application? */ break; case ICMP_PORT_UNREACHABLE: case ICMP_PROTOCOL_UNREACHABLE: error = ECONNREFUSED; break; default: /* Transient errors */ break; } break; default: /* Transient errors */ break; } if (error == 0) { freemsg(mp); return; } switch (udp->udp_family) { case AF_INET: sin = sin_null; sin.sin_family = AF_INET; sin.sin_addr.s_addr = ipha->ipha_dst; sin.sin_port = udpha->uha_dst_port; mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0, error); break; case AF_INET6: sin6 = sin6_null; sin6.sin6_family = AF_INET6; IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr); sin6.sin6_port = udpha->uha_dst_port; mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, error); break; } if (mp1) putnext(UDP_RD(q), mp1); freemsg(mp); } /* * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6. * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. * Assumes that IP has pulled up all the extension headers as well as the * ICMPv6 header. * An M_CTL could potentially come here from some other module (i.e. if UDP * is pushed on some module other than IP). Thus, if we find that the M_CTL * does not have enough ICMP information , following STREAMS conventions, * we send it upstream assuming it is an M_CTL we don't understand. The reason * it might get here is if the non-ICMP M_CTL accidently has 6 in the version * field (when cast to ipha_t in udp_icmp_error). */ static void udp_icmp_error_ipv6(queue_t *q, mblk_t *mp) { icmp6_t *icmp6; ip6_t *ip6h, *outer_ip6h; uint16_t hdr_length; uint8_t *nexthdrp; udpha_t *udpha; sin6_t sin6; mblk_t *mp1; int error = 0; size_t mp_size = MBLKL(mp); udp_t *udp = Q_TO_UDP(q); /* * Verify that we have a complete IP header. If not, send it upstream. */ if (mp_size < sizeof (ip6_t)) { noticmpv6: putnext(UDP_RD(q), mp); return; } outer_ip6h = (ip6_t *)mp->b_rptr; /* * Verify this is an ICMPV6 packet, else send it upstream */ if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) { hdr_length = IPV6_HDR_LEN; } else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length, &nexthdrp) || *nexthdrp != IPPROTO_ICMPV6) { goto noticmpv6; } icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length]; ip6h = (ip6_t *)&icmp6[1]; /* * Verify we have a complete ICMP and inner IP header. */ if ((uchar_t *)&ip6h[1] > mp->b_wptr) goto noticmpv6; if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp)) goto noticmpv6; udpha = (udpha_t *)((char *)ip6h + hdr_length); /* * Validate inner header. If the ULP is not IPPROTO_UDP or if we don't * have at least ICMP_MIN_UDP_HDR bytes of UDP header send the * packet upstream. */ if ((*nexthdrp != IPPROTO_UDP) || ((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) { goto noticmpv6; } switch (icmp6->icmp6_type) { case ICMP6_DST_UNREACH: switch (icmp6->icmp6_code) { case ICMP6_DST_UNREACH_NOPORT: error = ECONNREFUSED; break; case ICMP6_DST_UNREACH_ADMIN: case ICMP6_DST_UNREACH_NOROUTE: case ICMP6_DST_UNREACH_BEYONDSCOPE: case ICMP6_DST_UNREACH_ADDR: /* Transient errors */ break; default: break; } break; case ICMP6_PACKET_TOO_BIG: { struct T_unitdata_ind *tudi; struct T_opthdr *toh; size_t udi_size; mblk_t *newmp; t_scalar_t opt_length = sizeof (struct T_opthdr) + sizeof (struct ip6_mtuinfo); sin6_t *sin6; struct ip6_mtuinfo *mtuinfo; /* * If the application has requested to receive path mtu * information, send up an empty message containing an * IPV6_PATHMTU ancillary data item. */ if (!udp->udp_ipv6_recvpathmtu) break; udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) + opt_length; if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) { BUMP_MIB(&udp_mib, udpInErrors); break; } /* * newmp->b_cont is left to NULL on purpose. This is an * empty message containing only ancillary data. */ newmp->b_datap->db_type = M_PROTO; tudi = (struct T_unitdata_ind *)newmp->b_rptr; newmp->b_wptr = (uchar_t *)tudi + udi_size; tudi->PRIM_type = T_UNITDATA_IND; tudi->SRC_length = sizeof (sin6_t); tudi->SRC_offset = sizeof (struct T_unitdata_ind); tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t); tudi->OPT_length = opt_length; sin6 = (sin6_t *)&tudi[1]; bzero(sin6, sizeof (sin6_t)); sin6->sin6_family = AF_INET6; sin6->sin6_addr = udp->udp_v6dst; toh = (struct T_opthdr *)&sin6[1]; toh->level = IPPROTO_IPV6; toh->name = IPV6_PATHMTU; toh->len = opt_length; toh->status = 0; mtuinfo = (struct ip6_mtuinfo *)&toh[1]; bzero(mtuinfo, sizeof (struct ip6_mtuinfo)); mtuinfo->ip6m_addr.sin6_family = AF_INET6; mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst; mtuinfo->ip6m_mtu = icmp6->icmp6_mtu; /* * We've consumed everything we need from the original * message. Free it, then send our empty message. */ freemsg(mp); putnext(UDP_RD(q), newmp); return; } case ICMP6_TIME_EXCEEDED: /* Transient errors */ break; case ICMP6_PARAM_PROB: /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && (uchar_t *)ip6h + icmp6->icmp6_pptr == (uchar_t *)nexthdrp) { error = ECONNREFUSED; break; } break; } if (error == 0) { freemsg(mp); return; } sin6 = sin6_null; sin6.sin6_family = AF_INET6; sin6.sin6_addr = ip6h->ip6_dst; sin6.sin6_port = udpha->uha_dst_port; sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, error); if (mp1) putnext(UDP_RD(q), mp1); freemsg(mp); } /* * This routine responds to T_ADDR_REQ messages. It is called by udp_wput. * The local address is filled in if endpoint is bound. The remote address * is filled in if remote address has been precified ("connected endpoint") * (The concept of connected CLTS sockets is alien to published TPI * but we support it anyway). */ static void udp_addr_req(queue_t *q, mblk_t *mp) { sin_t *sin; sin6_t *sin6; mblk_t *ackmp; struct T_addr_ack *taa; udp_t *udp = Q_TO_UDP(q); /* Make it large enough for worst case */ ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 2 * sizeof (sin6_t), 1); if (ackmp == NULL) { udp_err_ack(q, mp, TSYSERR, ENOMEM); return; } taa = (struct T_addr_ack *)ackmp->b_rptr; bzero(taa, sizeof (struct T_addr_ack)); ackmp->b_wptr = (uchar_t *)&taa[1]; taa->PRIM_type = T_ADDR_ACK; ackmp->b_datap->db_type = M_PCPROTO; /* * Note: Following code assumes 32 bit alignment of basic * data structures like sin_t and struct T_addr_ack. */ if (udp->udp_state != TS_UNBND) { /* * Fill in local address first */ taa->LOCADDR_offset = sizeof (*taa); if (udp->udp_family == AF_INET) { taa->LOCADDR_length = sizeof (sin_t); sin = (sin_t *)&taa[1]; /* Fill zeroes and then initialize non-zero fields */ *sin = sin_null; sin->sin_family = AF_INET; if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, sin->sin_addr.s_addr); } else { /* * INADDR_ANY * udp_v6src is not set, we might be bound to * broadcast/multicast. Use udp_bound_v6src as * local address instead (that could * also still be INADDR_ANY) */ IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src, sin->sin_addr.s_addr); } sin->sin_port = udp->udp_port; ackmp->b_wptr = (uchar_t *)&sin[1]; if (udp->udp_state == TS_DATA_XFER) { /* * connected, fill remote address too */ taa->REMADDR_length = sizeof (sin_t); /* assumed 32-bit alignment */ taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length; sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); /* initialize */ *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_v6dst); sin->sin_port = udp->udp_dstport; ackmp->b_wptr = (uchar_t *)&sin[1]; } } else { taa->LOCADDR_length = sizeof (sin6_t); sin6 = (sin6_t *)&taa[1]; /* Fill zeroes and then initialize non-zero fields */ *sin6 = sin6_null; sin6->sin6_family = AF_INET6; if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { sin6->sin6_addr = udp->udp_v6src; } else { /* * UNSPECIFIED * udp_v6src is not set, we might be bound to * broadcast/multicast. Use udp_bound_v6src as * local address instead (that could * also still be UNSPECIFIED) */ sin6->sin6_addr = udp->udp_bound_v6src; } sin6->sin6_port = udp->udp_port; ackmp->b_wptr = (uchar_t *)&sin6[1]; if (udp->udp_state == TS_DATA_XFER) { /* * connected, fill remote address too */ taa->REMADDR_length = sizeof (sin6_t); /* assumed 32-bit alignment */ taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length; sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); /* initialize */ *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = udp->udp_v6dst; sin6->sin6_port = udp->udp_dstport; ackmp->b_wptr = (uchar_t *)&sin6[1]; } ackmp->b_wptr = (uchar_t *)&sin6[1]; } } ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); putnext(UDP_RD(q), ackmp); } static void udp_copy_info(struct T_info_ack *tap, udp_t *udp) { if (udp->udp_family == AF_INET) { *tap = udp_g_t_info_ack_ipv4; } else { *tap = udp_g_t_info_ack_ipv6; } tap->CURRENT_state = udp->udp_state; tap->OPT_size = udp_max_optsize; } /* * This routine responds to T_CAPABILITY_REQ messages. It is called by * udp_wput. Much of the T_CAPABILITY_ACK information is copied from * udp_g_t_info_ack. The current state of the stream is copied from * udp_state. */ static void udp_capability_req(queue_t *q, mblk_t *mp) { t_uscalar_t cap_bits1; struct T_capability_ack *tcap; udp_t *udp = Q_TO_UDP(q); cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), mp->b_datap->db_type, T_CAPABILITY_ACK); if (!mp) return; tcap = (struct T_capability_ack *)mp->b_rptr; tcap->CAP_bits1 = 0; if (cap_bits1 & TC1_INFO) { udp_copy_info(&tcap->INFO_ack, udp); tcap->CAP_bits1 |= TC1_INFO; } putnext(UDP_RD(q), mp); } /* * This routine responds to T_INFO_REQ messages. It is called by udp_wput. * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack. * The current state of the stream is copied from udp_state. */ static void udp_info_req(queue_t *q, mblk_t *mp) { udp_t *udp = Q_TO_UDP(q); /* Create a T_INFO_ACK message. */ mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, T_INFO_ACK); if (!mp) return; udp_copy_info((struct T_info_ack *)mp->b_rptr, udp); putnext(UDP_RD(q), mp); } /* * IP recognizes seven kinds of bind requests: * * - A zero-length address binds only to the protocol number. * * - A 4-byte address is treated as a request to * validate that the address is a valid local IPv4 * address, appropriate for an application to bind to. * IP does the verification, but does not make any note * of the address at this time. * * - A 16-byte address contains is treated as a request * to validate a local IPv6 address, as the 4-byte * address case above. * * - A 16-byte sockaddr_in to validate the local IPv4 address and also * use it for the inbound fanout of packets. * * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also * use it for the inbound fanout of packets. * * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout * information consisting of local and remote addresses * and ports. In this case, the addresses are both * validated as appropriate for this operation, and, if * so, the information is retained for use in the * inbound fanout. * * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 * fanout information, like the 12-byte case above. * * IP will also fill in the IRE request mblk with information * regarding our peer. In all cases, we notify IP of our protocol * type by appending a single protocol byte to the bind request. */ static mblk_t * udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length) { char *cp; mblk_t *mp; struct T_bind_req *tbr; ipa_conn_t *ac; ipa6_conn_t *ac6; sin_t *sin; sin6_t *sin6; ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); if (!mp) return (mp); mp->b_datap->db_type = M_PROTO; tbr = (struct T_bind_req *)mp->b_rptr; tbr->PRIM_type = bind_prim; tbr->ADDR_offset = sizeof (*tbr); tbr->CONIND_number = 0; tbr->ADDR_length = addr_length; cp = (char *)&tbr[1]; switch (addr_length) { case sizeof (ipa_conn_t): ASSERT(udp->udp_family == AF_INET); /* Append a request for an IRE */ mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); if (!mp->b_cont) { freemsg(mp); return (NULL); } mp->b_cont->b_wptr += sizeof (ire_t); mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; /* cp known to be 32 bit aligned */ ac = (ipa_conn_t *)cp; ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src); ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst); ac->ac_fport = udp->udp_dstport; ac->ac_lport = udp->udp_port; break; case sizeof (ipa6_conn_t): ASSERT(udp->udp_family == AF_INET6); /* Append a request for an IRE */ mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); if (!mp->b_cont) { freemsg(mp); return (NULL); } mp->b_cont->b_wptr += sizeof (ire_t); mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; /* cp known to be 32 bit aligned */ ac6 = (ipa6_conn_t *)cp; ac6->ac6_laddr = udp->udp_v6src; ac6->ac6_faddr = udp->udp_v6dst; ac6->ac6_fport = udp->udp_dstport; ac6->ac6_lport = udp->udp_port; break; case sizeof (sin_t): ASSERT(udp->udp_family == AF_INET); /* Append a request for an IRE */ mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); if (!mp->b_cont) { freemsg(mp); return (NULL); } mp->b_cont->b_wptr += sizeof (ire_t); mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; sin = (sin_t *)cp; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src); sin->sin_port = udp->udp_port; break; case sizeof (sin6_t): ASSERT(udp->udp_family == AF_INET6); /* Append a request for an IRE */ mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); if (!mp->b_cont) { freemsg(mp); return (NULL); } mp->b_cont->b_wptr += sizeof (ire_t); mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; sin6 = (sin6_t *)cp; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = udp->udp_bound_v6src; sin6->sin6_port = udp->udp_port; break; } /* Add protocol number to end */ cp[addr_length] = (char)IPPROTO_UDP; mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; return (mp); } /* * This is the open routine for udp. It allocates a udp_t structure for * the stream and, on the first open of the module, creates an ND table. */ /* ARGSUSED */ static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) { int err; udp_t *udp; conn_t *connp; zoneid_t zoneid = getzoneid(); queue_t *ip_wq; char *name; TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q); /* If the stream is already open, return immediately. */ if (q->q_ptr != NULL) return (0); /* If this is not a push of udp as a module, fail. */ if (sflag != MODOPEN) return (EINVAL); q->q_hiwat = udp_recv_hiwat; WR(q)->q_hiwat = udp_xmit_hiwat; WR(q)->q_lowat = udp_xmit_lowat; /* Insert ourselves in the stream since we're about to walk q_next */ qprocson(q); udp = kmem_cache_alloc(udp_cache, KM_SLEEP); bzero(udp, sizeof (*udp)); /* * UDP is supported only as a module and it has to be pushed directly * above the device instance of IP. If UDP is pushed anywhere else * on a stream, it will support just T_SVR4_OPTMGMT_REQ for the * sake of MIB browsers and fail everything else. */ ip_wq = WR(q)->q_next; if (ip_wq->q_next != NULL || (name = ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL || strcmp(name, IP_MOD_NAME) != 0 || ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) { /* Support just SNMP for MIB browsers */ connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); connp->conn_rq = q; connp->conn_wq = WR(q); connp->conn_flags |= IPCL_UDPMOD; connp->conn_cred = credp; connp->conn_zoneid = zoneid; connp->conn_udp = udp; udp->udp_connp = connp; q->q_ptr = WR(q)->q_ptr = connp; crhold(credp); q->q_qinfo = &udp_snmp_rinit; WR(q)->q_qinfo = &udp_snmp_winit; return (0); } /* * Initialize the udp_t structure for this stream. */ q = RD(ip_wq); connp = Q_TO_CONN(q); mutex_enter(&connp->conn_lock); connp->conn_proto = IPPROTO_UDP; connp->conn_flags |= IPCL_UDP; connp->conn_sqp = IP_SQUEUE_GET(lbolt); connp->conn_udp = udp; /* Set the initial state of the stream and the privilege status. */ udp->udp_connp = connp; udp->udp_state = TS_UNBND; udp->udp_mode = UDP_MT_HOT; if (getmajor(*devp) == (major_t)UDP6_MAJ) { udp->udp_family = AF_INET6; udp->udp_ipversion = IPV6_VERSION; udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; udp->udp_ttl = udp_ipv6_hoplimit; connp->conn_af_isv6 = B_TRUE; connp->conn_flags |= IPCL_ISV6; } else { udp->udp_family = AF_INET; udp->udp_ipversion = IPV4_VERSION; udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE; udp->udp_ttl = udp_ipv4_ttl; connp->conn_af_isv6 = B_FALSE; connp->conn_flags &= ~IPCL_ISV6; } udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; connp->conn_zoneid = zoneid; if (connp->conn_flags & IPCL_SOCKET) { udp->udp_issocket = B_TRUE; udp->udp_direct_sockfs = B_TRUE; } mutex_exit(&connp->conn_lock); /* * The transmit hiwat/lowat is only looked at on IP's queue. * Store in q_hiwat in order to return on SO_SNDBUF/SO_RCVBUF * getsockopts. */ q->q_hiwat = udp_recv_hiwat; WR(q)->q_hiwat = udp_xmit_hiwat; WR(q)->q_lowat = udp_xmit_lowat; if (udp->udp_family == AF_INET6) { /* Build initial header template for transmit */ if ((err = udp_build_hdrs(q, udp)) != 0) { qprocsoff(UDP_RD(q)); udp->udp_connp = NULL; connp->conn_udp = NULL; kmem_cache_free(udp_cache, udp); return (err); } } /* Set the Stream head write offset and high watermark. */ (void) mi_set_sth_wroff(UDP_RD(q), udp->udp_max_hdr_len + udp_wroff_extra); (void) mi_set_sth_hiwat(UDP_RD(q), udp_set_rcv_hiwat(udp, q->q_hiwat)); return (0); } /* * Which UDP options OK to set through T_UNITDATA_REQ... */ /* ARGSUSED */ static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name) { return (B_TRUE); } /* * This routine gets default values of certain options whose default * values are maintained by protcol specific code */ /* ARGSUSED */ int udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) { int *i1 = (int *)ptr; switch (level) { case IPPROTO_IP: switch (name) { case IP_MULTICAST_TTL: *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; return (sizeof (uchar_t)); case IP_MULTICAST_LOOP: *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; return (sizeof (uchar_t)); } break; case IPPROTO_IPV6: switch (name) { case IPV6_MULTICAST_HOPS: *i1 = IP_DEFAULT_MULTICAST_TTL; return (sizeof (int)); case IPV6_MULTICAST_LOOP: *i1 = IP_DEFAULT_MULTICAST_LOOP; return (sizeof (int)); case IPV6_UNICAST_HOPS: *i1 = udp_ipv6_hoplimit; return (sizeof (int)); } break; } return (-1); } /* * This routine retrieves the current status of socket options * and expects the caller to pass in the queue pointer of the * upper instance. It returns the size of the option retrieved. */ int udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) { int *i1 = (int *)ptr; conn_t *connp; udp_t *udp; ip6_pkt_t *ipp; q = UDP_WR(q); connp = Q_TO_CONN(q); udp = connp->conn_udp; ipp = &udp->udp_sticky_ipp; switch (level) { case SOL_SOCKET: switch (name) { case SO_DEBUG: *i1 = udp->udp_debug; break; /* goto sizeof (int) option return */ case SO_REUSEADDR: *i1 = udp->udp_reuseaddr; break; /* goto sizeof (int) option return */ case SO_TYPE: *i1 = SOCK_DGRAM; break; /* goto sizeof (int) option return */ /* * The following three items are available here, * but are only meaningful to IP. */ case SO_DONTROUTE: *i1 = udp->udp_dontroute; break; /* goto sizeof (int) option return */ case SO_USELOOPBACK: *i1 = udp->udp_useloopback; break; /* goto sizeof (int) option return */ case SO_BROADCAST: *i1 = udp->udp_broadcast; break; /* goto sizeof (int) option return */ case SO_SNDBUF: *i1 = q->q_hiwat; break; /* goto sizeof (int) option return */ case SO_RCVBUF: *i1 = RD(q)->q_hiwat; break; /* goto sizeof (int) option return */ case SO_DGRAM_ERRIND: *i1 = udp->udp_dgram_errind; break; /* goto sizeof (int) option return */ case SO_RECVUCRED: *i1 = udp->udp_recvucred; break; /* goto sizeof (int) option return */ default: return (-1); } break; case IPPROTO_IP: if (udp->udp_family != AF_INET) return (-1); switch (name) { case IP_OPTIONS: case T_IP_OPTIONS: if (udp->udp_ip_rcv_options_len) bcopy(udp->udp_ip_rcv_options, ptr, udp->udp_ip_rcv_options_len); return (udp->udp_ip_rcv_options_len); case IP_TOS: case T_IP_TOS: *i1 = (int)udp->udp_type_of_service; break; /* goto sizeof (int) option return */ case IP_TTL: *i1 = (int)udp->udp_ttl; break; /* goto sizeof (int) option return */ case IP_MULTICAST_IF: /* 0 address if not set */ *(ipaddr_t *)ptr = udp->udp_multicast_if_addr; return (sizeof (ipaddr_t)); case IP_MULTICAST_TTL: *(uchar_t *)ptr = udp->udp_multicast_ttl; return (sizeof (uchar_t)); case IP_MULTICAST_LOOP: *ptr = connp->conn_multicast_loop; return (sizeof (uint8_t)); case IP_RECVOPTS: *i1 = udp->udp_recvopts; break; /* goto sizeof (int) option return */ case IP_RECVDSTADDR: *i1 = udp->udp_recvdstaddr; break; /* goto sizeof (int) option return */ case IP_RECVIF: *i1 = udp->udp_recvif; break; /* goto sizeof (int) option return */ case IP_RECVSLLA: *i1 = udp->udp_recvslla; break; /* goto sizeof (int) option return */ case IP_RECVTTL: *i1 = udp->udp_recvttl; break; /* goto sizeof (int) option return */ case IP_ADD_MEMBERSHIP: case IP_DROP_MEMBERSHIP: case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case IP_ADD_SOURCE_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case IP_DONTFAILOVER_IF: /* cannot "get" the value for these */ return (-1); case IP_BOUND_IF: /* Zero if not set */ *i1 = udp->udp_bound_if; break; /* goto sizeof (int) option return */ case IP_UNSPEC_SRC: *i1 = udp->udp_unspec_source; break; /* goto sizeof (int) option return */ case IP_XMIT_IF: *i1 = udp->udp_xmit_if; break; /* goto sizeof (int) option return */ default: return (-1); } break; case IPPROTO_IPV6: if (udp->udp_family != AF_INET6) return (-1); switch (name) { case IPV6_UNICAST_HOPS: *i1 = (unsigned int)udp->udp_ttl; break; /* goto sizeof (int) option return */ case IPV6_MULTICAST_IF: /* 0 index if not set */ *i1 = udp->udp_multicast_if_index; break; /* goto sizeof (int) option return */ case IPV6_MULTICAST_HOPS: *i1 = udp->udp_multicast_ttl; break; /* goto sizeof (int) option return */ case IPV6_MULTICAST_LOOP: *i1 = connp->conn_multicast_loop; break; /* goto sizeof (int) option return */ case IPV6_JOIN_GROUP: case IPV6_LEAVE_GROUP: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: /* cannot "get" the value for these */ return (-1); case IPV6_BOUND_IF: /* Zero if not set */ *i1 = udp->udp_bound_if; break; /* goto sizeof (int) option return */ case IPV6_UNSPEC_SRC: *i1 = udp->udp_unspec_source; break; /* goto sizeof (int) option return */ case IPV6_RECVPKTINFO: *i1 = udp->udp_ipv6_recvpktinfo; break; /* goto sizeof (int) option return */ case IPV6_RECVTCLASS: *i1 = udp->udp_ipv6_recvtclass; break; /* goto sizeof (int) option return */ case IPV6_RECVPATHMTU: *i1 = udp->udp_ipv6_recvpathmtu; break; /* goto sizeof (int) option return */ case IPV6_RECVHOPLIMIT: *i1 = udp->udp_ipv6_recvhoplimit; break; /* goto sizeof (int) option return */ case IPV6_RECVHOPOPTS: *i1 = udp->udp_ipv6_recvhopopts; break; /* goto sizeof (int) option return */ case IPV6_RECVDSTOPTS: *i1 = udp->udp_ipv6_recvdstopts; break; /* goto sizeof (int) option return */ case _OLD_IPV6_RECVDSTOPTS: *i1 = udp->udp_old_ipv6_recvdstopts; break; /* goto sizeof (int) option return */ case IPV6_RECVRTHDRDSTOPTS: *i1 = udp->udp_ipv6_recvrthdrdstopts; break; /* goto sizeof (int) option return */ case IPV6_RECVRTHDR: *i1 = udp->udp_ipv6_recvrthdr; break; /* goto sizeof (int) option return */ case IPV6_PKTINFO: { /* XXX assumes that caller has room for max size! */ struct in6_pktinfo *pkti; pkti = (struct in6_pktinfo *)ptr; if (ipp->ipp_fields & IPPF_IFINDEX) pkti->ipi6_ifindex = ipp->ipp_ifindex; else pkti->ipi6_ifindex = 0; if (ipp->ipp_fields & IPPF_ADDR) pkti->ipi6_addr = ipp->ipp_addr; else pkti->ipi6_addr = ipv6_all_zeros; return (sizeof (struct in6_pktinfo)); } case IPV6_TCLASS: if (ipp->ipp_fields & IPPF_TCLASS) *i1 = ipp->ipp_tclass; else *i1 = IPV6_FLOW_TCLASS( IPV6_DEFAULT_VERS_AND_FLOW); break; /* goto sizeof (int) option return */ case IPV6_NEXTHOP: { sin6_t *sin6 = (sin6_t *)ptr; if (!(ipp->ipp_fields & IPPF_NEXTHOP)) return (0); *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipp->ipp_nexthop; return (sizeof (sin6_t)); } case IPV6_HOPOPTS: if (!(ipp->ipp_fields & IPPF_HOPOPTS)) return (0); bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen); return (ipp->ipp_hopoptslen); case IPV6_RTHDRDSTOPTS: if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) return (0); bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); return (ipp->ipp_rtdstoptslen); case IPV6_RTHDR: if (!(ipp->ipp_fields & IPPF_RTHDR)) return (0); bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); return (ipp->ipp_rthdrlen); case IPV6_DSTOPTS: if (!(ipp->ipp_fields & IPPF_DSTOPTS)) return (0); bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); return (ipp->ipp_dstoptslen); case IPV6_PATHMTU: return (ip_fill_mtuinfo(&udp->udp_v6dst, udp->udp_dstport, (struct ip6_mtuinfo *)ptr)); default: return (-1); } break; case IPPROTO_UDP: switch (name) { case UDP_ANONPRIVBIND: *i1 = udp->udp_anon_priv_bind; break; case UDP_EXCLBIND: *i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0; break; case UDP_RCVHDR: *i1 = udp->udp_rcvhdr ? 1 : 0; break; default: return (-1); } break; default: return (-1); } return (sizeof (int)); } /* * This routine sets socket options; it expects the caller * to pass in the queue pointer of the upper instance. */ /* ARGSUSED */ int udp_opt_set(queue_t *q, uint_t optset_context, int level, int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) { int *i1 = (int *)invalp; boolean_t onoff = (*i1 == 0) ? 0 : 1; boolean_t checkonly; int error; conn_t *connp; udp_t *udp; q = UDP_WR(q); connp = Q_TO_CONN(q); udp = connp->conn_udp; switch (optset_context) { case SETFN_OPTCOM_CHECKONLY: checkonly = B_TRUE; /* * Note: Implies T_CHECK semantics for T_OPTCOM_REQ * inlen != 0 implies value supplied and * we have to "pretend" to set it. * inlen == 0 implies that there is no * value part in T_CHECK request and just validation * done elsewhere should be enough, we just return here. */ if (inlen == 0) { *outlenp = 0; return (0); } break; case SETFN_OPTCOM_NEGOTIATE: checkonly = B_FALSE; break; case SETFN_UD_NEGOTIATE: case SETFN_CONN_NEGOTIATE: checkonly = B_FALSE; /* * Negotiating local and "association-related" options * through T_UNITDATA_REQ. * * Following routine can filter out ones we do not * want to be "set" this way. */ if (!udp_opt_allow_udr_set(level, name)) { *outlenp = 0; return (EINVAL); } break; default: /* * We should never get here */ *outlenp = 0; return (EINVAL); } ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); /* * For fixed length options, no sanity check * of passed in length is done. It is assumed *_optcom_req() * routines do the right thing. */ switch (level) { case SOL_SOCKET: switch (name) { case SO_REUSEADDR: if (!checkonly) udp->udp_reuseaddr = onoff; break; case SO_DEBUG: if (!checkonly) udp->udp_debug = onoff; break; /* * The following three items are available here, * but are only meaningful to IP. */ case SO_DONTROUTE: if (!checkonly) udp->udp_dontroute = onoff; break; case SO_USELOOPBACK: if (!checkonly) udp->udp_useloopback = onoff; break; case SO_BROADCAST: if (!checkonly) udp->udp_broadcast = onoff; break; case SO_SNDBUF: if (*i1 > udp_max_buf) { *outlenp = 0; return (ENOBUFS); } if (!checkonly) { q->q_hiwat = *i1; WR(UDP_RD(q))->q_hiwat = *i1; } break; case SO_RCVBUF: if (*i1 > udp_max_buf) { *outlenp = 0; return (ENOBUFS); } if (!checkonly) { RD(q)->q_hiwat = *i1; UDP_RD(q)->q_hiwat = *i1; (void) mi_set_sth_hiwat(UDP_RD(q), udp_set_rcv_hiwat(udp, *i1)); } break; case SO_DGRAM_ERRIND: if (!checkonly) udp->udp_dgram_errind = onoff; break; case SO_RECVUCRED: if (!checkonly) udp->udp_recvucred = onoff; break; default: *outlenp = 0; return (EINVAL); } break; case IPPROTO_IP: if (udp->udp_family != AF_INET) { *outlenp = 0; return (ENOPROTOOPT); } switch (name) { case IP_OPTIONS: case T_IP_OPTIONS: /* Save options for use by IP. */ if (inlen & 0x3) { *outlenp = 0; return (EINVAL); } if (checkonly) break; if (udp->udp_ip_snd_options) { mi_free((char *)udp->udp_ip_snd_options); udp->udp_ip_snd_options_len = 0; udp->udp_ip_snd_options = NULL; } if (inlen) { udp->udp_ip_snd_options = (uchar_t *)mi_alloc(inlen, BPRI_HI); if (udp->udp_ip_snd_options) { bcopy(invalp, udp->udp_ip_snd_options, inlen); udp->udp_ip_snd_options_len = inlen; } } udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + udp->udp_ip_snd_options_len; (void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len + udp_wroff_extra); break; case IP_TTL: if (!checkonly) { udp->udp_ttl = (uchar_t)*i1; } break; case IP_TOS: case T_IP_TOS: if (!checkonly) { udp->udp_type_of_service = (uchar_t)*i1; } break; case IP_MULTICAST_IF: { /* * TODO should check OPTMGMT reply and undo this if * there is an error. */ struct in_addr *inap = (struct in_addr *)invalp; if (!checkonly) { udp->udp_multicast_if_addr = inap->s_addr; } break; } case IP_MULTICAST_TTL: if (!checkonly) udp->udp_multicast_ttl = *invalp; break; case IP_MULTICAST_LOOP: if (!checkonly) connp->conn_multicast_loop = *invalp; break; case IP_RECVOPTS: if (!checkonly) udp->udp_recvopts = onoff; break; case IP_RECVDSTADDR: if (!checkonly) udp->udp_recvdstaddr = onoff; break; case IP_RECVIF: if (!checkonly) udp->udp_recvif = onoff; break; case IP_RECVSLLA: if (!checkonly) udp->udp_recvslla = onoff; break; case IP_RECVTTL: if (!checkonly) udp->udp_recvttl = onoff; break; case IP_ADD_MEMBERSHIP: case IP_DROP_MEMBERSHIP: case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case IP_ADD_SOURCE_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case IP_SEC_OPT: /* * "soft" error (negative) * option not handled at this level * Do not modify *outlenp. */ return (-EINVAL); case IP_BOUND_IF: if (!checkonly) udp->udp_bound_if = *i1; break; case IP_UNSPEC_SRC: if (!checkonly) udp->udp_unspec_source = onoff; break; case IP_XMIT_IF: if (!checkonly) udp->udp_xmit_if = *i1; break; default: *outlenp = 0; return (EINVAL); } break; case IPPROTO_IPV6: { ip6_pkt_t *ipp; boolean_t sticky; if (udp->udp_family != AF_INET6) { *outlenp = 0; return (ENOPROTOOPT); } /* * Deal with both sticky options and ancillary data */ if (thisdg_attrs == NULL) { /* sticky options, or none */ ipp = &udp->udp_sticky_ipp; sticky = B_TRUE; } else { /* ancillary data */ ipp = (ip6_pkt_t *)thisdg_attrs; sticky = B_FALSE; } switch (name) { case IPV6_MULTICAST_IF: if (!checkonly) udp->udp_multicast_if_index = *i1; break; case IPV6_UNICAST_HOPS: /* -1 means use default */ if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { *outlenp = 0; return (EINVAL); } if (!checkonly) { if (*i1 == -1) { udp->udp_ttl = ipp->ipp_unicast_hops = udp_ipv6_hoplimit; ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; /* Pass modified value to IP. */ *i1 = udp->udp_ttl; } else { udp->udp_ttl = ipp->ipp_unicast_hops = (uint8_t)*i1; ipp->ipp_fields |= IPPF_UNICAST_HOPS; } /* Rebuild the header template */ error = udp_build_hdrs(q, udp); if (error != 0) { *outlenp = 0; return (error); } } break; case IPV6_MULTICAST_HOPS: /* -1 means use default */ if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { *outlenp = 0; return (EINVAL); } if (!checkonly) { if (*i1 == -1) { udp->udp_multicast_ttl = ipp->ipp_multicast_hops = IP_DEFAULT_MULTICAST_TTL; ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS; /* Pass modified value to IP. */ *i1 = udp->udp_multicast_ttl; } else { udp->udp_multicast_ttl = ipp->ipp_multicast_hops = (uint8_t)*i1; ipp->ipp_fields |= IPPF_MULTICAST_HOPS; } } break; case IPV6_MULTICAST_LOOP: if (*i1 != 0 && *i1 != 1) { *outlenp = 0; return (EINVAL); } if (!checkonly) connp->conn_multicast_loop = *i1; break; case IPV6_JOIN_GROUP: case IPV6_LEAVE_GROUP: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: /* * "soft" error (negative) * option not handled at this level * Note: Do not modify *outlenp */ return (-EINVAL); case IPV6_BOUND_IF: if (!checkonly) udp->udp_bound_if = *i1; break; case IPV6_UNSPEC_SRC: if (!checkonly) udp->udp_unspec_source = onoff; break; /* * Set boolean switches for ancillary data delivery */ case IPV6_RECVPKTINFO: if (!checkonly) udp->udp_ipv6_recvpktinfo = onoff; break; case IPV6_RECVTCLASS: if (!checkonly) { udp->udp_ipv6_recvtclass = onoff; } break; case IPV6_RECVPATHMTU: if (!checkonly) { udp->udp_ipv6_recvpathmtu = onoff; } break; case IPV6_RECVHOPLIMIT: if (!checkonly) udp->udp_ipv6_recvhoplimit = onoff; break; case IPV6_RECVHOPOPTS: if (!checkonly) udp->udp_ipv6_recvhopopts = onoff; break; case IPV6_RECVDSTOPTS: if (!checkonly) udp->udp_ipv6_recvdstopts = onoff; break; case _OLD_IPV6_RECVDSTOPTS: if (!checkonly) udp->udp_old_ipv6_recvdstopts = onoff; break; case IPV6_RECVRTHDRDSTOPTS: if (!checkonly) udp->udp_ipv6_recvrthdrdstopts = onoff; break; case IPV6_RECVRTHDR: if (!checkonly) udp->udp_ipv6_recvrthdr = onoff; break; /* * Set sticky options or ancillary data. * If sticky options, (re)build any extension headers * that might be needed as a result. */ case IPV6_PKTINFO: /* * The source address and ifindex are verified * in ip_opt_set(). For ancillary data the * source address is checked in ip_wput_v6. */ if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) return (EINVAL); if (checkonly) break; if (inlen == 0) { ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); ipp->ipp_sticky_ignored |= (IPPF_IFINDEX|IPPF_ADDR); } else { struct in6_pktinfo *pkti; pkti = (struct in6_pktinfo *)invalp; ipp->ipp_ifindex = pkti->ipi6_ifindex; ipp->ipp_addr = pkti->ipi6_addr; if (ipp->ipp_ifindex != 0) ipp->ipp_fields |= IPPF_IFINDEX; else ipp->ipp_fields &= ~IPPF_IFINDEX; if (!IN6_IS_ADDR_UNSPECIFIED( &ipp->ipp_addr)) ipp->ipp_fields |= IPPF_ADDR; else ipp->ipp_fields &= ~IPPF_ADDR; } if (sticky) { error = udp_build_hdrs(q, udp); if (error != 0) return (error); } break; case IPV6_HOPLIMIT: if (sticky) return (EINVAL); if (inlen != 0 && inlen != sizeof (int)) return (EINVAL); if (checkonly) break; if (inlen == 0) { ipp->ipp_fields &= ~IPPF_HOPLIMIT; ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT; } else { if (*i1 > 255 || *i1 < -1) return (EINVAL); if (*i1 == -1) ipp->ipp_hoplimit = udp_ipv6_hoplimit; else ipp->ipp_hoplimit = *i1; ipp->ipp_fields |= IPPF_HOPLIMIT; } break; case IPV6_TCLASS: if (inlen != 0 && inlen != sizeof (int)) return (EINVAL); if (checkonly) break; if (inlen == 0) { ipp->ipp_fields &= ~IPPF_TCLASS; ipp->ipp_sticky_ignored |= IPPF_TCLASS; } else { if (*i1 > 255 || *i1 < -1) return (EINVAL); if (*i1 == -1) ipp->ipp_tclass = 0; else ipp->ipp_tclass = *i1; ipp->ipp_fields |= IPPF_TCLASS; } if (sticky) { error = udp_build_hdrs(q, udp); if (error != 0) return (error); } break; case IPV6_NEXTHOP: /* * IP will verify that the nexthop is reachable * and fail for sticky options. */ if (inlen != 0 && inlen != sizeof (sin6_t)) return (EINVAL); if (checkonly) break; if (inlen == 0) { ipp->ipp_fields &= ~IPPF_NEXTHOP; ipp->ipp_sticky_ignored |= IPPF_NEXTHOP; } else { sin6_t *sin6 = (sin6_t *)invalp; if (sin6->sin6_family != AF_INET6) return (EAFNOSUPPORT); if (IN6_IS_ADDR_V4MAPPED( &sin6->sin6_addr)) return (EADDRNOTAVAIL); ipp->ipp_nexthop = sin6->sin6_addr; if (!IN6_IS_ADDR_UNSPECIFIED( &ipp->ipp_nexthop)) ipp->ipp_fields |= IPPF_NEXTHOP; else ipp->ipp_fields &= ~IPPF_NEXTHOP; } if (sticky) { error = udp_build_hdrs(q, udp); if (error != 0) return (error); } break; case IPV6_HOPOPTS: { ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; /* * Sanity checks - minimum size, size a multiple of * eight bytes, and matching size passed in. */ if (inlen != 0 && inlen != (8 * (hopts->ip6h_len + 1))) return (EINVAL); if (checkonly) break; if (inlen == 0) { if (sticky && (ipp->ipp_fields & IPPF_HOPOPTS) != 0) { kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); ipp->ipp_hopopts = NULL; ipp->ipp_hopoptslen = 0; } ipp->ipp_fields &= ~IPPF_HOPOPTS; ipp->ipp_sticky_ignored |= IPPF_HOPOPTS; } else { error = udp_pkt_set(invalp, inlen, sticky, (uchar_t **)&ipp->ipp_hopopts, &ipp->ipp_hopoptslen); if (error != 0) return (error); ipp->ipp_fields |= IPPF_HOPOPTS; } if (sticky) { error = udp_build_hdrs(q, udp); if (error != 0) return (error); } break; } case IPV6_RTHDRDSTOPTS: { ip6_dest_t *dopts = (ip6_dest_t *)invalp; /* * Sanity checks - minimum size, size a multiple of * eight bytes, and matching size passed in. */ if (inlen != 0 && inlen != (8 * (dopts->ip6d_len + 1))) return (EINVAL); if (checkonly) break; if (inlen == 0) { if (sticky && (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); ipp->ipp_rtdstopts = NULL; ipp->ipp_rtdstoptslen = 0; } ipp->ipp_fields &= ~IPPF_RTDSTOPTS; ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS; } else { error = udp_pkt_set(invalp, inlen, sticky, (uchar_t **)&ipp->ipp_rtdstopts, &ipp->ipp_rtdstoptslen); if (error != 0) return (error); ipp->ipp_fields |= IPPF_RTDSTOPTS; } if (sticky) { error = udp_build_hdrs(q, udp); if (error != 0) return (error); } break; } case IPV6_DSTOPTS: { ip6_dest_t *dopts = (ip6_dest_t *)invalp; /* * Sanity checks - minimum size, size a multiple of * eight bytes, and matching size passed in. */ if (inlen != 0 && inlen != (8 * (dopts->ip6d_len + 1))) return (EINVAL); if (checkonly) break; if (inlen == 0) { if (sticky && (ipp->ipp_fields & IPPF_DSTOPTS) != 0) { kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); ipp->ipp_dstopts = NULL; ipp->ipp_dstoptslen = 0; } ipp->ipp_fields &= ~IPPF_DSTOPTS; ipp->ipp_sticky_ignored |= IPPF_DSTOPTS; } else { error = udp_pkt_set(invalp, inlen, sticky, (uchar_t **)&ipp->ipp_dstopts, &ipp->ipp_dstoptslen); if (error != 0) return (error); ipp->ipp_fields |= IPPF_DSTOPTS; } if (sticky) { error = udp_build_hdrs(q, udp); if (error != 0) return (error); } break; } case IPV6_RTHDR: { ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; /* * Sanity checks - minimum size, size a multiple of * eight bytes, and matching size passed in. */ if (inlen != 0 && inlen != (8 * (rt->ip6r_len + 1))) return (EINVAL); if (checkonly) break; if (inlen == 0) { if (sticky && (ipp->ipp_fields & IPPF_RTHDR) != 0) { kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); ipp->ipp_rthdr = NULL; ipp->ipp_rthdrlen = 0; } ipp->ipp_fields &= ~IPPF_RTHDR; ipp->ipp_sticky_ignored |= IPPF_RTHDR; } else { error = udp_pkt_set(invalp, inlen, sticky, (uchar_t **)&ipp->ipp_rthdr, &ipp->ipp_rthdrlen); if (error != 0) return (error); ipp->ipp_fields |= IPPF_RTHDR; } if (sticky) { error = udp_build_hdrs(q, udp); if (error != 0) return (error); } break; } case IPV6_DONTFRAG: if (checkonly) break; if (onoff) { ipp->ipp_fields |= IPPF_DONTFRAG; } else { ipp->ipp_fields &= ~IPPF_DONTFRAG; } break; case IPV6_USE_MIN_MTU: if (inlen != sizeof (int)) return (EINVAL); if (*i1 < -1 || *i1 > 1) return (EINVAL); if (checkonly) break; ipp->ipp_fields |= IPPF_USE_MIN_MTU; ipp->ipp_use_min_mtu = *i1; break; case IPV6_BOUND_PIF: case IPV6_SEC_OPT: case IPV6_DONTFAILOVER_IF: case IPV6_SRC_PREFERENCES: case IPV6_V6ONLY: /* Handled at the IP level */ return (-EINVAL); default: *outlenp = 0; return (EINVAL); } break; } /* end IPPROTO_IPV6 */ case IPPROTO_UDP: switch (name) { case UDP_ANONPRIVBIND: if ((error = secpolicy_net_privaddr(cr, 0)) != 0) { *outlenp = 0; return (error); } if (!checkonly) { udp->udp_anon_priv_bind = onoff; } break; case UDP_EXCLBIND: if (!checkonly) udp->udp_exclbind = onoff; break; case UDP_RCVHDR: if (!checkonly) udp->udp_rcvhdr = onoff; break; default: *outlenp = 0; return (EINVAL); } break; default: *outlenp = 0; return (EINVAL); } /* * Common case of OK return with outval same as inval. */ if (invalp != outvalp) { /* don't trust bcopy for identical src/dst */ (void) bcopy(invalp, outvalp, inlen); } *outlenp = inlen; return (0); } /* * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl. * The headers include ip6i_t (if needed), ip6_t, any sticky extension * headers, and the udp header. * Returns failure if can't allocate memory. */ static int udp_build_hdrs(queue_t *q, udp_t *udp) { uchar_t *hdrs; uint_t hdrs_len; ip6_t *ip6h; ip6i_t *ip6i; udpha_t *udpha; ip6_pkt_t *ipp = &udp->udp_sticky_ipp; hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE; ASSERT(hdrs_len != 0); if (hdrs_len != udp->udp_sticky_hdrs_len) { /* Need to reallocate */ hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP); if (hdrs == NULL) return (ENOMEM); if (udp->udp_sticky_hdrs_len != 0) { kmem_free(udp->udp_sticky_hdrs, udp->udp_sticky_hdrs_len); } udp->udp_sticky_hdrs = hdrs; udp->udp_sticky_hdrs_len = hdrs_len; } ip_build_hdrs_v6(udp->udp_sticky_hdrs, udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP); /* Set header fields not in ipp */ if (ipp->ipp_fields & IPPF_HAS_IP6I) { ip6i = (ip6i_t *)udp->udp_sticky_hdrs; ip6h = (ip6_t *)&ip6i[1]; } else { ip6h = (ip6_t *)udp->udp_sticky_hdrs; } if (!(ipp->ipp_fields & IPPF_ADDR)) ip6h->ip6_src = udp->udp_v6src; udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE); udpha->uha_src_port = udp->udp_port; /* Try to get everything in a single mblk */ if (hdrs_len > udp->udp_max_hdr_len) { udp->udp_max_hdr_len = hdrs_len; (void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len + udp_wroff_extra); } return (0); } /* * Set optbuf and optlen for the option. * If sticky is set allocate memory (if not already present). * Otherwise just point optbuf and optlen at invalp and inlen. * Returns failure if memory can not be allocated. */ static int udp_pkt_set(uchar_t *invalp, uint_t inlen, boolean_t sticky, uchar_t **optbufp, uint_t *optlenp) { uchar_t *optbuf; if (!sticky) { *optbufp = invalp; *optlenp = inlen; return (0); } if (inlen == *optlenp) { /* Unchanged length - no need to realocate */ bcopy(invalp, *optbufp, inlen); return (0); } if (inlen != 0) { /* Allocate new buffer before free */ optbuf = kmem_alloc(inlen, KM_NOSLEEP); if (optbuf == NULL) return (ENOMEM); } else { optbuf = NULL; } /* Free old buffer */ if (*optlenp != 0) kmem_free(*optbufp, *optlenp); bcopy(invalp, optbuf, inlen); *optbufp = optbuf; *optlenp = inlen; return (0); } /* * This routine retrieves the value of an ND variable in a udpparam_t * structure. It is called through nd_getset when a user reads the * variable. */ /* ARGSUSED */ static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { udpparam_t *udppa = (udpparam_t *)cp; (void) mi_mpprintf(mp, "%d", udppa->udp_param_value); return (0); } /* * Walk through the param array specified registering each element with the * named dispatch (ND) handler. */ static boolean_t udp_param_register(udpparam_t *udppa, int cnt) { for (; cnt-- > 0; udppa++) { if (udppa->udp_param_name && udppa->udp_param_name[0]) { if (!nd_load(&udp_g_nd, udppa->udp_param_name, udp_param_get, udp_param_set, (caddr_t)udppa)) { nd_free(&udp_g_nd); return (B_FALSE); } } } if (!nd_load(&udp_g_nd, "udp_extra_priv_ports", udp_extra_priv_ports_get, NULL, NULL)) { nd_free(&udp_g_nd); return (B_FALSE); } if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_add", NULL, udp_extra_priv_ports_add, NULL)) { nd_free(&udp_g_nd); return (B_FALSE); } if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_del", NULL, udp_extra_priv_ports_del, NULL)) { nd_free(&udp_g_nd); return (B_FALSE); } if (!nd_load(&udp_g_nd, "udp_status", udp_status_report, NULL, NULL)) { nd_free(&udp_g_nd); return (B_FALSE); } if (!nd_load(&udp_g_nd, "udp_bind_hash", udp_bind_hash_report, NULL, NULL)) { nd_free(&udp_g_nd); return (B_FALSE); } return (B_TRUE); } /* This routine sets an ND variable in a udpparam_t structure. */ /* ARGSUSED */ static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; udpparam_t *udppa = (udpparam_t *)cp; /* * Fail the request if the new value does not lie within the * required bounds. */ if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value < udppa->udp_param_min || new_value > udppa->udp_param_max) { return (EINVAL); } /* Set the new value */ udppa->udp_param_value = new_value; return (0); } static void udp_input(conn_t *connp, mblk_t *mp) { struct T_unitdata_ind *tudi; uchar_t *rptr; /* Pointer to IP header */ int hdr_length; /* Length of IP+UDP headers */ int udi_size; /* Size of T_unitdata_ind */ int mp_len; udp_t *udp; udpha_t *udpha; int ipversion; ip6_pkt_t ipp; ip6_t *ip6h; ip6i_t *ip6i; mblk_t *mp1; mblk_t *options_mp = NULL; in_pktinfo_t *pinfo = NULL; cred_t *cr = NULL; queue_t *q = connp->conn_rq; pid_t cpid; TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START, "udp_rput_start: q %p mp %p", q, mp); udp = connp->conn_udp; rptr = mp->b_rptr; ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL); ASSERT(OK_32PTR(rptr)); /* * IP should have prepended the options data in an M_CTL * Check M_CTL "type" to make sure are not here bcos of * a valid ICMP message */ if (DB_TYPE(mp) == M_CTL) { if (MBLKL(mp) == sizeof (in_pktinfo_t) && ((in_pktinfo_t *)mp->b_rptr)->in_pkt_ulp_type == IN_PKTINFO) { /* * IP_RECVIF or IP_RECVSLLA information has been * appended to the packet by IP. We need to * extract the mblk and adjust the rptr */ pinfo = (in_pktinfo_t *)mp->b_rptr; options_mp = mp; mp = mp->b_cont; rptr = mp->b_rptr; UDP_STAT(udp_in_pktinfo); } else { /* * ICMP messages. */ udp_icmp_error(q, mp); TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, "udp_rput_end: q %p (%S)", q, "m_ctl"); return; } } mp_len = msgdsize(mp); /* * This is the inbound data path. * First, we check to make sure the IP version number is correct, * and then pull the IP and UDP headers into the first mblk. * Assume IP provides aligned packets - otherwise toss. * Also, check if we have a complete IP header. */ /* Initialize regardless if ipversion is IPv4 or IPv6 */ ipp.ipp_fields = 0; ipversion = IPH_HDR_VERSION(rptr); switch (ipversion) { case IPV4_VERSION: ASSERT(MBLKL(mp) >= sizeof (ipha_t)); ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP); hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE; if ((hdr_length > IP_SIMPLE_HDR_LENGTH + UDPH_SIZE) || (udp->udp_ip_rcv_options_len)) { /* * Handle IPv4 packets with options outside of the * main data path. Not needed for AF_INET6 sockets * since they don't support a getsockopt of IP_OPTIONS. */ if (udp->udp_family == AF_INET6) break; /* * UDP length check performed for IPv4 packets with * options to check whether UDP length specified in * the header is the same as the physical length of * the packet. */ udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE)); if (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE)) { goto tossit; } /* * Handle the case where the packet has IP options * and the IP_RECVSLLA & IP_RECVIF are set */ if (pinfo != NULL) mp = options_mp; udp_become_writer(connp, mp, udp_rput_other_wrapper, SQTAG_UDP_INPUT); TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, "udp_rput_end: q %p (%S)", q, "end"); return; } /* Handle IPV6_RECVHOPLIMIT. */ if ((udp->udp_family == AF_INET6) && (pinfo != NULL) && udp->udp_ipv6_recvpktinfo) { if (pinfo->in_pkt_flags & IPF_RECVIF) { ipp.ipp_fields |= IPPF_IFINDEX; ipp.ipp_ifindex = pinfo->in_pkt_ifindex; } } break; case IPV6_VERSION: /* * IPv6 packets can only be received by applications * that are prepared to receive IPv6 addresses. * The IP fanout must ensure this. */ ASSERT(udp->udp_family == AF_INET6); ip6h = (ip6_t *)rptr; ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr); if (ip6h->ip6_nxt != IPPROTO_UDP) { uint8_t nexthdrp; /* Look for ifindex information */ if (ip6h->ip6_nxt == IPPROTO_RAW) { ip6i = (ip6i_t *)ip6h; if ((uchar_t *)&ip6i[1] > mp->b_wptr) goto tossit; if (ip6i->ip6i_flags & IP6I_IFINDEX) { ASSERT(ip6i->ip6i_ifindex != 0); ipp.ipp_fields |= IPPF_IFINDEX; ipp.ipp_ifindex = ip6i->ip6i_ifindex; } rptr = (uchar_t *)&ip6i[1]; mp->b_rptr = rptr; if (rptr == mp->b_wptr) { mp1 = mp->b_cont; freeb(mp); mp = mp1; rptr = mp->b_rptr; } if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE)) goto tossit; ip6h = (ip6_t *)rptr; mp_len = msgdsize(mp); } /* * Find any potentially interesting extension headers * as well as the length of the IPv6 + extension * headers. */ hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) + UDPH_SIZE; ASSERT(nexthdrp == IPPROTO_UDP); } else { hdr_length = IPV6_HDR_LEN + UDPH_SIZE; ip6i = NULL; } break; default: ASSERT(0); } /* * IP inspected the UDP header thus all of it must be in the mblk. * UDP length check is performed for IPv6 packets and IPv4 packets * without options to check if the size of the packet as specified * by the header is the same as the physical size of the packet. */ udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE)); if ((MBLKL(mp) < hdr_length) || (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) { goto tossit; } /* Walk past the headers. */ if (!udp->udp_rcvhdr) { mp->b_rptr = rptr + hdr_length; mp_len -= hdr_length; } /* * This is the inbound data path. Packets are passed upstream as * T_UNITDATA_IND messages with full IP headers still attached. */ if (udp->udp_family == AF_INET) { sin_t *sin; ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION); /* * Normally only send up the address. * If IP_RECVDSTADDR is set we include the destination IP * address as an option. With IP_RECVOPTS we include all * the IP options. Only ip_rput_other() handles packets * that contain IP options. */ udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t); if (udp->udp_recvdstaddr) { udi_size += sizeof (struct T_opthdr) + sizeof (struct in_addr); UDP_STAT(udp_in_recvdstaddr); } /* * If the IP_RECVSLLA or the IP_RECVIF is set then allocate * space accordingly */ if (udp->udp_recvif && (pinfo != NULL) && (pinfo->in_pkt_flags & IPF_RECVIF)) { udi_size += sizeof (struct T_opthdr) + sizeof (uint_t); UDP_STAT(udp_in_recvif); } if (udp->udp_recvslla && (pinfo != NULL) && (pinfo->in_pkt_flags & IPF_RECVSLLA)) { udi_size += sizeof (struct T_opthdr) + sizeof (struct sockaddr_dl); UDP_STAT(udp_in_recvslla); } if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) { udi_size += sizeof (struct T_opthdr) + ucredsize; cpid = DB_CPID(mp); UDP_STAT(udp_in_recvucred); } /* * If IP_RECVTTL is set allocate the appropriate sized buffer */ if (udp->udp_recvttl) { udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t); UDP_STAT(udp_in_recvttl); } ASSERT(IPH_HDR_LENGTH((ipha_t *)rptr) == IP_SIMPLE_HDR_LENGTH); /* Allocate a message block for the T_UNITDATA_IND structure. */ mp1 = allocb(udi_size, BPRI_MED); if (mp1 == NULL) { freemsg(mp); if (options_mp != NULL) freeb(options_mp); TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, "udp_rput_end: q %p (%S)", q, "allocbfail"); BUMP_MIB(&udp_mib, udpInErrors); return; } mp1->b_cont = mp; mp = mp1; mp->b_datap->db_type = M_PROTO; tudi = (struct T_unitdata_ind *)mp->b_rptr; mp->b_wptr = (uchar_t *)tudi + udi_size; tudi->PRIM_type = T_UNITDATA_IND; tudi->SRC_length = sizeof (sin_t); tudi->SRC_offset = sizeof (struct T_unitdata_ind); tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t); udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t)); tudi->OPT_length = udi_size; sin = (sin_t *)&tudi[1]; sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src; sin->sin_port = udpha->uha_src_port; sin->sin_family = udp->udp_family; *(uint32_t *)&sin->sin_zero[0] = 0; *(uint32_t *)&sin->sin_zero[4] = 0; /* * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or * IP_RECVTTL has been set. */ if (udi_size != 0) { /* * Copy in destination address before options to avoid * any padding issues. */ char *dstopt; dstopt = (char *)&sin[1]; if (udp->udp_recvdstaddr) { struct T_opthdr *toh; ipaddr_t *dstptr; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IP; toh->name = IP_RECVDSTADDR; toh->len = sizeof (struct T_opthdr) + sizeof (ipaddr_t); toh->status = 0; dstopt += sizeof (struct T_opthdr); dstptr = (ipaddr_t *)dstopt; *dstptr = ((ipha_t *)rptr)->ipha_dst; dstopt += sizeof (ipaddr_t); udi_size -= toh->len; } if (udp->udp_recvslla && (pinfo != NULL) && (pinfo->in_pkt_flags & IPF_RECVSLLA)) { struct T_opthdr *toh; struct sockaddr_dl *dstptr; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IP; toh->name = IP_RECVSLLA; toh->len = sizeof (struct T_opthdr) + sizeof (struct sockaddr_dl); toh->status = 0; dstopt += sizeof (struct T_opthdr); dstptr = (struct sockaddr_dl *)dstopt; bcopy(&pinfo->in_pkt_slla, dstptr, sizeof (struct sockaddr_dl)); dstopt += sizeof (struct sockaddr_dl); udi_size -= toh->len; } if (udp->udp_recvif && (pinfo != NULL) && (pinfo->in_pkt_flags & IPF_RECVIF)) { struct T_opthdr *toh; uint_t *dstptr; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IP; toh->name = IP_RECVIF; toh->len = sizeof (struct T_opthdr) + sizeof (uint_t); toh->status = 0; dstopt += sizeof (struct T_opthdr); dstptr = (uint_t *)dstopt; *dstptr = pinfo->in_pkt_ifindex; dstopt += sizeof (uint_t); udi_size -= toh->len; } if (cr != NULL) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = SOL_SOCKET; toh->name = SCM_UCRED; toh->len = sizeof (struct T_opthdr) + ucredsize; toh->status = 0; (void) cred2ucred(cr, cpid, &toh[1]); dstopt += toh->len; udi_size -= toh->len; } if (udp->udp_recvttl) { struct T_opthdr *toh; uint8_t *dstptr; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IP; toh->name = IP_RECVTTL; toh->len = sizeof (struct T_opthdr) + sizeof (uint8_t); toh->status = 0; dstopt += sizeof (struct T_opthdr); dstptr = (uint8_t *)dstopt; *dstptr = ((ipha_t *)rptr)->ipha_ttl; dstopt += sizeof (uint8_t); udi_size -= toh->len; } /* Consumed all of allocated space */ ASSERT(udi_size == 0); } } else { sin6_t *sin6; /* * Handle both IPv4 and IPv6 packets for IPv6 sockets. * * Normally we only send up the address. If receiving of any * optional receive side information is enabled, we also send * that up as options. * [ Only udp_rput_other() handles packets that contain IP * options so code to account for does not appear immediately * below but elsewhere ] */ udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t); if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS| IPPF_RTHDR|IPPF_IFINDEX)) { if (udp->udp_ipv6_recvhopopts && (ipp.ipp_fields & IPPF_HOPOPTS)) { udi_size += sizeof (struct T_opthdr) + ipp.ipp_hopoptslen; UDP_STAT(udp_in_recvhopopts); } if ((udp->udp_ipv6_recvdstopts || udp->udp_old_ipv6_recvdstopts) && (ipp.ipp_fields & IPPF_DSTOPTS)) { udi_size += sizeof (struct T_opthdr) + ipp.ipp_dstoptslen; UDP_STAT(udp_in_recvdstopts); } if (((udp->udp_ipv6_recvdstopts && udp->udp_ipv6_recvrthdr && (ipp.ipp_fields & IPPF_RTHDR)) || udp->udp_ipv6_recvrthdrdstopts) && (ipp.ipp_fields & IPPF_RTDSTOPTS)) { udi_size += sizeof (struct T_opthdr) + ipp.ipp_rtdstoptslen; UDP_STAT(udp_in_recvrtdstopts); } if (udp->udp_ipv6_recvrthdr && (ipp.ipp_fields & IPPF_RTHDR)) { udi_size += sizeof (struct T_opthdr) + ipp.ipp_rthdrlen; UDP_STAT(udp_in_recvrthdr); } if (udp->udp_ipv6_recvpktinfo && (ipp.ipp_fields & IPPF_IFINDEX)) { udi_size += sizeof (struct T_opthdr) + sizeof (struct in6_pktinfo); UDP_STAT(udp_in_recvpktinfo); } } if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) { udi_size += sizeof (struct T_opthdr) + ucredsize; cpid = DB_CPID(mp); UDP_STAT(udp_in_recvucred); } if (udp->udp_ipv6_recvhoplimit) { udi_size += sizeof (struct T_opthdr) + sizeof (int); UDP_STAT(udp_in_recvhoplimit); } if (udp->udp_ipv6_recvtclass) { udi_size += sizeof (struct T_opthdr) + sizeof (int); UDP_STAT(udp_in_recvtclass); } mp1 = allocb(udi_size, BPRI_MED); if (mp1 == NULL) { freemsg(mp); if (options_mp != NULL) freeb(options_mp); TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, "udp_rput_end: q %p (%S)", q, "allocbfail"); BUMP_MIB(&udp_mib, udpInErrors); return; } mp1->b_cont = mp; mp = mp1; mp->b_datap->db_type = M_PROTO; tudi = (struct T_unitdata_ind *)mp->b_rptr; mp->b_wptr = (uchar_t *)tudi + udi_size; tudi->PRIM_type = T_UNITDATA_IND; tudi->SRC_length = sizeof (sin6_t); tudi->SRC_offset = sizeof (struct T_unitdata_ind); tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin6_t); udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t)); tudi->OPT_length = udi_size; sin6 = (sin6_t *)&tudi[1]; if (ipversion == IPV4_VERSION) { in6_addr_t v6dst; IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src, &sin6->sin6_addr); IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst, &v6dst); sin6->sin6_flowinfo = 0; sin6->sin6_scope_id = 0; sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst, connp->conn_zoneid); } else { sin6->sin6_addr = ip6h->ip6_src; /* No sin6_flowinfo per API */ sin6->sin6_flowinfo = 0; /* For link-scope source pass up scope id */ if ((ipp.ipp_fields & IPPF_IFINDEX) && IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) sin6->sin6_scope_id = ipp.ipp_ifindex; else sin6->sin6_scope_id = 0; sin6->__sin6_src_id = ip_srcid_find_addr( &ip6h->ip6_dst, connp->conn_zoneid); } sin6->sin6_port = udpha->uha_src_port; sin6->sin6_family = udp->udp_family; if (udi_size != 0) { uchar_t *dstopt; dstopt = (uchar_t *)&sin6[1]; if (udp->udp_ipv6_recvpktinfo && (ipp.ipp_fields & IPPF_IFINDEX)) { struct T_opthdr *toh; struct in6_pktinfo *pkti; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_PKTINFO; toh->len = sizeof (struct T_opthdr) + sizeof (*pkti); toh->status = 0; dstopt += sizeof (struct T_opthdr); pkti = (struct in6_pktinfo *)dstopt; if (ipversion == IPV6_VERSION) pkti->ipi6_addr = ip6h->ip6_dst; else IN6_IPADDR_TO_V4MAPPED( ((ipha_t *)rptr)->ipha_dst, &pkti->ipi6_addr); pkti->ipi6_ifindex = ipp.ipp_ifindex; dstopt += sizeof (*pkti); udi_size -= toh->len; } if (udp->udp_ipv6_recvhoplimit) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_HOPLIMIT; toh->len = sizeof (struct T_opthdr) + sizeof (uint_t); toh->status = 0; dstopt += sizeof (struct T_opthdr); if (ipversion == IPV6_VERSION) *(uint_t *)dstopt = ip6h->ip6_hops; else *(uint_t *)dstopt = ((ipha_t *)rptr)->ipha_ttl; dstopt += sizeof (uint_t); udi_size -= toh->len; } if (udp->udp_ipv6_recvtclass) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_TCLASS; toh->len = sizeof (struct T_opthdr) + sizeof (uint_t); toh->status = 0; dstopt += sizeof (struct T_opthdr); if (ipversion == IPV6_VERSION) { *(uint_t *)dstopt = IPV6_FLOW_TCLASS(ip6h->ip6_flow); } else { ipha_t *ipha = (ipha_t *)rptr; *(uint_t *)dstopt = ipha->ipha_type_of_service; } dstopt += sizeof (uint_t); udi_size -= toh->len; } if (udp->udp_ipv6_recvhopopts && (ipp.ipp_fields & IPPF_HOPOPTS)) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_HOPOPTS; toh->len = sizeof (struct T_opthdr) + ipp.ipp_hopoptslen; toh->status = 0; dstopt += sizeof (struct T_opthdr); bcopy(ipp.ipp_hopopts, dstopt, ipp.ipp_hopoptslen); dstopt += ipp.ipp_hopoptslen; udi_size -= toh->len; } if (udp->udp_ipv6_recvdstopts && udp->udp_ipv6_recvrthdr && (ipp.ipp_fields & IPPF_RTHDR) && (ipp.ipp_fields & IPPF_RTDSTOPTS)) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_DSTOPTS; toh->len = sizeof (struct T_opthdr) + ipp.ipp_rtdstoptslen; toh->status = 0; dstopt += sizeof (struct T_opthdr); bcopy(ipp.ipp_rtdstopts, dstopt, ipp.ipp_rtdstoptslen); dstopt += ipp.ipp_rtdstoptslen; udi_size -= toh->len; } if (udp->udp_ipv6_recvrthdr && (ipp.ipp_fields & IPPF_RTHDR)) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_RTHDR; toh->len = sizeof (struct T_opthdr) + ipp.ipp_rthdrlen; toh->status = 0; dstopt += sizeof (struct T_opthdr); bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen); dstopt += ipp.ipp_rthdrlen; udi_size -= toh->len; } if (udp->udp_ipv6_recvdstopts && (ipp.ipp_fields & IPPF_DSTOPTS)) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_DSTOPTS; toh->len = sizeof (struct T_opthdr) + ipp.ipp_dstoptslen; toh->status = 0; dstopt += sizeof (struct T_opthdr); bcopy(ipp.ipp_dstopts, dstopt, ipp.ipp_dstoptslen); dstopt += ipp.ipp_dstoptslen; udi_size -= toh->len; } if (cr != NULL) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = SOL_SOCKET; toh->name = SCM_UCRED; toh->len = sizeof (struct T_opthdr) + ucredsize; toh->status = 0; (void) cred2ucred(cr, cpid, &toh[1]); dstopt += toh->len; udi_size -= toh->len; } /* Consumed all of allocated space */ ASSERT(udi_size == 0); } #undef sin6 /* No IP_RECVDSTADDR for IPv6. */ } BUMP_MIB(&udp_mib, udpInDatagrams); TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, "udp_rput_end: q %p (%S)", q, "end"); if (options_mp != NULL) freeb(options_mp); if (udp->udp_direct_sockfs) { /* * There is nothing above us except for the stream head; * use the read-side synchronous stream interface in * order to reduce the time spent in interrupt thread. */ ASSERT(udp->udp_issocket); udp_rcv_enqueue(UDP_RD(q), udp, mp, mp_len); } else { /* * Use regular STREAMS interface to pass data upstream * if this is not a socket endpoint, or if we have * switched over to the slow mode due to sockmod being * popped or a module being pushed on top of us. */ putnext(UDP_RD(q), mp); } return; tossit: freemsg(mp); if (options_mp != NULL) freeb(options_mp); BUMP_MIB(&udp_mib, udpInErrors); } void udp_conn_recv(conn_t *connp, mblk_t *mp) { _UDP_ENTER(connp, mp, udp_input_wrapper, SQTAG_UDP_FANOUT); } /* ARGSUSED */ static void udp_input_wrapper(void *arg, mblk_t *mp, void *arg2) { udp_input((conn_t *)arg, mp); _UDP_EXIT((conn_t *)arg); } /* * Process non-M_DATA messages as well as M_DATA messages that requires * modifications to udp_ip_rcv_options i.e. IPv4 packets with IP options. */ static void udp_rput_other(queue_t *q, mblk_t *mp) { struct T_unitdata_ind *tudi; mblk_t *mp1; uchar_t *rptr; uchar_t *new_rptr; int hdr_length; int udi_size; /* Size of T_unitdata_ind */ int opt_len; /* Length of IP options */ sin_t *sin; struct T_error_ack *tea; mblk_t *options_mp = NULL; in_pktinfo_t *pinfo; boolean_t recv_on = B_FALSE; cred_t *cr = NULL; udp_t *udp = Q_TO_UDP(q); pid_t cpid; TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START, "udp_rput_other: q %p mp %p", q, mp); ASSERT(OK_32PTR(mp->b_rptr)); rptr = mp->b_rptr; switch (mp->b_datap->db_type) { case M_CTL: /* * We are here only if IP_RECVSLLA and/or IP_RECVIF are set */ recv_on = B_TRUE; options_mp = mp; pinfo = (in_pktinfo_t *)options_mp->b_rptr; /* * The actual data is in mp->b_cont */ mp = mp->b_cont; ASSERT(OK_32PTR(mp->b_rptr)); rptr = mp->b_rptr; break; case M_DATA: /* * M_DATA messages contain IPv4 datagrams. They are handled * after this switch. */ break; case M_PROTO: case M_PCPROTO: /* M_PROTO messages contain some type of TPI message. */ ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); if (mp->b_wptr - rptr < sizeof (t_scalar_t)) { freemsg(mp); TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, "udp_rput_other_end: q %p (%S)", q, "protoshort"); return; } tea = (struct T_error_ack *)rptr; switch (tea->PRIM_type) { case T_ERROR_ACK: switch (tea->ERROR_prim) { case O_T_BIND_REQ: case T_BIND_REQ: { /* * If our O_T_BIND_REQ/T_BIND_REQ fails, * clear out the associated port and source * address before passing the message * upstream. If this was caused by a T_CONN_REQ * revert back to bound state. */ udp_fanout_t *udpf; udpf = &udp_bind_fanout[ UDP_BIND_HASH(udp->udp_port)]; mutex_enter(&udpf->uf_lock); if (udp->udp_state == TS_DATA_XFER) { /* Connect failed */ tea->ERROR_prim = T_CONN_REQ; /* Revert back to the bound source */ udp->udp_v6src = udp->udp_bound_v6src; udp->udp_state = TS_IDLE; mutex_exit(&udpf->uf_lock); if (udp->udp_family == AF_INET6) (void) udp_build_hdrs(q, udp); break; } if (udp->udp_discon_pending) { tea->ERROR_prim = T_DISCON_REQ; udp->udp_discon_pending = 0; } V6_SET_ZERO(udp->udp_v6src); V6_SET_ZERO(udp->udp_bound_v6src); udp->udp_state = TS_UNBND; udp_bind_hash_remove(udp, B_TRUE); udp->udp_port = 0; mutex_exit(&udpf->uf_lock); if (udp->udp_family == AF_INET6) (void) udp_build_hdrs(q, udp); break; } default: break; } break; case T_BIND_ACK: udp_rput_bind_ack(q, mp); return; case T_OPTMGMT_ACK: case T_OK_ACK: break; default: freemsg(mp); return; } putnext(UDP_RD(q), mp); return; } /* * This is the inbound data path. * First, we make sure the data contains both IP and UDP headers. * * This handle IPv4 packets for only AF_INET sockets. * AF_INET6 sockets can never access udp_ip_rcv_options thus there * is no need saving the options. */ ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION); hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE; if (mp->b_wptr - rptr < hdr_length) { if (!pullupmsg(mp, hdr_length)) { freemsg(mp); if (options_mp != NULL) freeb(options_mp); BUMP_MIB(&udp_mib, udpInErrors); TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, "udp_rput_other_end: q %p (%S)", q, "hdrshort"); BUMP_MIB(&udp_mib, udpInErrors); return; } rptr = mp->b_rptr; } /* Walk past the headers. */ new_rptr = rptr + hdr_length; if (!udp->udp_rcvhdr) mp->b_rptr = new_rptr; /* Save the options if any */ opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE); if (opt_len > 0) { if (opt_len > udp->udp_ip_rcv_options_len) { if (udp->udp_ip_rcv_options_len) mi_free((char *)udp->udp_ip_rcv_options); udp->udp_ip_rcv_options_len = 0; udp->udp_ip_rcv_options = (uchar_t *)mi_alloc(opt_len, BPRI_HI); if (udp->udp_ip_rcv_options) udp->udp_ip_rcv_options_len = opt_len; } if (udp->udp_ip_rcv_options_len) { bcopy(rptr + IP_SIMPLE_HDR_LENGTH, udp->udp_ip_rcv_options, opt_len); /* Adjust length if we are resusing the space */ udp->udp_ip_rcv_options_len = opt_len; } } else if (udp->udp_ip_rcv_options_len) { mi_free((char *)udp->udp_ip_rcv_options); udp->udp_ip_rcv_options = NULL; udp->udp_ip_rcv_options_len = 0; } /* * Normally only send up the address. * If IP_RECVDSTADDR is set we include the destination IP * address as an option. With IP_RECVOPTS we include all * the IP options. */ udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t); if (udp->udp_recvdstaddr) { udi_size += sizeof (struct T_opthdr) + sizeof (struct in_addr); UDP_STAT(udp_in_recvdstaddr); } if (udp->udp_recvopts && opt_len > 0) { udi_size += sizeof (struct T_opthdr) + opt_len; UDP_STAT(udp_in_recvopts); } /* * If the IP_RECVSLLA or the IP_RECVIF is set then allocate * space accordingly */ if (udp->udp_recvif && recv_on && (pinfo->in_pkt_flags & IPF_RECVIF)) { udi_size += sizeof (struct T_opthdr) + sizeof (uint_t); UDP_STAT(udp_in_recvif); } if (udp->udp_recvslla && recv_on && (pinfo->in_pkt_flags & IPF_RECVSLLA)) { udi_size += sizeof (struct T_opthdr) + sizeof (struct sockaddr_dl); UDP_STAT(udp_in_recvslla); } if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) { udi_size += sizeof (struct T_opthdr) + ucredsize; cpid = DB_CPID(mp); UDP_STAT(udp_in_recvucred); } /* * If IP_RECVTTL is set allocate the appropriate sized buffer */ if (udp->udp_recvttl) { udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t); UDP_STAT(udp_in_recvttl); } /* Allocate a message block for the T_UNITDATA_IND structure. */ mp1 = allocb(udi_size, BPRI_MED); if (mp1 == NULL) { freemsg(mp); if (options_mp != NULL) freeb(options_mp); TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, "udp_rput_other_end: q %p (%S)", q, "allocbfail"); BUMP_MIB(&udp_mib, udpInErrors); return; } mp1->b_cont = mp; mp = mp1; mp->b_datap->db_type = M_PROTO; tudi = (struct T_unitdata_ind *)mp->b_rptr; mp->b_wptr = (uchar_t *)tudi + udi_size; tudi->PRIM_type = T_UNITDATA_IND; tudi->SRC_length = sizeof (sin_t); tudi->SRC_offset = sizeof (struct T_unitdata_ind); tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t); udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t)); tudi->OPT_length = udi_size; sin = (sin_t *)&tudi[1]; sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src; sin->sin_port = ((in_port_t *) new_rptr)[-(UDPH_SIZE/sizeof (in_port_t))]; sin->sin_family = AF_INET; *(uint32_t *)&sin->sin_zero[0] = 0; *(uint32_t *)&sin->sin_zero[4] = 0; /* * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or * IP_RECVTTL has been set. */ if (udi_size != 0) { /* * Copy in destination address before options to avoid any * padding issues. */ char *dstopt; dstopt = (char *)&sin[1]; if (udp->udp_recvdstaddr) { struct T_opthdr *toh; ipaddr_t *dstptr; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IP; toh->name = IP_RECVDSTADDR; toh->len = sizeof (struct T_opthdr) + sizeof (ipaddr_t); toh->status = 0; dstopt += sizeof (struct T_opthdr); dstptr = (ipaddr_t *)dstopt; *dstptr = (((ipaddr_t *)rptr)[4]); dstopt += sizeof (ipaddr_t); udi_size -= toh->len; } if (udp->udp_recvopts && udi_size != 0) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IP; toh->name = IP_RECVOPTS; toh->len = sizeof (struct T_opthdr) + opt_len; toh->status = 0; dstopt += sizeof (struct T_opthdr); bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, opt_len); dstopt += opt_len; udi_size -= toh->len; } if (udp->udp_recvslla && recv_on && (pinfo->in_pkt_flags & IPF_RECVSLLA)) { struct T_opthdr *toh; struct sockaddr_dl *dstptr; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IP; toh->name = IP_RECVSLLA; toh->len = sizeof (struct T_opthdr) + sizeof (struct sockaddr_dl); toh->status = 0; dstopt += sizeof (struct T_opthdr); dstptr = (struct sockaddr_dl *)dstopt; bcopy(&pinfo->in_pkt_slla, dstptr, sizeof (struct sockaddr_dl)); dstopt += sizeof (struct sockaddr_dl); udi_size -= toh->len; } if (udp->udp_recvif && recv_on && (pinfo->in_pkt_flags & IPF_RECVIF)) { struct T_opthdr *toh; uint_t *dstptr; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IP; toh->name = IP_RECVIF; toh->len = sizeof (struct T_opthdr) + sizeof (uint_t); toh->status = 0; dstopt += sizeof (struct T_opthdr); dstptr = (uint_t *)dstopt; *dstptr = pinfo->in_pkt_ifindex; dstopt += sizeof (uint_t); udi_size -= toh->len; } if (cr != NULL) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = SOL_SOCKET; toh->name = SCM_UCRED; toh->len = sizeof (struct T_opthdr) + ucredsize; toh->status = 0; (void) cred2ucred(cr, cpid, &toh[1]); dstopt += toh->len; udi_size -= toh->len; } if (udp->udp_recvttl) { struct T_opthdr *toh; uint8_t *dstptr; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IP; toh->name = IP_RECVTTL; toh->len = sizeof (struct T_opthdr) + sizeof (uint8_t); toh->status = 0; dstopt += sizeof (struct T_opthdr); dstptr = (uint8_t *)dstopt; *dstptr = ((ipha_t *)rptr)->ipha_ttl; dstopt += sizeof (uint8_t); udi_size -= toh->len; } ASSERT(udi_size == 0); /* "Consumed" all of allocated space */ } BUMP_MIB(&udp_mib, udpInDatagrams); TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, "udp_rput_other_end: q %p (%S)", q, "end"); if (options_mp != NULL) freeb(options_mp); if (udp->udp_direct_sockfs) { /* * There is nothing above us except for the stream head; * use the read-side synchronous stream interface in * order to reduce the time spent in interrupt thread. */ ASSERT(udp->udp_issocket); udp_rcv_enqueue(UDP_RD(q), udp, mp, msgdsize(mp)); } else { /* * Use regular STREAMS interface to pass data upstream * if this is not a socket endpoint, or if we have * switched over to the slow mode due to sockmod being * popped or a module being pushed on top of us. */ putnext(UDP_RD(q), mp); } } /* ARGSUSED */ static void udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2) { conn_t *connp = arg; udp_rput_other(connp->conn_rq, mp); udp_exit(connp); } /* * Process a T_BIND_ACK */ static void udp_rput_bind_ack(queue_t *q, mblk_t *mp) { udp_t *udp = Q_TO_UDP(q); mblk_t *mp1; ire_t *ire; struct T_bind_ack *tba; uchar_t *addrp; ipa_conn_t *ac; ipa6_conn_t *ac6; if (udp->udp_discon_pending) udp->udp_discon_pending = 0; /* * If a broadcast/multicast address was bound set * the source address to 0. * This ensures no datagrams with broadcast address * as source address are emitted (which would violate * RFC1122 - Hosts requirements) * * Note that when connecting the returned IRE is * for the destination address and we only perform * the broadcast check for the source address (it * is OK to connect to a broadcast/multicast address.) */ mp1 = mp->b_cont; if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) { ire = (ire_t *)mp1->b_rptr; /* * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast * local address. */ if (ire->ire_type == IRE_BROADCAST && udp->udp_state != TS_DATA_XFER) { /* This was just a local bind to a broadcast addr */ V6_SET_ZERO(udp->udp_v6src); if (udp->udp_family == AF_INET6) (void) udp_build_hdrs(q, udp); } else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { /* * Local address not yet set - pick it from the * T_bind_ack */ tba = (struct T_bind_ack *)mp->b_rptr; addrp = &mp->b_rptr[tba->ADDR_offset]; switch (udp->udp_family) { case AF_INET: if (tba->ADDR_length == sizeof (ipa_conn_t)) { ac = (ipa_conn_t *)addrp; } else { ASSERT(tba->ADDR_length == sizeof (ipa_conn_x_t)); ac = &((ipa_conn_x_t *)addrp)->acx_conn; } IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr, &udp->udp_v6src); break; case AF_INET6: if (tba->ADDR_length == sizeof (ipa6_conn_t)) { ac6 = (ipa6_conn_t *)addrp; } else { ASSERT(tba->ADDR_length == sizeof (ipa6_conn_x_t)); ac6 = &((ipa6_conn_x_t *) addrp)->ac6x_conn; } udp->udp_v6src = ac6->ac6_laddr; (void) udp_build_hdrs(q, udp); break; } } mp1 = mp1->b_cont; } /* * Look for one or more appended ACK message added by * udp_connect or udp_disconnect. * If none found just send up the T_BIND_ACK. * udp_connect has appended a T_OK_ACK and a T_CONN_CON. * udp_disconnect has appended a T_OK_ACK. */ if (mp1 != NULL) { if (mp->b_cont == mp1) mp->b_cont = NULL; else { ASSERT(mp->b_cont->b_cont == mp1); mp->b_cont->b_cont = NULL; } freemsg(mp); mp = mp1; while (mp != NULL) { mp1 = mp->b_cont; mp->b_cont = NULL; putnext(UDP_RD(q), mp); mp = mp1; } return; } freemsg(mp->b_cont); mp->b_cont = NULL; putnext(UDP_RD(q), mp); } /* * return SNMP stuff in buffer in mpdata */ int udp_snmp_get(queue_t *q, mblk_t *mpctl) { mblk_t *mpdata; mblk_t *mp_conn_ctl; mblk_t *mp6_conn_ctl; mblk_t *mp_conn_data; mblk_t *mp6_conn_data; mblk_t *mp_conn_tail = NULL; mblk_t *mp6_conn_tail = NULL; struct opthdr *optp; mib2_udpEntry_t ude; mib2_udp6Entry_t ude6; int state; zoneid_t zoneid; int i; connf_t *connfp; conn_t *connp = Q_TO_CONN(q); udp_t *udp = connp->conn_udp; if (mpctl == NULL || (mpdata = mpctl->b_cont) == NULL || (mp_conn_ctl = copymsg(mpctl)) == NULL || (mp6_conn_ctl = copymsg(mpctl)) == NULL) { freemsg(mp_conn_ctl); return (0); } mp_conn_data = mp_conn_ctl->b_cont; mp6_conn_data = mp6_conn_ctl->b_cont; zoneid = connp->conn_zoneid; /* fixed length structure for IPv4 and IPv6 counters */ SET_MIB(udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t)); SET_MIB(udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t)); optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_UDP; optp->name = 0; (void) snmp_append_data(mpdata, (char *)&udp_mib, sizeof (udp_mib)); optp->len = msgdsize(mpdata); qreply(q, mpctl); for (i = 0; i < CONN_G_HASH_SIZE; i++) { connfp = &ipcl_globalhash_fanout[i]; connp = NULL; while ((connp = ipcl_get_next_conn(connfp, connp, IPCL_UDP))) { udp = connp->conn_udp; if (zoneid != connp->conn_zoneid) continue; /* * Note that the port numbers are sent in * host byte order */ if (udp->udp_state == TS_UNBND) state = MIB2_UDP_unbound; else if (udp->udp_state == TS_IDLE) state = MIB2_UDP_idle; else if (udp->udp_state == TS_DATA_XFER) state = MIB2_UDP_connected; else state = MIB2_UDP_unknown; /* * Create an IPv4 table entry for IPv4 entries and also * any IPv6 entries which are bound to in6addr_any * (i.e. anything a IPv4 peer could connect/send to). */ if (udp->udp_ipversion == IPV4_VERSION || (udp->udp_state <= TS_IDLE && IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) { ude.udpEntryInfo.ue_state = state; /* * If in6addr_any this will set it to * INADDR_ANY */ ude.udpLocalAddress = V4_PART_OF_V6(udp->udp_v6src); ude.udpLocalPort = ntohs(udp->udp_port); if (udp->udp_state == TS_DATA_XFER) { /* * Can potentially get here for * v6 socket if another process * (say, ping) has just done a * sendto(), changing the state * from the TS_IDLE above to * TS_DATA_XFER by the time we hit * this part of the code. */ ude.udpEntryInfo.ue_RemoteAddress = V4_PART_OF_V6(udp->udp_v6dst); ude.udpEntryInfo.ue_RemotePort = ntohs(udp->udp_dstport); } else { ude.udpEntryInfo.ue_RemoteAddress = 0; ude.udpEntryInfo.ue_RemotePort = 0; } (void) snmp_append_data2(mp_conn_data, &mp_conn_tail, (char *)&ude, sizeof (ude)); } if (udp->udp_ipversion == IPV6_VERSION) { ude6.udp6EntryInfo.ue_state = state; ude6.udp6LocalAddress = udp->udp_v6src; ude6.udp6LocalPort = ntohs(udp->udp_port); ude6.udp6IfIndex = udp->udp_bound_if; if (udp->udp_state == TS_DATA_XFER) { ude6.udp6EntryInfo.ue_RemoteAddress = udp->udp_v6dst; ude6.udp6EntryInfo.ue_RemotePort = ntohs(udp->udp_dstport); } else { ude6.udp6EntryInfo.ue_RemoteAddress = sin6_null.sin6_addr; ude6.udp6EntryInfo.ue_RemotePort = 0; } (void) snmp_append_data2(mp6_conn_data, &mp6_conn_tail, (char *)&ude6, sizeof (ude6)); } } } /* IPv4 UDP endpoints */ optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_UDP; optp->name = MIB2_UDP_ENTRY; optp->len = msgdsize(mp_conn_data); qreply(q, mp_conn_ctl); /* IPv6 UDP endpoints */ optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_UDP6; optp->name = MIB2_UDP6_ENTRY; optp->len = msgdsize(mp6_conn_data); qreply(q, mp6_conn_ctl); return (1); } /* * Return 0 if invalid set request, 1 otherwise, including non-udp requests. * NOTE: Per MIB-II, UDP has no writable data. * TODO: If this ever actually tries to set anything, it needs to be * to do the appropriate locking. */ /* ARGSUSED */ int udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr, int len) { switch (level) { case MIB2_UDP: return (0); default: return (1); } } static void udp_report_item(mblk_t *mp, udp_t *udp) { char *state; char addrbuf1[INET6_ADDRSTRLEN]; char addrbuf2[INET6_ADDRSTRLEN]; uint_t print_len, buf_len; buf_len = mp->b_datap->db_lim - mp->b_wptr; ASSERT(buf_len >= 0); if (buf_len == 0) return; if (udp->udp_state == TS_UNBND) state = "UNBOUND"; else if (udp->udp_state == TS_IDLE) state = "IDLE"; else if (udp->udp_state == TS_DATA_XFER) state = "CONNECTED"; else state = "UnkState"; print_len = snprintf((char *)mp->b_wptr, buf_len, MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n", (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port), inet_ntop(AF_INET6, &udp->udp_v6src, addrbuf1, sizeof (addrbuf1)), inet_ntop(AF_INET6, &udp->udp_v6dst, addrbuf2, sizeof (addrbuf2)), ntohs(udp->udp_dstport), state); if (print_len < buf_len) { mp->b_wptr += print_len; } else { mp->b_wptr += buf_len; } } /* Report for ndd "udp_status" */ /* ARGSUSED */ static int udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { zoneid_t zoneid; connf_t *connfp; conn_t *connp = Q_TO_CONN(q); udp_t *udp = connp->conn_udp; int i; /* * Because of the ndd constraint, at most we can have 64K buffer * to put in all UDP info. So to be more efficient, just * allocate a 64K buffer here, assuming we need that large buffer. * This may be a problem as any user can read udp_status. Therefore * we limit the rate of doing this using udp_ndd_get_info_interval. * This should be OK as normal users should not do this too often. */ if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { if (ddi_get_lbolt() - udp_last_ndd_get_info_time < drv_usectohz(udp_ndd_get_info_interval * 1000)) { (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); return (0); } } if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { /* The following may work even if we cannot get a large buf. */ (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); return (0); } (void) mi_mpprintf(mp, "UDP " MI_COL_HDRPAD_STR /* 12345678[89ABCDEF] */ " zone lport src addr dest addr port state"); /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ zoneid = connp->conn_zoneid; for (i = 0; i < CONN_G_HASH_SIZE; i++) { connfp = &ipcl_globalhash_fanout[i]; connp = NULL; while ((connp = ipcl_get_next_conn(connfp, connp, IPCL_UDP))) { udp = connp->conn_udp; if (zoneid != GLOBAL_ZONEID && zoneid != connp->conn_zoneid) continue; udp_report_item(mp->b_cont, udp); } } udp_last_ndd_get_info_time = ddi_get_lbolt(); return (0); } /* * This routine creates a T_UDERROR_IND message and passes it upstream. * The address and options are copied from the T_UNITDATA_REQ message * passed in mp. This message is freed. */ static void udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen, t_scalar_t err) { struct T_unitdata_req *tudr; mblk_t *mp1; uchar_t *optaddr; t_scalar_t optlen; if (DB_TYPE(mp) == M_DATA) { ASSERT(destaddr != NULL && destlen != 0); optaddr = NULL; optlen = 0; } else { if ((mp->b_wptr < mp->b_rptr) || (MBLKL(mp)) < sizeof (struct T_unitdata_req)) { goto done; } tudr = (struct T_unitdata_req *)mp->b_rptr; destaddr = mp->b_rptr + tudr->DEST_offset; if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr || destaddr + tudr->DEST_length < mp->b_rptr || destaddr + tudr->DEST_length > mp->b_wptr) { goto done; } optaddr = mp->b_rptr + tudr->OPT_offset; if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr || optaddr + tudr->OPT_length < mp->b_rptr || optaddr + tudr->OPT_length > mp->b_wptr) { goto done; } destlen = tudr->DEST_length; optlen = tudr->OPT_length; } mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen, (char *)optaddr, optlen, err); if (mp1 != NULL) putnext(UDP_RD(q), mp1); done: freemsg(mp); } /* * This routine removes a port number association from a stream. It * is called by udp_wput to handle T_UNBIND_REQ messages. */ static void udp_unbind(queue_t *q, mblk_t *mp) { udp_t *udp = Q_TO_UDP(q); /* If a bind has not been done, we can't unbind. */ if (udp->udp_state == TS_UNBND) { udp_err_ack(q, mp, TOUTSTATE, 0); return; } if (cl_inet_unbind != NULL) { /* * Running in cluster mode - register unbind information */ if (udp->udp_ipversion == IPV4_VERSION) { (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), (in_port_t)udp->udp_port); } else { (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, (uint8_t *)&(udp->udp_v6src), (in_port_t)udp->udp_port); } } udp_bind_hash_remove(udp, B_FALSE); V6_SET_ZERO(udp->udp_v6src); V6_SET_ZERO(udp->udp_bound_v6src); udp->udp_port = 0; udp->udp_state = TS_UNBND; if (udp->udp_family == AF_INET6) { int error; /* Rebuild the header template */ error = udp_build_hdrs(q, udp); if (error != 0) { udp_err_ack(q, mp, TSYSERR, error); return; } } /* * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK * and therefore ip_unbind must never return NULL. */ mp = ip_unbind(q, mp); ASSERT(mp != NULL); putnext(UDP_RD(q), mp); } /* * Don't let port fall into the privileged range. * Since the extra priviledged ports can be arbitrary we also * ensure that we exclude those from consideration. * udp_g_epriv_ports is not sorted thus we loop over it until * there are no changes. */ static in_port_t udp_update_next_port(in_port_t port, boolean_t random) { int i; if (random && udp_random_anon_port != 0) { (void) random_get_pseudo_bytes((uint8_t *)&port, sizeof (in_port_t)); /* * Unless changed by a sys admin, the smallest anon port * is 32768 and the largest anon port is 65535. It is * very likely (50%) for the random port to be smaller * than the smallest anon port. When that happens, * add port % (anon port range) to the smallest anon * port to get the random port. It should fall into the * valid anon port range. */ if (port < udp_smallest_anon_port) { port = udp_smallest_anon_port + port % (udp_largest_anon_port - udp_smallest_anon_port); } } retry: if (port < udp_smallest_anon_port || port > udp_largest_anon_port) port = udp_smallest_anon_port; if (port < udp_smallest_nonpriv_port) port = udp_smallest_nonpriv_port; for (i = 0; i < udp_g_num_epriv_ports; i++) { if (port == udp_g_epriv_ports[i]) { port++; /* * Make sure that the port is in the * valid range. */ goto retry; } } return (port); } static mblk_t * udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port, uint_t srcid, int *error) { udp_t *udp = connp->conn_udp; queue_t *q = connp->conn_wq; mblk_t *mp1 = (DB_TYPE(mp) == M_DATA ? mp : mp->b_cont); mblk_t *mp2; ipha_t *ipha; int ip_hdr_length; uint32_t ip_len; udpha_t *udpha; *error = 0; /* mp1 points to the M_DATA mblk carrying the packet */ ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); /* Add an IP header */ ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + udp->udp_ip_snd_options_len; ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length]; if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) || !OK_32PTR(ipha)) { mp2 = allocb(ip_hdr_length + udp_wroff_extra, BPRI_LO); if (mp2 == NULL) { TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, "udp_wput_end: q %p (%S)", q, "allocbfail2"); *error = ENOMEM; goto done; } mp2->b_wptr = DB_LIM(mp2); mp2->b_cont = mp1; mp1 = mp2; if (DB_TYPE(mp) != M_DATA) mp->b_cont = mp1; else mp = mp1; ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length); } ip_hdr_length -= UDPH_SIZE; #ifdef _BIG_ENDIAN /* Set version, header length, and tos */ *(uint16_t *)&ipha->ipha_version_and_hdr_length = ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) | udp->udp_type_of_service); /* Set ttl and protocol */ *(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP; #else /* Set version, header length, and tos */ *(uint16_t *)&ipha->ipha_version_and_hdr_length = ((udp->udp_type_of_service << 8) | ((IP_VERSION << 4) | (ip_hdr_length>>2))); /* Set ttl and protocol */ *(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl; #endif /* * Copy our address into the packet. If this is zero, * first look at __sin6_src_id for a hint. If we leave the source * as INADDR_ANY then ip will fill in the real source address. */ IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src); if (srcid != 0 && ipha->ipha_src == INADDR_ANY) { in6_addr_t v6src; ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid); IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src); } ipha->ipha_fragment_offset_and_flags = 0; ipha->ipha_ident = 0; mp1->b_rptr = (uchar_t *)ipha; ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <= (uintptr_t)UINT_MAX); /* Determine length of packet */ ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha); if ((mp2 = mp1->b_cont) != NULL) { do { ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); ip_len += (uint32_t)MBLKL(mp2); } while ((mp2 = mp2->b_cont) != NULL); } /* * If the size of the packet is greater than the maximum allowed by * ip, return an error. Passing this down could cause panics because * the size will have wrapped and be inconsistent with the msg size. */ if (ip_len > IP_MAXPACKET) { TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, "udp_wput_end: q %p (%S)", q, "IP length exceeded"); *error = EMSGSIZE; goto done; } ipha->ipha_length = htons((uint16_t)ip_len); ip_len -= ip_hdr_length; ip_len = htons((uint16_t)ip_len); udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length); /* * Copy in the destination address */ if (v4dst == INADDR_ANY) ipha->ipha_dst = htonl(INADDR_LOOPBACK); else ipha->ipha_dst = v4dst; /* * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic. */ if (CLASSD(v4dst)) ipha->ipha_ttl = udp->udp_multicast_ttl; udpha->uha_dst_port = port; udpha->uha_src_port = udp->udp_port; if (ip_hdr_length > IP_SIMPLE_HDR_LENGTH) { uint32_t cksum; bcopy(udp->udp_ip_snd_options, &ipha[1], udp->udp_ip_snd_options_len); /* * Massage source route putting first source route in ipha_dst. * Ignore the destination in T_unitdata_req. * Create a checksum adjustment for a source route, if any. */ cksum = ip_massage_options(ipha); cksum = (cksum & 0xFFFF) + (cksum >> 16); cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) + (ipha->ipha_dst & 0xFFFF); if ((int)cksum < 0) cksum--; cksum = (cksum & 0xFFFF) + (cksum >> 16); /* * IP does the checksum if uha_checksum is non-zero, * We make it easy for IP to include our pseudo header * by putting our length in uha_checksum. */ cksum += ip_len; cksum = (cksum & 0xFFFF) + (cksum >> 16); /* There might be a carry. */ cksum = (cksum & 0xFFFF) + (cksum >> 16); #ifdef _LITTLE_ENDIAN if (udp_do_checksum) ip_len = (cksum << 16) | ip_len; #else if (udp_do_checksum) ip_len = (ip_len << 16) | cksum; else ip_len <<= 16; #endif } else { /* * IP does the checksum if uha_checksum is non-zero, * We make it easy for IP to include our pseudo header * by putting our length in uha_checksum. */ if (udp_do_checksum) ip_len |= (ip_len << 16); #ifndef _LITTLE_ENDIAN else ip_len <<= 16; #endif } /* Set UDP length and checksum */ *((uint32_t *)&udpha->uha_length) = ip_len; if (DB_TYPE(mp) != M_DATA) { ASSERT(mp != mp1); freeb(mp); } /* mp has been consumed and we'll return success */ ASSERT(*error == 0); mp = NULL; /* We're done. Pass the packet to ip. */ BUMP_MIB(&udp_mib, udpOutDatagrams); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, "udp_wput_end: q %p (%S)", q, "end"); if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 || CONN_OUTBOUND_POLICY_PRESENT(connp) || connp->conn_dontroute || connp->conn_xmit_if_ill != NULL || connp->conn_nofailover_ill != NULL || connp->conn_outgoing_ill != NULL || ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || IPP_ENABLED(IPP_LOCAL_OUT) || ip_g_mrouter != NULL) { UDP_STAT(udp_ip_send); ip_output(connp, mp1, connp->conn_wq, IP_WPUT); } else { udp_send_data(udp, connp->conn_wq, mp1, ipha); } done: if (*error != 0) { ASSERT(mp != NULL); BUMP_MIB(&udp_mib, udpOutErrors); } return (mp); } static void udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha) { conn_t *connp = udp->udp_connp; ipaddr_t src, dst; ill_t *ill; ire_t *ire; ipif_t *ipif = NULL; mblk_t *ire_fp_mp; uint_t ire_fp_mp_len; uint16_t *up; uint32_t cksum, hcksum_txflags; queue_t *dev_q; boolean_t retry_caching; dst = ipha->ipha_dst; src = ipha->ipha_src; ASSERT(ipha->ipha_ident == 0); if (CLASSD(dst)) { int err; ipif = conn_get_held_ipif(connp, &connp->conn_multicast_ipif, &err); if (ipif == NULL || ipif->ipif_isv6 || (ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { if (ipif != NULL) ipif_refrele(ipif); UDP_STAT(udp_ip_send); ip_output(connp, mp, q, IP_WPUT); return; } } retry_caching = B_FALSE; mutex_enter(&connp->conn_lock); ire = connp->conn_ire_cache; ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); if (ire == NULL || ire->ire_addr != dst || (ire->ire_marks & IRE_MARK_CONDEMNED)) { retry_caching = B_TRUE; } else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) { ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr; ASSERT(ipif != NULL); if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL || stq_ill->ill_group != ipif->ipif_ill->ill_group)) retry_caching = B_TRUE; } if (!retry_caching) { ASSERT(ire != NULL); IRE_REFHOLD(ire); mutex_exit(&connp->conn_lock); } else { boolean_t cached = B_FALSE; connp->conn_ire_cache = NULL; mutex_exit(&connp->conn_lock); /* Release the old ire */ if (ire != NULL) { IRE_REFRELE_NOTR(ire); ire = NULL; } if (CLASSD(dst)) { ASSERT(ipif != NULL); ire = ire_ctable_lookup(dst, 0, 0, ipif, connp->conn_zoneid, MATCH_IRE_ILL_GROUP); } else { ASSERT(ipif == NULL); ire = ire_cache_lookup(dst, connp->conn_zoneid); } if (ire == NULL) { if (ipif != NULL) ipif_refrele(ipif); UDP_STAT(udp_ire_null); ip_output(connp, mp, q, IP_WPUT); return; } IRE_REFHOLD_NOTR(ire); mutex_enter(&connp->conn_lock); if (!(connp->conn_state_flags & CONN_CLOSING) && connp->conn_ire_cache == NULL) { rw_enter(&ire->ire_bucket->irb_lock, RW_READER); if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { connp->conn_ire_cache = ire; cached = B_TRUE; } rw_exit(&ire->ire_bucket->irb_lock); } mutex_exit(&connp->conn_lock); /* * We can continue to use the ire but since it was not * cached, we should drop the extra reference. */ if (!cached) IRE_REFRELE_NOTR(ire); } ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION); ASSERT(!CLASSD(dst) || ipif != NULL); if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) || (ire->ire_flags & RTF_MULTIRT) || ire->ire_stq == NULL || ire->ire_max_frag < ntohs(ipha->ipha_length) || (ire_fp_mp = ire->ire_fp_mp) == NULL || (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { if (ipif != NULL) ipif_refrele(ipif); UDP_STAT(udp_ip_ire_send); IRE_REFRELE(ire); ip_output(connp, mp, q, IP_WPUT); return; } BUMP_MIB(&ip_mib, ipOutRequests); ill = ire_to_ill(ire); ASSERT(ill != NULL); dev_q = ire->ire_stq->q_next; ASSERT(dev_q != NULL); /* * If the service thread is already running, or if the driver * queue is currently flow-controlled, queue this packet. */ if ((q->q_first != NULL || connp->conn_draining) || ((dev_q->q_next || dev_q->q_first) && !canput(dev_q))) { if (ip_output_queue) { (void) putq(q, mp); } else { BUMP_MIB(&ip_mib, ipOutDiscards); freemsg(mp); } if (ipif != NULL) ipif_refrele(ipif); IRE_REFRELE(ire); return; } ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); #ifndef _BIG_ENDIAN ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); #endif if (src == INADDR_ANY && !connp->conn_unspec_src) { if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC)) src = ipha->ipha_src = ipif->ipif_src_addr; else src = ipha->ipha_src = ire->ire_src_addr; } if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { ASSERT(ill->ill_hcksum_capab != NULL); hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; } else { hcksum_txflags = 0; } /* pseudo-header checksum (do it in parts for IP header checksum) */ cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); if (*up != 0) { IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); /* Software checksum? */ if (DB_CKSUMFLAGS(mp) == 0) { UDP_STAT(udp_out_sw_cksum); UDP_STAT_UPDATE(udp_out_sw_cksum_bytes, ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); } } ipha->ipha_fragment_offset_and_flags |= (uint32_t)htons(ire->ire_frag_flag); /* Calculate IP header checksum if hardware isn't capable */ if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], ((uint16_t *)ipha)[4]); } if (CLASSD(dst)) { ilm_t *ilm; ILM_WALKER_HOLD(ill); ilm = ilm_lookup_ill(ill, dst, ALL_ZONES); ILM_WALKER_RELE(ill); if (ilm != NULL) { ip_multicast_loopback(q, ill, mp, connp->conn_multicast_loop ? 0 : IP_FF_NO_MCAST_LOOP, connp->conn_zoneid); } /* If multicast TTL is 0 then we are done */ if (ipha->ipha_ttl == 0) { if (ipif != NULL) ipif_refrele(ipif); freemsg(mp); IRE_REFRELE(ire); return; } } ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); UPDATE_OB_PKT_COUNT(ire); ire->ire_last_used_time = lbolt; if (ILL_POLL_CAPABLE(ill)) { /* * Send the packet directly to DLD, where it may be queued * depending on the availability of transmit resources at * the media layer. */ IP_POLL_ILL_TX(ill, mp); } else { putnext(ire->ire_stq, mp); } if (ipif != NULL) ipif_refrele(ipif); IRE_REFRELE(ire); } /* * This routine handles all messages passed downstream. It either * consumes the message or passes it downstream; it never queues a * a message. */ static void udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen) { sin6_t *sin6; sin_t *sin; ipaddr_t v4dst; uint16_t port; uint_t srcid; queue_t *q = connp->conn_wq; udp_t *udp = connp->conn_udp; t_scalar_t optlen; int error = 0; struct sockaddr_storage ss; TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START, "udp_wput_start: connp %p mp %p", connp, mp); /* * We directly handle several cases here: T_UNITDATA_REQ message * coming down as M_PROTO/M_PCPROTO and M_DATA messages for both * connected and non-connected socket. The latter carries the * address structure along when this routine gets called. */ switch (DB_TYPE(mp)) { case M_DATA: if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) { if (!udp->udp_direct_sockfs || addr == NULL || addrlen == 0) { /* Not connected; address is required */ BUMP_MIB(&udp_mib, udpOutErrors); UDP_STAT(udp_out_err_notconn); freemsg(mp); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, "udp_wput_end: connp %p (%S)", connp, "not-connected; address required"); return; } ASSERT(udp->udp_issocket); UDP_DBGSTAT(udp_data_notconn); /* Not connected; do some more checks below */ optlen = 0; break; } /* M_DATA for connected socket */ UDP_DBGSTAT(udp_data_conn); IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst); /* Initialize addr and addrlen as if they're passed in */ if (udp->udp_family == AF_INET) { sin = (sin_t *)&ss; sin->sin_family = AF_INET; sin->sin_port = udp->udp_dstport; sin->sin_addr.s_addr = v4dst; addr = (struct sockaddr *)sin; addrlen = sizeof (*sin); } else { sin6 = (sin6_t *)&ss; sin6->sin6_family = AF_INET6; sin6->sin6_port = udp->udp_dstport; sin6->sin6_flowinfo = udp->udp_flowinfo; sin6->sin6_addr = udp->udp_v6dst; sin6->sin6_scope_id = 0; sin6->__sin6_src_id = 0; addr = (struct sockaddr *)sin6; addrlen = sizeof (*sin6); } if (udp->udp_family == AF_INET || IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst)) { /* * Handle both AF_INET and AF_INET6; the latter * for IPV4 mapped destination addresses. Note * here that both addr and addrlen point to the * corresponding struct depending on the address * family of the socket. */ mp = udp_output_v4(connp, mp, v4dst, udp->udp_dstport, 0, &error); } else { mp = udp_output_v6(connp, mp, sin6, 0, &error); } if (error != 0) { ASSERT(addr != NULL && addrlen != 0); goto ud_error; } return; case M_PROTO: case M_PCPROTO: { struct T_unitdata_req *tudr; ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX); tudr = (struct T_unitdata_req *)mp->b_rptr; /* Handle valid T_UNITDATA_REQ here */ if (MBLKL(mp) >= sizeof (*tudr) && ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) { if (mp->b_cont == NULL) { TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, "udp_wput_end: q %p (%S)", q, "badaddr"); error = EPROTO; goto ud_error; } if (!MBLKIN(mp, 0, tudr->DEST_offset + tudr->DEST_length)) { TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, "udp_wput_end: q %p (%S)", q, "badaddr"); error = EADDRNOTAVAIL; goto ud_error; } /* * If a port has not been bound to the stream, fail. * This is not a problem when sockfs is directly * above us, because it will ensure that the socket * is first bound before allowing data to be sent. */ if (udp->udp_state == TS_UNBND) { TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, "udp_wput_end: q %p (%S)", q, "outstate"); error = EPROTO; goto ud_error; } addr = (struct sockaddr *) &mp->b_rptr[tudr->DEST_offset]; addrlen = tudr->DEST_length; optlen = tudr->OPT_length; if (optlen != 0) UDP_STAT(udp_out_opt); break; } /* FALLTHRU */ } default: udp_become_writer(connp, mp, udp_wput_other_wrapper, SQTAG_UDP_OUTPUT); return; } ASSERT(addr != NULL); switch (udp->udp_family) { case AF_INET6: sin6 = (sin6_t *)addr; if (!OK_32PTR((char *)sin6) || addrlen != sizeof (sin6_t) || sin6->sin6_family != AF_INET6) { TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, "udp_wput_end: q %p (%S)", q, "badaddr"); error = EADDRNOTAVAIL; goto ud_error; } if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { /* * Destination is a non-IPv4-compatible IPv6 address. * Send out an IPv6 format packet. */ mp = udp_output_v6(connp, mp, sin6, optlen, &error); if (error != 0) goto ud_error; TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, "udp_wput_end: q %p (%S)", q, "udp_output_v6"); return; } /* * If the local address is not zero or a mapped address * return an error. It would be possible to send an IPv4 * packet but the response would never make it back to the * application since it is bound to a non-mapped address. */ if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) && !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, "udp_wput_end: q %p (%S)", q, "badaddr"); error = EADDRNOTAVAIL; goto ud_error; } /* Send IPv4 packet without modifying udp_ipversion */ /* Extract port and ipaddr */ port = sin6->sin6_port; IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst); srcid = sin6->__sin6_src_id; break; case AF_INET: sin = (sin_t *)addr; if (!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t) || sin->sin_family != AF_INET) { TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, "udp_wput_end: q %p (%S)", q, "badaddr"); error = EADDRNOTAVAIL; goto ud_error; } /* Extract port and ipaddr */ port = sin->sin_port; v4dst = sin->sin_addr.s_addr; srcid = 0; break; } /* * If options passed in, feed it for verification and handling */ if (optlen != 0) { ASSERT(DB_TYPE(mp) != M_DATA); if (udp_unitdata_opt_process(q, mp, &error, NULL) < 0) { /* failure */ TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, "udp_wput_end: q %p (%S)", q, "udp_unitdata_opt_process"); goto ud_error; } /* * Note: success in processing options. * mp option buffer represented by * OPT_length/offset now potentially modified * and contain option setting results */ } ASSERT(error == 0); mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error); if (error != 0) { ud_error: UDP_STAT(udp_out_err_output); ASSERT(mp != NULL); /* mp is freed by the following routine */ udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen, (t_scalar_t)error); } } /* ARGSUSED */ static void udp_output_wrapper(void *arg, mblk_t *mp, void *arg2) { udp_output((conn_t *)arg, mp, NULL, 0); _UDP_EXIT((conn_t *)arg); } static void udp_wput(queue_t *q, mblk_t *mp) { _UDP_ENTER(Q_TO_CONN(UDP_WR(q)), mp, udp_output_wrapper, SQTAG_UDP_WPUT); } /* * Allocate and prepare a T_UNITDATA_REQ message. */ static mblk_t * udp_tudr_alloc(struct sockaddr *addr, socklen_t addrlen) { struct T_unitdata_req *tudr; mblk_t *mp; mp = allocb(sizeof (*tudr) + addrlen, BPRI_MED); if (mp != NULL) { mp->b_wptr += sizeof (*tudr) + addrlen; DB_TYPE(mp) = M_PROTO; tudr = (struct T_unitdata_req *)mp->b_rptr; tudr->PRIM_type = T_UNITDATA_REQ; tudr->DEST_length = addrlen; tudr->DEST_offset = (t_scalar_t)sizeof (*tudr); tudr->OPT_length = 0; tudr->OPT_offset = 0; bcopy(addr, tudr+1, addrlen); } return (mp); } /* * Entry point for sockfs when udp is in "direct sockfs" mode. This mode * is valid when we are directly beneath the stream head, and thus sockfs * is able to bypass STREAMS and directly call us, passing along the sockaddr * structure without the cumbersome T_UNITDATA_REQ interface. Note that * this is done for both connected and non-connected endpoint. */ void udp_wput_data(queue_t *q, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen) { conn_t *connp; udp_t *udp; q = UDP_WR(q); connp = Q_TO_CONN(q); udp = connp->conn_udp; /* udpsockfs should only send down M_DATA for this entry point */ ASSERT(DB_TYPE(mp) == M_DATA); mutex_enter(&connp->conn_lock); UDP_MODE_ASSERTIONS(udp, UDP_ENTER); if (udp->udp_mode != UDP_MT_HOT) { /* * We can't enter this conn right away because another * thread is currently executing as writer; therefore we * need to deposit the message into the squeue to be * drained later. If a socket address is present, we * need to create a T_UNITDATA_REQ message as placeholder. */ if (addr != NULL && addrlen != 0) { mblk_t *tudr_mp = udp_tudr_alloc(addr, addrlen); if (tudr_mp == NULL) { mutex_exit(&connp->conn_lock); BUMP_MIB(&udp_mib, udpOutErrors); UDP_STAT(udp_out_err_tudr); freemsg(mp); return; } /* Tag the packet with T_UNITDATA_REQ */ tudr_mp->b_cont = mp; mp = tudr_mp; } mutex_exit(&connp->conn_lock); udp_enter(connp, mp, udp_output_wrapper, SQTAG_UDP_WPUT); return; } /* We can execute as reader right away. */ UDP_READERS_INCREF(udp); mutex_exit(&connp->conn_lock); udp_output(connp, mp, addr, addrlen); mutex_enter(&connp->conn_lock); UDP_MODE_ASSERTIONS(udp, UDP_EXIT); UDP_READERS_DECREF(udp); mutex_exit(&connp->conn_lock); } /* * udp_output_v6(): * Assumes that udp_wput did some sanity checking on the destination * address. */ static mblk_t * udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, t_scalar_t tudr_optlen, int *error) { ip6_t *ip6h; ip6i_t *ip6i; /* mp1->b_rptr even if no ip6i_t */ mblk_t *mp1 = (DB_TYPE(mp) == M_DATA ? mp : mp->b_cont); mblk_t *mp2; int udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; size_t ip_len; udpha_t *udph; udp_t *udp = connp->conn_udp; queue_t *q = connp->conn_wq; ip6_pkt_t ipp_s; /* For ancillary data options */ ip6_pkt_t *ipp = &ipp_s; ip6_pkt_t *tipp; /* temporary ipp */ uint32_t csum = 0; uint_t ignore = 0; uint_t option_exists = 0, is_sticky = 0; uint8_t *cp; uint8_t *nxthdr_ptr; *error = 0; /* mp1 points to the M_DATA mblk carrying the packet */ ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); ASSERT(tudr_optlen == 0 || DB_TYPE(mp) != M_DATA); /* * If the local address is a mapped address return * an error. * It would be possible to send an IPv6 packet but the * response would never make it back to the application * since it is bound to a mapped address. */ if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) { *error = EADDRNOTAVAIL; goto done; } ipp->ipp_fields = 0; ipp->ipp_sticky_ignored = 0; /* * If TPI options passed in, feed it for verification and handling */ if (tudr_optlen != 0) { if (udp_unitdata_opt_process(q, mp, error, (void *)ipp) < 0) { /* failure */ goto done; } ignore = ipp->ipp_sticky_ignored; ASSERT(*error == 0); } if (sin6->sin6_scope_id != 0 && IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { /* * IPPF_SCOPE_ID is special. It's neither a sticky * option nor ancillary data. It needs to be * explicitly set in options_exists. */ option_exists |= IPPF_SCOPE_ID; } if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) { /* No sticky options nor ancillary data. */ goto no_options; } /* * Go through the options figuring out where each is going to * come from and build two masks. The first mask indicates if * the option exists at all. The second mask indicates if the * option is sticky or ancillary. */ if (!(ignore & IPPF_HOPOPTS)) { if (ipp->ipp_fields & IPPF_HOPOPTS) { option_exists |= IPPF_HOPOPTS; udp_ip_hdr_len += ipp->ipp_hopoptslen; } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) { option_exists |= IPPF_HOPOPTS; is_sticky |= IPPF_HOPOPTS; udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_hopoptslen; } } if (!(ignore & IPPF_RTHDR)) { if (ipp->ipp_fields & IPPF_RTHDR) { option_exists |= IPPF_RTHDR; udp_ip_hdr_len += ipp->ipp_rthdrlen; } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) { option_exists |= IPPF_RTHDR; is_sticky |= IPPF_RTHDR; udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen; } } if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) { if (ipp->ipp_fields & IPPF_RTDSTOPTS) { option_exists |= IPPF_RTDSTOPTS; udp_ip_hdr_len += ipp->ipp_rtdstoptslen; } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) { option_exists |= IPPF_RTDSTOPTS; is_sticky |= IPPF_RTDSTOPTS; udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen; } } if (!(ignore & IPPF_DSTOPTS)) { if (ipp->ipp_fields & IPPF_DSTOPTS) { option_exists |= IPPF_DSTOPTS; udp_ip_hdr_len += ipp->ipp_dstoptslen; } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) { option_exists |= IPPF_DSTOPTS; is_sticky |= IPPF_DSTOPTS; udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen; } } if (!(ignore & IPPF_IFINDEX)) { if (ipp->ipp_fields & IPPF_IFINDEX) { option_exists |= IPPF_IFINDEX; } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) { option_exists |= IPPF_IFINDEX; is_sticky |= IPPF_IFINDEX; } } if (!(ignore & IPPF_ADDR)) { if (ipp->ipp_fields & IPPF_ADDR) { option_exists |= IPPF_ADDR; } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) { option_exists |= IPPF_ADDR; is_sticky |= IPPF_ADDR; } } if (!(ignore & IPPF_DONTFRAG)) { if (ipp->ipp_fields & IPPF_DONTFRAG) { option_exists |= IPPF_DONTFRAG; } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) { option_exists |= IPPF_DONTFRAG; is_sticky |= IPPF_DONTFRAG; } } if (!(ignore & IPPF_USE_MIN_MTU)) { if (ipp->ipp_fields & IPPF_USE_MIN_MTU) { option_exists |= IPPF_USE_MIN_MTU; } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_USE_MIN_MTU) { option_exists |= IPPF_USE_MIN_MTU; is_sticky |= IPPF_USE_MIN_MTU; } } if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT)) option_exists |= IPPF_HOPLIMIT; /* IPV6_HOPLIMIT can never be sticky */ ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT)); if (!(ignore & IPPF_UNICAST_HOPS) && (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) { option_exists |= IPPF_UNICAST_HOPS; is_sticky |= IPPF_UNICAST_HOPS; } if (!(ignore & IPPF_MULTICAST_HOPS) && (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) { option_exists |= IPPF_MULTICAST_HOPS; is_sticky |= IPPF_MULTICAST_HOPS; } if (!(ignore & IPPF_TCLASS)) { if (ipp->ipp_fields & IPPF_TCLASS) { option_exists |= IPPF_TCLASS; } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) { option_exists |= IPPF_TCLASS; is_sticky |= IPPF_TCLASS; } } no_options: /* * If any options carried in the ip6i_t were specified, we * need to account for the ip6i_t in the data we'll be sending * down. */ if (option_exists & IPPF_HAS_IP6I) udp_ip_hdr_len += sizeof (ip6i_t); /* check/fix buffer config, setup pointers into it */ ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len]; if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) || !OK_32PTR(ip6h)) { /* Try to get everything in a single mblk next time */ if (udp_ip_hdr_len > udp->udp_max_hdr_len) { udp->udp_max_hdr_len = udp_ip_hdr_len; (void) mi_set_sth_wroff(UDP_RD(q), udp->udp_max_hdr_len + udp_wroff_extra); } mp2 = allocb(udp_ip_hdr_len + udp_wroff_extra, BPRI_LO); if (mp2 == NULL) { *error = ENOMEM; goto done; } mp2->b_wptr = DB_LIM(mp2); mp2->b_cont = mp1; mp1 = mp2; if (DB_TYPE(mp) != M_DATA) mp->b_cont = mp1; else mp = mp1; ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len); } mp1->b_rptr = (unsigned char *)ip6h; ip6i = (ip6i_t *)ip6h; #define ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp) if (option_exists & IPPF_HAS_IP6I) { ip6h = (ip6_t *)&ip6i[1]; ip6i->ip6i_flags = 0; ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW; /* sin6_scope_id takes precendence over IPPF_IFINDEX */ if (option_exists & IPPF_SCOPE_ID) { ip6i->ip6i_flags |= IP6I_IFINDEX; ip6i->ip6i_ifindex = sin6->sin6_scope_id; } else if (option_exists & IPPF_IFINDEX) { tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX); ASSERT(tipp->ipp_ifindex != 0); ip6i->ip6i_flags |= IP6I_IFINDEX; ip6i->ip6i_ifindex = tipp->ipp_ifindex; } if (option_exists & IPPF_ADDR) { /* * Enable per-packet source address verification if * IPV6_PKTINFO specified the source address. * ip6_src is set in the transport's _wput function. */ ip6i->ip6i_flags |= IP6I_VERIFY_SRC; } if (option_exists & IPPF_DONTFRAG) { ip6i->ip6i_flags |= IP6I_DONTFRAG; } if (option_exists & IPPF_USE_MIN_MTU) { ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU( ip6i->ip6i_flags, ipp->ipp_use_min_mtu); } if (option_exists & IPPF_NEXTHOP) { tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP); ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop)); ip6i->ip6i_flags |= IP6I_NEXTHOP; ip6i->ip6i_nexthop = tipp->ipp_nexthop; } /* * tell IP this is an ip6i_t private header */ ip6i->ip6i_nxt = IPPROTO_RAW; } /* Initialize IPv6 header */ ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src)); /* Set the hoplimit of the outgoing packet. */ if (option_exists & IPPF_HOPLIMIT) { /* IPV6_HOPLIMIT ancillary data overrides all other settings. */ ip6h->ip6_hops = ipp->ipp_hoplimit; ip6i->ip6i_flags |= IP6I_HOPLIMIT; } else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { ip6h->ip6_hops = udp->udp_multicast_ttl; if (option_exists & IPPF_MULTICAST_HOPS) ip6i->ip6i_flags |= IP6I_HOPLIMIT; } else { ip6h->ip6_hops = udp->udp_ttl; if (option_exists & IPPF_UNICAST_HOPS) ip6i->ip6i_flags |= IP6I_HOPLIMIT; } if (option_exists & IPPF_ADDR) { tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR); ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr)); ip6h->ip6_src = tipp->ipp_addr; } else { /* * The source address was not set using IPV6_PKTINFO. * First look at the bound source. * If unspecified fallback to __sin6_src_id. */ ip6h->ip6_src = udp->udp_v6src; if (sin6->__sin6_src_id != 0 && IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) { ip_srcid_find_id(sin6->__sin6_src_id, &ip6h->ip6_src, connp->conn_zoneid); } } nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt; cp = (uint8_t *)&ip6h[1]; /* * Here's where we have to start stringing together * any extension headers in the right order: * Hop-by-hop, destination, routing, and final destination opts. */ if (option_exists & IPPF_HOPOPTS) { /* Hop-by-hop options */ ip6_hbh_t *hbh = (ip6_hbh_t *)cp; tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS); *nxthdr_ptr = IPPROTO_HOPOPTS; nxthdr_ptr = &hbh->ip6h_nxt; bcopy(tipp->ipp_hopopts, cp, tipp->ipp_hopoptslen); cp += tipp->ipp_hopoptslen; } /* * En-route destination options * Only do them if there's a routing header as well */ if (option_exists & IPPF_RTDSTOPTS) { ip6_dest_t *dst = (ip6_dest_t *)cp; tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS); *nxthdr_ptr = IPPROTO_DSTOPTS; nxthdr_ptr = &dst->ip6d_nxt; bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen); cp += tipp->ipp_rtdstoptslen; } /* * Routing header next */ if (option_exists & IPPF_RTHDR) { ip6_rthdr_t *rt = (ip6_rthdr_t *)cp; tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR); *nxthdr_ptr = IPPROTO_ROUTING; nxthdr_ptr = &rt->ip6r_nxt; bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen); cp += tipp->ipp_rthdrlen; } /* * Do ultimate destination options */ if (option_exists & IPPF_DSTOPTS) { ip6_dest_t *dest = (ip6_dest_t *)cp; tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS); *nxthdr_ptr = IPPROTO_DSTOPTS; nxthdr_ptr = &dest->ip6d_nxt; bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen); cp += tipp->ipp_dstoptslen; } /* * Now set the last header pointer to the proto passed in */ ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE)); *nxthdr_ptr = IPPROTO_UDP; /* Update UDP header */ udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE); udph->uha_dst_port = sin6->sin6_port; udph->uha_src_port = udp->udp_port; /* * Copy in the destination address */ if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) ip6h->ip6_dst = ipv6_loopback; else ip6h->ip6_dst = sin6->sin6_addr; ip6h->ip6_vcf = (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK); if (option_exists & IPPF_TCLASS) { tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS); ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf, tipp->ipp_tclass); } if (option_exists & IPPF_RTHDR) { ip6_rthdr_t *rth; /* * Perform any processing needed for source routing. * We know that all extension headers will be in the same mblk * as the IPv6 header. */ rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr); if (rth != NULL && rth->ip6r_segleft != 0) { if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) { /* * Drop packet - only support Type 0 routing. * Notify the application as well. */ *error = EPROTO; goto done; } /* * rth->ip6r_len is twice the number of * addresses in the header. Thus it must be even. */ if (rth->ip6r_len & 0x1) { *error = EPROTO; goto done; } /* * Shuffle the routing header and ip6_dst * addresses, and get the checksum difference * between the first hop (in ip6_dst) and * the destination (in the last routing hdr entry). */ csum = ip_massage_options_v6(ip6h, rth); /* * Verify that the first hop isn't a mapped address. * Routers along the path need to do this verification * for subsequent hops. */ if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) { *error = EADDRNOTAVAIL; goto done; } cp += (rth->ip6r_len + 1)*8; } } /* count up length of UDP packet */ ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN; if ((mp2 = mp1->b_cont) != NULL) { do { ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); ip_len += (uint32_t)MBLKL(mp2); } while ((mp2 = mp2->b_cont) != NULL); } /* * If the size of the packet is greater than the maximum allowed by * ip, return an error. Passing this down could cause panics because * the size will have wrapped and be inconsistent with the msg size. */ if (ip_len > IP_MAXPACKET) { *error = EMSGSIZE; goto done; } /* Store the UDP length. Subtract length of extension hdrs */ udph->uha_length = htons(ip_len + IPV6_HDR_LEN - (int)((uchar_t *)udph - (uchar_t *)ip6h)); /* * We make it easy for IP to include our pseudo header * by putting our length in uh_checksum, modified (if * we have a routing header) by the checksum difference * between the ultimate destination and first hop addresses. * Note: UDP over IPv6 must always checksum the packet. */ csum += udph->uha_length; csum = (csum & 0xFFFF) + (csum >> 16); udph->uha_checksum = (uint16_t)csum; #ifdef _LITTLE_ENDIAN ip_len = htons(ip_len); #endif ip6h->ip6_plen = ip_len; if (DB_TYPE(mp) != M_DATA) { ASSERT(mp != mp1); freeb(mp); } /* mp has been consumed and we'll return success */ ASSERT(*error == 0); mp = NULL; /* We're done. Pass the packet to IP */ BUMP_MIB(&udp_mib, udpOutDatagrams); ip_output_v6(connp, mp1, q, IP_WPUT); done: if (*error != 0) { ASSERT(mp != NULL); BUMP_MIB(&udp_mib, udpOutErrors); } return (mp); } static void udp_wput_other(queue_t *q, mblk_t *mp) { uchar_t *rptr = mp->b_rptr; struct datab *db; struct iocblk *iocp; cred_t *cr; conn_t *connp = Q_TO_CONN(q); udp_t *udp = connp->conn_udp; TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START, "udp_wput_other_start: q %p", q); db = mp->b_datap; cr = DB_CREDDEF(mp, connp->conn_cred); switch (db->db_type) { case M_PROTO: case M_PCPROTO: if (mp->b_wptr - rptr < sizeof (t_scalar_t)) { freemsg(mp); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "protoshort"); return; } switch (((t_primp_t)rptr)->type) { case T_ADDR_REQ: udp_addr_req(q, mp); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "addrreq"); return; case O_T_BIND_REQ: case T_BIND_REQ: udp_bind(q, mp); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "bindreq"); return; case T_CONN_REQ: udp_connect(q, mp); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "connreq"); return; case T_CAPABILITY_REQ: udp_capability_req(q, mp); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "capabreq"); return; case T_INFO_REQ: udp_info_req(q, mp); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "inforeq"); return; case T_UNITDATA_REQ: /* * If a T_UNITDATA_REQ gets here, the address must * be bad. Valid T_UNITDATA_REQs are handled * in udp_wput. */ udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "unitdatareq"); return; case T_UNBIND_REQ: udp_unbind(q, mp); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "unbindreq"); return; case T_SVR4_OPTMGMT_REQ: if (!snmpcom_req(q, mp, udp_snmp_set, udp_snmp_get, cr)) /* * Use upper queue for option processing in * case the request is not handled at this * level and needs to be passed down to IP. */ (void) svr4_optcom_req(_WR(UDP_RD(q)), mp, cr, &udp_opt_obj); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "optmgmtreq"); return; case T_OPTMGMT_REQ: /* * Use upper queue for option processing in * case the request is not handled at this * level and needs to be passed down to IP. */ (void) tpi_optcom_req(_WR(UDP_RD(q)), mp, cr, &udp_opt_obj); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "optmgmtreq"); return; case T_DISCON_REQ: udp_disconnect(q, mp); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "disconreq"); return; /* The following TPI message is not supported by udp. */ case O_T_CONN_RES: case T_CONN_RES: udp_err_ack(q, mp, TNOTSUPPORT, 0); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "connres/disconreq"); return; /* The following 3 TPI messages are illegal for udp. */ case T_DATA_REQ: case T_EXDATA_REQ: case T_ORDREL_REQ: udp_err_ack(q, mp, TNOTSUPPORT, 0); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "data/exdata/ordrel"); return; default: break; } break; case M_FLUSH: if (*rptr & FLUSHW) flushq(q, FLUSHDATA); break; case M_IOCTL: iocp = (struct iocblk *)mp->b_rptr; switch (iocp->ioc_cmd) { case TI_GETPEERNAME: if (udp->udp_state != TS_DATA_XFER) { /* * If a default destination address has not * been associated with the stream, then we * don't know the peer's name. */ iocp->ioc_error = ENOTCONN; iocp->ioc_count = 0; mp->b_datap->db_type = M_IOCACK; putnext(UDP_RD(q), mp); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "getpeername"); return; } /* FALLTHRU */ case TI_GETMYNAME: { /* * For TI_GETPEERNAME and TI_GETMYNAME, we first * need to copyin the user's strbuf structure. * Processing will continue in the M_IOCDATA case * below. */ mi_copyin(q, mp, NULL, SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "getmyname"); return; } case ND_SET: /* nd_getset performs the necessary checking */ case ND_GET: if (nd_getset(q, udp_g_nd, mp)) { putnext(UDP_RD(q), mp); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "get"); return; } break; case _SIOCSOCKFALLBACK: /* * Either sockmod is about to be popped and the * socket would now be treated as a plain stream, * or a module is about to be pushed so we could * no longer use read-side synchronous stream. * Drain any queued data and disable direct sockfs * interface from now on. */ if (!udp->udp_issocket) { DB_TYPE(mp) = M_IOCNAK; iocp->ioc_error = EINVAL; } else { udp->udp_issocket = B_FALSE; if (udp->udp_direct_sockfs) { /* * Disable read-side synchronous * stream interface and drain any * queued data. */ udp_rcv_drain(UDP_RD(q), udp, B_FALSE); ASSERT(!udp->udp_direct_sockfs); UDP_STAT(udp_sock_fallback); } DB_TYPE(mp) = M_IOCACK; iocp->ioc_error = 0; } iocp->ioc_count = 0; iocp->ioc_rval = 0; putnext(UDP_RD(q), mp); return; default: break; } break; case M_IOCDATA: udp_wput_iocdata(q, mp); TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "iocdata"); return; default: /* Unrecognized messages are passed through without change. */ break; } TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, "udp_wput_other_end: q %p (%S)", q, "end"); ip_output(connp, mp, q, IP_WPUT); } /* ARGSUSED */ static void udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2) { udp_wput_other(((conn_t *)arg)->conn_wq, mp); udp_exit((conn_t *)arg); } /* * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA * messages. */ static void udp_wput_iocdata(queue_t *q, mblk_t *mp) { mblk_t *mp1; STRUCT_HANDLE(strbuf, sb); uint16_t port; in6_addr_t v6addr; ipaddr_t v4addr; uint32_t flowinfo = 0; int addrlen; udp_t *udp = Q_TO_UDP(q); /* Make sure it is one of ours. */ switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { case TI_GETMYNAME: case TI_GETPEERNAME: break; default: ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); return; } q = WR(UDP_RD(q)); switch (mi_copy_state(q, mp, &mp1)) { case -1: return; case MI_COPY_CASE(MI_COPY_IN, 1): break; case MI_COPY_CASE(MI_COPY_OUT, 1): /* * The address has been copied out, so now * copyout the strbuf. */ mi_copyout(q, mp); return; case MI_COPY_CASE(MI_COPY_OUT, 2): /* * The address and strbuf have been copied out. * We're done, so just acknowledge the original * M_IOCTL. */ mi_copy_done(q, mp, 0); return; default: /* * Something strange has happened, so acknowledge * the original M_IOCTL with an EPROTO error. */ mi_copy_done(q, mp, EPROTO); return; } /* * Now we have the strbuf structure for TI_GETMYNAME * and TI_GETPEERNAME. Next we copyout the requested * address and then we'll copyout the strbuf. */ STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, (void *)mp1->b_rptr); if (udp->udp_family == AF_INET) addrlen = sizeof (sin_t); else addrlen = sizeof (sin6_t); if (STRUCT_FGET(sb, maxlen) < addrlen) { mi_copy_done(q, mp, EINVAL); return; } switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { case TI_GETMYNAME: if (udp->udp_family == AF_INET) { ASSERT(udp->udp_ipversion == IPV4_VERSION); if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { v4addr = V4_PART_OF_V6(udp->udp_v6src); } else { /* * INADDR_ANY * udp_v6src is not set, we might be bound to * broadcast/multicast. Use udp_bound_v6src as * local address instead (that could * also still be INADDR_ANY) */ v4addr = V4_PART_OF_V6(udp->udp_bound_v6src); } } else { /* udp->udp_family == AF_INET6 */ if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { v6addr = udp->udp_v6src; } else { /* * UNSPECIFIED * udp_v6src is not set, we might be bound to * broadcast/multicast. Use udp_bound_v6src as * local address instead (that could * also still be UNSPECIFIED) */ v6addr = udp->udp_bound_v6src; } } port = udp->udp_port; break; case TI_GETPEERNAME: if (udp->udp_state != TS_DATA_XFER) { mi_copy_done(q, mp, ENOTCONN); return; } if (udp->udp_family == AF_INET) { ASSERT(udp->udp_ipversion == IPV4_VERSION); v4addr = V4_PART_OF_V6(udp->udp_v6dst); } else { /* udp->udp_family == AF_INET6) */ v6addr = udp->udp_v6dst; flowinfo = udp->udp_flowinfo; } port = udp->udp_dstport; break; default: mi_copy_done(q, mp, EPROTO); return; } mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); if (!mp1) return; if (udp->udp_family == AF_INET) { sin_t *sin; STRUCT_FSET(sb, len, (int)sizeof (sin_t)); sin = (sin_t *)mp1->b_rptr; mp1->b_wptr = (uchar_t *)&sin[1]; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = v4addr; sin->sin_port = port; } else { /* udp->udp_family == AF_INET6 */ sin6_t *sin6; STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); sin6 = (sin6_t *)mp1->b_rptr; mp1->b_wptr = (uchar_t *)&sin6[1]; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_flowinfo = flowinfo; sin6->sin6_addr = v6addr; sin6->sin6_port = port; } /* Copy out the address */ mi_copyout(q, mp); } static int udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp, void *thisdg_attrs) { struct T_unitdata_req *udreqp; int is_absreq_failure; cred_t *cr; conn_t *connp = Q_TO_CONN(q); ASSERT(((t_primp_t)mp->b_rptr)->type); cr = DB_CREDDEF(mp, connp->conn_cred); udreqp = (struct T_unitdata_req *)mp->b_rptr; *errorp = 0; /* * Use upper queue for option processing since the callback * routines expect to be called in UDP instance instead of IP. */ *errorp = tpi_optcom_buf(_WR(UDP_RD(q)), mp, &udreqp->OPT_length, udreqp->OPT_offset, cr, &udp_opt_obj, thisdg_attrs, &is_absreq_failure); if (*errorp != 0) { /* * Note: No special action needed in this * module for "is_absreq_failure" */ return (-1); /* failure */ } ASSERT(is_absreq_failure == 0); return (0); /* success */ } void udp_ddi_init(void) { int i; UDP6_MAJ = ddi_name_to_major(UDP6); udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr, udp_opt_obj.odb_opt_arr_cnt); if (udp_bind_fanout_size & (udp_bind_fanout_size - 1)) { /* Not a power of two. Round up to nearest power of two */ for (i = 0; i < 31; i++) { if (udp_bind_fanout_size < (1 << i)) break; } udp_bind_fanout_size = 1 << i; } udp_bind_fanout = kmem_zalloc(udp_bind_fanout_size * sizeof (udp_fanout_t), KM_SLEEP); for (i = 0; i < udp_bind_fanout_size; i++) { mutex_init(&udp_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT, NULL); } (void) udp_param_register(udp_param_arr, A_CNT(udp_param_arr)); udp_kstat_init(); udp_cache = kmem_cache_create("udp_cache", sizeof (udp_t), CACHE_ALIGN_SIZE, NULL, NULL, NULL, NULL, NULL, 0); } void udp_ddi_destroy(void) { int i; nd_free(&udp_g_nd); for (i = 0; i < udp_bind_fanout_size; i++) { mutex_destroy(&udp_bind_fanout[i].uf_lock); } kmem_free(udp_bind_fanout, udp_bind_fanout_size * sizeof (udp_fanout_t)); udp_kstat_fini(); kmem_cache_destroy(udp_cache); } static void udp_kstat_init(void) { udp_named_kstat_t template = { { "inDatagrams", KSTAT_DATA_UINT32, 0 }, { "inErrors", KSTAT_DATA_UINT32, 0 }, { "outDatagrams", KSTAT_DATA_UINT32, 0 }, { "entrySize", KSTAT_DATA_INT32, 0 }, { "entry6Size", KSTAT_DATA_INT32, 0 }, { "outErrors", KSTAT_DATA_UINT32, 0 }, }; udp_mibkp = kstat_create(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(udp_named_kstat_t), 0); if (udp_mibkp == NULL) return; template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t); template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t); bcopy(&template, udp_mibkp->ks_data, sizeof (template)); udp_mibkp->ks_update = udp_kstat_update; kstat_install(udp_mibkp); if ((udp_ksp = kstat_create(UDP_MOD_NAME, 0, "udpstat", "net", KSTAT_TYPE_NAMED, sizeof (udp_statistics) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) { udp_ksp->ks_data = &udp_statistics; kstat_install(udp_ksp); } } static void udp_kstat_fini(void) { if (udp_ksp != NULL) { kstat_delete(udp_ksp); udp_ksp = NULL; } if (udp_mibkp != NULL) { kstat_delete(udp_mibkp); udp_mibkp = NULL; } } static int udp_kstat_update(kstat_t *kp, int rw) { udp_named_kstat_t *udpkp; if ((kp == NULL) || (kp->ks_data == NULL)) return (EIO); if (rw == KSTAT_WRITE) return (EACCES); udpkp = (udp_named_kstat_t *)kp->ks_data; udpkp->inDatagrams.value.ui32 = udp_mib.udpInDatagrams; udpkp->inErrors.value.ui32 = udp_mib.udpInErrors; udpkp->outDatagrams.value.ui32 = udp_mib.udpOutDatagrams; udpkp->outErrors.value.ui32 = udp_mib.udpOutErrors; return (0); } /* ARGSUSED */ static void udp_rput(queue_t *q, mblk_t *mp) { /* * We get here whenever we do qreply() from IP, * i.e as part of handlings ioctls, etc. */ putnext(q, mp); } /* * Read-side synchronous stream info entry point, called as a * result of handling certain STREAMS ioctl operations. */ static int udp_rinfop(queue_t *q, infod_t *dp) { mblk_t *mp; uint_t cmd = dp->d_cmd; int res = 0; int error = 0; udp_t *udp = Q_TO_UDP(RD(UDP_WR(q))); struct stdata *stp = STREAM(q); mutex_enter(&udp->udp_drain_lock); /* If shutdown on read has happened, return nothing */ mutex_enter(&stp->sd_lock); if (stp->sd_flag & STREOF) { mutex_exit(&stp->sd_lock); goto done; } mutex_exit(&stp->sd_lock); if ((mp = udp->udp_rcv_list_head) == NULL) goto done; ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL); if (cmd & INFOD_COUNT) { /* * Return the number of messages. */ dp->d_count += udp->udp_rcv_msgcnt; res |= INFOD_COUNT; } if (cmd & INFOD_BYTES) { /* * Return size of all data messages. */ dp->d_bytes += udp->udp_rcv_cnt; res |= INFOD_BYTES; } if (cmd & INFOD_FIRSTBYTES) { /* * Return size of first data message. */ dp->d_bytes = msgdsize(mp); res |= INFOD_FIRSTBYTES; dp->d_cmd &= ~INFOD_FIRSTBYTES; } if (cmd & INFOD_COPYOUT) { mblk_t *mp1 = mp->b_cont; int n; /* * Return data contents of first message. */ ASSERT(DB_TYPE(mp1) == M_DATA); while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, UIO_READ, dp->d_uiop)) != 0) { goto done; } mp1 = mp1->b_cont; } res |= INFOD_COPYOUT; dp->d_cmd &= ~INFOD_COPYOUT; } done: mutex_exit(&udp->udp_drain_lock); dp->d_res |= res; return (error); } /* * Read-side synchronous stream entry point. This is called as a result * of recv/read operation done at sockfs, and is guaranteed to execute * outside of the interrupt thread context. It returns a single datagram * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer. */ static int udp_rrw(queue_t *q, struiod_t *dp) { mblk_t *mp; udp_t *udp = Q_TO_UDP(_RD(UDP_WR(q))); /* We should never get here when we're in SNMP mode */ ASSERT(!(udp->udp_connp->conn_flags & IPCL_UDPMOD)); /* * Dequeue datagram from the head of the list and return * it to caller; also ensure that RSLEEP sd_wakeq flag is * set/cleared depending on whether or not there's data * remaining in the list. */ mutex_enter(&udp->udp_drain_lock); if (!udp->udp_direct_sockfs) { mutex_exit(&udp->udp_drain_lock); UDP_STAT(udp_rrw_busy); return (EBUSY); } if ((mp = udp->udp_rcv_list_head) != NULL) { uint_t size = msgdsize(mp); /* Last datagram in the list? */ if ((udp->udp_rcv_list_head = mp->b_next) == NULL) udp->udp_rcv_list_tail = NULL; mp->b_next = NULL; udp->udp_rcv_cnt -= size; udp->udp_rcv_msgcnt--; UDP_STAT(udp_rrw_msgcnt); /* No longer flow-controlling? */ if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat && udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat) udp->udp_drain_qfull = B_FALSE; } if (udp->udp_rcv_list_head == NULL) { /* * Either we just dequeued the last datagram or * we get here from sockfs and have nothing to * return; in this case clear RSLEEP. */ ASSERT(udp->udp_rcv_cnt == 0); ASSERT(udp->udp_rcv_msgcnt == 0); ASSERT(udp->udp_rcv_list_tail == NULL); STR_WAKEUP_CLEAR(STREAM(q)); } else { /* * More data follows; we need udp_rrw() to be * called in future to pick up the rest. */ STR_WAKEUP_SET(STREAM(q)); } mutex_exit(&udp->udp_drain_lock); dp->d_mp = mp; return (0); } /* * Enqueue a completely-built T_UNITDATA_IND message into the receive * list; this is typically executed within the interrupt thread context * and so we do things as quickly as possible. */ static void udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len) { ASSERT(q == RD(q)); ASSERT(pkt_len == msgdsize(mp)); ASSERT(mp->b_next == NULL && mp->b_cont != NULL); ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA); ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind)); mutex_enter(&udp->udp_drain_lock); /* * Wake up and signal the receiving app; it is okay to do this * before enqueueing the mp because we are holding the drain lock. * One of the advantages of synchronous stream is the ability for * us to find out when the application performs a read on the * socket by way of udp_rrw() entry point being called. We need * to generate SIGPOLL/SIGIO for each received data in the case * of asynchronous socket just as in the strrput() case. However, * we only wake the application up when necessary, i.e. during the * first enqueue. When udp_rrw() is called, we send up a single * datagram upstream and call STR_WAKEUP_SET() again when there * are still data remaining in our receive queue. */ if (udp->udp_rcv_list_head == NULL) { STR_WAKEUP_SET(STREAM(q)); udp->udp_rcv_list_head = mp; } else { udp->udp_rcv_list_tail->b_next = mp; } udp->udp_rcv_list_tail = mp; udp->udp_rcv_cnt += pkt_len; udp->udp_rcv_msgcnt++; /* Need to flow-control? */ if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat || udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat) udp->udp_drain_qfull = B_TRUE; /* Update poll events and send SIGPOLL/SIGIO if necessary */ STR_SENDSIG(STREAM(q)); mutex_exit(&udp->udp_drain_lock); } /* * Drain the contents of receive list to the module upstream; we do * this during close or when we fallback to the slow mode due to * sockmod being popped or a module being pushed on top of us. */ static void udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing) { mblk_t *mp; ASSERT(q == RD(q)); mutex_enter(&udp->udp_drain_lock); /* * There is no race with a concurrent udp_input() sending * up packets using putnext() after we have cleared the * udp_direct_sockfs flag but before we have completed * sending up the packets in udp_rcv_list, since we are * either a writer or we have quiesced the conn. */ udp->udp_direct_sockfs = B_FALSE; mutex_exit(&udp->udp_drain_lock); if (udp->udp_rcv_list_head != NULL) UDP_STAT(udp_drain); /* * Send up everything via putnext(); note here that we * don't need the udp_drain_lock to protect us since * nothing can enter udp_rrw() and that we currently * have exclusive access to this udp. */ while ((mp = udp->udp_rcv_list_head) != NULL) { udp->udp_rcv_list_head = mp->b_next; mp->b_next = NULL; udp->udp_rcv_cnt -= msgdsize(mp); udp->udp_rcv_msgcnt--; if (closing) { freemsg(mp); } else { putnext(q, mp); } } ASSERT(udp->udp_rcv_cnt == 0); ASSERT(udp->udp_rcv_msgcnt == 0); ASSERT(udp->udp_rcv_list_head == NULL); udp->udp_rcv_list_tail = NULL; udp->udp_drain_qfull = B_FALSE; } static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size) { /* We add a bit of extra buffering */ size += size >> 1; if (size > udp_max_buf) size = udp_max_buf; udp->udp_rcv_hiwat = size; return (size); } /* * Little helper for IPsec's NAT-T processing. */ boolean_t udp_compute_checksum(void) { return (udp_do_checksum); }