/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sctp_impl.h" #include "sctp_addr.h" static void sctp_ipif_inactive(sctp_ipif_t *); static sctp_ipif_t *sctp_lookup_ipif_addr(in6_addr_t *, boolean_t, zoneid_t zoneid, uint_t); static int sctp_get_all_ipifs(sctp_t *, int); int sctp_valid_addr_list(sctp_t *, const void *, uint32_t, uchar_t *, size_t); sctp_saddr_ipif_t *sctp_ipif_lookup(sctp_t *, uint_t); static int sctp_ipif_hash_insert(sctp_t *, sctp_ipif_t *, int, boolean_t dontsrc); static void sctp_ipif_hash_remove(sctp_t *, sctp_ipif_t *); static int sctp_compare_ipif_list(sctp_ipif_hash_t *, sctp_ipif_hash_t *); int sctp_compare_saddrs(sctp_t *, sctp_t *); static int sctp_copy_ipifs(sctp_ipif_hash_t *, sctp_t *, int); int sctp_dup_saddrs(sctp_t *, sctp_t *, int); void sctp_free_saddrs(sctp_t *); void sctp_update_ill(ill_t *, int); void sctp_update_ipif(ipif_t *, int); void sctp_move_ipif(ipif_t *, ill_t *, ill_t *); void sctp_del_saddr(sctp_t *, sctp_saddr_ipif_t *); void sctp_del_saddr_list(sctp_t *, const void *, int, boolean_t); sctp_saddr_ipif_t *sctp_saddr_lookup(sctp_t *, in6_addr_t *, uint_t); in6_addr_t sctp_get_valid_addr(sctp_t *, boolean_t); int sctp_getmyaddrs(void *, void *, int *); void sctp_saddr_init(); void sctp_saddr_fini(); #define SCTP_IPIF_USABLE(sctp_ipif_state) \ ((sctp_ipif_state) == SCTP_IPIFS_UP || \ (sctp_ipif_state) == SCTP_IPIFS_DOWN) #define SCTP_IPIF_DISCARD(sctp_ipif_flags) \ ((sctp_ipif_flags) & (IPIF_PRIVATE | IPIF_DEPRECATED)) #define SCTP_IS_IPIF_LOOPBACK(ipif) \ ((ipif)->sctp_ipif_ill->sctp_ill_flags & PHYI_LOOPBACK) #define SCTP_IS_IPIF_LINKLOCAL(ipif) \ ((ipif)->sctp_ipif_isv6 && \ IN6_IS_ADDR_LINKLOCAL(&(ipif)->sctp_ipif_saddr)) #define SCTP_UNSUPP_AF(ipif, supp_af) \ ((!(ipif)->sctp_ipif_isv6 && !((supp_af) & PARM_SUPP_V4)) || \ ((ipif)->sctp_ipif_isv6 && !((supp_af) & PARM_SUPP_V6))) #define SCTP_ILL_HASH_FN(index) ((index) % SCTP_ILL_HASH) #define SCTP_IPIF_HASH_FN(seqid) ((seqid) % SCTP_IPIF_HASH) #define SCTP_ILL_TO_PHYINDEX(ill) ((ill)->ill_phyint->phyint_ifindex) /* Global list of SCTP ILLs */ sctp_ill_hash_t sctp_g_ills[SCTP_ILL_HASH]; uint32_t sctp_ills_count = 0; /* Global list of SCTP IPIFs */ sctp_ipif_hash_t sctp_g_ipifs[SCTP_IPIF_HASH]; uint32_t sctp_g_ipifs_count = 0; /* * * * SCTP Interface list manipulation functions, locking used. * * */ /* * Delete an SCTP IPIF from the list if the refcount goes to 0 and it is * marked as condemned. Also, check if the ILL needs to go away. * Called with no locks held. */ static void sctp_ipif_inactive(sctp_ipif_t *sctp_ipif) { sctp_ill_t *sctp_ill; uint_t ipif_index; uint_t ill_index; rw_enter(&sctp_g_ills_lock, RW_READER); rw_enter(&sctp_g_ipifs_lock, RW_WRITER); ipif_index = SCTP_IPIF_HASH_FN(sctp_ipif->sctp_ipif_id); sctp_ill = sctp_ipif->sctp_ipif_ill; ASSERT(sctp_ill != NULL); ill_index = SCTP_ILL_HASH_FN(sctp_ill->sctp_ill_index); if (sctp_ipif->sctp_ipif_state != SCTP_IPIFS_CONDEMNED || sctp_ipif->sctp_ipif_refcnt != 0) { rw_exit(&sctp_g_ipifs_lock); rw_exit(&sctp_g_ills_lock); return; } list_remove(&sctp_g_ipifs[ipif_index].sctp_ipif_list, sctp_ipif); sctp_g_ipifs[ipif_index].ipif_count--; sctp_g_ipifs_count--; rw_destroy(&sctp_ipif->sctp_ipif_lock); kmem_free(sctp_ipif, sizeof (sctp_ipif_t)); (void) atomic_add_32_nv(&sctp_ill->sctp_ill_ipifcnt, -1); if (rw_tryupgrade(&sctp_g_ills_lock) != 0) { rw_downgrade(&sctp_g_ipifs_lock); if (sctp_ill->sctp_ill_ipifcnt == 0 && sctp_ill->sctp_ill_state == SCTP_ILLS_CONDEMNED) { list_remove(&sctp_g_ills[ill_index].sctp_ill_list, (void *)sctp_ill); sctp_g_ills[ill_index].ill_count--; sctp_ills_count--; kmem_free(sctp_ill->sctp_ill_name, sctp_ill->sctp_ill_name_length); kmem_free(sctp_ill, sizeof (sctp_ill_t)); } } rw_exit(&sctp_g_ipifs_lock); rw_exit(&sctp_g_ills_lock); } /* * Lookup an SCTP IPIF given an IP address. Increments sctp_ipif refcnt. * Called with no locks held. */ static sctp_ipif_t * sctp_lookup_ipif_addr(in6_addr_t *addr, boolean_t refhold, zoneid_t zoneid, uint_t ifindex) { int i; int j; sctp_ipif_t *sctp_ipif; rw_enter(&sctp_g_ipifs_lock, RW_READER); for (i = 0; i < SCTP_IPIF_HASH; i++) { if (sctp_g_ipifs[i].ipif_count == 0) continue; sctp_ipif = list_head(&sctp_g_ipifs[i].sctp_ipif_list); for (j = 0; j < sctp_g_ipifs[i].ipif_count; j++) { rw_enter(&sctp_ipif->sctp_ipif_lock, RW_READER); if (zoneid == sctp_ipif->sctp_ipif_zoneid && SCTP_IPIF_USABLE(sctp_ipif->sctp_ipif_state) && (ifindex == 0 || ifindex == sctp_ipif->sctp_ipif_ill->sctp_ill_index) && IN6_ARE_ADDR_EQUAL(&sctp_ipif->sctp_ipif_saddr, addr)) { rw_exit(&sctp_ipif->sctp_ipif_lock); if (refhold) SCTP_IPIF_REFHOLD(sctp_ipif); rw_exit(&sctp_g_ipifs_lock); return (sctp_ipif); } rw_exit(&sctp_ipif->sctp_ipif_lock); sctp_ipif = list_next(&sctp_g_ipifs[i].sctp_ipif_list, sctp_ipif); } } rw_exit(&sctp_g_ipifs_lock); return (NULL); } /* * Populate the list with all the SCTP ipifs for a given ipversion. * Increments sctp_ipif refcnt. * Called with no locks held. */ static int sctp_get_all_ipifs(sctp_t *sctp, int sleep) { sctp_ipif_t *sctp_ipif; int i; int j; int error = 0; rw_enter(&sctp_g_ipifs_lock, RW_READER); for (i = 0; i < SCTP_IPIF_HASH; i++) { if (sctp_g_ipifs[i].ipif_count == 0) continue; sctp_ipif = list_head(&sctp_g_ipifs[i].sctp_ipif_list); for (j = 0; j < sctp_g_ipifs[i].ipif_count; j++) { rw_enter(&sctp_ipif->sctp_ipif_lock, RW_READER); if (SCTP_IPIF_DISCARD(sctp_ipif->sctp_ipif_flags) || !SCTP_IPIF_USABLE(sctp_ipif->sctp_ipif_state) || sctp_ipif->sctp_ipif_zoneid != sctp->sctp_zoneid || (sctp->sctp_ipversion == IPV4_VERSION && sctp_ipif->sctp_ipif_isv6) || (sctp->sctp_connp->conn_ipv6_v6only && !sctp_ipif->sctp_ipif_isv6)) { rw_exit(&sctp_ipif->sctp_ipif_lock); sctp_ipif = list_next( &sctp_g_ipifs[i].sctp_ipif_list, sctp_ipif); continue; } rw_exit(&sctp_ipif->sctp_ipif_lock); SCTP_IPIF_REFHOLD(sctp_ipif); error = sctp_ipif_hash_insert(sctp, sctp_ipif, sleep, B_FALSE); if (error != 0) goto free_stuff; sctp_ipif = list_next(&sctp_g_ipifs[i].sctp_ipif_list, sctp_ipif); } } rw_exit(&sctp_g_ipifs_lock); return (0); free_stuff: rw_exit(&sctp_g_ipifs_lock); sctp_free_saddrs(sctp); return (ENOMEM); } /* * Given a list of address, fills in the list of SCTP ipifs if all the addresses * are present in the SCTP interface list, return number of addresses filled * or error. If the caller wants the list of addresses, it sends a pre-allocated * buffer - list. Currently, this list is only used on a clustered node when * the SCTP is in the listen state (from sctp_bind_add()). When called on a * clustered node, the input is always a list of addresses (even if the * original bind() was to INADDR_ANY). * Called with no locks held. */ int sctp_valid_addr_list(sctp_t *sctp, const void *addrs, uint32_t addrcnt, uchar_t *list, size_t lsize) { struct sockaddr_in *sin4; struct sockaddr_in6 *sin6; struct in_addr *addr4; in6_addr_t addr; int cnt; int err = 0; int saddr_cnt = 0; sctp_ipif_t *ipif; boolean_t bind_to_all = B_FALSE; boolean_t check_addrs = B_FALSE; boolean_t check_lport = B_FALSE; uchar_t *p = list; /* * Need to check for port and address depending on the state. * After a socket is bound, we need to make sure that subsequent * bindx() has correct port. After an association is established, * we need to check for changing the bound address to invalid * addresses. */ if (sctp->sctp_state >= SCTPS_BOUND) { check_lport = B_TRUE; if (sctp->sctp_state > SCTPS_LISTEN) check_addrs = B_TRUE; } if (sctp->sctp_conn_tfp != NULL) mutex_enter(&sctp->sctp_conn_tfp->tf_lock); if (sctp->sctp_listen_tfp != NULL) mutex_enter(&sctp->sctp_listen_tfp->tf_lock); for (cnt = 0; cnt < addrcnt; cnt++) { boolean_t lookup_saddr = B_TRUE; uint_t ifindex = 0; switch (sctp->sctp_family) { case AF_INET: sin4 = (struct sockaddr_in *)addrs + cnt; if (sin4->sin_family != AF_INET || (check_lport && sin4->sin_port != sctp->sctp_lport)) { err = EINVAL; goto free_ret; } addr4 = &sin4->sin_addr; if (check_addrs && (addr4->s_addr == INADDR_ANY || addr4->s_addr == INADDR_BROADCAST || IN_MULTICAST(addr4->s_addr))) { err = EINVAL; goto free_ret; } IN6_INADDR_TO_V4MAPPED(addr4, &addr); if (!check_addrs && addr4->s_addr == INADDR_ANY) { lookup_saddr = B_FALSE; bind_to_all = B_TRUE; } break; case AF_INET6: sin6 = (struct sockaddr_in6 *)addrs + cnt; if (sin6->sin6_family != AF_INET6 || (check_lport && sin6->sin6_port != sctp->sctp_lport)) { err = EINVAL; goto free_ret; } addr = sin6->sin6_addr; /* Contains the interface index */ ifindex = sin6->sin6_scope_id; if (sctp->sctp_connp->conn_ipv6_v6only && IN6_IS_ADDR_V4MAPPED(&addr)) { err = EAFNOSUPPORT; goto free_ret; } if (check_addrs && (IN6_IS_ADDR_LINKLOCAL(&addr) || IN6_IS_ADDR_MULTICAST(&addr) || IN6_IS_ADDR_UNSPECIFIED(&addr))) { err = EINVAL; goto free_ret; } if (!check_addrs && IN6_IS_ADDR_UNSPECIFIED(&addr)) { lookup_saddr = B_FALSE; bind_to_all = B_TRUE; } break; default: err = EAFNOSUPPORT; goto free_ret; } if (lookup_saddr) { ipif = sctp_lookup_ipif_addr(&addr, B_TRUE, sctp->sctp_zoneid, ifindex); if (ipif == NULL) { /* Address not in the list */ err = EINVAL; goto free_ret; } else if (check_addrs && SCTP_IS_IPIF_LOOPBACK(ipif) && cl_sctp_check_addrs == NULL) { SCTP_IPIF_REFRELE(ipif); err = EINVAL; goto free_ret; } } if (!bind_to_all) { /* * If an address is added after association setup, * we need to wait for the peer to send us an ASCONF * ACK before we can start using it. * saddr_ipif_dontsrc will be reset (to 0) when we * get the ASCONF ACK for this address. */ err = sctp_ipif_hash_insert(sctp, ipif, KM_SLEEP, check_addrs ? B_TRUE : B_FALSE); if (err != 0) { SCTP_IPIF_REFRELE(ipif); if (check_addrs && err == EALREADY) err = EADDRINUSE; goto free_ret; } saddr_cnt++; if (lsize >= sizeof (addr)) { bcopy(&addr, p, sizeof (addr)); p += sizeof (addr); lsize -= sizeof (addr); } } } if (bind_to_all) { /* * Free whatever we might have added before encountering * inaddr_any. */ if (sctp->sctp_nsaddrs > 0) { sctp_free_saddrs(sctp); ASSERT(sctp->sctp_nsaddrs == 0); } err = sctp_get_all_ipifs(sctp, KM_SLEEP); if (err != 0) return (err); sctp->sctp_bound_to_all = 1; } if (sctp->sctp_listen_tfp != NULL) mutex_exit(&sctp->sctp_listen_tfp->tf_lock); if (sctp->sctp_conn_tfp != NULL) mutex_exit(&sctp->sctp_conn_tfp->tf_lock); return (0); free_ret: if (saddr_cnt != 0) sctp_del_saddr_list(sctp, addrs, saddr_cnt, B_TRUE); if (sctp->sctp_listen_tfp != NULL) mutex_exit(&sctp->sctp_listen_tfp->tf_lock); if (sctp->sctp_conn_tfp != NULL) mutex_exit(&sctp->sctp_conn_tfp->tf_lock); return (err); } sctp_saddr_ipif_t * sctp_ipif_lookup(sctp_t *sctp, uint_t ipif_index) { int cnt; int seqid = SCTP_IPIF_HASH_FN(ipif_index); sctp_saddr_ipif_t *ipif_obj; if (sctp->sctp_saddrs[seqid].ipif_count == 0) return (NULL); ipif_obj = list_head(&sctp->sctp_saddrs[seqid].sctp_ipif_list); for (cnt = 0; cnt < sctp->sctp_saddrs[seqid].ipif_count; cnt++) { if (ipif_obj->saddr_ipifp->sctp_ipif_id == ipif_index) return (ipif_obj); ipif_obj = list_next(&sctp->sctp_saddrs[seqid].sctp_ipif_list, ipif_obj); } return (NULL); } static int sctp_ipif_hash_insert(sctp_t *sctp, sctp_ipif_t *ipif, int sleep, boolean_t dontsrc) { int cnt; sctp_saddr_ipif_t *ipif_obj; int seqid = SCTP_IPIF_HASH_FN(ipif->sctp_ipif_id); ipif_obj = list_head(&sctp->sctp_saddrs[seqid].sctp_ipif_list); for (cnt = 0; cnt < sctp->sctp_saddrs[seqid].ipif_count; cnt++) { if (ipif_obj->saddr_ipifp->sctp_ipif_id == ipif->sctp_ipif_id) return (EALREADY); ipif_obj = list_next(&sctp->sctp_saddrs[seqid].sctp_ipif_list, ipif_obj); } ipif_obj = kmem_zalloc(sizeof (sctp_saddr_ipif_t), sleep); if (ipif_obj == NULL) { /* Need to do something */ return (ENOMEM); } ipif_obj->saddr_ipifp = ipif; ipif_obj->saddr_ipif_dontsrc = dontsrc ? 1 : 0; list_insert_tail(&sctp->sctp_saddrs[seqid].sctp_ipif_list, ipif_obj); sctp->sctp_saddrs[seqid].ipif_count++; sctp->sctp_nsaddrs++; return (0); } static void sctp_ipif_hash_remove(sctp_t *sctp, sctp_ipif_t *ipif) { int cnt; sctp_saddr_ipif_t *ipif_obj; int seqid = SCTP_IPIF_HASH_FN(ipif->sctp_ipif_id); ipif_obj = list_head(&sctp->sctp_saddrs[seqid].sctp_ipif_list); for (cnt = 0; cnt < sctp->sctp_saddrs[seqid].ipif_count; cnt++) { if (ipif_obj->saddr_ipifp->sctp_ipif_id == ipif->sctp_ipif_id) { list_remove(&sctp->sctp_saddrs[seqid].sctp_ipif_list, ipif_obj); sctp->sctp_nsaddrs--; sctp->sctp_saddrs[seqid].ipif_count--; SCTP_IPIF_REFRELE(ipif_obj->saddr_ipifp); kmem_free(ipif_obj, sizeof (sctp_saddr_ipif_t)); break; } ipif_obj = list_next(&sctp->sctp_saddrs[seqid].sctp_ipif_list, ipif_obj); } } static int sctp_compare_ipif_list(sctp_ipif_hash_t *list1, sctp_ipif_hash_t *list2) { int i; int j; sctp_saddr_ipif_t *obj1; sctp_saddr_ipif_t *obj2; int overlap = 0; obj1 = list_head(&list1->sctp_ipif_list); for (i = 0; i < list1->ipif_count; i++) { obj2 = list_head(&list2->sctp_ipif_list); for (j = 0; j < list2->ipif_count; j++) { if (obj1->saddr_ipifp->sctp_ipif_id == obj2->saddr_ipifp->sctp_ipif_id) { overlap++; break; } obj2 = list_next(&list2->sctp_ipif_list, obj2); } obj1 = list_next(&list1->sctp_ipif_list, obj1); } return (overlap); } int sctp_compare_saddrs(sctp_t *sctp1, sctp_t *sctp2) { int i; int overlap = 0; for (i = 0; i < SCTP_IPIF_HASH; i++) { overlap += sctp_compare_ipif_list(&sctp1->sctp_saddrs[i], &sctp2->sctp_saddrs[i]); } if (sctp1->sctp_nsaddrs == sctp2->sctp_nsaddrs && overlap == sctp1->sctp_nsaddrs) { return (SCTP_ADDR_EQUAL); } if (overlap == sctp1->sctp_nsaddrs) return (SCTP_ADDR_SUBSET); if (overlap > 0) return (SCTP_ADDR_OVERLAP); return (SCTP_ADDR_DISJOINT); } static int sctp_copy_ipifs(sctp_ipif_hash_t *list1, sctp_t *sctp2, int sleep) { int i; sctp_saddr_ipif_t *obj; int error = 0; obj = list_head(&list1->sctp_ipif_list); for (i = 0; i < list1->ipif_count; i++) { SCTP_IPIF_REFHOLD(obj->saddr_ipifp); error = sctp_ipif_hash_insert(sctp2, obj->saddr_ipifp, sleep, B_FALSE); if (error != 0) return (error); obj = list_next(&list1->sctp_ipif_list, obj); } return (error); } int sctp_dup_saddrs(sctp_t *sctp1, sctp_t *sctp2, int sleep) { int error = 0; int i; if (sctp1 == NULL || sctp1->sctp_bound_to_all == 1) return (sctp_get_all_ipifs(sctp2, sleep)); for (i = 0; i < SCTP_IPIF_HASH; i++) { if (sctp1->sctp_saddrs[i].ipif_count == 0) continue; error = sctp_copy_ipifs(&sctp1->sctp_saddrs[i], sctp2, sleep); if (error != 0) { sctp_free_saddrs(sctp2); return (error); } } return (0); } void sctp_free_saddrs(sctp_t *sctp) { int i; int l; sctp_saddr_ipif_t *obj; if (sctp->sctp_nsaddrs == 0) return; for (i = 0; i < SCTP_IPIF_HASH; i++) { if (sctp->sctp_saddrs[i].ipif_count == 0) continue; obj = list_tail(&sctp->sctp_saddrs[i].sctp_ipif_list); for (l = 0; l < sctp->sctp_saddrs[i].ipif_count; l++) { list_remove(&sctp->sctp_saddrs[i].sctp_ipif_list, obj); SCTP_IPIF_REFRELE(obj->saddr_ipifp); sctp->sctp_nsaddrs--; kmem_free(obj, sizeof (sctp_saddr_ipif_t)); obj = list_tail(&sctp->sctp_saddrs[i].sctp_ipif_list); } sctp->sctp_saddrs[i].ipif_count = 0; } if (sctp->sctp_bound_to_all == 1) sctp->sctp_bound_to_all = 0; ASSERT(sctp->sctp_nsaddrs == 0); } /* * Add/Delete the given ILL from the SCTP ILL list. Called with no locks * held. */ void sctp_update_ill(ill_t *ill, int op) { int i; sctp_ill_t *sctp_ill = NULL; uint_t index; ip2dbg(("sctp_update_ill: %s\n", ill->ill_name)); rw_enter(&sctp_g_ills_lock, RW_WRITER); index = SCTP_ILL_HASH_FN(SCTP_ILL_TO_PHYINDEX(ill)); sctp_ill = list_head(&sctp_g_ills[index].sctp_ill_list); for (i = 0; i < sctp_g_ills[index].ill_count; i++) { if (sctp_ill->sctp_ill_index == SCTP_ILL_TO_PHYINDEX(ill)) break; sctp_ill = list_next(&sctp_g_ills[index].sctp_ill_list, sctp_ill); } switch (op) { case SCTP_ILL_INSERT: if (sctp_ill != NULL) { /* Unmark it if it is condemned */ if (sctp_ill->sctp_ill_state == SCTP_ILLS_CONDEMNED) sctp_ill->sctp_ill_state = 0; rw_exit(&sctp_g_ills_lock); return; } sctp_ill = kmem_zalloc(sizeof (sctp_ill_t), KM_NOSLEEP); /* Need to re-try? */ if (sctp_ill == NULL) { ip1dbg(("sctp_ill_insert: mem error..\n")); rw_exit(&sctp_g_ills_lock); return; } sctp_ill->sctp_ill_name = kmem_zalloc(ill->ill_name_length, KM_NOSLEEP); if (sctp_ill->sctp_ill_name == NULL) { ip1dbg(("sctp_ill_insert: mem error..\n")); kmem_free(sctp_ill, sizeof (sctp_ill_t)); rw_exit(&sctp_g_ills_lock); return; } bcopy(ill->ill_name, sctp_ill->sctp_ill_name, ill->ill_name_length); sctp_ill->sctp_ill_name_length = ill->ill_name_length; sctp_ill->sctp_ill_index = SCTP_ILL_TO_PHYINDEX(ill); sctp_ill->sctp_ill_flags = ill->ill_phyint->phyint_flags; list_insert_tail(&sctp_g_ills[index].sctp_ill_list, (void *)sctp_ill); sctp_g_ills[index].ill_count++; sctp_ills_count++; break; case SCTP_ILL_REMOVE: if (sctp_ill == NULL) { rw_exit(&sctp_g_ills_lock); return; } if (sctp_ill->sctp_ill_ipifcnt == 0) { list_remove(&sctp_g_ills[index].sctp_ill_list, (void *)sctp_ill); sctp_g_ills[index].ill_count--; sctp_ills_count--; kmem_free(sctp_ill->sctp_ill_name, ill->ill_name_length); kmem_free(sctp_ill, sizeof (sctp_ill_t)); } else { sctp_ill->sctp_ill_state = SCTP_ILLS_CONDEMNED; } break; } rw_exit(&sctp_g_ills_lock); } /* move ipif from f_ill to t_ill */ void sctp_move_ipif(ipif_t *ipif, ill_t *f_ill, ill_t *t_ill) { sctp_ill_t *fsctp_ill = NULL; sctp_ill_t *tsctp_ill = NULL; sctp_ipif_t *sctp_ipif; uint_t index; int i; rw_enter(&sctp_g_ills_lock, RW_READER); rw_enter(&sctp_g_ipifs_lock, RW_READER); index = SCTP_ILL_HASH_FN(SCTP_ILL_TO_PHYINDEX(f_ill)); fsctp_ill = list_head(&sctp_g_ills[index].sctp_ill_list); for (i = 0; i < sctp_g_ills[index].ill_count; i++) { if (fsctp_ill->sctp_ill_index == SCTP_ILL_TO_PHYINDEX(f_ill)) break; fsctp_ill = list_next(&sctp_g_ills[index].sctp_ill_list, fsctp_ill); } index = SCTP_ILL_HASH_FN(SCTP_ILL_TO_PHYINDEX(t_ill)); tsctp_ill = list_head(&sctp_g_ills[index].sctp_ill_list); for (i = 0; i < sctp_g_ills[index].ill_count; i++) { if (tsctp_ill->sctp_ill_index == SCTP_ILL_TO_PHYINDEX(t_ill)) break; tsctp_ill = list_next(&sctp_g_ills[index].sctp_ill_list, tsctp_ill); } index = SCTP_IPIF_HASH_FN(ipif->ipif_seqid); sctp_ipif = list_head(&sctp_g_ipifs[index].sctp_ipif_list); for (i = 0; i < sctp_g_ipifs[index].ipif_count; i++) { if (sctp_ipif->sctp_ipif_id == ipif->ipif_seqid) break; sctp_ipif = list_next(&sctp_g_ipifs[index].sctp_ipif_list, sctp_ipif); } /* Should be an ASSERT? */ if (fsctp_ill == NULL || tsctp_ill == NULL || sctp_ipif == NULL) { ip1dbg(("sctp_move_ipif: error moving ipif %p from %p to %p\n", (void *)ipif, (void *)f_ill, (void *)t_ill)); rw_exit(&sctp_g_ipifs_lock); rw_exit(&sctp_g_ills_lock); return; } rw_enter(&sctp_ipif->sctp_ipif_lock, RW_WRITER); ASSERT(sctp_ipif->sctp_ipif_ill == fsctp_ill); sctp_ipif->sctp_ipif_ill = tsctp_ill; rw_exit(&sctp_ipif->sctp_ipif_lock); (void) atomic_add_32_nv(&fsctp_ill->sctp_ill_ipifcnt, -1); atomic_add_32(&tsctp_ill->sctp_ill_ipifcnt, 1); rw_exit(&sctp_g_ipifs_lock); rw_exit(&sctp_g_ills_lock); } /* Insert, Remove, Mark up or Mark down the ipif */ void sctp_update_ipif(ipif_t *ipif, int op) { ill_t *ill = ipif->ipif_ill; int i; sctp_ill_t *sctp_ill; sctp_ipif_t *sctp_ipif; uint_t ill_index; uint_t ipif_index; ip2dbg(("sctp_update_ipif: %s %d\n", ill->ill_name, ipif->ipif_seqid)); rw_enter(&sctp_g_ills_lock, RW_READER); rw_enter(&sctp_g_ipifs_lock, RW_WRITER); ill_index = SCTP_ILL_HASH_FN(SCTP_ILL_TO_PHYINDEX(ill)); sctp_ill = list_head(&sctp_g_ills[ill_index].sctp_ill_list); for (i = 0; i < sctp_g_ills[ill_index].ill_count; i++) { if (sctp_ill->sctp_ill_index == SCTP_ILL_TO_PHYINDEX(ill)) break; sctp_ill = list_next(&sctp_g_ills[ill_index].sctp_ill_list, sctp_ill); } if (sctp_ill == NULL) { rw_exit(&sctp_g_ipifs_lock); rw_exit(&sctp_g_ills_lock); return; } ipif_index = SCTP_IPIF_HASH_FN(ipif->ipif_seqid); sctp_ipif = list_head(&sctp_g_ipifs[ipif_index].sctp_ipif_list); for (i = 0; i < sctp_g_ipifs[ipif_index].ipif_count; i++) { if (sctp_ipif->sctp_ipif_id == ipif->ipif_seqid) break; sctp_ipif = list_next(&sctp_g_ipifs[ipif_index].sctp_ipif_list, sctp_ipif); } if (op != SCTP_IPIF_INSERT && sctp_ipif == NULL) { ip1dbg(("sctp_update_ipif: null sctp_ipif for %d\n", op)); rw_exit(&sctp_g_ipifs_lock); rw_exit(&sctp_g_ills_lock); return; } #ifdef DEBUG if (sctp_ipif != NULL) ASSERT(sctp_ill == sctp_ipif->sctp_ipif_ill); #endif switch (op) { case SCTP_IPIF_INSERT: if (sctp_ipif != NULL) { if (sctp_ipif->sctp_ipif_state == SCTP_IPIFS_CONDEMNED) sctp_ipif->sctp_ipif_state = SCTP_IPIFS_INVALID; rw_exit(&sctp_g_ipifs_lock); rw_exit(&sctp_g_ills_lock); return; } sctp_ipif = kmem_zalloc(sizeof (sctp_ipif_t), KM_NOSLEEP); /* Try again? */ if (sctp_ipif == NULL) { ip1dbg(("sctp_ipif_insert: mem failure..\n")); rw_exit(&sctp_g_ipifs_lock); rw_exit(&sctp_g_ills_lock); return; } sctp_ipif->sctp_ipif_id = ipif->ipif_seqid; sctp_ipif->sctp_ipif_ill = sctp_ill; sctp_ipif->sctp_ipif_state = SCTP_IPIFS_INVALID; sctp_ipif->sctp_ipif_mtu = ipif->ipif_mtu; sctp_ipif->sctp_ipif_zoneid = ipif->ipif_zoneid; sctp_ipif->sctp_ipif_isv6 = ill->ill_isv6; sctp_ipif->sctp_ipif_flags = ipif->ipif_flags; rw_init(&sctp_ipif->sctp_ipif_lock, NULL, RW_DEFAULT, NULL); list_insert_tail(&sctp_g_ipifs[ipif_index].sctp_ipif_list, (void *)sctp_ipif); sctp_g_ipifs[ipif_index].ipif_count++; sctp_g_ipifs_count++; atomic_add_32(&sctp_ill->sctp_ill_ipifcnt, 1); break; case SCTP_IPIF_REMOVE: { list_t *ipif_list; list_t *ill_list; ill_list = &sctp_g_ills[ill_index].sctp_ill_list; ipif_list = &sctp_g_ipifs[ipif_index].sctp_ipif_list; if (sctp_ipif->sctp_ipif_refcnt != 0) { sctp_ipif->sctp_ipif_state = SCTP_IPIFS_CONDEMNED; rw_exit(&sctp_g_ipifs_lock); rw_exit(&sctp_g_ills_lock); return; } list_remove(ipif_list, (void *)sctp_ipif); sctp_g_ipifs[ipif_index].ipif_count--; sctp_g_ipifs_count--; rw_destroy(&sctp_ipif->sctp_ipif_lock); kmem_free(sctp_ipif, sizeof (sctp_ipif_t)); (void) atomic_add_32_nv(&sctp_ill->sctp_ill_ipifcnt, -1); if (rw_tryupgrade(&sctp_g_ills_lock) != 0) { rw_downgrade(&sctp_g_ipifs_lock); if (sctp_ill->sctp_ill_ipifcnt == 0 && sctp_ill->sctp_ill_state == SCTP_ILLS_CONDEMNED) { list_remove(ill_list, (void *)sctp_ill); sctp_ills_count--; sctp_g_ills[ill_index].ill_count--; kmem_free(sctp_ill->sctp_ill_name, sctp_ill->sctp_ill_name_length); kmem_free(sctp_ill, sizeof (sctp_ill_t)); } } break; } case SCTP_IPIF_UP: rw_downgrade(&sctp_g_ipifs_lock); rw_enter(&sctp_ipif->sctp_ipif_lock, RW_WRITER); sctp_ipif->sctp_ipif_state = SCTP_IPIFS_UP; sctp_ipif->sctp_ipif_saddr = ipif->ipif_v6lcl_addr; sctp_ipif->sctp_ipif_flags = ipif->ipif_flags; sctp_ipif->sctp_ipif_mtu = ipif->ipif_mtu; rw_exit(&sctp_ipif->sctp_ipif_lock); break; case SCTP_IPIF_UPDATE: rw_downgrade(&sctp_g_ipifs_lock); rw_enter(&sctp_ipif->sctp_ipif_lock, RW_WRITER); sctp_ipif->sctp_ipif_mtu = ipif->ipif_mtu; sctp_ipif->sctp_ipif_saddr = ipif->ipif_v6lcl_addr; sctp_ipif->sctp_ipif_zoneid = ipif->ipif_zoneid; sctp_ipif->sctp_ipif_flags = ipif->ipif_flags; rw_exit(&sctp_ipif->sctp_ipif_lock); break; case SCTP_IPIF_DOWN: rw_downgrade(&sctp_g_ipifs_lock); rw_enter(&sctp_ipif->sctp_ipif_lock, RW_WRITER); sctp_ipif->sctp_ipif_state = SCTP_IPIFS_DOWN; rw_exit(&sctp_ipif->sctp_ipif_lock); break; } rw_exit(&sctp_g_ipifs_lock); rw_exit(&sctp_g_ills_lock); } /* * * * SCTP source address list manipulaton, locking not used (except for * sctp locking by the caller. * * */ /* Remove a specific saddr from the list */ void sctp_del_saddr(sctp_t *sctp, sctp_saddr_ipif_t *sp) { if (sctp->sctp_conn_tfp != NULL) mutex_enter(&sctp->sctp_conn_tfp->tf_lock); if (sctp->sctp_listen_tfp != NULL) mutex_enter(&sctp->sctp_listen_tfp->tf_lock); sctp_ipif_hash_remove(sctp, sp->saddr_ipifp); if (sctp->sctp_bound_to_all == 1) sctp->sctp_bound_to_all = 0; if (sctp->sctp_conn_tfp != NULL) mutex_exit(&sctp->sctp_conn_tfp->tf_lock); if (sctp->sctp_listen_tfp != NULL) mutex_exit(&sctp->sctp_listen_tfp->tf_lock); } /* * Delete source address from the existing list. No error checking done here * Called with no locks held. */ void sctp_del_saddr_list(sctp_t *sctp, const void *addrs, int addcnt, boolean_t fanout_locked) { struct sockaddr_in *sin4; struct sockaddr_in6 *sin6; int cnt; in6_addr_t addr; sctp_ipif_t *sctp_ipif; int ifindex = 0; ASSERT(sctp->sctp_nsaddrs >= addcnt); if (!fanout_locked) { if (sctp->sctp_conn_tfp != NULL) mutex_enter(&sctp->sctp_conn_tfp->tf_lock); if (sctp->sctp_listen_tfp != NULL) mutex_enter(&sctp->sctp_listen_tfp->tf_lock); } for (cnt = 0; cnt < addcnt; cnt++) { switch (sctp->sctp_family) { case AF_INET: sin4 = (struct sockaddr_in *)addrs + cnt; IN6_INADDR_TO_V4MAPPED(&sin4->sin_addr, &addr); break; case AF_INET6: sin6 = (struct sockaddr_in6 *)addrs + cnt; addr = sin6->sin6_addr; ifindex = sin6->sin6_scope_id; break; } sctp_ipif = sctp_lookup_ipif_addr(&addr, B_FALSE, sctp->sctp_zoneid, ifindex); ASSERT(sctp_ipif != NULL); sctp_ipif_hash_remove(sctp, sctp_ipif); } if (sctp->sctp_bound_to_all == 1) sctp->sctp_bound_to_all = 0; if (!fanout_locked) { if (sctp->sctp_conn_tfp != NULL) mutex_exit(&sctp->sctp_conn_tfp->tf_lock); if (sctp->sctp_listen_tfp != NULL) mutex_exit(&sctp->sctp_listen_tfp->tf_lock); } } /* * Given an address get the corresponding entry from the list * Called with no locks held. */ sctp_saddr_ipif_t * sctp_saddr_lookup(sctp_t *sctp, in6_addr_t *addr, uint_t ifindex) { sctp_saddr_ipif_t *saddr_ipifs; sctp_ipif_t *sctp_ipif; sctp_ipif = sctp_lookup_ipif_addr(addr, B_FALSE, sctp->sctp_zoneid, ifindex); if (sctp_ipif == NULL) return (NULL); saddr_ipifs = sctp_ipif_lookup(sctp, sctp_ipif->sctp_ipif_id); return (saddr_ipifs); } /* Given an address, add it to the source address list */ int sctp_saddr_add_addr(sctp_t *sctp, in6_addr_t *addr, uint_t ifindex) { sctp_ipif_t *sctp_ipif; sctp_ipif = sctp_lookup_ipif_addr(addr, B_TRUE, sctp->sctp_zoneid, ifindex); if (sctp_ipif == NULL) return (EINVAL); if (sctp_ipif_hash_insert(sctp, sctp_ipif, KM_NOSLEEP, B_FALSE) != 0) { SCTP_IPIF_REFRELE(sctp_ipif); return (EINVAL); } return (0); } /* * Remove or mark as dontsrc addresses that are currently not part of the * association. One would delete addresses when processing an INIT and * mark as dontsrc when processing an INIT-ACK. */ void sctp_check_saddr(sctp_t *sctp, int supp_af, boolean_t delete) { int i; int l; sctp_saddr_ipif_t *obj; int scanned = 0; int naddr; int nsaddr; ASSERT(!sctp->sctp_loopback && !sctp->sctp_linklocal && supp_af != 0); /* * Irregardless of the supported address in the INIT, v4 * must be supported. */ if (sctp->sctp_family == AF_INET) supp_af = PARM_SUPP_V4; nsaddr = sctp->sctp_nsaddrs; for (i = 0; i < SCTP_IPIF_HASH; i++) { if (sctp->sctp_saddrs[i].ipif_count == 0) continue; obj = list_head(&sctp->sctp_saddrs[i].sctp_ipif_list); naddr = sctp->sctp_saddrs[i].ipif_count; for (l = 0; l < naddr; l++) { sctp_ipif_t *ipif; ipif = obj->saddr_ipifp; scanned++; /* * Delete/mark dontsrc loopback/linklocal addresses and * unsupported address. * On a clustered node, we trust the clustering module * to do the right thing w.r.t loopback addresses, so * we ignore loopback addresses in this check. */ if ((SCTP_IS_IPIF_LOOPBACK(ipif) && cl_sctp_check_addrs == NULL) || SCTP_IS_IPIF_LINKLOCAL(ipif) || SCTP_UNSUPP_AF(ipif, supp_af)) { if (!delete) { obj->saddr_ipif_unconfirmed = 1; goto next_obj; } if (sctp->sctp_bound_to_all == 1) sctp->sctp_bound_to_all = 0; if (scanned < nsaddr) { obj = list_next(&sctp->sctp_saddrs[i]. sctp_ipif_list, obj); sctp_ipif_hash_remove(sctp, ipif); continue; } sctp_ipif_hash_remove(sctp, ipif); } next_obj: if (scanned >= nsaddr) return; obj = list_next(&sctp->sctp_saddrs[i].sctp_ipif_list, obj); } } } /* Get the first valid address from the list. Called with no locks held */ in6_addr_t sctp_get_valid_addr(sctp_t *sctp, boolean_t isv6) { int i; int l; sctp_saddr_ipif_t *obj; int scanned = 0; in6_addr_t addr; for (i = 0; i < SCTP_IPIF_HASH; i++) { if (sctp->sctp_saddrs[i].ipif_count == 0) continue; obj = list_head(&sctp->sctp_saddrs[i].sctp_ipif_list); for (l = 0; l < sctp->sctp_saddrs[i].ipif_count; l++) { sctp_ipif_t *ipif; ipif = obj->saddr_ipifp; if (!SCTP_DONT_SRC(obj) && ipif->sctp_ipif_isv6 == isv6 && ipif->sctp_ipif_state == SCTP_IPIFS_UP) { return (ipif->sctp_ipif_saddr); } scanned++; if (scanned >= sctp->sctp_nsaddrs) goto got_none; obj = list_next(&sctp->sctp_saddrs[i].sctp_ipif_list, obj); } } got_none: /* Need to double check this */ if (isv6 == B_TRUE) addr = ipv6_all_zeros; else IN6_IPADDR_TO_V4MAPPED(0, &addr); return (addr); } /* * Return the list of local addresses of an association. The parameter * myaddrs is supposed to be either (struct sockaddr_in *) or (struct * sockaddr_in6 *) depending on the address family. */ int sctp_getmyaddrs(void *conn, void *myaddrs, int *addrcnt) { int i; int l; sctp_saddr_ipif_t *obj; sctp_t *sctp = (sctp_t *)conn; int family = sctp->sctp_family; int max = *addrcnt; size_t added = 0; struct sockaddr_in6 *sin6; struct sockaddr_in *sin4; int scanned = 0; boolean_t skip_lback = B_FALSE; if (sctp->sctp_nsaddrs == 0) return (EINVAL); /* * Skip loopback addresses for non-loopback assoc., ignore * this on a clustered node. */ if (sctp->sctp_state >= SCTPS_ESTABLISHED && !sctp->sctp_loopback && (cl_sctp_check_addrs == NULL)) { skip_lback = B_TRUE; } for (i = 0; i < SCTP_IPIF_HASH; i++) { if (sctp->sctp_saddrs[i].ipif_count == 0) continue; obj = list_head(&sctp->sctp_saddrs[i].sctp_ipif_list); for (l = 0; l < sctp->sctp_saddrs[i].ipif_count; l++) { sctp_ipif_t *ipif = obj->saddr_ipifp; in6_addr_t addr = ipif->sctp_ipif_saddr; scanned++; if ((ipif->sctp_ipif_state == SCTP_IPIFS_CONDEMNED) || SCTP_DONT_SRC(obj) || (SCTP_IS_IPIF_LOOPBACK(ipif) && skip_lback)) { if (scanned >= sctp->sctp_nsaddrs) goto done; obj = list_next(&sctp->sctp_saddrs[i]. sctp_ipif_list, obj); continue; } switch (family) { case AF_INET: sin4 = (struct sockaddr_in *)myaddrs + added; sin4->sin_family = AF_INET; sin4->sin_port = sctp->sctp_lport; IN6_V4MAPPED_TO_INADDR(&addr, &sin4->sin_addr); break; case AF_INET6: sin6 = (struct sockaddr_in6 *)myaddrs + added; sin6->sin6_family = AF_INET6; sin6->sin6_port = sctp->sctp_lport; sin6->sin6_addr = addr; break; } added++; if (added >= max || scanned >= sctp->sctp_nsaddrs) goto done; obj = list_next(&sctp->sctp_saddrs[i].sctp_ipif_list, obj); } } done: *addrcnt = added; return (0); } /* * Given the supported address family, walk through the source address list * and return the total length of the available addresses. If 'p' is not * null, construct the parameter list for the addresses in 'p'. * 'modify' will only be set when we want the source address list to * be modified. The source address list will be modified only when * generating an INIT chunk. For generating an INIT-ACK 'modify' will * be false since the 'sctp' will be that of the listener. */ size_t sctp_saddr_info(sctp_t *sctp, int supp_af, uchar_t *p, boolean_t modify) { int i; int l; sctp_saddr_ipif_t *obj; size_t paramlen = 0; sctp_parm_hdr_t *hdr; int scanned = 0; int naddr; int nsaddr; boolean_t del_ll = B_FALSE; boolean_t del_lb = B_FALSE; /* * On a clustered node don't bother changing anything * on the loopback interface. */ if (modify && !sctp->sctp_loopback && (cl_sctp_check_addrs == NULL)) del_lb = B_TRUE; if (modify && !sctp->sctp_linklocal) del_ll = B_TRUE; nsaddr = sctp->sctp_nsaddrs; for (i = 0; i < SCTP_IPIF_HASH; i++) { if (sctp->sctp_saddrs[i].ipif_count == 0) continue; obj = list_head(&sctp->sctp_saddrs[i].sctp_ipif_list); naddr = sctp->sctp_saddrs[i].ipif_count; for (l = 0; l < naddr; l++) { in6_addr_t addr; sctp_ipif_t *ipif; boolean_t ipif_lb; boolean_t ipif_ll; boolean_t unsupp_af; ipif = obj->saddr_ipifp; scanned++; ipif_lb = SCTP_IS_IPIF_LOOPBACK(ipif); ipif_ll = SCTP_IS_IPIF_LINKLOCAL(ipif); unsupp_af = SCTP_UNSUPP_AF(ipif, supp_af); /* * We need to either delete or skip loopback/linklocal * or unsupported addresses, if required. */ if ((ipif_ll && del_ll) || (ipif_lb && del_lb) || (unsupp_af && modify)) { if (sctp->sctp_bound_to_all == 1) sctp->sctp_bound_to_all = 0; if (scanned < nsaddr) { obj = list_next(&sctp->sctp_saddrs[i]. sctp_ipif_list, obj); sctp_ipif_hash_remove(sctp, ipif); continue; } sctp_ipif_hash_remove(sctp, ipif); goto next_addr; } else if (ipif_ll || unsupp_af || (ipif_lb && (cl_sctp_check_addrs == NULL))) { goto next_addr; } if (!SCTP_IPIF_USABLE(ipif->sctp_ipif_state)) goto next_addr; if (p != NULL) hdr = (sctp_parm_hdr_t *)(p + paramlen); addr = ipif->sctp_ipif_saddr; if (!ipif->sctp_ipif_isv6) { struct in_addr *v4; if (p != NULL) { hdr->sph_type = htons(PARM_ADDR4); hdr->sph_len = htons(PARM_ADDR4_LEN); v4 = (struct in_addr *)(hdr + 1); IN6_V4MAPPED_TO_INADDR(&addr, v4); } paramlen += PARM_ADDR4_LEN; } else { if (p != NULL) { hdr->sph_type = htons(PARM_ADDR6); hdr->sph_len = htons(PARM_ADDR6_LEN); bcopy(&addr, hdr + 1, sizeof (addr)); } paramlen += PARM_ADDR6_LEN; } next_addr: if (scanned >= nsaddr) return (paramlen); obj = list_next(&sctp->sctp_saddrs[i].sctp_ipif_list, obj); } } return (paramlen); } /* * This is used on a clustered node to obtain a list of addresses, the list * consists of sockaddr_in structs for v4 and sockaddr_in6 for v6. The list * is then passed onto the clustering module which sends back the correct * list based on the port info. Regardless of the input, i.e INADDR_ANY * or specific address(es), we create the list since it could be modified by * the clustering module. When given a list of addresses, we simply * create the list of sockaddr_in or sockaddr_in6 structs using those * addresses. If there is an INADDR_ANY in the input list, or if the * input is INADDR_ANY, we create a list of sockaddr_in or sockaddr_in6 * structs consisting all the addresses in the global interface list * except those that are hosted on the loopback interface. We create * a list of sockaddr_in[6] structs just so that it can be directly input * to sctp_valid_addr_list() once the clustering module has processed it. */ int sctp_get_addrlist(sctp_t *sctp, const void *addrs, uint32_t *addrcnt, uchar_t **addrlist, int *uspec, size_t *size) { int cnt; int icnt; sctp_ipif_t *sctp_ipif; struct sockaddr_in *s4; struct sockaddr_in6 *s6; uchar_t *p; int err = 0; *addrlist = NULL; *size = 0; /* * Create a list of sockaddr_in[6] structs using the input list. */ if (sctp->sctp_family == AF_INET) { *size = sizeof (struct sockaddr_in) * *addrcnt; *addrlist = kmem_zalloc(*size, KM_SLEEP); p = *addrlist; for (cnt = 0; cnt < *addrcnt; cnt++) { s4 = (struct sockaddr_in *)addrs + cnt; /* * We need to create a list of all the available * addresses if there is an INADDR_ANY. However, * if we are beyond LISTEN, then this is invalid * (see sctp_valid_addr_list(). So, we just fail * it here rather than wait till it fails in * sctp_valid_addr_list(). */ if (s4->sin_addr.s_addr == INADDR_ANY) { kmem_free(*addrlist, *size); *addrlist = NULL; *size = 0; if (sctp->sctp_state > SCTPS_LISTEN) { *addrcnt = 0; return (EINVAL); } if (uspec != NULL) *uspec = 1; goto get_all_addrs; } else { bcopy(s4, p, sizeof (*s4)); p += sizeof (*s4); } } } else { *size = sizeof (struct sockaddr_in6) * *addrcnt; *addrlist = kmem_zalloc(*size, KM_SLEEP); p = *addrlist; for (cnt = 0; cnt < *addrcnt; cnt++) { s6 = (struct sockaddr_in6 *)addrs + cnt; /* * Comments for INADDR_ANY, above, apply here too. */ if (IN6_IS_ADDR_UNSPECIFIED(&s6->sin6_addr)) { kmem_free(*addrlist, *size); *size = 0; *addrlist = NULL; if (sctp->sctp_state > SCTPS_LISTEN) { *addrcnt = 0; return (EINVAL); } if (uspec != NULL) *uspec = 1; goto get_all_addrs; } else { bcopy(addrs, p, sizeof (*s6)); p += sizeof (*s6); } } } return (err); get_all_addrs: /* * Allocate max possible size. We allocate the max. size here because * the clustering module could end up adding addresses to the list. * We allocate upfront so that the clustering module need to bother * re-sizing the list. */ if (sctp->sctp_family == AF_INET) *size = sizeof (struct sockaddr_in) * sctp_g_ipifs_count; else *size = sizeof (struct sockaddr_in6) * sctp_g_ipifs_count; *addrlist = kmem_zalloc(*size, KM_SLEEP); *addrcnt = 0; p = *addrlist; rw_enter(&sctp_g_ipifs_lock, RW_READER); /* * Walk through the global interface list and add all addresses, * except those that are hosted on loopback interfaces. */ for (cnt = 0; cnt < SCTP_IPIF_HASH; cnt++) { if (sctp_g_ipifs[cnt].ipif_count == 0) continue; sctp_ipif = list_head(&sctp_g_ipifs[cnt].sctp_ipif_list); for (icnt = 0; icnt < sctp_g_ipifs[cnt].ipif_count; icnt++) { in6_addr_t addr; rw_enter(&sctp_ipif->sctp_ipif_lock, RW_READER); addr = sctp_ipif->sctp_ipif_saddr; if (SCTP_IPIF_DISCARD(sctp_ipif->sctp_ipif_flags) || !SCTP_IPIF_USABLE(sctp_ipif->sctp_ipif_state) || SCTP_IS_IPIF_LOOPBACK(sctp_ipif) || SCTP_IS_IPIF_LINKLOCAL(sctp_ipif) || sctp_ipif->sctp_ipif_zoneid != sctp->sctp_zoneid || (sctp->sctp_ipversion == IPV4_VERSION && sctp_ipif->sctp_ipif_isv6) || (sctp->sctp_connp->conn_ipv6_v6only && !sctp_ipif->sctp_ipif_isv6)) { rw_exit(&sctp_ipif->sctp_ipif_lock); sctp_ipif = list_next( &sctp_g_ipifs[cnt].sctp_ipif_list, sctp_ipif); continue; } rw_exit(&sctp_ipif->sctp_ipif_lock); if (sctp->sctp_family == AF_INET) { s4 = (struct sockaddr_in *)p; IN6_V4MAPPED_TO_INADDR(&addr, &s4->sin_addr); s4->sin_family = AF_INET; p += sizeof (*s4); } else { s6 = (struct sockaddr_in6 *)p; s6->sin6_addr = addr; s6->sin6_family = AF_INET6; s6->sin6_scope_id = sctp_ipif->sctp_ipif_ill->sctp_ill_index; p += sizeof (*s6); } (*addrcnt)++; sctp_ipif = list_next(&sctp_g_ipifs[cnt].sctp_ipif_list, sctp_ipif); } } rw_exit(&sctp_g_ipifs_lock); return (err); } /* * Get a list of addresses from the source address list. The caller is * responsible for allocating sufficient buffer for this. */ void sctp_get_saddr_list(sctp_t *sctp, uchar_t *p, size_t psize) { int cnt; int icnt; sctp_saddr_ipif_t *obj; int naddr; int scanned = 0; for (cnt = 0; cnt < SCTP_IPIF_HASH; cnt++) { if (sctp->sctp_saddrs[cnt].ipif_count == 0) continue; obj = list_head(&sctp->sctp_saddrs[cnt].sctp_ipif_list); naddr = sctp->sctp_saddrs[cnt].ipif_count; for (icnt = 0; icnt < naddr; icnt++) { sctp_ipif_t *ipif; if (psize < sizeof (ipif->sctp_ipif_saddr)) return; scanned++; ipif = obj->saddr_ipifp; bcopy(&ipif->sctp_ipif_saddr, p, sizeof (ipif->sctp_ipif_saddr)); p += sizeof (ipif->sctp_ipif_saddr); psize -= sizeof (ipif->sctp_ipif_saddr); if (scanned >= sctp->sctp_nsaddrs) return; obj = list_next(&sctp->sctp_saddrs[icnt].sctp_ipif_list, obj); } } } /* * Get a list of addresses from the remote address list. The caller is * responsible for allocating sufficient buffer for this. */ void sctp_get_faddr_list(sctp_t *sctp, uchar_t *p, size_t psize) { sctp_faddr_t *fp; for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { if (psize < sizeof (fp->faddr)) return; bcopy(&fp->faddr, p, sizeof (fp->faddr)); p += sizeof (fp->faddr); psize -= sizeof (fp->faddr); } } /* Initialize the SCTP ILL list and lock */ void sctp_saddr_init() { int i; rw_init(&sctp_g_ills_lock, NULL, RW_DEFAULT, NULL); rw_init(&sctp_g_ipifs_lock, NULL, RW_DEFAULT, NULL); for (i = 0; i < SCTP_ILL_HASH; i++) { sctp_g_ills[i].ill_count = 0; list_create(&sctp_g_ills[i].sctp_ill_list, sizeof (sctp_ill_t), offsetof(sctp_ill_t, sctp_ills)); } for (i = 0; i < SCTP_IPIF_HASH; i++) { sctp_g_ipifs[i].ipif_count = 0; list_create(&sctp_g_ipifs[i].sctp_ipif_list, sizeof (sctp_ipif_t), offsetof(sctp_ipif_t, sctp_ipifs)); } } void sctp_saddr_fini() { int i; rw_destroy(&sctp_g_ills_lock); rw_destroy(&sctp_g_ipifs_lock); ASSERT(sctp_ills_count == 0 && sctp_g_ipifs_count == 0); for (i = 0; i < SCTP_ILL_HASH; i++) list_destroy(&sctp_g_ills[i].sctp_ill_list); for (i = 0; i < SCTP_IPIF_HASH; i++) list_destroy(&sctp_g_ipifs[i].sctp_ipif_list); }