/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* tunable for strict error-reply behavior (TCP RST and ICMP Unreachable) */ int tsol_strict_error; /* * Some notes on the Trusted Solaris IRE gateway security attributes: * * When running in Trusted mode, the routing subsystem determines whether or * not a packet can be delivered to an off-link host (not directly reachable * through an interface) based on the accreditation checks of the packet's * security attributes against those associated with the next-hop gateway. * * The next-hop gateway's security attributes can be derived from two sources * (in order of preference): route-related and the host database. A Trusted * system must be configured with at least the host database containing an * entry for the next-hop gateway, or otherwise no accreditation checks can * be performed, which may result in the inability to send packets to any * off-link destination host. * * The major differences between the two sources are the number and type of * security attributes used for accreditation checks. A host database entry * can contain at most one set of security attributes, specific only to the * next-hop gateway. On contrast, route-related security attributes are made * up of a collection of security attributes for the distant networks, and * are grouped together per next-hop gateway used to reach those networks. * This is the preferred method, and the routing subsystem will fallback to * the host database entry only if there are no route-related attributes * associated with the next-hop gateway. * * In Trusted mode, all of the IRE entries (except LOCAL/LOOPBACK/BROADCAST/ * INTERFACE type) are initialized to contain a placeholder to store this * information. The ire_gw_secattr structure gets allocated, initialized * and associated with the IRE during the time of the IRE creation. The * initialization process also includes resolving the host database entry * of the next-hop gateway for fallback purposes. It does not include any * route-related attribute setup, as that process comes separately as part * of the route requests (add/change) made to the routing subsystem. * * The underlying logic which involves associating IREs with the gateway * security attributes are represented by the following data structures: * * tsol_gcdb_t, or "gcdb" * * - This is a system-wide collection of records containing the * currently used route-related security attributes, which are fed * through the routing socket interface, e.g. "route add/change". * * tsol_gc_t, or "gc" * * - This is the gateway credential structure, and it provides for the * only mechanism to access the contents of gcdb. More than one gc * entries may refer to the same gcdb record. gc's in the system are * grouped according to the next-hop gateway address. * * tsol_gcgrp_t, or "gcgrp" * * - Group of gateway credentials, and is unique per next-hop gateway * address. When the group is not empty, i.e. when gcgrp_count is * greater than zero, it contains one or more gc's, each pointing to * a gcdb record which indicates the gateway security attributes * associated with the next-hop gateway. * * The fields of the tsol_ire_gw_secattr_t used from within the IRE are: * * igsa_lock * * - Lock that protects all fields within tsol_ire_gw_secattr_t. * * igsa_rhc * * - Remote host cache database entry of next-hop gateway. This is * used in the case when there are no route-related attributes * configured for the IRE. * * igsa_gc * * - A set of route-related attributes that only get set for prefix * IREs. If this is non-NULL, the prefix IRE has been associated * with a set of gateway security attributes by way of route add/ * change functionality. This field stays NULL for IRE_CACHEs. * * igsa_gcgrp * * - Group of gc's which only gets set for IRE_CACHEs. Each of the gc * points to a gcdb record that contains the security attributes * used to perform the credential checks of the packet which uses * the IRE. If the group is not empty, the list of gc's can be * traversed starting at gcgrp_head. This field stays NULL for * prefix IREs. */ static kmem_cache_t *ire_gw_secattr_cache; #define GCDB_HASH_SIZE 101 #define GCGRP_HASH_SIZE 101 #define GCDB_REFRELE(p) { \ mutex_enter(&gcdb_lock); \ ASSERT((p)->gcdb_refcnt > 0); \ if (--((p)->gcdb_refcnt) == 0) \ gcdb_inactive(p); \ ASSERT(MUTEX_HELD(&gcdb_lock)); \ mutex_exit(&gcdb_lock); \ } static int gcdb_hash_size = GCDB_HASH_SIZE; static int gcgrp_hash_size = GCGRP_HASH_SIZE; static mod_hash_t *gcdb_hash; static mod_hash_t *gcgrp4_hash; static mod_hash_t *gcgrp6_hash; static kmutex_t gcdb_lock; kmutex_t gcgrp_lock; static uint_t gcdb_hash_by_secattr(void *, mod_hash_key_t); static int gcdb_hash_cmp(mod_hash_key_t, mod_hash_key_t); static tsol_gcdb_t *gcdb_lookup(struct rtsa_s *, boolean_t); static void gcdb_inactive(tsol_gcdb_t *); static uint_t gcgrp_hash_by_addr(void *, mod_hash_key_t); static int gcgrp_hash_cmp(mod_hash_key_t, mod_hash_key_t); static int ire_gw_secattr_constructor(void *, void *, int); static void ire_gw_secattr_destructor(void *, void *); void tnet_init(void) { ire_gw_secattr_cache = kmem_cache_create("ire_gw_secattr_cache", sizeof (tsol_ire_gw_secattr_t), 64, ire_gw_secattr_constructor, ire_gw_secattr_destructor, NULL, NULL, NULL, 0); gcdb_hash = mod_hash_create_extended("gcdb_hash", gcdb_hash_size, mod_hash_null_keydtor, mod_hash_null_valdtor, gcdb_hash_by_secattr, NULL, gcdb_hash_cmp, KM_SLEEP); gcgrp4_hash = mod_hash_create_extended("gcgrp4_hash", gcgrp_hash_size, mod_hash_null_keydtor, mod_hash_null_valdtor, gcgrp_hash_by_addr, NULL, gcgrp_hash_cmp, KM_SLEEP); gcgrp6_hash = mod_hash_create_extended("gcgrp6_hash", gcgrp_hash_size, mod_hash_null_keydtor, mod_hash_null_valdtor, gcgrp_hash_by_addr, NULL, gcgrp_hash_cmp, KM_SLEEP); mutex_init(&gcdb_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&gcgrp_lock, NULL, MUTEX_DEFAULT, NULL); } void tnet_fini(void) { kmem_cache_destroy(ire_gw_secattr_cache); mod_hash_destroy_hash(gcdb_hash); mod_hash_destroy_hash(gcgrp4_hash); mod_hash_destroy_hash(gcgrp6_hash); mutex_destroy(&gcdb_lock); mutex_destroy(&gcgrp_lock); } /* ARGSUSED */ static int ire_gw_secattr_constructor(void *buf, void *cdrarg, int kmflags) { tsol_ire_gw_secattr_t *attrp = buf; mutex_init(&attrp->igsa_lock, NULL, MUTEX_DEFAULT, NULL); attrp->igsa_rhc = NULL; attrp->igsa_gc = NULL; attrp->igsa_gcgrp = NULL; return (0); } /* ARGSUSED */ static void ire_gw_secattr_destructor(void *buf, void *cdrarg) { tsol_ire_gw_secattr_t *attrp = (tsol_ire_gw_secattr_t *)buf; mutex_destroy(&attrp->igsa_lock); } tsol_ire_gw_secattr_t * ire_gw_secattr_alloc(int kmflags) { return (kmem_cache_alloc(ire_gw_secattr_cache, kmflags)); } void ire_gw_secattr_free(tsol_ire_gw_secattr_t *attrp) { ASSERT(MUTEX_NOT_HELD(&attrp->igsa_lock)); if (attrp->igsa_rhc != NULL) { TNRHC_RELE(attrp->igsa_rhc); attrp->igsa_rhc = NULL; } if (attrp->igsa_gc != NULL) { GC_REFRELE(attrp->igsa_gc); attrp->igsa_gc = NULL; } if (attrp->igsa_gcgrp != NULL) { GCGRP_REFRELE(attrp->igsa_gcgrp); attrp->igsa_gcgrp = NULL; } ASSERT(attrp->igsa_rhc == NULL); ASSERT(attrp->igsa_gc == NULL); ASSERT(attrp->igsa_gcgrp == NULL); kmem_cache_free(ire_gw_secattr_cache, attrp); } /* ARGSUSED */ static uint_t gcdb_hash_by_secattr(void *hash_data, mod_hash_key_t key) { const struct rtsa_s *rp = (struct rtsa_s *)key; const uint32_t *up, *ue; uint_t hash; int i; ASSERT(rp != NULL); /* See comments in hash_bylabel in zone.c for details */ hash = rp->rtsa_doi + (rp->rtsa_doi << 1); up = (const uint32_t *)&rp->rtsa_slrange; ue = up + sizeof (rp->rtsa_slrange) / sizeof (*up); i = 1; while (up < ue) { /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ hash += *up + (*up << ((i % 16) + 1)); up++; i++; } return (hash); } static int gcdb_hash_cmp(mod_hash_key_t key1, mod_hash_key_t key2) { struct rtsa_s *rp1 = (struct rtsa_s *)key1; struct rtsa_s *rp2 = (struct rtsa_s *)key2; ASSERT(rp1 != NULL && rp2 != NULL); if (blequal(&rp1->rtsa_slrange.lower_bound, &rp2->rtsa_slrange.lower_bound) && blequal(&rp1->rtsa_slrange.upper_bound, &rp2->rtsa_slrange.upper_bound) && rp1->rtsa_doi == rp2->rtsa_doi) return (0); /* No match; not found */ return (-1); } /* ARGSUSED */ static uint_t gcgrp_hash_by_addr(void *hash_data, mod_hash_key_t key) { tsol_gcgrp_addr_t *ga = (tsol_gcgrp_addr_t *)key; uint_t idx = 0; uint32_t *ap; ASSERT(ga != NULL); ASSERT(ga->ga_af == AF_INET || ga->ga_af == AF_INET6); ap = (uint32_t *)&ga->ga_addr.s6_addr32[0]; idx ^= *ap++; idx ^= *ap++; idx ^= *ap++; idx ^= *ap; return (idx); } static int gcgrp_hash_cmp(mod_hash_key_t key1, mod_hash_key_t key2) { tsol_gcgrp_addr_t *ga1 = (tsol_gcgrp_addr_t *)key1; tsol_gcgrp_addr_t *ga2 = (tsol_gcgrp_addr_t *)key2; ASSERT(ga1 != NULL && ga2 != NULL); /* Address family must match */ if (ga1->ga_af != ga2->ga_af) return (-1); if (ga1->ga_addr.s6_addr32[0] == ga2->ga_addr.s6_addr32[0] && ga1->ga_addr.s6_addr32[1] == ga2->ga_addr.s6_addr32[1] && ga1->ga_addr.s6_addr32[2] == ga2->ga_addr.s6_addr32[2] && ga1->ga_addr.s6_addr32[3] == ga2->ga_addr.s6_addr32[3]) return (0); /* No match; not found */ return (-1); } #define RTSAFLAGS "\20\11cipso\3doi\2max_sl\1min_sl" int rtsa_validate(const struct rtsa_s *rp) { uint32_t mask = rp->rtsa_mask; /* RTSA_CIPSO must be set, and DOI must not be zero */ if ((mask & RTSA_CIPSO) == 0 || rp->rtsa_doi == 0) { DTRACE_PROBE2(tx__gcdb__log__error__rtsa__validate, char *, "rtsa(1) lacks flag or has 0 doi.", rtsa_s *, rp); return (EINVAL); } /* * SL range must be specified, and it must have its * upper bound dominating its lower bound. */ if ((mask & RTSA_SLRANGE) != RTSA_SLRANGE || !bldominates(&rp->rtsa_slrange.upper_bound, &rp->rtsa_slrange.lower_bound)) { DTRACE_PROBE2(tx__gcdb__log__error__rtsa__validate, char *, "rtsa(1) min_sl and max_sl not set or max_sl is " "not dominating.", rtsa_s *, rp); return (EINVAL); } return (0); } /* * A brief explanation of the reference counting scheme: * * Prefix IREs have a non-NULL igsa_gc and a NULL igsa_gcgrp; * IRE_CACHEs have it vice-versa. * * Apart from dynamic references due to to reference holds done * actively by threads, we have the following references: * * gcdb_refcnt: * - Every tsol_gc_t pointing to a tsol_gcdb_t contributes a reference * to the gcdb_refcnt. * * gc_refcnt: * - A prefix IRE that points to an igsa_gc contributes a reference * to the gc_refcnt. * * gcgrp_refcnt: * - An IRE_CACHE that points to an igsa_gcgrp contributes a reference * to the gcgrp_refcnt of the associated tsol_gcgrp_t. * - Every tsol_gc_t in the chain headed by tsol_gcgrp_t contributes * a reference to the gcgrp_refcnt. */ static tsol_gcdb_t * gcdb_lookup(struct rtsa_s *rp, boolean_t alloc) { tsol_gcdb_t *gcdb = NULL; if (rtsa_validate(rp) != 0) return (NULL); mutex_enter(&gcdb_lock); /* Find a copy in the cache; otherwise, create one and cache it */ if (mod_hash_find(gcdb_hash, (mod_hash_key_t)rp, (mod_hash_val_t *)&gcdb) == 0) { gcdb->gcdb_refcnt++; ASSERT(gcdb->gcdb_refcnt != 0); DTRACE_PROBE2(tx__gcdb__log__info__gcdb__lookup, char *, "gcdb(1) is in gcdb_hash(global)", tsol_gcdb_t *, gcdb); } else if (alloc) { gcdb = kmem_zalloc(sizeof (*gcdb), KM_NOSLEEP); if (gcdb != NULL) { gcdb->gcdb_refcnt = 1; gcdb->gcdb_mask = rp->rtsa_mask; gcdb->gcdb_doi = rp->rtsa_doi; gcdb->gcdb_slrange = rp->rtsa_slrange; if (mod_hash_insert(gcdb_hash, (mod_hash_key_t)&gcdb->gcdb_attr, (mod_hash_val_t)gcdb) != 0) { mutex_exit(&gcdb_lock); kmem_free(gcdb, sizeof (*gcdb)); return (NULL); } DTRACE_PROBE2(tx__gcdb__log__info__gcdb__insert, char *, "gcdb(1) inserted in gcdb_hash(global)", tsol_gcdb_t *, gcdb); } } mutex_exit(&gcdb_lock); return (gcdb); } static void gcdb_inactive(tsol_gcdb_t *gcdb) { ASSERT(MUTEX_HELD(&gcdb_lock)); ASSERT(gcdb != NULL && gcdb->gcdb_refcnt == 0); (void) mod_hash_remove(gcdb_hash, (mod_hash_key_t)&gcdb->gcdb_attr, (mod_hash_val_t *)&gcdb); DTRACE_PROBE2(tx__gcdb__log__info__gcdb__remove, char *, "gcdb(1) removed from gcdb_hash(global)", tsol_gcdb_t *, gcdb); kmem_free(gcdb, sizeof (*gcdb)); } tsol_gc_t * gc_create(struct rtsa_s *rp, tsol_gcgrp_t *gcgrp, boolean_t *gcgrp_xtrarefp) { tsol_gc_t *gc; tsol_gcdb_t *gcdb; *gcgrp_xtrarefp = B_TRUE; rw_enter(&gcgrp->gcgrp_rwlock, RW_WRITER); if ((gcdb = gcdb_lookup(rp, B_TRUE)) == NULL) { rw_exit(&gcgrp->gcgrp_rwlock); return (NULL); } for (gc = gcgrp->gcgrp_head; gc != NULL; gc = gc->gc_next) { if (gc->gc_db == gcdb) { ASSERT(gc->gc_grp == gcgrp); gc->gc_refcnt++; ASSERT(gc->gc_refcnt != 0); GCDB_REFRELE(gcdb); DTRACE_PROBE3(tx__gcdb__log__info__gc__create, char *, "found gc(1) in gcgrp(2)", tsol_gc_t *, gc, tsol_gcgrp_t *, gcgrp); rw_exit(&gcgrp->gcgrp_rwlock); return (gc); } } gc = kmem_zalloc(sizeof (*gc), KM_NOSLEEP); if (gc != NULL) { if (gcgrp->gcgrp_head == NULL) { gcgrp->gcgrp_head = gcgrp->gcgrp_tail = gc; } else { gcgrp->gcgrp_tail->gc_next = gc; gc->gc_prev = gcgrp->gcgrp_tail; gcgrp->gcgrp_tail = gc; } gcgrp->gcgrp_count++; ASSERT(gcgrp->gcgrp_count != 0); /* caller has incremented gcgrp reference for us */ gc->gc_grp = gcgrp; gc->gc_db = gcdb; gc->gc_refcnt = 1; DTRACE_PROBE3(tx__gcdb__log__info__gc__create, char *, "added gc(1) to gcgrp(2)", tsol_gc_t *, gc, tsol_gcgrp_t *, gcgrp); *gcgrp_xtrarefp = B_FALSE; } rw_exit(&gcgrp->gcgrp_rwlock); return (gc); } void gc_inactive(tsol_gc_t *gc) { tsol_gcgrp_t *gcgrp = gc->gc_grp; ASSERT(gcgrp != NULL); ASSERT(RW_WRITE_HELD(&gcgrp->gcgrp_rwlock)); ASSERT(gc->gc_refcnt == 0); if (gc->gc_prev != NULL) gc->gc_prev->gc_next = gc->gc_next; else gcgrp->gcgrp_head = gc->gc_next; if (gc->gc_next != NULL) gc->gc_next->gc_prev = gc->gc_prev; else gcgrp->gcgrp_tail = gc->gc_prev; ASSERT(gcgrp->gcgrp_count > 0); gcgrp->gcgrp_count--; /* drop lock before it's destroyed */ rw_exit(&gcgrp->gcgrp_rwlock); DTRACE_PROBE3(tx__gcdb__log__info__gc__remove, char *, "removed inactive gc(1) from gcgrp(2)", tsol_gc_t *, gc, tsol_gcgrp_t *, gcgrp); GCGRP_REFRELE(gcgrp); gc->gc_grp = NULL; gc->gc_prev = gc->gc_next = NULL; if (gc->gc_db != NULL) GCDB_REFRELE(gc->gc_db); kmem_free(gc, sizeof (*gc)); } tsol_gcgrp_t * gcgrp_lookup(tsol_gcgrp_addr_t *ga, boolean_t alloc) { tsol_gcgrp_t *gcgrp = NULL; mod_hash_t *hashp; ASSERT(ga->ga_af == AF_INET || ga->ga_af == AF_INET6); hashp = (ga->ga_af == AF_INET) ? gcgrp4_hash : gcgrp6_hash; mutex_enter(&gcgrp_lock); if (mod_hash_find(hashp, (mod_hash_key_t)ga, (mod_hash_val_t *)&gcgrp) == 0) { gcgrp->gcgrp_refcnt++; ASSERT(gcgrp->gcgrp_refcnt != 0); DTRACE_PROBE3(tx__gcdb__log__info__gcgrp__lookup, char *, "found gcgrp(1) in hash(2)", tsol_gcgrp_t *, gcgrp, mod_hash_t *, hashp); } else if (alloc) { gcgrp = kmem_zalloc(sizeof (*gcgrp), KM_NOSLEEP); if (gcgrp != NULL) { gcgrp->gcgrp_refcnt = 1; rw_init(&gcgrp->gcgrp_rwlock, NULL, RW_DEFAULT, NULL); bcopy(ga, &gcgrp->gcgrp_addr, sizeof (*ga)); if (mod_hash_insert(hashp, (mod_hash_key_t)&gcgrp->gcgrp_addr, (mod_hash_val_t)gcgrp) != 0) { mutex_exit(&gcgrp_lock); kmem_free(gcgrp, sizeof (*gcgrp)); return (NULL); } DTRACE_PROBE3(tx__gcdb__log__info__gcgrp__insert, char *, "inserted gcgrp(1) in hash(2)", tsol_gcgrp_t *, gcgrp, mod_hash_t *, hashp); } } mutex_exit(&gcgrp_lock); return (gcgrp); } void gcgrp_inactive(tsol_gcgrp_t *gcgrp) { tsol_gcgrp_addr_t *ga; mod_hash_t *hashp; ASSERT(MUTEX_HELD(&gcgrp_lock)); ASSERT(!RW_LOCK_HELD(&gcgrp->gcgrp_rwlock)); ASSERT(gcgrp != NULL && gcgrp->gcgrp_refcnt == 0); ASSERT(gcgrp->gcgrp_head == NULL && gcgrp->gcgrp_count == 0); ga = &gcgrp->gcgrp_addr; ASSERT(ga->ga_af == AF_INET || ga->ga_af == AF_INET6); hashp = (ga->ga_af == AF_INET) ? gcgrp4_hash : gcgrp6_hash; (void) mod_hash_remove(hashp, (mod_hash_key_t)ga, (mod_hash_val_t *)&gcgrp); rw_destroy(&gcgrp->gcgrp_rwlock); DTRACE_PROBE3(tx__gcdb__log__info__gcgrp__remove, char *, "removed inactive gcgrp(1) from hash(2)", tsol_gcgrp_t *, gcgrp, mod_hash_t *, hashp); kmem_free(gcgrp, sizeof (*gcgrp)); } /* * Converts CIPSO option to sensitivity label. * Validity checks based on restrictions defined in * COMMERCIAL IP SECURITY OPTION (CIPSO 2.2) (draft-ietf-cipso-ipsecurity) */ static boolean_t cipso_to_sl(const uchar_t *option, bslabel_t *sl) { const struct cipso_option *co = (const struct cipso_option *)option; const struct cipso_tag_type_1 *tt1; tt1 = (struct cipso_tag_type_1 *)&co->cipso_tag_type[0]; if (tt1->tag_type != 1 || tt1->tag_length < TSOL_TT1_MIN_LENGTH || tt1->tag_length > TSOL_TT1_MAX_LENGTH || tt1->tag_length + TSOL_CIPSO_TAG_OFFSET > co->cipso_length) return (B_FALSE); bsllow(sl); /* assumed: sets compartments to all zeroes */ LCLASS_SET((_bslabel_impl_t *)sl, tt1->tag_sl); bcopy(tt1->tag_cat, &((_bslabel_impl_t *)sl)->compartments, tt1->tag_length - TSOL_TT1_MIN_LENGTH); return (B_TRUE); } /* * Parse the CIPSO label in the incoming packet and construct a ts_label_t * that reflects the CIPSO label and attach it to the dblk cred. Later as * the mblk flows up through the stack any code that needs to examine the * packet label can inspect the label from the dblk cred. This function is * called right in ip_rput for all packets, i.e. locally destined and * to be forwarded packets. The forwarding path needs to examine the label * to determine how to forward the packet. * * For IPv4, IP header options have been pulled up, but other headers might not * have been. For IPv6, any hop-by-hop options have been pulled up, but any * other headers might not be present. */ boolean_t tsol_get_pkt_label(mblk_t *mp, int version) { tsol_tpc_t *src_rhtp; uchar_t *opt_ptr = NULL; const ipha_t *ipha; bslabel_t sl; uint32_t doi; tsol_ip_label_t label_type; const cipso_option_t *co; const void *src; const ip6_t *ip6h; ASSERT(DB_TYPE(mp) == M_DATA); if (version == IPV4_VERSION) { ipha = (const ipha_t *)mp->b_rptr; src = &ipha->ipha_src; label_type = tsol_get_option(mp, &opt_ptr); } else { uchar_t *after_secopt; boolean_t hbh_needed; const uchar_t *ip6hbh; size_t optlen; label_type = OPT_NONE; ip6h = (const ip6_t *)mp->b_rptr; src = &ip6h->ip6_src; if (ip6h->ip6_nxt == IPPROTO_HOPOPTS) { ip6hbh = (const uchar_t *)&ip6h[1]; optlen = (ip6hbh[1] + 1) << 3; ASSERT(ip6hbh + optlen <= mp->b_wptr); opt_ptr = tsol_find_secopt_v6(ip6hbh, optlen, &after_secopt, &hbh_needed); /* tsol_find_secopt_v6 guarantees some sanity */ if (opt_ptr != NULL && (optlen = opt_ptr[1]) >= 8) { opt_ptr += 2; bcopy(opt_ptr, &doi, sizeof (doi)); doi = ntohl(doi); if (doi == IP6LS_DOI_V4 && opt_ptr[4] == IP6LS_TT_V4 && opt_ptr[5] <= optlen - 4 && opt_ptr[7] <= optlen - 6) { opt_ptr += sizeof (doi) + 2; label_type = OPT_CIPSO; } } } } switch (label_type) { case OPT_CIPSO: /* * Convert the CIPSO label to the internal format * and attach it to the dblk cred. * Validity checks based on restrictions defined in * COMMERCIAL IP SECURITY OPTION (CIPSO 2.2) * (draft-ietf-cipso-ipsecurity) */ if (version == IPV6_VERSION && ip6opt_ls == 0) return (B_FALSE); co = (const struct cipso_option *)opt_ptr; if ((co->cipso_length < TSOL_CIPSO_TAG_OFFSET + TSOL_TT1_MIN_LENGTH) || (co->cipso_length > IP_MAX_OPT_LENGTH)) return (B_FALSE); bcopy(co->cipso_doi, &doi, sizeof (doi)); doi = ntohl(doi); if (!cipso_to_sl(opt_ptr, &sl)) return (B_FALSE); setbltype(&sl, SUN_SL_ID); break; case OPT_NONE: /* * Handle special cases that are not currently labeled, even * though the sending system may otherwise be configured as * labeled. * - IGMP * - IPv4 ICMP Router Discovery * - IPv6 Neighbor Discovery */ if (version == IPV4_VERSION) { if (ipha->ipha_protocol == IPPROTO_IGMP) return (B_TRUE); if (ipha->ipha_protocol == IPPROTO_ICMP) { const struct icmp *icmp = (const struct icmp *) (mp->b_rptr + IPH_HDR_LENGTH(ipha)); if ((uchar_t *)icmp > mp->b_wptr) { if (!pullupmsg(mp, (uchar_t *)icmp - mp->b_rptr + 1)) return (B_FALSE); icmp = (const struct icmp *) (mp->b_rptr + IPH_HDR_LENGTH(ipha)); } if (icmp->icmp_type == ICMP_ROUTERADVERT || icmp->icmp_type == ICMP_ROUTERSOLICIT) return (B_TRUE); } src = &ipha->ipha_src; } else { if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { const icmp6_t *icmp6 = (const icmp6_t *) (mp->b_rptr + IPV6_HDR_LEN); if ((uchar_t *)icmp6 + ICMP6_MINLEN > mp->b_wptr) { if (!pullupmsg(mp, (uchar_t *)icmp6 - mp->b_rptr + ICMP6_MINLEN)) return (B_FALSE); icmp6 = (const icmp6_t *) (mp->b_rptr + IPV6_HDR_LEN); } if (icmp6->icmp6_type >= MLD_LISTENER_QUERY && icmp6->icmp6_type <= ICMP6_MAX_INFO_TYPE) return (B_TRUE); } src = &ip6h->ip6_src; } /* * Look up the tnrhtp database and get the implicit label * that is associated with this unlabeled host and attach * it to the packet. */ if ((src_rhtp = find_tpc(src, version, B_FALSE)) == NULL) return (B_FALSE); /* If the sender is labeled, drop the unlabeled packet. */ if (src_rhtp->tpc_tp.host_type != UNLABELED) { TPC_RELE(src_rhtp); pr_addr_dbg("unlabeled packet forged from %s\n", version == IPV4_VERSION ? AF_INET : AF_INET6, src); return (B_FALSE); } sl = src_rhtp->tpc_tp.tp_def_label; setbltype(&sl, SUN_SL_ID); doi = src_rhtp->tpc_tp.tp_doi; TPC_RELE(src_rhtp); break; default: return (B_FALSE); } /* Make sure no other thread is messing with this mblk */ ASSERT(DB_REF(mp) == 1); if (DB_CRED(mp) == NULL) { DB_CRED(mp) = newcred_from_bslabel(&sl, doi, KM_NOSLEEP); if (DB_CRED(mp) == NULL) return (B_FALSE); } else { cred_t *newcr; newcr = copycred_from_bslabel(DB_CRED(mp), &sl, doi, KM_NOSLEEP); if (newcr == NULL) return (B_FALSE); crfree(DB_CRED(mp)); DB_CRED(mp) = newcr; } /* * If the source was unlabeled, then flag as such, * while remembering that CIPSO routers add headers. */ if (label_type == OPT_NONE) crgetlabel(DB_CRED(mp))->tsl_flags |= TSLF_UNLABELED; else if (label_type == OPT_CIPSO) { if ((src_rhtp = find_tpc(src, version, B_FALSE)) == NULL) return (B_FALSE); if (src_rhtp->tpc_tp.host_type == UNLABELED) crgetlabel(DB_CRED(mp))->tsl_flags |= TSLF_UNLABELED; TPC_RELE(src_rhtp); } return (B_TRUE); } /* * This routine determines whether the given packet should be accepted locally. * It does a range/set check on the packet's label by looking up the given * address in the remote host database. */ boolean_t tsol_receive_local(const mblk_t *mp, const void *addr, uchar_t version, boolean_t shared_addr, const conn_t *connp) { const cred_t *credp; ts_label_t *plabel, *conn_plabel; tsol_tpc_t *tp; boolean_t retv; const bslabel_t *label, *conn_label; /* * The cases in which this can happen are: * - IPv6 Router Alert, where ip_rput_data_v6 deliberately skips * over the label attachment process. * - MLD output looped-back to ourselves. * - IPv4 Router Discovery, where tsol_get_pkt_label intentionally * avoids the labeling process. * We trust that all valid paths in the code set the cred pointer when * needed. */ if ((credp = DB_CRED(mp)) == NULL) return (B_TRUE); /* * If this packet is from the inside (not a remote host) and has the * same zoneid as the selected destination, then no checks are * necessary. Membership in the zone is enough proof. This is * intended to be a hot path through this function. */ if (!crisremote(credp) && crgetzone(credp) == crgetzone(connp->conn_cred)) return (B_TRUE); plabel = crgetlabel(credp); conn_plabel = crgetlabel(connp->conn_cred); ASSERT(plabel != NULL && conn_plabel != NULL); label = label2bslabel(plabel); conn_label = label2bslabel(crgetlabel(connp->conn_cred)); /* * MLPs are always validated using the range and set of the local * address, even when the remote host is unlabeled. */ if (connp->conn_mlp_type == mlptBoth || /* LINTED: no consequent */ connp->conn_mlp_type == (shared_addr ? mlptShared : mlptPrivate)) { ; /* * If this is a packet from an unlabeled sender, then we must apply * different rules. If the label is equal to the zone's label, then * it's allowed. If it's not equal, but the zone is either the global * zone or the label is dominated by the zone's label, then allow it * as long as it's in the range configured for the destination. */ } else if (plabel->tsl_flags & TSLF_UNLABELED) { if (plabel->tsl_doi == conn_plabel->tsl_doi && blequal(label, conn_label)) return (B_TRUE); if (!connp->conn_mac_exempt || (connp->conn_zoneid != GLOBAL_ZONEID && (plabel->tsl_doi != conn_plabel->tsl_doi || !bldominates(conn_label, label)))) { DTRACE_PROBE3( tx__ip__log__drop__receivelocal__mac_unl, char *, "unlabeled packet mp(1) fails mac for conn(2)", mblk_t *, mp, conn_t *, connp); return (B_FALSE); } /* * If this is a private address and the connection is SLP for private * addresses, then the only thing that matters is the label on the * zone, which is the same as the label on the connection. We don't * care (and don't have to care) about the tnrhdb. */ } else if (!shared_addr) { /* * Since this is a zone-specific address, we know that any MLP * case should have been handled up above. That means this * connection must not be MLP for zone-specific addresses. We * assert that to be true. */ ASSERT(connp->conn_mlp_type == mlptSingle || connp->conn_mlp_type == mlptShared); if (plabel->tsl_doi == conn_plabel->tsl_doi && blequal(label, conn_label)) return (B_TRUE); DTRACE_PROBE3(tx__ip__log__drop__receivelocal__mac__slp, char *, "packet mp(1) fails exactly SLP match conn(2)", mblk_t *, mp, conn_t *, connp); return (B_FALSE); } tp = find_tpc(addr, version, B_FALSE); if (tp == NULL) { DTRACE_PROBE3(tx__ip__log__drop__receivelocal__no__tnr, char *, "dropping mp(1), host(2) lacks entry", mblk_t *, mp, void *, addr); return (B_FALSE); } /* * The local host address should not be unlabeled at this point. The * only way this can happen is that the destination isn't unicast. We * assume that the packet should not have had a label, and thus should * have been handled by the TSLF_UNLABELED logic above. */ if (tp->tpc_tp.host_type == UNLABELED) { retv = B_FALSE; DTRACE_PROBE3(tx__ip__log__drop__receivelocal__flag, char *, "mp(1) unlabeled source, but tp is not unlabeled.", mblk_t *, mp, tsol_tpc_t *, tp); } else if (tp->tpc_tp.host_type != SUN_CIPSO) { retv = B_FALSE; DTRACE_PROBE3(tx__ip__log__drop__receivelocal__tptype, char *, "delivering mp(1), found unrecognized tpc(2) type.", mblk_t *, mp, tsol_tpc_t *, tp); } else if (plabel->tsl_doi != tp->tpc_tp.tp_doi) { retv = B_FALSE; DTRACE_PROBE3(tx__ip__log__drop__receivelocal__mac, char *, "mp(1) could not be delievered to tp(2), doi mismatch", mblk_t *, mp, tsol_tpc_t *, tp); } else if (!_blinrange(label, &tp->tpc_tp.tp_sl_range_cipso) && !blinlset(label, tp->tpc_tp.tp_sl_set_cipso)) { retv = B_FALSE; DTRACE_PROBE3(tx__ip__log__drop__receivelocal__mac, char *, "mp(1) could not be delievered to tp(2), bad mac", mblk_t *, mp, tsol_tpc_t *, tp); } else { retv = B_TRUE; } TPC_RELE(tp); return (retv); } boolean_t tsol_can_accept_raw(mblk_t *mp, boolean_t check_host) { ts_label_t *plabel = NULL; tsol_tpc_t *src_rhtp, *dst_rhtp; boolean_t retv; if (DB_CRED(mp) != NULL) plabel = crgetlabel(DB_CRED(mp)); /* We are bootstrapping or the internal template was never deleted */ if (plabel == NULL) return (B_TRUE); if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { ipha_t *ipha = (ipha_t *)mp->b_rptr; src_rhtp = find_tpc(&ipha->ipha_src, IPV4_VERSION, B_FALSE); if (src_rhtp == NULL) return (B_FALSE); dst_rhtp = find_tpc(&ipha->ipha_dst, IPV4_VERSION, B_FALSE); } else { ip6_t *ip6h = (ip6_t *)mp->b_rptr; src_rhtp = find_tpc(&ip6h->ip6_src, IPV6_VERSION, B_FALSE); if (src_rhtp == NULL) return (B_FALSE); dst_rhtp = find_tpc(&ip6h->ip6_dst, IPV6_VERSION, B_FALSE); } if (dst_rhtp == NULL) { TPC_RELE(src_rhtp); return (B_FALSE); } if (label2doi(plabel) != src_rhtp->tpc_tp.tp_doi) { retv = B_FALSE; /* * Check that the packet's label is in the correct range for labeled * sender, or is equal to the default label for unlabeled sender. */ } else if ((src_rhtp->tpc_tp.host_type != UNLABELED && !_blinrange(label2bslabel(plabel), &src_rhtp->tpc_tp.tp_sl_range_cipso) && !blinlset(label2bslabel(plabel), src_rhtp->tpc_tp.tp_sl_set_cipso)) || (src_rhtp->tpc_tp.host_type == UNLABELED && !blequal(&plabel->tsl_label, &src_rhtp->tpc_tp.tp_def_label))) { retv = B_FALSE; } else if (check_host) { retv = B_TRUE; /* * Until we have SL range in the Zone structure, pass it * when our own address lookup returned an internal entry. */ } else switch (dst_rhtp->tpc_tp.host_type) { case UNLABELED: retv = B_TRUE; break; case SUN_CIPSO: retv = _blinrange(label2bslabel(plabel), &dst_rhtp->tpc_tp.tp_sl_range_cipso) || blinlset(label2bslabel(plabel), dst_rhtp->tpc_tp.tp_sl_set_cipso); break; default: retv = B_FALSE; } TPC_RELE(src_rhtp); TPC_RELE(dst_rhtp); return (retv); } /* * This routine determines whether a response to a failed packet delivery or * connection should be sent back. By default, the policy is to allow such * messages to be sent at all times, as these messages reveal little useful * information and are healthy parts of TCP/IP networking. * * If tsol_strict_error is set, then we do strict tests: if the packet label is * within the label range/set of this host/zone, return B_TRUE; otherwise * return B_FALSE, which causes the packet to be dropped silently. * * Note that tsol_get_pkt_label will cause the packet to drop if the sender is * marked as labeled in the remote host database, but the packet lacks a label. * This means that we don't need to do a lookup on the source; the * TSLF_UNLABELED flag is sufficient. */ boolean_t tsol_can_reply_error(const mblk_t *mp) { ts_label_t *plabel = NULL; tsol_tpc_t *rhtp; const ipha_t *ipha; const ip6_t *ip6h; boolean_t retv; bslabel_t *pktbs; /* Caller must pull up at least the IP header */ ASSERT(MBLKL(mp) >= (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ? sizeof (*ipha) : sizeof (*ip6h))); if (!tsol_strict_error) return (B_TRUE); if (DB_CRED(mp) != NULL) plabel = crgetlabel(DB_CRED(mp)); /* We are bootstrapping or the internal template was never deleted */ if (plabel == NULL) return (B_TRUE); if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { ipha = (const ipha_t *)mp->b_rptr; rhtp = find_tpc(&ipha->ipha_dst, IPV4_VERSION, B_FALSE); } else { ip6h = (const ip6_t *)mp->b_rptr; rhtp = find_tpc(&ip6h->ip6_dst, IPV6_VERSION, B_FALSE); } if (rhtp == NULL || label2doi(plabel) != rhtp->tpc_tp.tp_doi) { retv = B_FALSE; } else { /* * If we're in the midst of forwarding, then the destination * address might not be labeled. In that case, allow unlabeled * packets through only if the default label is the same, and * labeled ones if they dominate. */ pktbs = label2bslabel(plabel); switch (rhtp->tpc_tp.host_type) { case UNLABELED: if (plabel->tsl_flags & TSLF_UNLABELED) { retv = blequal(pktbs, &rhtp->tpc_tp.tp_def_label); } else { retv = bldominates(pktbs, &rhtp->tpc_tp.tp_def_label); } break; case SUN_CIPSO: retv = _blinrange(pktbs, &rhtp->tpc_tp.tp_sl_range_cipso) || blinlset(pktbs, rhtp->tpc_tp.tp_sl_set_cipso); break; default: retv = B_FALSE; break; } } if (rhtp != NULL) TPC_RELE(rhtp); return (retv); } /* * Finds the zone associated with the given packet. Returns GLOBAL_ZONEID if * the zone cannot be located. * * This is used by the classifier when the packet matches an ALL_ZONES IRE, and * there's no MLP defined. */ zoneid_t tsol_packet_to_zoneid(const mblk_t *mp) { cred_t *cr = DB_CRED(mp); zone_t *zone; ts_label_t *label; if (cr != NULL) { if ((label = crgetlabel(cr)) != NULL) { zone = zone_find_by_label(label); if (zone != NULL) { zoneid_t zoneid = zone->zone_id; zone_rele(zone); return (zoneid); } } } return (GLOBAL_ZONEID); } int tsol_ire_match_gwattr(ire_t *ire, const ts_label_t *tsl) { int error = 0; tsol_ire_gw_secattr_t *attrp = NULL; tsol_tnrhc_t *gw_rhc = NULL; tsol_gcgrp_t *gcgrp = NULL; tsol_gc_t *gc = NULL; in_addr_t ga_addr4; void *paddr = NULL; /* Not in Trusted mode or IRE is local/loopback/broadcast/interface */ if (!is_system_labeled() || (ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | IRE_INTERFACE))) goto done; /* * If we don't have a label to compare with, or the IRE does not * contain any gateway security attributes, there's not much that * we can do. We let the former case pass, and the latter fail, * since the IRE doesn't qualify for a match due to the lack of * security attributes. */ if (tsl == NULL || ire->ire_gw_secattr == NULL) { if (tsl != NULL) { DTRACE_PROBE3( tx__ip__log__drop__irematch__nogwsec, char *, "ire(1) lacks ire_gw_secattr when matching label(2)", ire_t *, ire, ts_label_t *, tsl); error = EACCES; } goto done; } attrp = ire->ire_gw_secattr; /* * The possible lock order scenarios related to the tsol gateway * attribute locks are documented at the beginning of ip.c in the * lock order scenario section. */ mutex_enter(&attrp->igsa_lock); /* * Depending on the IRE type (prefix vs. cache), we seek the group * structure which contains all security credentials of the gateway. * A prefix IRE is associated with at most one gateway credential, * while a cache IRE is associated with every credentials that the * gateway has. */ if ((gc = attrp->igsa_gc) != NULL) { /* prefix */ gcgrp = gc->gc_grp; ASSERT(gcgrp != NULL); rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { /* cache */ rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); gc = gcgrp->gcgrp_head; if (gc == NULL) { /* gc group is empty, so the drop lock now */ ASSERT(gcgrp->gcgrp_count == 0); rw_exit(&gcgrp->gcgrp_rwlock); gcgrp = NULL; } } if (gcgrp != NULL) GCGRP_REFHOLD(gcgrp); if ((gw_rhc = attrp->igsa_rhc) != NULL) { /* * If our cached entry has grown stale, then discard it so we * can get a new one. */ if (gw_rhc->rhc_invalid || gw_rhc->rhc_tpc->tpc_invalid) { TNRHC_RELE(gw_rhc); attrp->igsa_rhc = gw_rhc = NULL; } else { TNRHC_HOLD(gw_rhc) } } /* Last attempt at loading the template had failed; try again */ if (gw_rhc == NULL) { if (gcgrp != NULL) { tsol_gcgrp_addr_t *ga = &gcgrp->gcgrp_addr; if (ire->ire_ipversion == IPV4_VERSION) { ASSERT(ga->ga_af == AF_INET); IN6_V4MAPPED_TO_IPADDR(&ga->ga_addr, ga_addr4); paddr = &ga_addr4; } else { ASSERT(ga->ga_af == AF_INET6); paddr = &ga->ga_addr; } } else if (ire->ire_ipversion == IPV6_VERSION && !IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { paddr = &ire->ire_gateway_addr_v6; } else if (ire->ire_ipversion == IPV4_VERSION && ire->ire_gateway_addr != INADDR_ANY) { paddr = &ire->ire_gateway_addr; } /* We've found a gateway address to do the template lookup */ if (paddr != NULL) { ASSERT(gw_rhc == NULL); if (ire->ire_ipversion == IPV4_VERSION) gw_rhc = find_rhc_v4(paddr); else gw_rhc = find_rhc_v6(paddr); if (gw_rhc != NULL) { /* * Note that if the lookup above returned an * internal template, we'll use it for the * time being, and do another lookup next * time around. */ /* Another thread has loaded the template? */ if (attrp->igsa_rhc != NULL) { TNRHC_RELE(gw_rhc) /* reload, it could be different */ gw_rhc = attrp->igsa_rhc; } else { attrp->igsa_rhc = gw_rhc; } /* * Hold an extra reference just like we did * above prior to dropping the igsa_lock. */ TNRHC_HOLD(gw_rhc) } } } mutex_exit(&attrp->igsa_lock); /* Gateway template not found */ if (gw_rhc == NULL) { /* * If destination address is directly reachable through an * interface rather than through a learned route, pass it. */ if (paddr != NULL) { DTRACE_PROBE3( tx__ip__log__drop__irematch__nogwtmpl, char *, "ire(1), label(2) off-link with no gw_rhc", ire_t *, ire, ts_label_t *, tsl); error = EINVAL; } goto done; } if (gc != NULL) { tsol_gcdb_t *gcdb; /* * In the case of IRE_CACHE we've got one or more gateway * security credentials to compare against the passed in label. * Perform label range comparison against each security * credential of the gateway. In the case of a prefix ire * we need to match against the security attributes of * just the route itself, so the loop is executed only once. */ ASSERT(gcgrp != NULL); do { gcdb = gc->gc_db; if (tsl->tsl_doi == gcdb->gcdb_doi && _blinrange(&tsl->tsl_label, &gcdb->gcdb_slrange)) break; if (ire->ire_type == IRE_CACHE) gc = gc->gc_next; else gc = NULL; } while (gc != NULL); if (gc == NULL) { DTRACE_PROBE3( tx__ip__log__drop__irematch__nogcmatched, char *, "ire(1), tsl(2): all gc failed match", ire_t *, ire, ts_label_t *, tsl); error = EACCES; } } else { /* * We didn't find any gateway credentials in the IRE * attributes; fall back to the gateway's template for * label range checks, if we are required to do so. */ ASSERT(gw_rhc != NULL); switch (gw_rhc->rhc_tpc->tpc_tp.host_type) { case SUN_CIPSO: if (tsl->tsl_doi != gw_rhc->rhc_tpc->tpc_tp.tp_doi || (!_blinrange(&tsl->tsl_label, &gw_rhc->rhc_tpc->tpc_tp. tp_sl_range_cipso) && !blinlset(&tsl->tsl_label, gw_rhc->rhc_tpc->tpc_tp.tp_sl_set_cipso))) { error = EACCES; DTRACE_PROBE4( tx__ip__log__drop__irematch__deftmpl, char *, "ire(1), tsl(2), gw_rhc(3) " "failed match (cipso gw)", ire_t *, ire, ts_label_t *, tsl, tsol_tnrhc_t *, gw_rhc); } break; case UNLABELED: if (tsl->tsl_doi != gw_rhc->rhc_tpc->tpc_tp.tp_doi || (!_blinrange(&tsl->tsl_label, &gw_rhc->rhc_tpc->tpc_tp.tp_gw_sl_range) && !blinlset(&tsl->tsl_label, gw_rhc->rhc_tpc->tpc_tp.tp_gw_sl_set))) { error = EACCES; DTRACE_PROBE4( tx__ip__log__drop__irematch__deftmpl, char *, "ire(1), tsl(2), gw_rhc(3) " "failed match (unlabeled gw)", ire_t *, ire, ts_label_t *, tsl, tsol_tnrhc_t *, gw_rhc); } break; } } done: if (gcgrp != NULL) { rw_exit(&gcgrp->gcgrp_rwlock); GCGRP_REFRELE(gcgrp); } if (gw_rhc != NULL) TNRHC_RELE(gw_rhc) return (error); } /* * Performs label accreditation checks for packet forwarding. * * Returns a pointer to the modified mblk if allowed for forwarding, * or NULL if the packet must be dropped. */ mblk_t * tsol_ip_forward(ire_t *ire, mblk_t *mp) { tsol_ire_gw_secattr_t *attrp = NULL; ipha_t *ipha; ip6_t *ip6h; const void *pdst; const void *psrc; boolean_t off_link; tsol_tpc_t *dst_rhtp, *gw_rhtp; tsol_ip_label_t label_type; uchar_t *opt_ptr = NULL; ts_label_t *tsl; uint8_t proto; int af, adjust; uint16_t iplen; boolean_t need_tpc_rele = B_FALSE; ipaddr_t *gw; ASSERT(ire != NULL && mp != NULL); ASSERT(ire->ire_stq != NULL); af = (ire->ire_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { ASSERT(ire->ire_ipversion == IPV4_VERSION); ipha = (ipha_t *)mp->b_rptr; psrc = &ipha->ipha_src; pdst = &ipha->ipha_dst; proto = ipha->ipha_protocol; /* * off_link is TRUE if destination not directly reachable. * Surya note: we avoid creation of per-dst IRE_CACHE entries * for forwarded packets, so we set off_link to be TRUE * if the packet dst is different from the ire_addr of * the ire for the nexthop. */ off_link = ((ipha->ipha_dst != ire->ire_addr) || (ire->ire_gateway_addr != INADDR_ANY)); } else { ASSERT(ire->ire_ipversion == IPV6_VERSION); ip6h = (ip6_t *)mp->b_rptr; psrc = &ip6h->ip6_src; pdst = &ip6h->ip6_dst; proto = ip6h->ip6_nxt; if (proto != IPPROTO_TCP && proto != IPPROTO_UDP && proto != IPPROTO_ICMPV6) { uint8_t *nexthdrp; uint16_t hdr_len; if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_len, &nexthdrp)) { /* malformed packet; drop it */ return (NULL); } proto = *nexthdrp; } /* destination not directly reachable? */ off_link = !IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); } if ((tsl = MBLK_GETLABEL(mp)) == NULL) return (mp); label_type = tsol_get_option(mp, &opt_ptr); ASSERT(psrc != NULL && pdst != NULL); dst_rhtp = find_tpc(pdst, ire->ire_ipversion, B_FALSE); if (dst_rhtp == NULL) { /* * Without a template we do not know if forwarding * violates MAC */ DTRACE_PROBE3(tx__ip__log__drop__forward__nodst, char *, "mp(1) dropped, no template for destination ip4|6(2)", mblk_t *, mp, void *, pdst); return (NULL); } /* * Gateway template must have existed for off-link destinations, * since tsol_ire_match_gwattr has ensured such condition. */ if (ire->ire_ipversion == IPV4_VERSION && off_link) { /* * Surya note: first check if we can get the gw_rhtp from * the ire_gw_secattr->igsa_rhc; if this is null, then * do a lookup based on the ire_addr (address of gw) */ if (ire->ire_gw_secattr != NULL && ire->ire_gw_secattr->igsa_rhc != NULL) { attrp = ire->ire_gw_secattr; gw_rhtp = attrp->igsa_rhc->rhc_tpc; } else { /* * use the ire_addr if this is the IRE_CACHE of nexthop */ gw = (ire->ire_gateway_addr == NULL? &ire->ire_addr : &ire->ire_gateway_addr); gw_rhtp = find_tpc(gw, ire->ire_ipversion, B_FALSE); need_tpc_rele = B_TRUE; } if (gw_rhtp == NULL) { DTRACE_PROBE3(tx__ip__log__drop__forward__nogw, char *, "mp(1) dropped, no gateway in ire attributes(2)", mblk_t *, mp, tsol_ire_gw_secattr_t *, attrp); mp = NULL; goto keep_label; } } if (ire->ire_ipversion == IPV6_VERSION && ((attrp = ire->ire_gw_secattr) == NULL || attrp->igsa_rhc == NULL || (gw_rhtp = attrp->igsa_rhc->rhc_tpc) == NULL) && off_link) { DTRACE_PROBE3(tx__ip__log__drop__forward__nogw, char *, "mp(1) dropped, no gateway in ire attributes(2)", mblk_t *, mp, tsol_ire_gw_secattr_t *, attrp); mp = NULL; goto keep_label; } /* * Check that the label for the packet is acceptable * by destination host; otherwise, drop it. */ switch (dst_rhtp->tpc_tp.host_type) { case SUN_CIPSO: if (tsl->tsl_doi != dst_rhtp->tpc_tp.tp_doi || (!_blinrange(&tsl->tsl_label, &dst_rhtp->tpc_tp.tp_sl_range_cipso) && !blinlset(&tsl->tsl_label, dst_rhtp->tpc_tp.tp_sl_set_cipso))) { DTRACE_PROBE4(tx__ip__log__drop__forward__mac, char *, "labeled packet mp(1) dropped, label(2) fails " "destination(3) accredation check", mblk_t *, mp, ts_label_t *, tsl, tsol_tpc_t *, dst_rhtp); mp = NULL; goto keep_label; } break; case UNLABELED: if (tsl->tsl_doi != dst_rhtp->tpc_tp.tp_doi || !blequal(&dst_rhtp->tpc_tp.tp_def_label, &tsl->tsl_label)) { DTRACE_PROBE4(tx__ip__log__drop__forward__mac, char *, "unlabeled packet mp(1) dropped, label(2) fails " "destination(3) accredation check", mblk_t *, mp, ts_label_t *, tsl, tsol_tpc_t *, dst_rhtp); mp = NULL; goto keep_label; } break; } if (label_type == OPT_CIPSO) { /* * We keep the label on any of the following cases: * * 1. The destination is labeled (on/off-link). * 2. The unlabeled destination is off-link, * and the next hop gateway is labeled. */ if (dst_rhtp->tpc_tp.host_type != UNLABELED || (off_link && gw_rhtp->tpc_tp.host_type != UNLABELED)) goto keep_label; /* * Strip off the CIPSO option from the packet because: the * unlabeled destination host is directly reachable through * an interface (on-link); or, the unlabeled destination host * is not directly reachable (off-link), and the next hop * gateway is unlabeled. */ adjust = (af == AF_INET) ? tsol_remove_secopt(ipha, MBLKL(mp)) : tsol_remove_secopt_v6(ip6h, MBLKL(mp)); ASSERT(adjust <= 0); if (adjust != 0) { /* adjust is negative */ ASSERT((mp->b_wptr + adjust) >= mp->b_rptr); mp->b_wptr += adjust; if (af == AF_INET) { ipha = (ipha_t *)mp->b_rptr; iplen = ntohs(ipha->ipha_length) + adjust; ipha->ipha_length = htons(iplen); ipha->ipha_hdr_checksum = 0; ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); } DTRACE_PROBE3(tx__ip__log__info__forward__adjust, char *, "mp(1) adjusted(2) for CIPSO option removal", mblk_t *, mp, int, adjust); } goto keep_label; } ASSERT(label_type == OPT_NONE); ASSERT(dst_rhtp != NULL); /* * We need to add CIPSO option if the destination or the next hop * gateway is labeled. Otherwise, pass the packet as is. */ if (dst_rhtp->tpc_tp.host_type == UNLABELED && (!off_link || gw_rhtp->tpc_tp.host_type == UNLABELED)) goto keep_label; if ((af == AF_INET && tsol_check_label(DB_CRED(mp), &mp, &adjust, B_FALSE) != 0) || (af == AF_INET6 && tsol_check_label_v6(DB_CRED(mp), &mp, &adjust, B_FALSE) != 0)) { mp = NULL; goto keep_label; } ASSERT(adjust != -1); if (adjust != 0) { if (af == AF_INET) { ipha = (ipha_t *)mp->b_rptr; iplen = ntohs(ipha->ipha_length) + adjust; ipha->ipha_length = htons(iplen); ipha->ipha_hdr_checksum = 0; ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); } DTRACE_PROBE3(tx__ip__log__info__forward__adjust, char *, "mp(1) adjusted(2) for CIPSO option removal", mblk_t *, mp, int, adjust); } keep_label: TPC_RELE(dst_rhtp); if (need_tpc_rele && gw_rhtp != NULL) TPC_RELE(gw_rhtp); return (mp); } /* * Name: tsol_rtsa_init() * * Normal: Sanity checks on the route security attributes provided by * user. Convert it into a route security parameter list to * be returned to caller. * * Output: EINVAL if bad security attributes in the routing message * ENOMEM if unable to allocate data structures * 0 otherwise. * * Note: On input, cp must point to the end of any addresses in * the rt_msghdr_t structure. */ int tsol_rtsa_init(rt_msghdr_t *rtm, tsol_rtsecattr_t *sp, caddr_t cp) { uint_t sacnt; int err; caddr_t lim; tsol_rtsecattr_t *tp; ASSERT((cp >= (caddr_t)&rtm[1]) && sp != NULL); /* * In theory, we could accept as many security attributes configured * per route destination. However, the current design is limited * such that at most only one set security attributes is allowed to * be associated with a prefix IRE. We therefore assert for now. */ /* LINTED */ ASSERT(TSOL_RTSA_REQUEST_MAX == 1); sp->rtsa_cnt = 0; lim = (caddr_t)rtm + rtm->rtm_msglen; ASSERT(cp <= lim); if ((lim - cp) < sizeof (rtm_ext_t) || ((rtm_ext_t *)cp)->rtmex_type != RTMEX_GATEWAY_SECATTR) return (0); if (((rtm_ext_t *)cp)->rtmex_len < sizeof (tsol_rtsecattr_t)) return (EINVAL); cp += sizeof (rtm_ext_t); if ((lim - cp) < sizeof (*tp) || (tp = (tsol_rtsecattr_t *)cp, (sacnt = tp->rtsa_cnt) == 0) || (lim - cp) < TSOL_RTSECATTR_SIZE(sacnt)) return (EINVAL); /* * Trying to add route security attributes when system * labeling service is not available, or when user supllies * more than the maximum number of security attributes * allowed per request. */ if ((sacnt > 0 && !is_system_labeled()) || sacnt > TSOL_RTSA_REQUEST_MAX) return (EINVAL); /* Ensure valid credentials */ if ((err = rtsa_validate(&((tsol_rtsecattr_t *)cp)-> rtsa_attr[0])) != 0) { cp += sizeof (*sp); return (err); } bcopy(cp, sp, sizeof (*sp)); cp += sizeof (*sp); return (0); } int tsol_ire_init_gwattr(ire_t *ire, uchar_t ipversion, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) { tsol_ire_gw_secattr_t *attrp; boolean_t exists = B_FALSE; in_addr_t ga_addr4; void *paddr = NULL; ASSERT(ire != NULL); /* * The only time that attrp can be NULL is when this routine is * called for the first time during the creation/initialization * of the corresponding IRE. It will only get cleared when the * IRE is deleted. */ if ((attrp = ire->ire_gw_secattr) == NULL) { attrp = ire_gw_secattr_alloc(KM_NOSLEEP); if (attrp == NULL) return (ENOMEM); ire->ire_gw_secattr = attrp; } else { exists = B_TRUE; mutex_enter(&attrp->igsa_lock); if (attrp->igsa_rhc != NULL) { TNRHC_RELE(attrp->igsa_rhc); attrp->igsa_rhc = NULL; } if (attrp->igsa_gc != NULL) GC_REFRELE(attrp->igsa_gc); if (attrp->igsa_gcgrp != NULL) GCGRP_REFRELE(attrp->igsa_gcgrp); } ASSERT(!exists || MUTEX_HELD(&attrp->igsa_lock)); /* * References already held by caller and we keep them; * note that both gc and gcgrp may be set to NULL to * clear out igsa_gc and igsa_gcgrp, respectively. */ attrp->igsa_gc = gc; attrp->igsa_gcgrp = gcgrp; if (gcgrp == NULL && gc != NULL) { gcgrp = gc->gc_grp; ASSERT(gcgrp != NULL); } /* * Intialize the template for gateway; we use the gateway's * address found in either the passed in gateway credential * or group pointer, or the ire_gateway_addr{_v6} field. */ if (gcgrp != NULL) { tsol_gcgrp_addr_t *ga = &gcgrp->gcgrp_addr; /* * Caller is holding a reference, and that we don't * need to hold any lock to access the address. */ if (ipversion == IPV4_VERSION) { ASSERT(ga->ga_af == AF_INET); IN6_V4MAPPED_TO_IPADDR(&ga->ga_addr, ga_addr4); paddr = &ga_addr4; } else { ASSERT(ga->ga_af == AF_INET6); paddr = &ga->ga_addr; } } else if (ipversion == IPV6_VERSION && !IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { paddr = &ire->ire_gateway_addr_v6; } else if (ipversion == IPV4_VERSION && ire->ire_gateway_addr != INADDR_ANY) { paddr = &ire->ire_gateway_addr; } /* * Lookup the gateway template; note that we could get an internal * template here, which we cache anyway. During IRE matching, we'll * try to update this gateway template cache and hopefully get a * real one. */ if (paddr != NULL) { attrp->igsa_rhc = (ipversion == IPV4_VERSION) ? find_rhc_v4(paddr) : find_rhc_v6(paddr); } if (exists) mutex_exit(&attrp->igsa_lock); return (0); } /* * This function figures the type of MLP that we'll be using based on the * address that the user is binding and the zone. If the address is * unspecified, then we're looking at both private and shared. If it's one * of the zone's private addresses, then it's private only. If it's one * of the global addresses, then it's shared only. * * If we can't figure out what it is, then return mlptSingle. That's actually * an error case. */ mlp_type_t tsol_mlp_addr_type(zoneid_t zoneid, uchar_t version, const void *addr) { in_addr_t in4; ire_t *ire; ipif_t *ipif; zoneid_t addrzone; ASSERT(addr != NULL); if (version == IPV6_VERSION && IN6_IS_ADDR_V4MAPPED((const in6_addr_t *)addr)) { IN6_V4MAPPED_TO_IPADDR((const in6_addr_t *)addr, in4); addr = &in4; version = IPV4_VERSION; } if (version == IPV4_VERSION) { in4 = *(const in_addr_t *)addr; if (in4 == INADDR_ANY) return (mlptBoth); ire = ire_cache_lookup(in4, zoneid, NULL); } else { if (IN6_IS_ADDR_UNSPECIFIED((const in6_addr_t *)addr)) return (mlptBoth); ire = ire_cache_lookup_v6(addr, zoneid, NULL); } /* * If we can't find the IRE, then we have to behave exactly like * ip_bind_laddr{,_v6}. That means looking up the IPIF so that users * can bind to addresses on "down" interfaces. * * If we can't find that either, then the bind is going to fail, so * just give up. Note that there's a miniscule chance that the address * is in transition, but we don't bother handling that. */ if (ire == NULL) { if (version == IPV4_VERSION) ipif = ipif_lookup_addr(*(const in_addr_t *)addr, NULL, zoneid, NULL, NULL, NULL, NULL); else ipif = ipif_lookup_addr_v6((const in6_addr_t *)addr, NULL, zoneid, NULL, NULL, NULL, NULL); if (ipif == NULL) return (mlptSingle); addrzone = ipif->ipif_zoneid; ipif_refrele(ipif); } else { addrzone = ire->ire_zoneid; ire_refrele(ire); } return (addrzone == ALL_ZONES ? mlptShared : mlptPrivate); } /* * Since we are configuring local interfaces, and we know trusted * extension CDE requires local interfaces to be cipso host type in * order to function correctly, we'll associate a cipso template * to each local interface and let the interface come up. Configuring * a local interface to be "unlabeled" host type is a configuration error. * We'll override that error and make the interface host type to be cipso * here. * * The code is optimized for the usual "success" case and unwinds things on * error. We don't want to go to the trouble and expense of formatting the * interface name for the usual case where everything is configured correctly. */ boolean_t tsol_check_interface_address(const ipif_t *ipif) { tsol_tpc_t *tp; char addrbuf[INET6_ADDRSTRLEN]; int af; const void *addr; zone_t *zone; ts_label_t *plabel; const bslabel_t *label; char ifbuf[LIFNAMSIZ + 10]; const char *ifname; boolean_t retval; tsol_rhent_t rhent; if (IN6_IS_ADDR_V4MAPPED(&ipif->ipif_v6lcl_addr)) { af = AF_INET; addr = &V4_PART_OF_V6(ipif->ipif_v6lcl_addr); } else { af = AF_INET6; addr = &ipif->ipif_v6lcl_addr; } tp = find_tpc(&ipif->ipif_v6lcl_addr, IPV6_VERSION, B_FALSE); zone = ipif->ipif_zoneid == ALL_ZONES ? NULL : zone_find_by_id(ipif->ipif_zoneid); if (zone != NULL) { plabel = zone->zone_slabel; ASSERT(plabel != NULL); label = label2bslabel(plabel); } /* * If it's CIPSO and an all-zones address, then we're done. * If it's a CIPSO zone specific address, the zone's label * must be in the range or set specified in the template. * When the remote host entry is missing or the template * type is incorrect for this interface, we create a * CIPSO host entry in kernel and allow the interface to be * brought up as CIPSO type. */ if (tp != NULL && ( /* The all-zones case */ (tp->tpc_tp.host_type == SUN_CIPSO && tp->tpc_tp.tp_doi == default_doi && ipif->ipif_zoneid == ALL_ZONES) || /* The local-zone case */ (zone != NULL && plabel->tsl_doi == tp->tpc_tp.tp_doi && ((tp->tpc_tp.host_type == SUN_CIPSO && (_blinrange(label, &tp->tpc_tp.tp_sl_range_cipso) || blinlset(label, tp->tpc_tp.tp_sl_set_cipso))))))) { if (zone != NULL) zone_rele(zone); TPC_RELE(tp); return (B_TRUE); } ifname = ipif->ipif_ill->ill_name; if (ipif->ipif_id != 0) { (void) snprintf(ifbuf, sizeof (ifbuf), "%s:%u", ifname, ipif->ipif_id); ifname = ifbuf; } (void) inet_ntop(af, addr, addrbuf, sizeof (addrbuf)); if (tp == NULL) { cmn_err(CE_NOTE, "template entry for %s missing. Default to " "CIPSO type for %s", ifname, addrbuf); retval = B_TRUE; } else if (tp->tpc_tp.host_type == UNLABELED) { cmn_err(CE_NOTE, "template type for %s incorrectly configured. " "Change to CIPSO type for %s", ifname, addrbuf); retval = B_TRUE; } else if (ipif->ipif_zoneid == ALL_ZONES) { if (tp->tpc_tp.host_type != SUN_CIPSO) { cmn_err(CE_NOTE, "%s failed: %s isn't set to CIPSO for " "all-zones. Converted to CIPSO.", ifname, addrbuf); retval = B_TRUE; } else { cmn_err(CE_NOTE, "%s failed: %s has wrong DOI %d " "instead of %d", ifname, addrbuf, tp->tpc_tp.tp_doi, default_doi); retval = B_FALSE; } } else if (zone == NULL) { cmn_err(CE_NOTE, "%s failed: zoneid %d unknown", ifname, ipif->ipif_zoneid); retval = B_FALSE; } else if (plabel->tsl_doi != tp->tpc_tp.tp_doi) { cmn_err(CE_NOTE, "%s failed: zone %s has DOI %d but %s has " "DOI %d", ifname, zone->zone_name, plabel->tsl_doi, addrbuf, tp->tpc_tp.tp_doi); retval = B_FALSE; } else { cmn_err(CE_NOTE, "%s failed: zone %s label incompatible with " "%s", ifname, zone->zone_name, addrbuf); tsol_print_label(label, "zone label"); retval = B_FALSE; } if (zone != NULL) zone_rele(zone); if (tp != NULL) TPC_RELE(tp); if (retval) { /* * we've corrected a config error and let the interface * come up as cipso. Need to insert an rhent. */ if ((rhent.rh_address.ta_family = af) == AF_INET) { rhent.rh_prefix = 32; rhent.rh_address.ta_addr_v4 = *(struct in_addr *)addr; } else { rhent.rh_prefix = 128; rhent.rh_address.ta_addr_v6 = *(in6_addr_t *)addr; } (void) strcpy(rhent.rh_template, "cipso"); if (tnrh_load(&rhent) != 0) { cmn_err(CE_NOTE, "%s failed: Cannot insert CIPSO " "template for local addr %s", ifname, addrbuf); retval = B_FALSE; } } return (retval); }