/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1990 Mentat Inc. */ /* * This file contains the interface control functions for IP. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for various inet/mi.h and inet/nd.h needs */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* The character which tells where the ill_name ends */ #define IPIF_SEPARATOR_CHAR ':' /* IP ioctl function table entry */ typedef struct ipft_s { int ipft_cmd; pfi_t ipft_pfi; int ipft_min_size; int ipft_flags; } ipft_t; #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ typedef struct ip_sock_ar_s { union { area_t ip_sock_area; ared_t ip_sock_ared; areq_t ip_sock_areq; } ip_sock_ar_u; queue_t *ip_sock_ar_q; } ip_sock_ar_t; static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); static int nd_ill_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr); static boolean_t ill_is_quiescent(ill_t *); static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, boolean_t need_up); static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, boolean_t need_up); static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, queue_t *q, mblk_t *mp, boolean_t need_up); static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp); static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp); static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, queue_t *q, mblk_t *mp, boolean_t need_up); static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, struct linkblk *li, boolean_t doconsist); static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); static void ip_wput_ioctl(queue_t *q, mblk_t *mp); static void ipsq_flush(ill_t *ill); static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, mblk_t *mp, boolean_t need_up); static void ipsq_delete(ipsq_t *); static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, boolean_t insert); static void ipif_check_bcast_ires(ipif_t *test_ipif); static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6); static void ipif_down_delete_ire(ire_t *ire, char *ipif); static void ipif_delete_cache_ire(ire_t *, char *); static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); static void ipif_free(ipif_t *ipif); static void ipif_free_tail(ipif_t *ipif); static void ipif_mtu_change(ire_t *ire, char *ipif_arg); static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); static void ipif_set_default(ipif_t *ipif); static int ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *ppa); static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); static void ipif_update_other_ipifs(ipif_t *old_ipif); static int ill_alloc_ppa(ill_if_t *, ill_t *); static int ill_arp_off(ill_t *ill); static int ill_arp_on(ill_t *ill); static void ill_delete_interface_type(ill_if_t *); static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); static void ill_dl_down(ill_t *ill); static void ill_down(ill_t *ill); static void ill_downi(ire_t *ire, char *ill_arg); static void ill_free_mib(ill_t *ill); static void ill_glist_delete(ill_t *); static void ill_phyint_reinit(ill_t *ill); static void ill_set_nce_router_flags(ill_t *, boolean_t); static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; static ip_v6mapinfo_func_t ip_ether_v6mapinfo, ip_ib_v6mapinfo; static ip_v4mapinfo_func_t ip_ether_v4mapinfo, ip_ib_v4mapinfo; static void ipif_save_ire(ipif_t *, ire_t *); static void ipif_remove_ire(ipif_t *, ire_t *); static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); static void phyint_free(phyint_t *); /* * Per-ill IPsec capabilities management. */ static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); static void ill_ipsec_capab_free(ill_ipsec_capab_t *); static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); static void ill_ipsec_capab_delete(ill_t *, uint_t); static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, boolean_t); static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *); static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *); static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, dl_capability_sub_t *); static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); static int ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *, int *); static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); static void ill_capability_dld_ack(ill_t *, mblk_t *, dl_capability_sub_t *); static void ill_capability_dld_enable(ill_t *); static void ill_capability_ack_thr(void *); static void ill_capability_lso_enable(ill_t *); static void ill_capability_send(ill_t *, mblk_t *); static ill_t *ill_prev_usesrc(ill_t *); static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); static void ill_disband_usesrc_group(ill_t *); static void conn_cleanup_stale_ire(conn_t *, caddr_t); #ifdef DEBUG static void ill_trace_cleanup(const ill_t *); static void ipif_trace_cleanup(const ipif_t *); #endif /* * if we go over the memory footprint limit more than once in this msec * interval, we'll start pruning aggressively. */ int ip_min_frag_prune_time = 0; /* * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY * and the IPsec DOI */ #define MAX_IPSEC_ALGS 256 #define BITSPERBYTE 8 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) #define IPSEC_ALG_ENABLE(algs, algid) \ ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ (1 << ((algid) % BITS(ipsec_capab_elem_t)))) #define IPSEC_ALG_IS_ENABLED(algid, algs) \ ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ (1 << ((algid) % BITS(ipsec_capab_elem_t)))) typedef uint8_t ipsec_capab_elem_t; /* * Per-algorithm parameters. Note that at present, only encryption * algorithms have variable keysize (IKE does not provide a way to negotiate * auth algorithm keysize). * * All sizes here are in bits. */ typedef struct { uint16_t minkeylen; uint16_t maxkeylen; } ipsec_capab_algparm_t; /* * Per-ill capabilities. */ struct ill_ipsec_capab_s { ipsec_capab_elem_t *encr_hw_algs; ipsec_capab_elem_t *auth_hw_algs; uint32_t algs_size; /* size of _hw_algs in bytes */ /* algorithm key lengths */ ipsec_capab_algparm_t *encr_algparm; uint32_t encr_algparm_size; uint32_t encr_algparm_end; }; /* * The field values are larger than strictly necessary for simple * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. */ static area_t ip_area_template = { AR_ENTRY_ADD, /* area_cmd */ sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), /* area_name_offset */ /* area_name_length temporarily holds this structure length */ sizeof (area_t), /* area_name_length */ IP_ARP_PROTO_TYPE, /* area_proto */ sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ IP_ADDR_LEN, /* area_proto_addr_length */ sizeof (ip_sock_ar_t) + IP_ADDR_LEN, /* area_proto_mask_offset */ 0, /* area_flags */ sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, /* area_hw_addr_offset */ /* Zero length hw_addr_length means 'use your idea of the address' */ 0 /* area_hw_addr_length */ }; /* * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver * support */ static area_t ip6_area_template = { AR_ENTRY_ADD, /* area_cmd */ sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), /* area_name_offset */ /* area_name_length temporarily holds this structure length */ sizeof (area_t), /* area_name_length */ IP_ARP_PROTO_TYPE, /* area_proto */ sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ IPV6_ADDR_LEN, /* area_proto_addr_length */ sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, /* area_proto_mask_offset */ 0, /* area_flags */ sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, /* area_hw_addr_offset */ /* Zero length hw_addr_length means 'use your idea of the address' */ 0 /* area_hw_addr_length */ }; static ared_t ip_ared_template = { AR_ENTRY_DELETE, sizeof (ared_t) + IP_ADDR_LEN, sizeof (ared_t), IP_ARP_PROTO_TYPE, sizeof (ared_t), IP_ADDR_LEN, 0 }; static ared_t ip6_ared_template = { AR_ENTRY_DELETE, sizeof (ared_t) + IPV6_ADDR_LEN, sizeof (ared_t), IP_ARP_PROTO_TYPE, sizeof (ared_t), IPV6_ADDR_LEN, 0 }; /* * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as * as the areq doesn't include an IP address in ill_dl_up() (the only place a * areq is used). */ static areq_t ip_areq_template = { AR_ENTRY_QUERY, /* cmd */ sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ sizeof (areq_t), /* target addr offset */ IP_ADDR_LEN, /* target addr_length */ 0, /* flags */ sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ IP_ADDR_LEN, /* sender addr length */ AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ /* anything else filled in by the code */ }; static arc_t ip_aru_template = { AR_INTERFACE_UP, sizeof (arc_t), /* Name offset */ sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ }; static arc_t ip_ard_template = { AR_INTERFACE_DOWN, sizeof (arc_t), /* Name offset */ sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ }; static arc_t ip_aron_template = { AR_INTERFACE_ON, sizeof (arc_t), /* Name offset */ sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ }; static arc_t ip_aroff_template = { AR_INTERFACE_OFF, sizeof (arc_t), /* Name offset */ sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ }; static arma_t ip_arma_multi_template = { AR_MAPPING_ADD, sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, /* Name offset */ sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ IP_ARP_PROTO_TYPE, sizeof (arma_t), /* proto_addr_offset */ IP_ADDR_LEN, /* proto_addr_length */ sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ IP_MAX_HW_LEN, /* hw_addr_length */ 0, /* hw_mapping_start */ }; static ipft_t ip_ioctl_ftbl[] = { { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), IPFT_F_NO_REPLY }, { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), IPFT_F_NO_REPLY }, { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, { 0 } }; /* Simple ICMP IP Header Template */ static ipha_t icmp_ipha = { IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP }; static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static ip_m_t ip_m_tbl[] = { { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_ether_v6intfid }, { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid }, { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid }, { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid }, { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_ether_v6intfid }, { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, ip_ib_v6intfid }, { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL }, { SUNW_DL_IPMP, IFT_OTHER, NULL, NULL, ip_ipmp_v6intfid }, { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid } }; static ill_t ill_null; /* Empty ILL for init. */ char ipif_loopback_name[] = "lo0"; static char *ipv4_forward_suffix = ":ip_forwarding"; static char *ipv6_forward_suffix = ":ip6_forwarding"; static sin6_t sin6_null; /* Zero address for quick clears */ static sin_t sin_null; /* Zero address for quick clears */ /* When set search for unused ipif_seqid */ static ipif_t ipif_zero; /* * ppa arena is created after these many * interfaces have been plumbed. */ uint_t ill_no_arena = 12; /* Setable in /etc/system */ /* * Allocate per-interface mibs. * Returns true if ok. False otherwise. * ipsq may not yet be allocated (loopback case ). */ static boolean_t ill_allocate_mibs(ill_t *ill) { /* Already allocated? */ if (ill->ill_ip_mib != NULL) { if (ill->ill_isv6) ASSERT(ill->ill_icmp6_mib != NULL); return (B_TRUE); } ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), KM_NOSLEEP); if (ill->ill_ip_mib == NULL) { return (B_FALSE); } /* Setup static information */ SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, sizeof (mib2_ipIfStatsEntry_t)); if (ill->ill_isv6) { ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, sizeof (mib2_ipv6NetToMediaEntry_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, sizeof (ipv6_member_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); } else { ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, sizeof (mib2_ipAddrEntry_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, sizeof (mib2_ipRouteEntry_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, sizeof (mib2_ipNetToMediaEntry_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, sizeof (ip_member_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, sizeof (ip_grpsrc_t)); /* * For a v4 ill, we are done at this point, because per ill * icmp mibs are only used for v6. */ return (B_TRUE); } ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), KM_NOSLEEP); if (ill->ill_icmp6_mib == NULL) { kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); ill->ill_ip_mib = NULL; return (B_FALSE); } /* static icmp info */ ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); /* * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later * after the phyint merge occurs in ipif_set_values -> ill_glist_insert * -> ill_phyint_reinit */ return (B_TRUE); } /* * Common code for preparation of ARP commands. Two points to remember: * 1) The ill_name is tacked on at the end of the allocated space so * the templates name_offset field must contain the total space * to allocate less the name length. * * 2) The templates name_length field should contain the *template* * length. We use it as a parameter to bcopy() and then write * the real ill_name_length into the name_length field of the copy. * (Always called as writer.) */ mblk_t * ill_arp_alloc(ill_t *ill, const uchar_t *template, caddr_t addr) { arc_t *arc = (arc_t *)template; char *cp; int len; mblk_t *mp; uint_t name_length = ill->ill_name_length; uint_t template_len = arc->arc_name_length; len = arc->arc_name_offset + name_length; mp = allocb(len, BPRI_HI); if (mp == NULL) return (NULL); cp = (char *)mp->b_rptr; mp->b_wptr = (uchar_t *)&cp[len]; if (template_len) bcopy(template, cp, template_len); if (len > template_len) bzero(&cp[template_len], len - template_len); mp->b_datap->db_type = M_PROTO; arc = (arc_t *)cp; arc->arc_name_length = name_length; cp = (char *)arc + arc->arc_name_offset; bcopy(ill->ill_name, cp, name_length); if (addr) { area_t *area = (area_t *)mp->b_rptr; cp = (char *)area + area->area_proto_addr_offset; bcopy(addr, cp, area->area_proto_addr_length); if (area->area_cmd == AR_ENTRY_ADD) { cp = (char *)area; len = area->area_proto_addr_length; if (area->area_proto_mask_offset) cp += area->area_proto_mask_offset; else cp += area->area_proto_addr_offset + len; while (len-- > 0) *cp++ = (char)~0; } } return (mp); } mblk_t * ipif_area_alloc(ipif_t *ipif, uint_t optflags) { caddr_t addr; mblk_t *mp; area_t *area; uchar_t *areap; ill_t *ill = ipif->ipif_ill; if (ill->ill_isv6) { ASSERT(ill->ill_flags & ILLF_XRESOLV); addr = (caddr_t)&ipif->ipif_v6lcl_addr; areap = (uchar_t *)&ip6_area_template; } else { addr = (caddr_t)&ipif->ipif_lcl_addr; areap = (uchar_t *)&ip_area_template; } if ((mp = ill_arp_alloc(ill, areap, addr)) == NULL) return (NULL); /* * IPMP requires that the hardware address be included in all * AR_ENTRY_ADD requests so that ARP can deduce the arl to send on. * If there are no active underlying ills in the group (and thus no * hardware address, DAD will be deferred until an underlying ill * becomes active. */ if (IS_IPMP(ill)) { if ((ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) { freemsg(mp); return (NULL); } } else { ill_refhold(ill); } area = (area_t *)mp->b_rptr; area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; area->area_flags |= optflags; area->area_hw_addr_length = ill->ill_phys_addr_length; bcopy(ill->ill_phys_addr, mp->b_rptr + area->area_hw_addr_offset, area->area_hw_addr_length); ill_refrele(ill); return (mp); } mblk_t * ipif_ared_alloc(ipif_t *ipif) { caddr_t addr; uchar_t *aredp; if (ipif->ipif_ill->ill_isv6) { ASSERT(ipif->ipif_ill->ill_flags & ILLF_XRESOLV); addr = (caddr_t)&ipif->ipif_v6lcl_addr; aredp = (uchar_t *)&ip6_ared_template; } else { addr = (caddr_t)&ipif->ipif_lcl_addr; aredp = (uchar_t *)&ip_ared_template; } return (ill_arp_alloc(ipif->ipif_ill, aredp, addr)); } mblk_t * ill_ared_alloc(ill_t *ill, ipaddr_t addr) { return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, (char *)&addr)); } mblk_t * ill_arie_alloc(ill_t *ill, const char *grifname, const void *template) { mblk_t *mp = ill_arp_alloc(ill, template, 0); arie_t *arie; if (mp != NULL) { arie = (arie_t *)mp->b_rptr; (void) strlcpy(arie->arie_grifname, grifname, LIFNAMSIZ); } return (mp); } /* * Completely vaporize a lower level tap and all associated interfaces. * ill_delete is called only out of ip_close when the device control * stream is being closed. */ void ill_delete(ill_t *ill) { ipif_t *ipif; ill_t *prev_ill; ip_stack_t *ipst = ill->ill_ipst; /* * ill_delete may be forcibly entering the ipsq. The previous * ioctl may not have completed and may need to be aborted. * ipsq_flush takes care of it. If we don't need to enter the * the ipsq forcibly, the 2nd invocation of ipsq_flush in * ill_delete_tail is sufficient. */ ipsq_flush(ill); /* * Nuke all interfaces. ipif_free will take down the interface, * remove it from the list, and free the data structure. * Walk down the ipif list and remove the logical interfaces * first before removing the main ipif. We can't unplumb * zeroth interface first in the case of IPv6 as reset_conn_ill * -> ip_ll_delmulti_v6 de-references ill_ipif for checking * POINTOPOINT. * * If ill_ipif was not properly initialized (i.e low on memory), * then no interfaces to clean up. In this case just clean up the * ill. */ for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) ipif_free(ipif); /* * Used only by ill_arp_on and ill_arp_off, which are writers. * So nobody can be using this mp now. Free the mp allocated for * honoring ILLF_NOARP */ freemsg(ill->ill_arp_on_mp); ill->ill_arp_on_mp = NULL; /* Clean up msgs on pending upcalls for mrouted */ reset_mrt_ill(ill); /* * ipif_free -> reset_conn_ipif will remove all multicast * references for IPv4. For IPv6, we need to do it here as * it points only at ills. */ reset_conn_ill(ill); /* * Remove multicast references added as a result of calls to * ip_join_allmulti(). */ ip_purge_allmulti(ill); /* * If the ill being deleted is under IPMP, boot it out of the illgrp. */ if (IS_UNDER_IPMP(ill)) ipmp_ill_leave_illgrp(ill); /* * ill_down will arrange to blow off any IRE's dependent on this * ILL, and shut down fragmentation reassembly. */ ill_down(ill); /* Let SCTP know, so that it can remove this from its list. */ sctp_update_ill(ill, SCTP_ILL_REMOVE); /* * If an address on this ILL is being used as a source address then * clear out the pointers in other ILLs that point to this ILL. */ rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); if (ill->ill_usesrc_grp_next != NULL) { if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ ill_disband_usesrc_group(ill); } else { /* consumer of the usesrc ILL */ prev_ill = ill_prev_usesrc(ill); prev_ill->ill_usesrc_grp_next = ill->ill_usesrc_grp_next; } } rw_exit(&ipst->ips_ill_g_usesrc_lock); } static void ipif_non_duplicate(ipif_t *ipif) { ill_t *ill = ipif->ipif_ill; mutex_enter(&ill->ill_lock); if (ipif->ipif_flags & IPIF_DUPLICATE) { ipif->ipif_flags &= ~IPIF_DUPLICATE; ASSERT(ill->ill_ipif_dup_count > 0); ill->ill_ipif_dup_count--; } mutex_exit(&ill->ill_lock); } /* * ill_delete_tail is called from ip_modclose after all references * to the closing ill are gone. The wait is done in ip_modclose */ void ill_delete_tail(ill_t *ill) { mblk_t **mpp; ipif_t *ipif; ip_stack_t *ipst = ill->ill_ipst; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { ipif_non_duplicate(ipif); ipif_down_tail(ipif); } ASSERT(ill->ill_ipif_dup_count == 0 && ill->ill_arp_down_mp == NULL && ill->ill_arp_del_mapping_mp == NULL); /* * If polling capability is enabled (which signifies direct * upcall into IP and driver has ill saved as a handle), * we need to make sure that unbind has completed before we * let the ill disappear and driver no longer has any reference * to this ill. */ mutex_enter(&ill->ill_lock); while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) cv_wait(&ill->ill_cv, &ill->ill_lock); mutex_exit(&ill->ill_lock); ASSERT(!(ill->ill_capabilities & (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); if (ill->ill_net_type != IRE_LOOPBACK) qprocsoff(ill->ill_rq); /* * We do an ipsq_flush once again now. New messages could have * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls * could also have landed up if an ioctl thread had looked up * the ill before we set the ILL_CONDEMNED flag, but not yet * enqueued the ioctl when we did the ipsq_flush last time. */ ipsq_flush(ill); /* * Free capabilities. */ if (ill->ill_ipsec_capab_ah != NULL) { ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); ill->ill_ipsec_capab_ah = NULL; } if (ill->ill_ipsec_capab_esp != NULL) { ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); ill->ill_ipsec_capab_esp = NULL; } if (ill->ill_mdt_capab != NULL) { kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); ill->ill_mdt_capab = NULL; } if (ill->ill_hcksum_capab != NULL) { kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); ill->ill_hcksum_capab = NULL; } if (ill->ill_zerocopy_capab != NULL) { kmem_free(ill->ill_zerocopy_capab, sizeof (ill_zerocopy_capab_t)); ill->ill_zerocopy_capab = NULL; } if (ill->ill_lso_capab != NULL) { kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); ill->ill_lso_capab = NULL; } if (ill->ill_dld_capab != NULL) { kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); ill->ill_dld_capab = NULL; } while (ill->ill_ipif != NULL) ipif_free_tail(ill->ill_ipif); /* * We have removed all references to ilm from conn and the ones joined * within the kernel. * * We don't walk conns, mrts and ires because * * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. * 2) ill_down ->ill_downi walks all the ires and cleans up * ill references. */ ASSERT(ilm_walk_ill(ill) == 0); /* * If this ill is an IPMP meta-interface, blow away the illgrp. This * is safe to do because the illgrp has already been unlinked from the * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. */ if (IS_IPMP(ill)) { ipmp_illgrp_destroy(ill->ill_grp); ill->ill_grp = NULL; } /* * Take us out of the list of ILLs. ill_glist_delete -> phyint_free * could free the phyint. No more reference to the phyint after this * point. */ (void) ill_glist_delete(ill); rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); if (ill->ill_ndd_name != NULL) nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); rw_exit(&ipst->ips_ip_g_nd_lock); if (ill->ill_frag_ptr != NULL) { uint_t count; for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); } mi_free(ill->ill_frag_ptr); ill->ill_frag_ptr = NULL; ill->ill_frag_hash_tbl = NULL; } freemsg(ill->ill_nd_lla_mp); /* Free all retained control messages. */ mpp = &ill->ill_first_mp_to_free; do { while (mpp[0]) { mblk_t *mp; mblk_t *mp1; mp = mpp[0]; mpp[0] = mp->b_next; for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { mp1->b_next = NULL; mp1->b_prev = NULL; } freemsg(mp); } } while (mpp++ != &ill->ill_last_mp_to_free); ill_free_mib(ill); #ifdef DEBUG ill_trace_cleanup(ill); #endif /* Drop refcnt here */ netstack_rele(ill->ill_ipst->ips_netstack); ill->ill_ipst = NULL; } static void ill_free_mib(ill_t *ill) { ip_stack_t *ipst = ill->ill_ipst; /* * MIB statistics must not be lost, so when an interface * goes away the counter values will be added to the global * MIBs. */ if (ill->ill_ip_mib != NULL) { if (ill->ill_isv6) { ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, ill->ill_ip_mib); } else { ip_mib2_add_ip_stats(&ipst->ips_ip_mib, ill->ill_ip_mib); } kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); ill->ill_ip_mib = NULL; } if (ill->ill_icmp6_mib != NULL) { ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, ill->ill_icmp6_mib); kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); ill->ill_icmp6_mib = NULL; } } /* * Concatenate together a physical address and a sap. * * Sap_lengths are interpreted as follows: * sap_length == 0 ==> no sap * sap_length > 0 ==> sap is at the head of the dlpi address * sap_length < 0 ==> sap is at the tail of the dlpi address */ static void ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) { uint16_t sap_addr = (uint16_t)sap_src; if (sap_length == 0) { if (phys_src == NULL) bzero(dst, phys_length); else bcopy(phys_src, dst, phys_length); } else if (sap_length < 0) { if (phys_src == NULL) bzero(dst, phys_length); else bcopy(phys_src, dst, phys_length); bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); } else { bcopy(&sap_addr, dst, sizeof (sap_addr)); if (phys_src == NULL) bzero((char *)dst + sap_length, phys_length); else bcopy(phys_src, (char *)dst + sap_length, phys_length); } } /* * Generate a dl_unitdata_req mblk for the device and address given. * addr_length is the length of the physical portion of the address. * If addr is NULL include an all zero address of the specified length. * TRUE? In any case, addr_length is taken to be the entire length of the * dlpi address, including the absolute value of sap_length. */ mblk_t * ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, t_scalar_t sap_length) { dl_unitdata_req_t *dlur; mblk_t *mp; t_scalar_t abs_sap_length; /* absolute value */ abs_sap_length = ABS(sap_length); mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, DL_UNITDATA_REQ); if (mp == NULL) return (NULL); dlur = (dl_unitdata_req_t *)mp->b_rptr; /* HACK: accomodate incompatible DLPI drivers */ if (addr_length == 8) addr_length = 6; dlur->dl_dest_addr_length = addr_length + abs_sap_length; dlur->dl_dest_addr_offset = sizeof (*dlur); dlur->dl_priority.dl_min = 0; dlur->dl_priority.dl_max = 0; ill_dlur_copy_address(addr, addr_length, sap, sap_length, (uchar_t *)&dlur[1]); return (mp); } /* * Add the 'mp' to the list of pending mp's headed by ill_pending_mp * Return an error if we already have 1 or more ioctls in progress. * This is used only for non-exclusive ioctls. Currently this is used * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive * and thus need to use ipsq_pending_mp_add. */ boolean_t ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) { ASSERT(MUTEX_HELD(&ill->ill_lock)); ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); /* * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. */ ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || (add_mp->b_datap->db_type == M_IOCTL)); ASSERT(MUTEX_HELD(&connp->conn_lock)); /* * Return error if the conn has started closing. The conn * could have finished cleaning up the pending mp list, * If so we should not add another mp to the list negating * the cleanup. */ if (connp->conn_state_flags & CONN_CLOSING) return (B_FALSE); /* * Add the pending mp to the head of the list, chained by b_next. * Note down the conn on which the ioctl request came, in b_prev. * This will be used to later get the conn, when we get a response * on the ill queue, from some other module (typically arp) */ add_mp->b_next = (void *)ill->ill_pending_mp; add_mp->b_queue = CONNP_TO_WQ(connp); ill->ill_pending_mp = add_mp; if (connp != NULL) connp->conn_oper_pending_ill = ill; return (B_TRUE); } /* * Retrieve the ill_pending_mp and return it. We have to walk the list * of mblks starting at ill_pending_mp, and match based on the ioc_id. */ mblk_t * ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) { mblk_t *prev = NULL; mblk_t *curr = NULL; uint_t id; conn_t *connp; /* * When the conn closes, conn_ioctl_cleanup needs to clean * up the pending mp, but it does not know the ioc_id and * passes in a zero for it. */ mutex_enter(&ill->ill_lock); if (ioc_id != 0) *connpp = NULL; /* Search the list for the appropriate ioctl based on ioc_id */ for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; prev = curr, curr = curr->b_next) { id = ((struct iocblk *)curr->b_rptr)->ioc_id; connp = Q_TO_CONN(curr->b_queue); /* Match based on the ioc_id or based on the conn */ if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) break; } if (curr != NULL) { /* Unlink the mblk from the pending mp list */ if (prev != NULL) { prev->b_next = curr->b_next; } else { ASSERT(ill->ill_pending_mp == curr); ill->ill_pending_mp = curr->b_next; } /* * conn refcnt must have been bumped up at the start of * the ioctl. So we can safely access the conn. */ ASSERT(CONN_Q(curr->b_queue)); *connpp = Q_TO_CONN(curr->b_queue); curr->b_next = NULL; curr->b_queue = NULL; } mutex_exit(&ill->ill_lock); return (curr); } /* * Add the pending mp to the list. There can be only 1 pending mp * in the list. Any exclusive ioctl that needs to wait for a response * from another module or driver needs to use this function to set * the ipx_pending_mp to the ioctl mblk and wait for the response from * the other module/driver. This is also used while waiting for the * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. */ boolean_t ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, int waitfor) { ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; ASSERT(IAM_WRITER_IPIF(ipif)); ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); ASSERT(ipx->ipx_pending_mp == NULL); /* * The caller may be using a different ipif than the one passed into * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT * that `ipx_current_ipif == ipif'. */ ASSERT(ipx->ipx_current_ipif != NULL); /* * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. */ ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); if (connp != NULL) { ASSERT(MUTEX_HELD(&connp->conn_lock)); /* * Return error if the conn has started closing. The conn * could have finished cleaning up the pending mp list, * If so we should not add another mp to the list negating * the cleanup. */ if (connp->conn_state_flags & CONN_CLOSING) return (B_FALSE); } mutex_enter(&ipx->ipx_lock); ipx->ipx_pending_ipif = ipif; /* * Note down the queue in b_queue. This will be returned by * ipsq_pending_mp_get. Caller will then use these values to restart * the processing */ add_mp->b_next = NULL; add_mp->b_queue = q; ipx->ipx_pending_mp = add_mp; ipx->ipx_waitfor = waitfor; mutex_exit(&ipx->ipx_lock); if (connp != NULL) connp->conn_oper_pending_ill = ipif->ipif_ill; return (B_TRUE); } /* * Retrieve the ipx_pending_mp and return it. There can be only 1 mp * queued in the list. */ mblk_t * ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) { mblk_t *curr = NULL; ipxop_t *ipx = ipsq->ipsq_xop; *connpp = NULL; mutex_enter(&ipx->ipx_lock); if (ipx->ipx_pending_mp == NULL) { mutex_exit(&ipx->ipx_lock); return (NULL); } /* There can be only 1 such excl message */ curr = ipx->ipx_pending_mp; ASSERT(curr->b_next == NULL); ipx->ipx_pending_ipif = NULL; ipx->ipx_pending_mp = NULL; ipx->ipx_waitfor = 0; mutex_exit(&ipx->ipx_lock); if (CONN_Q(curr->b_queue)) { /* * This mp did a refhold on the conn, at the start of the ioctl. * So we can safely return a pointer to the conn to the caller. */ *connpp = Q_TO_CONN(curr->b_queue); } else { *connpp = NULL; } curr->b_next = NULL; curr->b_prev = NULL; return (curr); } /* * Cleanup the ioctl mp queued in ipx_pending_mp * - Called in the ill_delete path * - Called in the M_ERROR or M_HANGUP path on the ill. * - Called in the conn close path. */ boolean_t ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) { mblk_t *mp; ipxop_t *ipx; queue_t *q; ipif_t *ipif; ASSERT(IAM_WRITER_ILL(ill)); ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; /* * If connp is null, unconditionally clean up the ipx_pending_mp. * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl * even if it is meant for another ill, since we have to enqueue * a new mp now in ipx_pending_mp to complete the ipif_down. * If connp is non-null we are called from the conn close path. */ mutex_enter(&ipx->ipx_lock); mp = ipx->ipx_pending_mp; if (mp == NULL || (connp != NULL && mp->b_queue != CONNP_TO_WQ(connp))) { mutex_exit(&ipx->ipx_lock); return (B_FALSE); } /* Now remove from the ipx_pending_mp */ ipx->ipx_pending_mp = NULL; q = mp->b_queue; mp->b_next = NULL; mp->b_prev = NULL; mp->b_queue = NULL; ipif = ipx->ipx_pending_ipif; ipx->ipx_pending_ipif = NULL; ipx->ipx_waitfor = 0; ipx->ipx_current_ipif = NULL; ipx->ipx_current_ioctl = 0; ipx->ipx_current_done = B_TRUE; mutex_exit(&ipx->ipx_lock); if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { if (connp == NULL) { ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); } else { ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); mutex_enter(&ipif->ipif_ill->ill_lock); ipif->ipif_state_flags &= ~IPIF_CHANGING; mutex_exit(&ipif->ipif_ill->ill_lock); } } else { /* * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't * be just inet_freemsg. we have to restart it * otherwise the thread will be stuck. */ inet_freemsg(mp); } return (B_TRUE); } /* * The ill is closing. Cleanup all the pending mps. Called exclusively * towards the end of ill_delete. The refcount has gone to 0. So nobody * knows this ill, and hence nobody can add an mp to this list */ static void ill_pending_mp_cleanup(ill_t *ill) { mblk_t *mp; queue_t *q; ASSERT(IAM_WRITER_ILL(ill)); mutex_enter(&ill->ill_lock); /* * Every mp on the pending mp list originating from an ioctl * added 1 to the conn refcnt, at the start of the ioctl. * So bump it down now. See comments in ip_wput_nondata() */ while (ill->ill_pending_mp != NULL) { mp = ill->ill_pending_mp; ill->ill_pending_mp = mp->b_next; mutex_exit(&ill->ill_lock); q = mp->b_queue; ASSERT(CONN_Q(q)); mp->b_next = NULL; mp->b_prev = NULL; mp->b_queue = NULL; ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); mutex_enter(&ill->ill_lock); } ill->ill_pending_ipif = NULL; mutex_exit(&ill->ill_lock); } /* * Called in the conn close path and ill delete path */ static void ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) { ipsq_t *ipsq; mblk_t *prev; mblk_t *curr; mblk_t *next; queue_t *q; mblk_t *tmp_list = NULL; ASSERT(IAM_WRITER_ILL(ill)); if (connp != NULL) q = CONNP_TO_WQ(connp); else q = ill->ill_wq; ipsq = ill->ill_phyint->phyint_ipsq; /* * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. * In the case of ioctl from a conn, there can be only 1 mp * queued on the ipsq. If an ill is being unplumbed, only messages * related to this ill are flushed, like M_ERROR or M_HANGUP message. * ioctls meant for this ill form conn's are not flushed. They will * be processed during ipsq_exit and will not find the ill and will * return error. */ mutex_enter(&ipsq->ipsq_lock); for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; curr = next) { next = curr->b_next; if (curr->b_queue == q || curr->b_queue == RD(q)) { /* Unlink the mblk from the pending mp list */ if (prev != NULL) { prev->b_next = curr->b_next; } else { ASSERT(ipsq->ipsq_xopq_mphead == curr); ipsq->ipsq_xopq_mphead = curr->b_next; } if (ipsq->ipsq_xopq_mptail == curr) ipsq->ipsq_xopq_mptail = prev; /* * Create a temporary list and release the ipsq lock * New elements are added to the head of the tmp_list */ curr->b_next = tmp_list; tmp_list = curr; } else { prev = curr; } } mutex_exit(&ipsq->ipsq_lock); while (tmp_list != NULL) { curr = tmp_list; tmp_list = curr->b_next; curr->b_next = NULL; curr->b_prev = NULL; curr->b_queue = NULL; if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? CONN_CLOSE : NO_COPYOUT, NULL); } else { /* * IP-MT XXX In the case of TLI/XTI bind / optmgmt * this can't be just inet_freemsg. we have to * restart it otherwise the thread will be stuck. */ inet_freemsg(curr); } } } /* * This conn has started closing. Cleanup any pending ioctl from this conn. * STREAMS ensures that there can be at most 1 ioctl pending on a stream. */ void conn_ioctl_cleanup(conn_t *connp) { mblk_t *curr; ipsq_t *ipsq; ill_t *ill; boolean_t refheld; /* * Is any exclusive ioctl pending ? If so clean it up. If the * ioctl has not yet started, the mp is pending in the list headed by * ipsq_xopq_head. If the ioctl has started the mp could be present in * ipx_pending_mp. If the ioctl timed out in the streamhead but * is currently executing now the mp is not queued anywhere but * conn_oper_pending_ill is null. The conn close will wait * till the conn_ref drops to zero. */ mutex_enter(&connp->conn_lock); ill = connp->conn_oper_pending_ill; if (ill == NULL) { mutex_exit(&connp->conn_lock); return; } curr = ill_pending_mp_get(ill, &connp, 0); if (curr != NULL) { mutex_exit(&connp->conn_lock); CONN_DEC_REF(connp); inet_freemsg(curr); return; } /* * We may not be able to refhold the ill if the ill/ipif * is changing. But we need to make sure that the ill will * not vanish. So we just bump up the ill_waiter count. */ refheld = ill_waiter_inc(ill); mutex_exit(&connp->conn_lock); if (refheld) { if (ipsq_enter(ill, B_TRUE, NEW_OP)) { ill_waiter_dcr(ill); /* * Check whether this ioctl has started and is * pending. If it is not found there then check * whether this ioctl has not even started and is in * the ipsq_xopq list. */ if (!ipsq_pending_mp_cleanup(ill, connp)) ipsq_xopq_mp_cleanup(ill, connp); ipsq = ill->ill_phyint->phyint_ipsq; ipsq_exit(ipsq); return; } } /* * The ill is also closing and we could not bump up the * ill_waiter_count or we could not enter the ipsq. Leave * the cleanup to ill_delete */ mutex_enter(&connp->conn_lock); while (connp->conn_oper_pending_ill != NULL) cv_wait(&connp->conn_refcv, &connp->conn_lock); mutex_exit(&connp->conn_lock); if (refheld) ill_waiter_dcr(ill); } /* * ipcl_walk function for cleaning up conn_*_ill fields. */ static void conn_cleanup_ill(conn_t *connp, caddr_t arg) { ill_t *ill = (ill_t *)arg; ire_t *ire; mutex_enter(&connp->conn_lock); if (connp->conn_multicast_ill == ill) { /* Revert to late binding */ connp->conn_multicast_ill = NULL; } if (connp->conn_incoming_ill == ill) connp->conn_incoming_ill = NULL; if (connp->conn_outgoing_ill == ill) connp->conn_outgoing_ill = NULL; if (connp->conn_dhcpinit_ill == ill) { connp->conn_dhcpinit_ill = NULL; ASSERT(ill->ill_dhcpinit != 0); atomic_dec_32(&ill->ill_dhcpinit); } if (connp->conn_ire_cache != NULL) { ire = connp->conn_ire_cache; /* * Source address selection makes it possible for IRE_CACHE * entries to be created with ire_stq coming from interface X * and ipif coming from interface Y. Thus whenever interface * X goes down, remove all references to it by checking both * on ire_ipif and ire_stq. */ if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { connp->conn_ire_cache = NULL; mutex_exit(&connp->conn_lock); ire_refrele_notr(ire); return; } } mutex_exit(&connp->conn_lock); } static void ill_down_ipifs_tail(ill_t *ill) { ipif_t *ipif; ASSERT(IAM_WRITER_ILL(ill)); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { ipif_non_duplicate(ipif); ipif_down_tail(ipif); } } /* ARGSUSED */ void ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) { ASSERT(IAM_WRITER_IPSQ(ipsq)); ill_down_ipifs_tail(q->q_ptr); freemsg(mp); ipsq_current_finish(ipsq); } /* * ill_down_start is called when we want to down this ill and bring it up again * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down * all interfaces, but don't tear down any plumbing. */ boolean_t ill_down_start(queue_t *q, mblk_t *mp) { ill_t *ill = q->q_ptr; ipif_t *ipif; ASSERT(IAM_WRITER_ILL(ill)); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) (void) ipif_down(ipif, NULL, NULL); ill_down(ill); (void) ipsq_pending_mp_cleanup(ill, NULL); ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); /* * Atomically test and add the pending mp if references are active. */ mutex_enter(&ill->ill_lock); if (!ill_is_quiescent(ill)) { /* call cannot fail since `conn_t *' argument is NULL */ (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, mp, ILL_DOWN); mutex_exit(&ill->ill_lock); return (B_FALSE); } mutex_exit(&ill->ill_lock); return (B_TRUE); } static void ill_down(ill_t *ill) { ip_stack_t *ipst = ill->ill_ipst; /* Blow off any IREs dependent on this ILL. */ ire_walk(ill_downi, ill, ipst); /* Remove any conn_*_ill depending on this ill */ ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); } /* * ire_walk routine used to delete every IRE that depends on queues * associated with 'ill'. (Always called as writer.) */ static void ill_downi(ire_t *ire, char *ill_arg) { ill_t *ill = (ill_t *)ill_arg; /* * Source address selection makes it possible for IRE_CACHE * entries to be created with ire_stq coming from interface X * and ipif coming from interface Y. Thus whenever interface * X goes down, remove all references to it by checking both * on ire_ipif and ire_stq. */ if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { ire_delete(ire); } } /* * Remove ire/nce from the fastpath list. */ void ill_fastpath_nack(ill_t *ill) { nce_fastpath_list_dispatch(ill, NULL, NULL); } /* Consume an M_IOCACK of the fastpath probe. */ void ill_fastpath_ack(ill_t *ill, mblk_t *mp) { mblk_t *mp1 = mp; /* * If this was the first attempt turn on the fastpath probing. */ mutex_enter(&ill->ill_lock); if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) ill->ill_dlpi_fastpath_state = IDS_OK; mutex_exit(&ill->ill_lock); /* Free the M_IOCACK mblk, hold on to the data */ mp = mp->b_cont; freeb(mp1); if (mp == NULL) return; if (mp->b_cont != NULL) { /* * Update all IRE's or NCE's that are waiting for * fastpath update. */ nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); mp1 = mp->b_cont; freeb(mp); mp = mp1; } else { ip0dbg(("ill_fastpath_ack: no b_cont\n")); } freeb(mp); } /* * Throw an M_IOCTL message downstream asking "do you know fastpath?" * The data portion of the request is a dl_unitdata_req_t template for * what we would send downstream in the absence of a fastpath confirmation. */ int ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) { struct iocblk *ioc; mblk_t *mp; if (dlur_mp == NULL) return (EINVAL); mutex_enter(&ill->ill_lock); switch (ill->ill_dlpi_fastpath_state) { case IDS_FAILED: /* * Driver NAKed the first fastpath ioctl - assume it doesn't * support it. */ mutex_exit(&ill->ill_lock); return (ENOTSUP); case IDS_UNKNOWN: /* This is the first probe */ ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; break; default: break; } mutex_exit(&ill->ill_lock); if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) return (EAGAIN); mp->b_cont = copyb(dlur_mp); if (mp->b_cont == NULL) { freeb(mp); return (EAGAIN); } ioc = (struct iocblk *)mp->b_rptr; ioc->ioc_count = msgdsize(mp->b_cont); putnext(ill->ill_wq, mp); return (0); } void ill_capability_probe(ill_t *ill) { mblk_t *mp; ASSERT(IAM_WRITER_ILL(ill)); if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && ill->ill_dlpi_capab_state != IDCS_FAILED) return; /* * We are starting a new cycle of capability negotiation. * Free up the capab reset messages of any previous incarnation. * We will do a fresh allocation when we get the response to our probe */ if (ill->ill_capab_reset_mp != NULL) { freemsg(ill->ill_capab_reset_mp); ill->ill_capab_reset_mp = NULL; } ip1dbg(("ill_capability_probe: starting capability negotiation\n")); mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); if (mp == NULL) return; ill_capability_send(ill, mp); ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; } void ill_capability_reset(ill_t *ill, boolean_t reneg) { ASSERT(IAM_WRITER_ILL(ill)); if (ill->ill_dlpi_capab_state != IDCS_OK) return; ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; ill_capability_send(ill, ill->ill_capab_reset_mp); ill->ill_capab_reset_mp = NULL; /* * We turn off all capabilities except those pertaining to * direct function call capabilities viz. ILL_CAPAB_DLD* * which will be turned off by the corresponding reset functions. */ ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP); } static void ill_capability_reset_alloc(ill_t *ill) { mblk_t *mp; size_t size = 0; int err; dl_capability_req_t *capb; ASSERT(IAM_WRITER_ILL(ill)); ASSERT(ill->ill_capab_reset_mp == NULL); if (ILL_MDT_CAPABLE(ill)) size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); if (ILL_HCKSUM_CAPABLE(ill)) { size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_hcksum_t); } if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_zerocopy_t); } if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) { size += sizeof (dl_capability_sub_t); size += ill_capability_ipsec_reset_size(ill, NULL, NULL, NULL, NULL); } if (ill->ill_capabilities & ILL_CAPAB_DLD) { size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); } mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, STR_NOSIG, &err); mp->b_datap->db_type = M_PROTO; bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); capb = (dl_capability_req_t *)mp->b_rptr; capb->dl_primitive = DL_CAPABILITY_REQ; capb->dl_sub_offset = sizeof (dl_capability_req_t); capb->dl_sub_length = size; mp->b_wptr += sizeof (dl_capability_req_t); /* * Each handler fills in the corresponding dl_capability_sub_t * inside the mblk, */ ill_capability_mdt_reset_fill(ill, mp); ill_capability_hcksum_reset_fill(ill, mp); ill_capability_zerocopy_reset_fill(ill, mp); ill_capability_ipsec_reset_fill(ill, mp); ill_capability_dld_reset_fill(ill, mp); ill->ill_capab_reset_mp = mp; } static void ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) { dl_capab_id_t *id_ic; uint_t sub_dl_cap = outers->dl_cap; dl_capability_sub_t *inners; uint8_t *capend; ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); /* * Note: range checks here are not absolutely sufficient to * make us robust against malformed messages sent by drivers; * this is in keeping with the rest of IP's dlpi handling. * (Remember, it's coming from something else in the kernel * address space) */ capend = (uint8_t *)(outers + 1) + outers->dl_length; if (capend > mp->b_wptr) { cmn_err(CE_WARN, "ill_capability_id_ack: " "malformed sub-capability too long for mblk"); return; } id_ic = (dl_capab_id_t *)(outers + 1); if (outers->dl_length < sizeof (*id_ic) || (inners = &id_ic->id_subcap, inners->dl_length > (outers->dl_length - sizeof (*inners)))) { cmn_err(CE_WARN, "ill_capability_id_ack: malformed " "encapsulated capab type %d too long for mblk", inners->dl_cap); return; } if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { ip1dbg(("ill_capability_id_ack: mid token for capab type %d " "isn't as expected; pass-thru module(s) detected, " "discarding capability\n", inners->dl_cap)); return; } /* Process the encapsulated sub-capability */ ill_capability_dispatch(ill, mp, inners, B_TRUE); } /* * Process Multidata Transmit capability negotiation ack received from a * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a * DL_CAPABILITY_ACK message. */ static void ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) { mblk_t *nmp = NULL; dl_capability_req_t *oc; dl_capab_mdt_t *mdt_ic, *mdt_oc; ill_mdt_capab_t **ill_mdt_capab; uint_t sub_dl_cap = isub->dl_cap; uint8_t *capend; ASSERT(sub_dl_cap == DL_CAPAB_MDT); ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; /* * Note: range checks here are not absolutely sufficient to * make us robust against malformed messages sent by drivers; * this is in keeping with the rest of IP's dlpi handling. * (Remember, it's coming from something else in the kernel * address space) */ capend = (uint8_t *)(isub + 1) + isub->dl_length; if (capend > mp->b_wptr) { cmn_err(CE_WARN, "ill_capability_mdt_ack: " "malformed sub-capability too long for mblk"); return; } mdt_ic = (dl_capab_mdt_t *)(isub + 1); if (mdt_ic->mdt_version != MDT_VERSION_2) { cmn_err(CE_CONT, "ill_capability_mdt_ack: " "unsupported MDT sub-capability (version %d, expected %d)", mdt_ic->mdt_version, MDT_VERSION_2); return; } if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { ip1dbg(("ill_capability_mdt_ack: mid token for MDT " "capability isn't as expected; pass-thru module(s) " "detected, discarding capability\n")); return; } if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { if (*ill_mdt_capab == NULL) { *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), KM_NOSLEEP); if (*ill_mdt_capab == NULL) { cmn_err(CE_WARN, "ill_capability_mdt_ack: " "could not enable MDT version %d " "for %s (ENOMEM)\n", MDT_VERSION_2, ill->ill_name); return; } } ip1dbg(("ill_capability_mdt_ack: interface %s supports " "MDT version %d (%d bytes leading, %d bytes trailing " "header spaces, %d max pld bufs, %d span limit)\n", ill->ill_name, MDT_VERSION_2, mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; (*ill_mdt_capab)->ill_mdt_on = 1; /* * Round the following values to the nearest 32-bit; ULP * may further adjust them to accomodate for additional * protocol headers. We pass these values to ULP during * bind time. */ (*ill_mdt_capab)->ill_mdt_hdr_head = roundup(mdt_ic->mdt_hdr_head, 4); (*ill_mdt_capab)->ill_mdt_hdr_tail = roundup(mdt_ic->mdt_hdr_tail, 4); (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; ill->ill_capabilities |= ILL_CAPAB_MDT; } else { uint_t size; uchar_t *rptr; size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { cmn_err(CE_WARN, "ill_capability_mdt_ack: " "could not enable MDT for %s (ENOMEM)\n", ill->ill_name); return; } rptr = nmp->b_rptr; /* initialize dl_capability_req_t */ oc = (dl_capability_req_t *)nmp->b_rptr; oc->dl_sub_offset = sizeof (dl_capability_req_t); oc->dl_sub_length = sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); nmp->b_rptr += sizeof (dl_capability_req_t); /* initialize dl_capability_sub_t */ bcopy(isub, nmp->b_rptr, sizeof (*isub)); nmp->b_rptr += sizeof (*isub); /* initialize dl_capab_mdt_t */ mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); nmp->b_rptr = rptr; ip1dbg(("ill_capability_mdt_ack: asking interface %s " "to enable MDT version %d\n", ill->ill_name, MDT_VERSION_2)); /* set ENABLE flag */ mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ ill_capability_send(ill, nmp); } } static void ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp) { dl_capab_mdt_t *mdt_subcap; dl_capability_sub_t *dl_subcap; if (!ILL_MDT_CAPABLE(ill)) return; ASSERT(ill->ill_mdt_capab != NULL); dl_subcap = (dl_capability_sub_t *)mp->b_wptr; dl_subcap->dl_cap = DL_CAPAB_MDT; dl_subcap->dl_length = sizeof (*mdt_subcap); mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; mdt_subcap->mdt_flags = 0; mdt_subcap->mdt_hdr_head = 0; mdt_subcap->mdt_hdr_tail = 0; mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap); } static void ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) { dl_capability_sub_t *dl_subcap; if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) return; /* * The dl_capab_dld_t that follows the dl_capability_sub_t is not * initialized below since it is not used by DLD. */ dl_subcap = (dl_capability_sub_t *)mp->b_wptr; dl_subcap->dl_cap = DL_CAPAB_DLD; dl_subcap->dl_length = sizeof (dl_capab_dld_t); mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); } /* * Allocate an IPsec capability request which will be filled by our * caller to turn on support for one or more algorithms. */ /* ARGSUSED */ static mblk_t * ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) { mblk_t *nmp; dl_capability_req_t *ocap; dl_capab_ipsec_t *ocip; dl_capab_ipsec_t *icip; uint8_t *ptr; icip = (dl_capab_ipsec_t *)(isub + 1); /* * Allocate new mblk which will contain a new capability * request to enable the capabilities. */ nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); if (nmp == NULL) return (NULL); ptr = nmp->b_rptr; /* initialize dl_capability_req_t */ ocap = (dl_capability_req_t *)ptr; ocap->dl_sub_offset = sizeof (dl_capability_req_t); ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; ptr += sizeof (dl_capability_req_t); /* initialize dl_capability_sub_t */ bcopy(isub, ptr, sizeof (*isub)); ptr += sizeof (*isub); /* initialize dl_capab_ipsec_t */ ocip = (dl_capab_ipsec_t *)ptr; bcopy(icip, ocip, sizeof (*icip)); nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); return (nmp); } /* * Process an IPsec capability negotiation ack received from a DLS Provider. * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. */ static void ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) { dl_capab_ipsec_t *icip; dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ uint_t cipher, nciphers; mblk_t *nmp; uint_t alg_len; boolean_t need_sadb_dump; uint_t sub_dl_cap = isub->dl_cap; ill_ipsec_capab_t **ill_capab; uint64_t ill_capab_flag; uint8_t *capend, *ciphend; boolean_t sadb_resync; ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || sub_dl_cap == DL_CAPAB_IPSEC_ESP); if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; ill_capab_flag = ILL_CAPAB_AH; } else { ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; ill_capab_flag = ILL_CAPAB_ESP; } /* * If the ill capability structure exists, then this incoming * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. * If this is so, then we'd need to resynchronize the SADB * after re-enabling the offloaded ciphers. */ sadb_resync = (*ill_capab != NULL); /* * Note: range checks here are not absolutely sufficient to * make us robust against malformed messages sent by drivers; * this is in keeping with the rest of IP's dlpi handling. * (Remember, it's coming from something else in the kernel * address space) */ capend = (uint8_t *)(isub + 1) + isub->dl_length; if (capend > mp->b_wptr) { cmn_err(CE_WARN, "ill_capability_ipsec_ack: " "malformed sub-capability too long for mblk"); return; } /* * There are two types of acks we process here: * 1. acks in reply to a (first form) generic capability req * (no ENABLE flag set) * 2. acks in reply to a ENABLE capability req. * (ENABLE flag set) * * We process the subcapability passed as argument as follows: * 1 do initializations * 1.1 initialize nmp = NULL * 1.2 set need_sadb_dump to B_FALSE * 2 for each cipher in subcapability: * 2.1 if ENABLE flag is set: * 2.1.1 update per-ill ipsec capabilities info * 2.1.2 set need_sadb_dump to B_TRUE * 2.2 if ENABLE flag is not set: * 2.2.1 if nmp is NULL: * 2.2.1.1 allocate and initialize nmp * 2.2.1.2 init current pos in nmp * 2.2.2 copy current cipher to current pos in nmp * 2.2.3 set ENABLE flag in nmp * 2.2.4 update current pos * 3 if nmp is not equal to NULL, send enable request * 3.1 send capability request * 4 if need_sadb_dump is B_TRUE * 4.1 enable promiscuous on/off notifications * 4.2 call ill_dlpi_send(isub->dlcap) to send all * AH or ESP SA's to interface. */ nmp = NULL; oalg = NULL; need_sadb_dump = B_FALSE; icip = (dl_capab_ipsec_t *)(isub + 1); ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); nciphers = icip->cip_nciphers; ciphend = (uint8_t *)(ialg + icip->cip_nciphers); if (ciphend > capend) { cmn_err(CE_WARN, "ill_capability_ipsec_ack: " "too many ciphers for sub-capability len"); return; } for (cipher = 0; cipher < nciphers; cipher++) { alg_len = sizeof (dl_capab_ipsec_alg_t); if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { /* * TBD: when we provide a way to disable capabilities * from above, need to manage the request-pending state * and fail if we were not expecting this ACK. */ IPSECHW_DEBUG(IPSECHW_CAPAB, ("ill_capability_ipsec_ack: got ENABLE ACK\n")); /* * Update IPsec capabilities for this ill */ if (*ill_capab == NULL) { IPSECHW_DEBUG(IPSECHW_CAPAB, ("ill_capability_ipsec_ack: " "allocating ipsec_capab for ill\n")); *ill_capab = ill_ipsec_capab_alloc(); if (*ill_capab == NULL) { cmn_err(CE_WARN, "ill_capability_ipsec_ack: " "could not enable IPsec Hardware " "acceleration for %s (ENOMEM)\n", ill->ill_name); return; } } ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); if (ialg->alg_prim >= MAX_IPSEC_ALGS) { cmn_err(CE_WARN, "ill_capability_ipsec_ack: " "malformed IPsec algorithm id %d", ialg->alg_prim); continue; } if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, ialg->alg_prim); } else { ipsec_capab_algparm_t *alp; IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, ialg->alg_prim); if (!ill_ipsec_capab_resize_algparm(*ill_capab, ialg->alg_prim)) { cmn_err(CE_WARN, "ill_capability_ipsec_ack: " "no space for IPsec alg id %d", ialg->alg_prim); continue; } alp = &((*ill_capab)->encr_algparm[ ialg->alg_prim]); alp->minkeylen = ialg->alg_minbits; alp->maxkeylen = ialg->alg_maxbits; } ill->ill_capabilities |= ill_capab_flag; /* * indicate that a capability was enabled, which * will be used below to kick off a SADB dump * to the ill. */ need_sadb_dump = B_TRUE; } else { IPSECHW_DEBUG(IPSECHW_CAPAB, ("ill_capability_ipsec_ack: enabling alg 0x%x\n", ialg->alg_prim)); if (nmp == NULL) { nmp = ill_alloc_ipsec_cap_req(ill, isub); if (nmp == NULL) { /* * Sending the PROMISC_ON/OFF * notification request failed. * We cannot enable the algorithms * since the Provider will not * notify IP of promiscous mode * changes, which could lead * to leakage of packets. */ cmn_err(CE_WARN, "ill_capability_ipsec_ack: " "could not enable IPsec Hardware " "acceleration for %s (ENOMEM)\n", ill->ill_name); return; } /* ptr to current output alg specifier */ oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; } /* * Copy current alg specifier, set ENABLE * flag, and advance to next output alg. * For now we enable all IPsec capabilities. */ ASSERT(oalg != NULL); bcopy(ialg, oalg, alg_len); oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; nmp->b_wptr += alg_len; oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; } /* move to next input algorithm specifier */ ialg = (dl_capab_ipsec_alg_t *) ((char *)ialg + alg_len); } if (nmp != NULL) /* * nmp points to a DL_CAPABILITY_REQ message to enable * IPsec hardware acceleration. */ ill_capability_send(ill, nmp); if (need_sadb_dump) /* * An acknowledgement corresponding to a request to * enable acceleration was received, notify SADB. */ ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); } /* * Given an mblk with enough space in it, create sub-capability entries for * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, * in preparation for the reset the DL_CAPABILITY_REQ message. */ static void ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, ill_ipsec_capab_t *ill_cap, mblk_t *mp) { dl_capab_ipsec_t *oipsec; dl_capab_ipsec_alg_t *oalg; dl_capability_sub_t *dl_subcap; int i, k; ASSERT(nciphers > 0); ASSERT(ill_cap != NULL); ASSERT(mp != NULL); ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); /* dl_capability_sub_t for "stype" */ dl_subcap = (dl_capability_sub_t *)mp->b_wptr; dl_subcap->dl_cap = stype; dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; mp->b_wptr += sizeof (dl_capability_sub_t); /* dl_capab_ipsec_t for "stype" */ oipsec = (dl_capab_ipsec_t *)mp->b_wptr; oipsec->cip_version = 1; oipsec->cip_nciphers = nciphers; mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; /* create entries for "stype" AUTH ciphers */ for (i = 0; i < ill_cap->algs_size; i++) { for (k = 0; k < BITSPERBYTE; k++) { if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) continue; oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; bzero((void *)oalg, sizeof (*oalg)); oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; oalg->alg_prim = k + (BITSPERBYTE * i); mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); } } /* create entries for "stype" ENCR ciphers */ for (i = 0; i < ill_cap->algs_size; i++) { for (k = 0; k < BITSPERBYTE; k++) { if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) continue; oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; bzero((void *)oalg, sizeof (*oalg)); oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; oalg->alg_prim = k + (BITSPERBYTE * i); mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); } } } /* * Macro to count number of 1s in a byte (8-bit word). The total count is * accumulated into the passed-in argument (sum). We could use SPARCv9's * POPC instruction, but our macro is more flexible for an arbitrary length * of bytes, such as {auth,encr}_hw_algs. These variables are currently * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length * stays that way, we can reduce the number of iterations required. */ #define COUNT_1S(val, sum) { \ uint8_t x = val & 0xff; \ x = (x & 0x55) + ((x >> 1) & 0x55); \ x = (x & 0x33) + ((x >> 2) & 0x33); \ sum += (x & 0xf) + ((x >> 4) & 0xf); \ } /* ARGSUSED */ static int ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp, int *esp_cntp, int *esp_lenp) { ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; uint64_t ill_capabilities = ill->ill_capabilities; int ah_cnt = 0, esp_cnt = 0; int ah_len = 0, esp_len = 0; int i, size = 0; if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) return (0); ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); /* Find out the number of ciphers for AH */ if (cap_ah != NULL) { for (i = 0; i < cap_ah->algs_size; i++) { COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); } if (ah_cnt > 0) { size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_ipsec_t); /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); size += ah_len; } } /* Find out the number of ciphers for ESP */ if (cap_esp != NULL) { for (i = 0; i < cap_esp->algs_size; i++) { COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); } if (esp_cnt > 0) { size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_ipsec_t); /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); size += esp_len; } } if (ah_cntp != NULL) *ah_cntp = ah_cnt; if (ah_lenp != NULL) *ah_lenp = ah_len; if (esp_cntp != NULL) *esp_cntp = esp_cnt; if (esp_lenp != NULL) *esp_lenp = esp_len; return (size); } /* ARGSUSED */ static void ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp) { ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; int ah_cnt = 0, esp_cnt = 0; int ah_len = 0, esp_len = 0; int size; size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len, &esp_cnt, &esp_len); if (size == 0) return; /* * Clear the capability flags for IPsec HA but retain the ill * capability structures since it's possible that another thread * is still referring to them. The structures only get deallocated * when we destroy the ill. * * Various places check the flags to see if the ill is capable of * hardware acceleration, and by clearing them we ensure that new * outbound IPsec packets are sent down encrypted. */ /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ if (ah_cnt > 0) { ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, cap_ah, mp); } /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ if (esp_cnt > 0) { ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, cap_esp, mp); } /* * At this point we've composed a bunch of sub-capabilities to be * encapsulated in a DL_CAPABILITY_REQ and later sent downstream * by the caller. Upon receiving this reset message, the driver * must stop inbound decryption (by destroying all inbound SAs) * and let the corresponding packets come in encrypted. */ } static void ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, boolean_t encapsulated) { boolean_t legacy = B_FALSE; /* * Note that only the following two sub-capabilities may be * considered as "legacy", since their original definitions * do not incorporate the dl_mid_t module ID token, and hence * may require the use of the wrapper sub-capability. */ switch (subp->dl_cap) { case DL_CAPAB_IPSEC_AH: case DL_CAPAB_IPSEC_ESP: legacy = B_TRUE; break; } /* * For legacy sub-capabilities which don't incorporate a queue_t * pointer in their structures, discard them if we detect that * there are intermediate modules in between IP and the driver. */ if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { ip1dbg(("ill_capability_dispatch: unencapsulated capab type " "%d discarded; %d module(s) present below IP\n", subp->dl_cap, ill->ill_lmod_cnt)); return; } switch (subp->dl_cap) { case DL_CAPAB_IPSEC_AH: case DL_CAPAB_IPSEC_ESP: ill_capability_ipsec_ack(ill, mp, subp); break; case DL_CAPAB_MDT: ill_capability_mdt_ack(ill, mp, subp); break; case DL_CAPAB_HCKSUM: ill_capability_hcksum_ack(ill, mp, subp); break; case DL_CAPAB_ZEROCOPY: ill_capability_zerocopy_ack(ill, mp, subp); break; case DL_CAPAB_DLD: ill_capability_dld_ack(ill, mp, subp); break; default: ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", subp->dl_cap)); } } /* * Process a hardware checksum offload capability negotiation ack received * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) * of a DL_CAPABILITY_ACK message. */ static void ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) { dl_capability_req_t *ocap; dl_capab_hcksum_t *ihck, *ohck; ill_hcksum_capab_t **ill_hcksum; mblk_t *nmp = NULL; uint_t sub_dl_cap = isub->dl_cap; uint8_t *capend; ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; /* * Note: range checks here are not absolutely sufficient to * make us robust against malformed messages sent by drivers; * this is in keeping with the rest of IP's dlpi handling. * (Remember, it's coming from something else in the kernel * address space) */ capend = (uint8_t *)(isub + 1) + isub->dl_length; if (capend > mp->b_wptr) { cmn_err(CE_WARN, "ill_capability_hcksum_ack: " "malformed sub-capability too long for mblk"); return; } /* * There are two types of acks we process here: * 1. acks in reply to a (first form) generic capability req * (no ENABLE flag set) * 2. acks in reply to a ENABLE capability req. * (ENABLE flag set) */ ihck = (dl_capab_hcksum_t *)(isub + 1); if (ihck->hcksum_version != HCKSUM_VERSION_1) { cmn_err(CE_CONT, "ill_capability_hcksum_ack: " "unsupported hardware checksum " "sub-capability (version %d, expected %d)", ihck->hcksum_version, HCKSUM_VERSION_1); return; } if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " "checksum capability isn't as expected; pass-thru " "module(s) detected, discarding capability\n")); return; } #define CURR_HCKSUM_CAPAB \ (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { /* do ENABLE processing */ if (*ill_hcksum == NULL) { *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), KM_NOSLEEP); if (*ill_hcksum == NULL) { cmn_err(CE_WARN, "ill_capability_hcksum_ack: " "could not enable hcksum version %d " "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, ill->ill_name); return; } } (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; ill->ill_capabilities |= ILL_CAPAB_HCKSUM; ip1dbg(("ill_capability_hcksum_ack: interface %s " "has enabled hardware checksumming\n ", ill->ill_name)); } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { /* * Enabling hardware checksum offload * Currently IP supports {TCP,UDP}/IPv4 * partial and full cksum offload and * IPv4 header checksum offload. * Allocate new mblk which will * contain a new capability request * to enable hardware checksum offload. */ uint_t size; uchar_t *rptr; size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + isub->dl_length; if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { cmn_err(CE_WARN, "ill_capability_hcksum_ack: " "could not enable hardware cksum for %s (ENOMEM)\n", ill->ill_name); return; } rptr = nmp->b_rptr; /* initialize dl_capability_req_t */ ocap = (dl_capability_req_t *)nmp->b_rptr; ocap->dl_sub_offset = sizeof (dl_capability_req_t); ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; nmp->b_rptr += sizeof (dl_capability_req_t); /* initialize dl_capability_sub_t */ bcopy(isub, nmp->b_rptr, sizeof (*isub)); nmp->b_rptr += sizeof (*isub); /* initialize dl_capab_hcksum_t */ ohck = (dl_capab_hcksum_t *)nmp->b_rptr; bcopy(ihck, ohck, sizeof (*ihck)); nmp->b_rptr = rptr; ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); /* Set ENABLE flag */ ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; ohck->hcksum_txflags |= HCKSUM_ENABLE; /* * nmp points to a DL_CAPABILITY_REQ message to enable * hardware checksum acceleration. */ ill_capability_send(ill, nmp); } else { ip1dbg(("ill_capability_hcksum_ack: interface %s has " "advertised %x hardware checksum capability flags\n", ill->ill_name, ihck->hcksum_txflags)); } } static void ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) { dl_capab_hcksum_t *hck_subcap; dl_capability_sub_t *dl_subcap; if (!ILL_HCKSUM_CAPABLE(ill)) return; ASSERT(ill->ill_hcksum_capab != NULL); dl_subcap = (dl_capability_sub_t *)mp->b_wptr; dl_subcap->dl_cap = DL_CAPAB_HCKSUM; dl_subcap->dl_length = sizeof (*hck_subcap); hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; hck_subcap->hcksum_txflags = 0; mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); } static void ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) { mblk_t *nmp = NULL; dl_capability_req_t *oc; dl_capab_zerocopy_t *zc_ic, *zc_oc; ill_zerocopy_capab_t **ill_zerocopy_capab; uint_t sub_dl_cap = isub->dl_cap; uint8_t *capend; ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; /* * Note: range checks here are not absolutely sufficient to * make us robust against malformed messages sent by drivers; * this is in keeping with the rest of IP's dlpi handling. * (Remember, it's coming from something else in the kernel * address space) */ capend = (uint8_t *)(isub + 1) + isub->dl_length; if (capend > mp->b_wptr) { cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " "malformed sub-capability too long for mblk"); return; } zc_ic = (dl_capab_zerocopy_t *)(isub + 1); if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " "unsupported ZEROCOPY sub-capability (version %d, " "expected %d)", zc_ic->zerocopy_version, ZEROCOPY_VERSION_1); return; } if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " "capability isn't as expected; pass-thru module(s) " "detected, discarding capability\n")); return; } if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { if (*ill_zerocopy_capab == NULL) { *ill_zerocopy_capab = kmem_zalloc(sizeof (ill_zerocopy_capab_t), KM_NOSLEEP); if (*ill_zerocopy_capab == NULL) { cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " "could not enable Zero-copy version %d " "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, ill->ill_name); return; } } ip1dbg(("ill_capability_zerocopy_ack: interface %s " "supports Zero-copy version %d\n", ill->ill_name, ZEROCOPY_VERSION_1)); (*ill_zerocopy_capab)->ill_zerocopy_version = zc_ic->zerocopy_version; (*ill_zerocopy_capab)->ill_zerocopy_flags = zc_ic->zerocopy_flags; ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; } else { uint_t size; uchar_t *rptr; size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + sizeof (dl_capab_zerocopy_t); if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " "could not enable zerocopy for %s (ENOMEM)\n", ill->ill_name); return; } rptr = nmp->b_rptr; /* initialize dl_capability_req_t */ oc = (dl_capability_req_t *)rptr; oc->dl_sub_offset = sizeof (dl_capability_req_t); oc->dl_sub_length = sizeof (dl_capability_sub_t) + sizeof (dl_capab_zerocopy_t); rptr += sizeof (dl_capability_req_t); /* initialize dl_capability_sub_t */ bcopy(isub, rptr, sizeof (*isub)); rptr += sizeof (*isub); /* initialize dl_capab_zerocopy_t */ zc_oc = (dl_capab_zerocopy_t *)rptr; *zc_oc = *zc_ic; ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " "to enable zero-copy version %d\n", ill->ill_name, ZEROCOPY_VERSION_1)); /* set VMSAFE_MEM flag */ zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ ill_capability_send(ill, nmp); } } static void ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) { dl_capab_zerocopy_t *zerocopy_subcap; dl_capability_sub_t *dl_subcap; if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) return; ASSERT(ill->ill_zerocopy_capab != NULL); dl_subcap = (dl_capability_sub_t *)mp->b_wptr; dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; dl_subcap->dl_length = sizeof (*zerocopy_subcap); zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); zerocopy_subcap->zerocopy_version = ill->ill_zerocopy_capab->ill_zerocopy_version; zerocopy_subcap->zerocopy_flags = 0; mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); } /* * DLD capability * Refer to dld.h for more information regarding the purpose and usage * of this capability. */ static void ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) { dl_capab_dld_t *dld_ic, dld; uint_t sub_dl_cap = isub->dl_cap; uint8_t *capend; ill_dld_capab_t *idc; ASSERT(IAM_WRITER_ILL(ill)); ASSERT(sub_dl_cap == DL_CAPAB_DLD); /* * Note: range checks here are not absolutely sufficient to * make us robust against malformed messages sent by drivers; * this is in keeping with the rest of IP's dlpi handling. * (Remember, it's coming from something else in the kernel * address space) */ capend = (uint8_t *)(isub + 1) + isub->dl_length; if (capend > mp->b_wptr) { cmn_err(CE_WARN, "ill_capability_dld_ack: " "malformed sub-capability too long for mblk"); return; } dld_ic = (dl_capab_dld_t *)(isub + 1); if (dld_ic->dld_version != DLD_CURRENT_VERSION) { cmn_err(CE_CONT, "ill_capability_dld_ack: " "unsupported DLD sub-capability (version %d, " "expected %d)", dld_ic->dld_version, DLD_CURRENT_VERSION); return; } if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { ip1dbg(("ill_capability_dld_ack: mid token for dld " "capability isn't as expected; pass-thru module(s) " "detected, discarding capability\n")); return; } /* * Copy locally to ensure alignment. */ bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); if ((idc = ill->ill_dld_capab) == NULL) { idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); if (idc == NULL) { cmn_err(CE_WARN, "ill_capability_dld_ack: " "could not enable DLD version %d " "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, ill->ill_name); return; } ill->ill_dld_capab = idc; } idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; idc->idc_capab_dh = (void *)dld.dld_capab_handle; ip1dbg(("ill_capability_dld_ack: interface %s " "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); ill_capability_dld_enable(ill); } /* * Typically capability negotiation between IP and the driver happens via * DLPI message exchange. However GLD also offers a direct function call * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, * But arbitrary function calls into IP or GLD are not permitted, since both * of them are protected by their own perimeter mechanism. The perimeter can * be viewed as a coarse lock or serialization mechanism. The hierarchy of * these perimeters is IP -> MAC. Thus for example to enable the squeue * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter * to enter the mac perimeter and then do the direct function calls into * GLD to enable squeue polling. The ring related callbacks from the mac into * the stack to add, bind, quiesce, restart or cleanup a ring are all * protected by the mac perimeter. */ static void ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) { ill_dld_capab_t *idc = ill->ill_dld_capab; int err; err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, DLD_ENABLE); ASSERT(err == 0); } static void ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) { ill_dld_capab_t *idc = ill->ill_dld_capab; int err; err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, DLD_DISABLE); ASSERT(err == 0); } boolean_t ill_mac_perim_held(ill_t *ill) { ill_dld_capab_t *idc = ill->ill_dld_capab; return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, DLD_QUERY)); } static void ill_capability_direct_enable(ill_t *ill) { ill_dld_capab_t *idc = ill->ill_dld_capab; ill_dld_direct_t *idd = &idc->idc_direct; dld_capab_direct_t direct; int rc; ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); bzero(&direct, sizeof (direct)); direct.di_rx_cf = (uintptr_t)ip_input; direct.di_rx_ch = ill; rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, DLD_ENABLE); if (rc == 0) { idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; idd->idd_tx_dh = direct.di_tx_dh; idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; idd->idd_tx_cb_dh = direct.di_tx_cb_dh; idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; ASSERT(idd->idd_tx_cb_df != NULL); ASSERT(idd->idd_tx_fctl_df != NULL); ASSERT(idd->idd_tx_df != NULL); /* * One time registration of flow enable callback function */ ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, ill_flow_enable, ill); ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; DTRACE_PROBE1(direct_on, (ill_t *), ill); } else { cmn_err(CE_WARN, "warning: could not enable DIRECT " "capability, rc = %d\n", rc); DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); } } static void ill_capability_poll_enable(ill_t *ill) { ill_dld_capab_t *idc = ill->ill_dld_capab; dld_capab_poll_t poll; int rc; ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); bzero(&poll, sizeof (poll)); poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; poll.poll_ring_ch = ill; rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, DLD_ENABLE); if (rc == 0) { ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; DTRACE_PROBE1(poll_on, (ill_t *), ill); } else { ip1dbg(("warning: could not enable POLL " "capability, rc = %d\n", rc)); DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); } } /* * Enable the LSO capability. */ static void ill_capability_lso_enable(ill_t *ill) { ill_dld_capab_t *idc = ill->ill_dld_capab; dld_capab_lso_t lso; int rc; ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); if (ill->ill_lso_capab == NULL) { ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), KM_NOSLEEP); if (ill->ill_lso_capab == NULL) { cmn_err(CE_WARN, "ill_capability_lso_enable: " "could not enable LSO for %s (ENOMEM)\n", ill->ill_name); return; } } bzero(&lso, sizeof (lso)); if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, DLD_ENABLE)) == 0) { ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; ill->ill_lso_capab->ill_lso_max = lso.lso_max; ill->ill_capabilities |= ILL_CAPAB_DLD_LSO; ip1dbg(("ill_capability_lso_enable: interface %s " "has enabled LSO\n ", ill->ill_name)); } else { kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); ill->ill_lso_capab = NULL; DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); } } static void ill_capability_dld_enable(ill_t *ill) { mac_perim_handle_t mph; ASSERT(IAM_WRITER_ILL(ill)); if (ill->ill_isv6) return; ill_mac_perim_enter(ill, &mph); if (!ill->ill_isv6) { ill_capability_direct_enable(ill); ill_capability_poll_enable(ill); ill_capability_lso_enable(ill); } ill->ill_capabilities |= ILL_CAPAB_DLD; ill_mac_perim_exit(ill, mph); } static void ill_capability_dld_disable(ill_t *ill) { ill_dld_capab_t *idc; ill_dld_direct_t *idd; mac_perim_handle_t mph; ASSERT(IAM_WRITER_ILL(ill)); if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) return; ill_mac_perim_enter(ill, &mph); idc = ill->ill_dld_capab; if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { /* * For performance we avoid locks in the transmit data path * and don't maintain a count of the number of threads using * direct calls. Thus some threads could be using direct * transmit calls to GLD, even after the capability mechanism * turns it off. This is still safe since the handles used in * the direct calls continue to be valid until the unplumb is * completed. Remove the callback that was added (1-time) at * capab enable time. */ mutex_enter(&ill->ill_lock); ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; mutex_exit(&ill->ill_lock); if (ill->ill_flownotify_mh != NULL) { idd = &idc->idc_direct; idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, ill->ill_flownotify_mh); ill->ill_flownotify_mh = NULL; } (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, NULL, DLD_DISABLE); } if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; ip_squeue_clean_all(ill); (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, NULL, DLD_DISABLE); } if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) { ASSERT(ill->ill_lso_capab != NULL); /* * Clear the capability flag for LSO but retain the * ill_lso_capab structure since it's possible that another * thread is still referring to it. The structure only gets * deallocated when we destroy the ill. */ ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO; (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, NULL, DLD_DISABLE); } ill->ill_capabilities &= ~ILL_CAPAB_DLD; ill_mac_perim_exit(ill, mph); } /* * Capability Negotiation protocol * * We don't wait for DLPI capability operations to finish during interface * bringup or teardown. Doing so would introduce more asynchrony and the * interface up/down operations will need multiple return and restarts. * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next * exclusive operation won't start until the DLPI operations of the previous * exclusive operation complete. * * The capability state machine is shown below. * * state next state event, action * * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe * IDCS_PROBE_SENT IDCS_OK ill_capability_ack * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG * IDCS_OK IDCS_RESET_SENT ill_capability_reset * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> * ill_capability_probe. */ /* * Dedicated thread started from ip_stack_init that handles capability * disable. This thread ensures the taskq dispatch does not fail by waiting * for resources using TQ_SLEEP. The taskq mechanism is used to ensure * that direct calls to DLD are done in a cv_waitable context. */ void ill_taskq_dispatch(ip_stack_t *ipst) { callb_cpr_t cprinfo; char name[64]; mblk_t *mp; (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", ipst->ips_netstack->netstack_stackid); CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, name); mutex_enter(&ipst->ips_capab_taskq_lock); for (;;) { mp = ipst->ips_capab_taskq_head; while (mp != NULL) { ipst->ips_capab_taskq_head = mp->b_next; if (ipst->ips_capab_taskq_head == NULL) ipst->ips_capab_taskq_tail = NULL; mutex_exit(&ipst->ips_capab_taskq_lock); mp->b_next = NULL; VERIFY(taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, TQ_SLEEP) != 0); mutex_enter(&ipst->ips_capab_taskq_lock); mp = ipst->ips_capab_taskq_head; } if (ipst->ips_capab_taskq_quit) break; CALLB_CPR_SAFE_BEGIN(&cprinfo); cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); } VERIFY(ipst->ips_capab_taskq_head == NULL); VERIFY(ipst->ips_capab_taskq_tail == NULL); CALLB_CPR_EXIT(&cprinfo); thread_exit(); } /* * Consume a new-style hardware capabilities negotiation ack. * Called via taskq on receipt of DL_CAPABBILITY_ACK. */ static void ill_capability_ack_thr(void *arg) { mblk_t *mp = arg; dl_capability_ack_t *capp; dl_capability_sub_t *subp, *endp; ill_t *ill; boolean_t reneg; ill = (ill_t *)mp->b_prev; mp->b_prev = NULL; VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || ill->ill_dlpi_capab_state == IDCS_RENEG) { /* * We have received the ack for our DL_CAPAB reset request. * There isnt' anything in the message that needs processing. * All message based capabilities have been disabled, now * do the function call based capability disable. */ reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; ill_capability_dld_disable(ill); ill->ill_dlpi_capab_state = IDCS_UNKNOWN; if (reneg) ill_capability_probe(ill); goto done; } if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) ill->ill_dlpi_capab_state = IDCS_OK; capp = (dl_capability_ack_t *)mp->b_rptr; if (capp->dl_sub_length == 0) { /* no new-style capabilities */ goto done; } /* make sure the driver supplied correct dl_sub_length */ if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); goto done; } #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) /* * There are sub-capabilities. Process the ones we know about. * Loop until we don't have room for another sub-cap header.. */ for (subp = SC(capp, capp->dl_sub_offset), endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); subp <= endp; subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { switch (subp->dl_cap) { case DL_CAPAB_ID_WRAPPER: ill_capability_id_ack(ill, mp, subp); break; default: ill_capability_dispatch(ill, mp, subp, B_FALSE); break; } } #undef SC done: inet_freemsg(mp); ill_capability_done(ill); ipsq_exit(ill->ill_phyint->phyint_ipsq); } /* * This needs to be started in a taskq thread to provide a cv_waitable * context. */ void ill_capability_ack(ill_t *ill, mblk_t *mp) { ip_stack_t *ipst = ill->ill_ipst; mp->b_prev = (mblk_t *)ill; ASSERT(mp->b_next == NULL); if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, TQ_NOSLEEP) != 0) return; /* * The taskq dispatch failed. Signal the ill_taskq_dispatch thread * which will do the dispatch using TQ_SLEEP to guarantee success. */ mutex_enter(&ipst->ips_capab_taskq_lock); if (ipst->ips_capab_taskq_head == NULL) { ASSERT(ipst->ips_capab_taskq_tail == NULL); ipst->ips_capab_taskq_head = mp; } else { ipst->ips_capab_taskq_tail->b_next = mp; } ipst->ips_capab_taskq_tail = mp; cv_signal(&ipst->ips_capab_taskq_cv); mutex_exit(&ipst->ips_capab_taskq_lock); } /* * This routine is called to scan the fragmentation reassembly table for * the specified ILL for any packets that are starting to smell. * dead_interval is the maximum time in seconds that will be tolerated. It * will either be the value specified in ip_g_frag_timeout, or zero if the * ILL is shutting down and it is time to blow everything off. * * It returns the number of seconds (as a time_t) that the next frag timer * should be scheduled for, 0 meaning that the timer doesn't need to be * re-started. Note that the method of calculating next_timeout isn't * entirely accurate since time will flow between the time we grab * current_time and the time we schedule the next timeout. This isn't a * big problem since this is the timer for sending an ICMP reassembly time * exceeded messages, and it doesn't have to be exactly accurate. * * This function is * sometimes called as writer, although this is not required. */ time_t ill_frag_timeout(ill_t *ill, time_t dead_interval) { ipfb_t *ipfb; ipfb_t *endp; ipf_t *ipf; ipf_t *ipfnext; mblk_t *mp; time_t current_time = gethrestime_sec(); time_t next_timeout = 0; uint32_t hdr_length; mblk_t *send_icmp_head; mblk_t *send_icmp_head_v6; zoneid_t zoneid; ip_stack_t *ipst = ill->ill_ipst; ipfb = ill->ill_frag_hash_tbl; if (ipfb == NULL) return (B_FALSE); endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; /* Walk the frag hash table. */ for (; ipfb < endp; ipfb++) { send_icmp_head = NULL; send_icmp_head_v6 = NULL; mutex_enter(&ipfb->ipfb_lock); while ((ipf = ipfb->ipfb_ipf) != 0) { time_t frag_time = current_time - ipf->ipf_timestamp; time_t frag_timeout; if (frag_time < dead_interval) { /* * There are some outstanding fragments * that will timeout later. Make note of * the time so that we can reschedule the * next timeout appropriately. */ frag_timeout = dead_interval - frag_time; if (next_timeout == 0 || frag_timeout < next_timeout) { next_timeout = frag_timeout; } break; } /* Time's up. Get it out of here. */ hdr_length = ipf->ipf_nf_hdr_len; ipfnext = ipf->ipf_hash_next; if (ipfnext) ipfnext->ipf_ptphn = ipf->ipf_ptphn; *ipf->ipf_ptphn = ipfnext; mp = ipf->ipf_mp->b_cont; for (; mp; mp = mp->b_cont) { /* Extra points for neatness. */ IP_REASS_SET_START(mp, 0); IP_REASS_SET_END(mp, 0); } mp = ipf->ipf_mp->b_cont; atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); ASSERT(ipfb->ipfb_count >= ipf->ipf_count); ipfb->ipfb_count -= ipf->ipf_count; ASSERT(ipfb->ipfb_frag_pkts > 0); ipfb->ipfb_frag_pkts--; /* * We do not send any icmp message from here because * we currently are holding the ipfb_lock for this * hash chain. If we try and send any icmp messages * from here we may end up via a put back into ip * trying to get the same lock, causing a recursive * mutex panic. Instead we build a list and send all * the icmp messages after we have dropped the lock. */ if (ill->ill_isv6) { if (hdr_length != 0) { mp->b_next = send_icmp_head_v6; send_icmp_head_v6 = mp; } else { freemsg(mp); } } else { if (hdr_length != 0) { mp->b_next = send_icmp_head; send_icmp_head = mp; } else { freemsg(mp); } } BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); freeb(ipf->ipf_mp); } mutex_exit(&ipfb->ipfb_lock); /* * Now need to send any icmp messages that we delayed from * above. */ while (send_icmp_head_v6 != NULL) { ip6_t *ip6h; mp = send_icmp_head_v6; send_icmp_head_v6 = send_icmp_head_v6->b_next; mp->b_next = NULL; if (mp->b_datap->db_type == M_CTL) ip6h = (ip6_t *)mp->b_cont->b_rptr; else ip6h = (ip6_t *)mp->b_rptr; zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, ill, ipst); if (zoneid == ALL_ZONES) { freemsg(mp); } else { icmp_time_exceeded_v6(ill->ill_wq, mp, ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, B_FALSE, zoneid, ipst); } } while (send_icmp_head != NULL) { ipaddr_t dst; mp = send_icmp_head; send_icmp_head = send_icmp_head->b_next; mp->b_next = NULL; if (mp->b_datap->db_type == M_CTL) dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; else dst = ((ipha_t *)mp->b_rptr)->ipha_dst; zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); if (zoneid == ALL_ZONES) { freemsg(mp); } else { icmp_time_exceeded(ill->ill_wq, mp, ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, ipst); } } } /* * A non-dying ILL will use the return value to decide whether to * restart the frag timer, and for how long. */ return (next_timeout); } /* * This routine is called when the approximate count of mblk memory used * for the specified ILL has exceeded max_count. */ void ill_frag_prune(ill_t *ill, uint_t max_count) { ipfb_t *ipfb; ipf_t *ipf; size_t count; /* * If we are here within ip_min_frag_prune_time msecs remove * ill_frag_free_num_pkts oldest packets from each bucket and increment * ill_frag_free_num_pkts. */ mutex_enter(&ill->ill_lock); if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= (ip_min_frag_prune_time != 0 ? ip_min_frag_prune_time : msec_per_tick)) { ill->ill_frag_free_num_pkts++; } else { ill->ill_frag_free_num_pkts = 0; } ill->ill_last_frag_clean_time = lbolt; mutex_exit(&ill->ill_lock); /* * free ill_frag_free_num_pkts oldest packets from each bucket. */ if (ill->ill_frag_free_num_pkts != 0) { int ix; for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { ipfb = &ill->ill_frag_hash_tbl[ix]; mutex_enter(&ipfb->ipfb_lock); if (ipfb->ipfb_ipf != NULL) { ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, ill->ill_frag_free_num_pkts); } mutex_exit(&ipfb->ipfb_lock); } } /* * While the reassembly list for this ILL is too big, prune a fragment * queue by age, oldest first. */ while (ill->ill_frag_count > max_count) { int ix; ipfb_t *oipfb = NULL; uint_t oldest = UINT_MAX; count = 0; for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { ipfb = &ill->ill_frag_hash_tbl[ix]; mutex_enter(&ipfb->ipfb_lock); ipf = ipfb->ipfb_ipf; if (ipf != NULL && ipf->ipf_gen < oldest) { oldest = ipf->ipf_gen; oipfb = ipfb; } count += ipfb->ipfb_count; mutex_exit(&ipfb->ipfb_lock); } if (oipfb == NULL) break; if (count <= max_count) return; /* Somebody beat us to it, nothing to do */ mutex_enter(&oipfb->ipfb_lock); ipf = oipfb->ipfb_ipf; if (ipf != NULL) { ill_frag_free_pkts(ill, oipfb, ipf, 1); } mutex_exit(&oipfb->ipfb_lock); } } /* * free 'free_cnt' fragmented packets starting at ipf. */ void ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) { size_t count; mblk_t *mp; mblk_t *tmp; ipf_t **ipfp = ipf->ipf_ptphn; ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); ASSERT(ipfp != NULL); ASSERT(ipf != NULL); while (ipf != NULL && free_cnt-- > 0) { count = ipf->ipf_count; mp = ipf->ipf_mp; ipf = ipf->ipf_hash_next; for (tmp = mp; tmp; tmp = tmp->b_cont) { IP_REASS_SET_START(tmp, 0); IP_REASS_SET_END(tmp, 0); } atomic_add_32(&ill->ill_frag_count, -count); ASSERT(ipfb->ipfb_count >= count); ipfb->ipfb_count -= count; ASSERT(ipfb->ipfb_frag_pkts > 0); ipfb->ipfb_frag_pkts--; freemsg(mp); BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); } if (ipf) ipf->ipf_ptphn = ipfp; ipfp[0] = ipf; } #define ND_FORWARD_WARNING "The :ip*_forwarding ndd variables are " \ "obsolete and may be removed in a future release of Solaris. Use " \ "ifconfig(1M) to manipulate the forwarding status of an interface." /* * For obsolete per-interface forwarding configuration; * called in response to ND_GET. */ /* ARGSUSED */ static int nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) { ill_t *ill = (ill_t *)cp; cmn_err(CE_WARN, ND_FORWARD_WARNING); (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); return (0); } /* * For obsolete per-interface forwarding configuration; * called in response to ND_SET. */ /* ARGSUSED */ static int nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, cred_t *ioc_cr) { long value; int retval; ip_stack_t *ipst = CONNQ_TO_IPST(q); cmn_err(CE_WARN, ND_FORWARD_WARNING); if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || value < 0 || value > 1) { return (EINVAL); } rw_enter(&ipst->ips_ill_g_lock, RW_READER); retval = ill_forward_set((ill_t *)cp, (value != 0)); rw_exit(&ipst->ips_ill_g_lock); return (retval); } /* * Helper function for ill_forward_set(). */ static void ill_forward_set_on_ill(ill_t *ill, boolean_t enable) { ip_stack_t *ipst = ill->ill_ipst; ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); ip1dbg(("ill_forward_set: %s %s forwarding on %s", (enable ? "Enabling" : "Disabling"), (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); mutex_enter(&ill->ill_lock); if (enable) ill->ill_flags |= ILLF_ROUTER; else ill->ill_flags &= ~ILLF_ROUTER; mutex_exit(&ill->ill_lock); if (ill->ill_isv6) ill_set_nce_router_flags(ill, enable); /* Notify routing socket listeners of this change. */ if (ill->ill_ipif != NULL) ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); } /* * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing * socket messages for each interface whose flags we change. */ int ill_forward_set(ill_t *ill, boolean_t enable) { ipmp_illgrp_t *illg; ip_stack_t *ipst = ill->ill_ipst; ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); if ((enable && (ill->ill_flags & ILLF_ROUTER)) || (!enable && !(ill->ill_flags & ILLF_ROUTER))) return (0); if (IS_LOOPBACK(ill)) return (EINVAL); if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { /* * Update all of the interfaces in the group. */ illg = ill->ill_grp; ill = list_head(&illg->ig_if); for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) ill_forward_set_on_ill(ill, enable); /* * Update the IPMP meta-interface. */ ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); return (0); } ill_forward_set_on_ill(ill, enable); return (0); } /* * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately * set or clear. */ static void ill_set_nce_router_flags(ill_t *ill, boolean_t enable) { ipif_t *ipif; nce_t *nce; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { /* * NOTE: we match across the illgrp because nce's for * addresses on IPMP interfaces have an nce_ill that points to * the bound underlying ill. */ nce = ndp_lookup_v6(ill, B_TRUE, &ipif->ipif_v6lcl_addr, B_FALSE); if (nce != NULL) { mutex_enter(&nce->nce_lock); if (enable) nce->nce_flags |= NCE_F_ISROUTER; else nce->nce_flags &= ~NCE_F_ISROUTER; mutex_exit(&nce->nce_lock); NCE_REFRELE(nce); } } } /* * Given an ill with a _valid_ name, add the ip_forwarding ndd variable * for this ill. Make sure the v6/v4 question has been answered about this * ill. The creation of this ndd variable is only for backwards compatibility. * The preferred way to control per-interface IP forwarding is through the * ILLF_ROUTER interface flag. */ static int ill_set_ndd_name(ill_t *ill) { char *suffix; ip_stack_t *ipst = ill->ill_ipst; ASSERT(IAM_WRITER_ILL(ill)); if (ill->ill_isv6) suffix = ipv6_forward_suffix; else suffix = ipv4_forward_suffix; ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); /* * Copies over the '\0'. * Note that strlen(suffix) is always bounded. */ bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, strlen(suffix) + 1); /* * Use of the nd table requires holding the reader lock. * Modifying the nd table thru nd_load/nd_unload requires * the writer lock. */ rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, nd_ill_forward_set, (caddr_t)ill)) { /* * If the nd_load failed, it only meant that it could not * allocate a new bunch of room for further NDD expansion. * Because of that, the ill_ndd_name will be set to 0, and * this interface is at the mercy of the global ip_forwarding * variable. */ rw_exit(&ipst->ips_ip_g_nd_lock); ill->ill_ndd_name = NULL; return (ENOMEM); } rw_exit(&ipst->ips_ip_g_nd_lock); return (0); } /* * Intializes the context structure and returns the first ill in the list * cuurently start_list and end_list can have values: * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. * IP_V4_G_HEAD Traverse IPV4 list only. * IP_V6_G_HEAD Traverse IPV6 list only. */ /* * We don't check for CONDEMNED ills here. Caller must do that if * necessary under the ill lock. */ ill_t * ill_first(int start_list, int end_list, ill_walk_context_t *ctx, ip_stack_t *ipst) { ill_if_t *ifp; ill_t *ill; avl_tree_t *avl_tree; ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); /* * setup the lists to search */ if (end_list != MAX_G_HEADS) { ctx->ctx_current_list = start_list; ctx->ctx_last_list = end_list; } else { ctx->ctx_last_list = MAX_G_HEADS - 1; ctx->ctx_current_list = 0; } while (ctx->ctx_current_list <= ctx->ctx_last_list) { ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); if (ifp != (ill_if_t *) &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { avl_tree = &ifp->illif_avl_by_ppa; ill = avl_first(avl_tree); /* * ill is guaranteed to be non NULL or ifp should have * not existed. */ ASSERT(ill != NULL); return (ill); } ctx->ctx_current_list++; } return (NULL); } /* * returns the next ill in the list. ill_first() must have been called * before calling ill_next() or bad things will happen. */ /* * We don't check for CONDEMNED ills here. Caller must do that if * necessary under the ill lock. */ ill_t * ill_next(ill_walk_context_t *ctx, ill_t *lastill) { ill_if_t *ifp; ill_t *ill; ip_stack_t *ipst = lastill->ill_ipst; ASSERT(lastill->ill_ifptr != (ill_if_t *) &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, AVL_AFTER)) != NULL) { return (ill); } /* goto next ill_ifp in the list. */ ifp = lastill->ill_ifptr->illif_next; /* make sure not at end of circular list */ while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { if (++ctx->ctx_current_list > ctx->ctx_last_list) return (NULL); ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); } return (avl_first(&ifp->illif_avl_by_ppa)); } /* * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ * The final number (PPA) must not have any leading zeros. Upon success, a * pointer to the start of the PPA is returned; otherwise NULL is returned. */ static char * ill_get_ppa_ptr(char *name) { int namelen = strlen(name); int end_ndx = namelen - 1; int ppa_ndx, i; /* * Check that the first character is [a-zA-Z], and that the last * character is [0-9]. */ if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) return (NULL); /* * Set `ppa_ndx' to the PPA start, and check for leading zeroes. */ for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) if (!isdigit(name[ppa_ndx - 1])) break; if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) return (NULL); /* * Check that the intermediate characters are [a-z0-9.] */ for (i = 1; i < ppa_ndx; i++) { if (!isalpha(name[i]) && !isdigit(name[i]) && name[i] != '.' && name[i] != '_') { return (NULL); } } return (name + ppa_ndx); } /* * use avl tree to locate the ill. */ static ill_t * ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) { char *ppa_ptr = NULL; int len; uint_t ppa; ill_t *ill = NULL; ill_if_t *ifp; int list; ipsq_t *ipsq; if (error != NULL) *error = 0; /* * get ppa ptr */ if (isv6) list = IP_V6_G_HEAD; else list = IP_V4_G_HEAD; if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { if (error != NULL) *error = ENXIO; return (NULL); } len = ppa_ptr - name + 1; ppa = stoi(&ppa_ptr); ifp = IP_VX_ILL_G_LIST(list, ipst); while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { /* * match is done on len - 1 as the name is not null * terminated it contains ppa in addition to the interface * name. */ if ((ifp->illif_name_len == len) && bcmp(ifp->illif_name, name, len - 1) == 0) { break; } else { ifp = ifp->illif_next; } } if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { /* * Even the interface type does not exist. */ if (error != NULL) *error = ENXIO; return (NULL); } ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); if (ill != NULL) { /* * The block comment at the start of ipif_down * explains the use of the macros used below */ GRAB_CONN_LOCK(q); mutex_enter(&ill->ill_lock); if (ILL_CAN_LOOKUP(ill)) { ill_refhold_locked(ill); mutex_exit(&ill->ill_lock); RELEASE_CONN_LOCK(q); return (ill); } else if (ILL_CAN_WAIT(ill, q)) { ipsq = ill->ill_phyint->phyint_ipsq; mutex_enter(&ipsq->ipsq_lock); mutex_enter(&ipsq->ipsq_xop->ipx_lock); mutex_exit(&ill->ill_lock); ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); mutex_exit(&ipsq->ipsq_xop->ipx_lock); mutex_exit(&ipsq->ipsq_lock); RELEASE_CONN_LOCK(q); if (error != NULL) *error = EINPROGRESS; return (NULL); } mutex_exit(&ill->ill_lock); RELEASE_CONN_LOCK(q); } if (error != NULL) *error = ENXIO; return (NULL); } /* * comparison function for use with avl. */ static int ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) { uint_t ppa; uint_t ill_ppa; ASSERT(ppa_ptr != NULL && ill_ptr != NULL); ppa = *((uint_t *)ppa_ptr); ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; /* * We want the ill with the lowest ppa to be on the * top. */ if (ill_ppa < ppa) return (1); if (ill_ppa > ppa) return (-1); return (0); } /* * remove an interface type from the global list. */ static void ill_delete_interface_type(ill_if_t *interface) { ASSERT(interface != NULL); ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); avl_destroy(&interface->illif_avl_by_ppa); if (interface->illif_ppa_arena != NULL) vmem_destroy(interface->illif_ppa_arena); remque(interface); mi_free(interface); } /* * remove ill from the global list. */ static void ill_glist_delete(ill_t *ill) { ip_stack_t *ipst; phyint_t *phyi; if (ill == NULL) return; ipst = ill->ill_ipst; rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); /* * If the ill was never inserted into the AVL tree * we skip the if branch. */ if (ill->ill_ifptr != NULL) { /* * remove from AVL tree and free ppa number */ avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); if (ill->ill_ifptr->illif_ppa_arena != NULL) { vmem_free(ill->ill_ifptr->illif_ppa_arena, (void *)(uintptr_t)(ill->ill_ppa+1), 1); } if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { ill_delete_interface_type(ill->ill_ifptr); } /* * Indicate ill is no longer in the list. */ ill->ill_ifptr = NULL; ill->ill_name_length = 0; ill->ill_name[0] = '\0'; ill->ill_ppa = UINT_MAX; } /* Generate one last event for this ill. */ ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, ill->ill_name_length); ASSERT(ill->ill_phyint != NULL); phyi = ill->ill_phyint; ill->ill_phyint = NULL; /* * ill_init allocates a phyint always to store the copy * of flags relevant to phyint. At that point in time, we could * not assign the name and hence phyint_illv4/v6 could not be * initialized. Later in ipif_set_values, we assign the name to * the ill, at which point in time we assign phyint_illv4/v6. * Thus we don't rely on phyint_illv6 to be initialized always. */ if (ill->ill_flags & ILLF_IPV6) phyi->phyint_illv6 = NULL; else phyi->phyint_illv4 = NULL; if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { rw_exit(&ipst->ips_ill_g_lock); return; } /* * There are no ills left on this phyint; pull it out of the phyint * avl trees, and free it. */ if (phyi->phyint_ifindex > 0) { avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, phyi); } rw_exit(&ipst->ips_ill_g_lock); phyint_free(phyi); } /* * allocate a ppa, if the number of plumbed interfaces of this type are * less than ill_no_arena do a linear search to find a unused ppa. * When the number goes beyond ill_no_arena switch to using an arena. * Note: ppa value of zero cannot be allocated from vmem_arena as it * is the return value for an error condition, so allocation starts at one * and is decremented by one. */ static int ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) { ill_t *tmp_ill; uint_t start, end; int ppa; if (ifp->illif_ppa_arena == NULL && (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { /* * Create an arena. */ ifp->illif_ppa_arena = vmem_create(ifp->illif_name, (void *)1, UINT_MAX - 1, 1, NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); /* allocate what has already been assigned */ for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER)) { ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 1, /* size */ 1, /* align/quantum */ 0, /* phase */ 0, /* nocross */ /* minaddr */ (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* maxaddr */ (void *)((uintptr_t)tmp_ill->ill_ppa + 2), VM_NOSLEEP|VM_FIRSTFIT); if (ppa == 0) { ip1dbg(("ill_alloc_ppa: ppa allocation" " failed while switching")); vmem_destroy(ifp->illif_ppa_arena); ifp->illif_ppa_arena = NULL; break; } } } if (ifp->illif_ppa_arena != NULL) { if (ill->ill_ppa == UINT_MAX) { ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 1, VM_NOSLEEP|VM_FIRSTFIT); if (ppa == 0) return (EAGAIN); ill->ill_ppa = --ppa; } else { ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 1, /* size */ 1, /* align/quantum */ 0, /* phase */ 0, /* nocross */ (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ VM_NOSLEEP|VM_FIRSTFIT); /* * Most likely the allocation failed because * the requested ppa was in use. */ if (ppa == 0) return (EEXIST); } return (0); } /* * No arena is in use and not enough (>ill_no_arena) interfaces have * been plumbed to create one. Do a linear search to get a unused ppa. */ if (ill->ill_ppa == UINT_MAX) { end = UINT_MAX - 1; start = 0; } else { end = start = ill->ill_ppa; } tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { if (start++ >= end) { if (ill->ill_ppa == UINT_MAX) return (EAGAIN); else return (EEXIST); } tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); } ill->ill_ppa = start; return (0); } /* * Insert ill into the list of configured ill's. Once this function completes, * the ill is globally visible and is available through lookups. More precisely * this happens after the caller drops the ill_g_lock. */ static int ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) { ill_if_t *ill_interface; avl_index_t where = 0; int error; int name_length; int index; boolean_t check_length = B_FALSE; ip_stack_t *ipst = ill->ill_ipst; ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); name_length = mi_strlen(name) + 1; if (isv6) index = IP_V6_G_HEAD; else index = IP_V4_G_HEAD; ill_interface = IP_VX_ILL_G_LIST(index, ipst); /* * Search for interface type based on name */ while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { if ((ill_interface->illif_name_len == name_length) && (strcmp(ill_interface->illif_name, name) == 0)) { break; } ill_interface = ill_interface->illif_next; } /* * Interface type not found, create one. */ if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { ill_g_head_t ghead; /* * allocate ill_if_t structure */ ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); if (ill_interface == NULL) { return (ENOMEM); } (void) strcpy(ill_interface->illif_name, name); ill_interface->illif_name_len = name_length; avl_create(&ill_interface->illif_avl_by_ppa, ill_compare_ppa, sizeof (ill_t), offsetof(struct ill_s, ill_avl_byppa)); /* * link the structure in the back to maintain order * of configuration for ifconfig output. */ ghead = ipst->ips_ill_g_heads[index]; insque(ill_interface, ghead.ill_g_list_tail); } if (ill->ill_ppa == UINT_MAX) check_length = B_TRUE; error = ill_alloc_ppa(ill_interface, ill); if (error != 0) { if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) ill_delete_interface_type(ill->ill_ifptr); return (error); } /* * When the ppa is choosen by the system, check that there is * enough space to insert ppa. if a specific ppa was passed in this * check is not required as the interface name passed in will have * the right ppa in it. */ if (check_length) { /* * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. */ char buf[sizeof (uint_t) * 3]; /* * convert ppa to string to calculate the amount of space * required for it in the name. */ numtos(ill->ill_ppa, buf); /* Do we have enough space to insert ppa ? */ if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { /* Free ppa and interface type struct */ if (ill_interface->illif_ppa_arena != NULL) { vmem_free(ill_interface->illif_ppa_arena, (void *)(uintptr_t)(ill->ill_ppa+1), 1); } if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) ill_delete_interface_type(ill->ill_ifptr); return (EINVAL); } } (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); ill->ill_name_length = mi_strlen(ill->ill_name) + 1; (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, &where); ill->ill_ifptr = ill_interface; avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); ill_phyint_reinit(ill); return (0); } /* Initialize the per phyint ipsq used for serialization */ static boolean_t ipsq_init(ill_t *ill, boolean_t enter) { ipsq_t *ipsq; ipxop_t *ipx; if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) return (B_FALSE); ill->ill_phyint->phyint_ipsq = ipsq; ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; ipx->ipx_ipsq = ipsq; ipsq->ipsq_next = ipsq; ipsq->ipsq_phyint = ill->ill_phyint; mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ if (enter) { ipx->ipx_writer = curthread; ipx->ipx_forced = B_FALSE; ipx->ipx_reentry_cnt = 1; #ifdef DEBUG ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); #endif } return (B_TRUE); } /* * ill_init is called by ip_open when a device control stream is opened. * It does a few initializations, and shoots a DL_INFO_REQ message down * to the driver. The response is later picked up in ip_rput_dlpi and * used to set up default mechanisms for talking to the driver. (Always * called as writer.) * * If this function returns error, ip_open will call ip_close which in * turn will call ill_delete to clean up any memory allocated here that * is not yet freed. */ int ill_init(queue_t *q, ill_t *ill) { int count; dl_info_req_t *dlir; mblk_t *info_mp; uchar_t *frag_ptr; /* * The ill is initialized to zero by mi_alloc*(). In addition * some fields already contain valid values, initialized in * ip_open(), before we reach here. */ mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); ill->ill_rq = q; ill->ill_wq = WR(q); info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), BPRI_HI); if (info_mp == NULL) return (ENOMEM); /* * Allocate sufficient space to contain our fragment hash table and * the device name. */ frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); if (frag_ptr == NULL) { freemsg(info_mp); return (ENOMEM); } ill->ill_frag_ptr = frag_ptr; ill->ill_frag_free_num_pkts = 0; ill->ill_last_frag_clean_time = 0; ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, NULL, MUTEX_DEFAULT, NULL); } ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); if (ill->ill_phyint == NULL) { freemsg(info_mp); mi_free(frag_ptr); return (ENOMEM); } mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); /* * For now pretend this is a v4 ill. We need to set phyint_ill* * at this point because of the following reason. If we can't * enter the ipsq at some point and cv_wait, the writer that * wakes us up tries to locate us using the list of all phyints * in an ipsq and the ills from the phyint thru the phyint_ill*. * If we don't set it now, we risk a missed wakeup. */ ill->ill_phyint->phyint_illv4 = ill; ill->ill_ppa = UINT_MAX; ill->ill_fastpath_list = &ill->ill_fastpath_list; if (!ipsq_init(ill, B_TRUE)) { freemsg(info_mp); mi_free(frag_ptr); mi_free(ill->ill_phyint); return (ENOMEM); } ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; /* Frag queue limit stuff */ ill->ill_frag_count = 0; ill->ill_ipf_gen = 0; ill->ill_global_timer = INFINITY; ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; /* * Initialize IPv6 configuration variables. The IP module is always * opened as an IPv4 module. Instead tracking down the cases where * it switches to do ipv6, we'll just initialize the IPv6 configuration * here for convenience, this has no effect until the ill is set to do * IPv6. */ ill->ill_reachable_time = ND_REACHABLE_TIME; ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; ill->ill_max_buf = ND_MAX_Q; ill->ill_refcnt = 0; /* Send down the Info Request to the driver. */ info_mp->b_datap->db_type = M_PCPROTO; dlir = (dl_info_req_t *)info_mp->b_rptr; info_mp->b_wptr = (uchar_t *)&dlir[1]; dlir->dl_primitive = DL_INFO_REQ; ill->ill_dlpi_pending = DL_PRIM_INVAL; qprocson(q); ill_dlpi_send(ill, info_mp); return (0); } /* * ill_dls_info * creates datalink socket info from the device. */ int ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) { size_t len; ill_t *ill = ipif->ipif_ill; sdl->sdl_family = AF_LINK; sdl->sdl_index = ill->ill_phyint->phyint_ifindex; sdl->sdl_type = ill->ill_type; ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); len = strlen(sdl->sdl_data); ASSERT(len < 256); sdl->sdl_nlen = (uchar_t)len; sdl->sdl_alen = ill->ill_phys_addr_length; sdl->sdl_slen = 0; if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); return (sizeof (struct sockaddr_dl)); } /* * ill_xarp_info * creates xarp info from the device. */ static int ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) { sdl->sdl_family = AF_LINK; sdl->sdl_index = ill->ill_phyint->phyint_ifindex; sdl->sdl_type = ill->ill_type; ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); sdl->sdl_alen = ill->ill_phys_addr_length; sdl->sdl_slen = 0; return (sdl->sdl_nlen); } static int loopback_kstat_update(kstat_t *ksp, int rw) { kstat_named_t *kn; netstackid_t stackid; netstack_t *ns; ip_stack_t *ipst; if (ksp == NULL || ksp->ks_data == NULL) return (EIO); if (rw == KSTAT_WRITE) return (EACCES); kn = KSTAT_NAMED_PTR(ksp); stackid = (zoneid_t)(uintptr_t)ksp->ks_private; ns = netstack_find_by_stackid(stackid); if (ns == NULL) return (-1); ipst = ns->netstack_ip; if (ipst == NULL) { netstack_rele(ns); return (-1); } kn[0].value.ui32 = ipst->ips_loopback_packets; kn[1].value.ui32 = ipst->ips_loopback_packets; netstack_rele(ns); return (0); } /* * Has ifindex been plumbed already? */ boolean_t phyint_exists(uint_t index, ip_stack_t *ipst) { ASSERT(index != 0); ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, &index, NULL) != NULL); } /* Pick a unique ifindex */ boolean_t ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) { uint_t starting_index; if (!ipst->ips_ill_index_wrap) { *indexp = ipst->ips_ill_index++; if (ipst->ips_ill_index == 0) { /* Reached the uint_t limit Next time wrap */ ipst->ips_ill_index_wrap = B_TRUE; } return (B_TRUE); } /* * Start reusing unused indexes. Note that we hold the ill_g_lock * at this point and don't want to call any function that attempts * to get the lock again. */ starting_index = ipst->ips_ill_index++; for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { if (ipst->ips_ill_index != 0 && !phyint_exists(ipst->ips_ill_index, ipst)) { /* found unused index - use it */ *indexp = ipst->ips_ill_index; return (B_TRUE); } } /* * all interface indicies are inuse. */ return (B_FALSE); } /* * Assign a unique interface index for the phyint. */ static boolean_t phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) { ASSERT(phyi->phyint_ifindex == 0); return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); } /* * Initialize the flags on `phyi' as per the provided mactype. */ static void phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) { uint64_t flags = 0; /* * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, * we always presume the underlying hardware is working and set * PHYI_RUNNING (if it's not, the driver will subsequently send a * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization * there are no active interfaces in the group so we set PHYI_FAILED. */ if (mactype == SUNW_DL_IPMP) flags |= PHYI_FAILED; else flags |= PHYI_RUNNING; switch (mactype) { case SUNW_DL_VNI: flags |= PHYI_VIRTUAL; break; case SUNW_DL_IPMP: flags |= PHYI_IPMP; break; case DL_LOOP: flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); break; } mutex_enter(&phyi->phyint_lock); phyi->phyint_flags |= flags; mutex_exit(&phyi->phyint_lock); } /* * Return a pointer to the ill which matches the supplied name. Note that * the ill name length includes the null termination character. (May be * called as writer.) * If do_alloc and the interface is "lo0" it will be automatically created. * Cannot bump up reference on condemned ills. So dup detect can't be done * using this func. */ ill_t * ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, ip_stack_t *ipst) { ill_t *ill; ipif_t *ipif; ipsq_t *ipsq; kstat_named_t *kn; boolean_t isloopback; in6_addr_t ov6addr; isloopback = mi_strcmp(name, ipif_loopback_name) == 0; rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); rw_exit(&ipst->ips_ill_g_lock); if (ill != NULL || (error != NULL && *error == EINPROGRESS)) return (ill); /* * Couldn't find it. Does this happen to be a lookup for the * loopback device and are we allowed to allocate it? */ if (!isloopback || !do_alloc) return (NULL); rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { rw_exit(&ipst->ips_ill_g_lock); return (ill); } /* Create the loopback device on demand */ ill = (ill_t *)(mi_alloc(sizeof (ill_t) + sizeof (ipif_loopback_name), BPRI_MED)); if (ill == NULL) goto done; *ill = ill_null; mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); ill->ill_ipst = ipst; netstack_hold(ipst->ips_netstack); /* * For exclusive stacks we set the zoneid to zero * to make IP operate as if in the global zone. */ ill->ill_zoneid = GLOBAL_ZONEID; ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); if (ill->ill_phyint == NULL) goto done; if (isv6) ill->ill_phyint->phyint_illv6 = ill; else ill->ill_phyint->phyint_illv4 = ill; mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); phyint_flags_init(ill->ill_phyint, DL_LOOP); ill->ill_max_frag = IP_LOOPBACK_MTU; /* Add room for tcp+ip headers */ if (isv6) { ill->ill_isv6 = B_TRUE; ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ } else { ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; } if (!ill_allocate_mibs(ill)) goto done; ill->ill_max_mtu = ill->ill_max_frag; /* * ipif_loopback_name can't be pointed at directly because its used * by both the ipv4 and ipv6 interfaces. When the ill is removed * from the glist, ill_glist_delete() sets the first character of * ill_name to '\0'. */ ill->ill_name = (char *)ill + sizeof (*ill); (void) strcpy(ill->ill_name, ipif_loopback_name); ill->ill_name_length = sizeof (ipif_loopback_name); /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ ill->ill_dlpi_pending = DL_PRIM_INVAL; ill->ill_global_timer = INFINITY; ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; /* No resolver here. */ ill->ill_net_type = IRE_LOOPBACK; /* Initialize the ipsq */ if (!ipsq_init(ill, B_FALSE)) goto done; ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE); if (ipif == NULL) goto done; ill->ill_flags = ILLF_MULTICAST; ov6addr = ipif->ipif_v6lcl_addr; /* Set up default loopback address and mask. */ if (!isv6) { ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); ill->ill_flags |= ILLF_IPV4; } else { ipif->ipif_v6lcl_addr = ipv6_loopback; ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; ipif->ipif_v6net_mask = ipv6_all_ones; V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); ill->ill_flags |= ILLF_IPV6; } /* * Chain us in at the end of the ill list. hold the ill * before we make it globally visible. 1 for the lookup. */ ill->ill_refcnt = 0; ill_refhold(ill); ill->ill_frag_count = 0; ill->ill_frag_free_num_pkts = 0; ill->ill_last_frag_clean_time = 0; ipsq = ill->ill_phyint->phyint_ipsq; if (ill_glist_insert(ill, "lo", isv6) != 0) cmn_err(CE_PANIC, "cannot insert loopback interface"); /* Let SCTP know so that it can add this to its list */ sctp_update_ill(ill, SCTP_ILL_INSERT); /* * We have already assigned ipif_v6lcl_addr above, but we need to * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which * requires to be after ill_glist_insert() since we need the * ill_index set. Pass on ipv6_loopback as the old address. */ sctp_update_ipif_addr(ipif, ov6addr); /* * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. * If so, free our original one. */ if (ipsq != ill->ill_phyint->phyint_ipsq) ipsq_delete(ipsq); if (ipst->ips_loopback_ksp == NULL) { /* Export loopback interface statistics */ ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, ipif_loopback_name, "net", KSTAT_TYPE_NAMED, 2, 0, ipst->ips_netstack->netstack_stackid); if (ipst->ips_loopback_ksp != NULL) { ipst->ips_loopback_ksp->ks_update = loopback_kstat_update; kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); ipst->ips_loopback_ksp->ks_private = (void *)(uintptr_t)ipst->ips_netstack-> netstack_stackid; kstat_install(ipst->ips_loopback_ksp); } } if (error != NULL) *error = 0; *did_alloc = B_TRUE; rw_exit(&ipst->ips_ill_g_lock); ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), NE_PLUMB, ill->ill_name, ill->ill_name_length); return (ill); done: if (ill != NULL) { if (ill->ill_phyint != NULL) { ipsq = ill->ill_phyint->phyint_ipsq; if (ipsq != NULL) { ipsq->ipsq_phyint = NULL; ipsq_delete(ipsq); } mi_free(ill->ill_phyint); } ill_free_mib(ill); if (ill->ill_ipst != NULL) netstack_rele(ill->ill_ipst->ips_netstack); mi_free(ill); } rw_exit(&ipst->ips_ill_g_lock); if (error != NULL) *error = ENOMEM; return (NULL); } /* * For IPP calls - use the ip_stack_t for global stack. */ ill_t * ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) { ip_stack_t *ipst; ill_t *ill; ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; if (ipst == NULL) { cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); return (NULL); } ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); netstack_rele(ipst->ips_netstack); return (ill); } /* * Return a pointer to the ill which matches the index and IP version type. */ ill_t * ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) { ill_t *ill; ipsq_t *ipsq; phyint_t *phyi; ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || (q != NULL && mp != NULL && func != NULL && err != NULL)); if (err != NULL) *err = 0; /* * Indexes are stored in the phyint - a common structure * to both IPv4 and IPv6. */ rw_enter(&ipst->ips_ill_g_lock, RW_READER); phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, (void *) &index, NULL); if (phyi != NULL) { ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; if (ill != NULL) { /* * The block comment at the start of ipif_down * explains the use of the macros used below */ GRAB_CONN_LOCK(q); mutex_enter(&ill->ill_lock); if (ILL_CAN_LOOKUP(ill)) { ill_refhold_locked(ill); mutex_exit(&ill->ill_lock); RELEASE_CONN_LOCK(q); rw_exit(&ipst->ips_ill_g_lock); return (ill); } else if (ILL_CAN_WAIT(ill, q)) { ipsq = ill->ill_phyint->phyint_ipsq; mutex_enter(&ipsq->ipsq_lock); mutex_enter(&ipsq->ipsq_xop->ipx_lock); rw_exit(&ipst->ips_ill_g_lock); mutex_exit(&ill->ill_lock); ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); mutex_exit(&ipsq->ipsq_xop->ipx_lock); mutex_exit(&ipsq->ipsq_lock); RELEASE_CONN_LOCK(q); if (err != NULL) *err = EINPROGRESS; return (NULL); } RELEASE_CONN_LOCK(q); mutex_exit(&ill->ill_lock); } } rw_exit(&ipst->ips_ill_g_lock); if (err != NULL) *err = ENXIO; return (NULL); } /* * Return the ifindex next in sequence after the passed in ifindex. * If there is no next ifindex for the given protocol, return 0. */ uint_t ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) { phyint_t *phyi; phyint_t *phyi_initial; uint_t ifindex; rw_enter(&ipst->ips_ill_g_lock, RW_READER); if (index == 0) { phyi = avl_first( &ipst->ips_phyint_g_list->phyint_list_avl_by_index); } else { phyi = phyi_initial = avl_find( &ipst->ips_phyint_g_list->phyint_list_avl_by_index, (void *) &index, NULL); } for (; phyi != NULL; phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi, AVL_AFTER)) { /* * If we're not returning the first interface in the tree * and we still haven't moved past the phyint_t that * corresponds to index, avl_walk needs to be called again */ if (!((index != 0) && (phyi == phyi_initial))) { if (isv6) { if ((phyi->phyint_illv6) && ILL_CAN_LOOKUP(phyi->phyint_illv6) && (phyi->phyint_illv6->ill_isv6 == 1)) break; } else { if ((phyi->phyint_illv4) && ILL_CAN_LOOKUP(phyi->phyint_illv4) && (phyi->phyint_illv4->ill_isv6 == 0)) break; } } } rw_exit(&ipst->ips_ill_g_lock); if (phyi != NULL) ifindex = phyi->phyint_ifindex; else ifindex = 0; return (ifindex); } /* * Return the ifindex for the named interface. * If there is no next ifindex for the interface, return 0. */ uint_t ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) { phyint_t *phyi; avl_index_t where = 0; uint_t ifindex; rw_enter(&ipst->ips_ill_g_lock, RW_READER); if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, name, &where)) == NULL) { rw_exit(&ipst->ips_ill_g_lock); return (0); } ifindex = phyi->phyint_ifindex; rw_exit(&ipst->ips_ill_g_lock); return (ifindex); } /* * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt * that gives a running thread a reference to the ill. This reference must be * released by the thread when it is done accessing the ill and related * objects. ill_refcnt can not be used to account for static references * such as other structures pointing to an ill. Callers must generally * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros * or be sure that the ill is not being deleted or changing state before * calling the refhold functions. A non-zero ill_refcnt ensures that the * ill won't change any of its critical state such as address, netmask etc. */ void ill_refhold(ill_t *ill) { mutex_enter(&ill->ill_lock); ill->ill_refcnt++; ILL_TRACE_REF(ill); mutex_exit(&ill->ill_lock); } void ill_refhold_locked(ill_t *ill) { ASSERT(MUTEX_HELD(&ill->ill_lock)); ill->ill_refcnt++; ILL_TRACE_REF(ill); } int ill_check_and_refhold(ill_t *ill) { mutex_enter(&ill->ill_lock); if (ILL_CAN_LOOKUP(ill)) { ill_refhold_locked(ill); mutex_exit(&ill->ill_lock); return (0); } mutex_exit(&ill->ill_lock); return (ILL_LOOKUP_FAILED); } /* * Must not be called while holding any locks. Otherwise if this is * the last reference to be released, there is a chance of recursive mutex * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying * to restart an ioctl. */ void ill_refrele(ill_t *ill) { mutex_enter(&ill->ill_lock); ASSERT(ill->ill_refcnt != 0); ill->ill_refcnt--; ILL_UNTRACE_REF(ill); if (ill->ill_refcnt != 0) { /* Every ire pointing to the ill adds 1 to ill_refcnt */ mutex_exit(&ill->ill_lock); return; } /* Drops the ill_lock */ ipif_ill_refrele_tail(ill); } /* * Obtain a weak reference count on the ill. This reference ensures the * ill won't be freed, but the ill may change any of its critical state * such as netmask, address etc. Returns an error if the ill has started * closing. */ boolean_t ill_waiter_inc(ill_t *ill) { mutex_enter(&ill->ill_lock); if (ill->ill_state_flags & ILL_CONDEMNED) { mutex_exit(&ill->ill_lock); return (B_FALSE); } ill->ill_waiters++; mutex_exit(&ill->ill_lock); return (B_TRUE); } void ill_waiter_dcr(ill_t *ill) { mutex_enter(&ill->ill_lock); ill->ill_waiters--; if (ill->ill_waiters == 0) cv_broadcast(&ill->ill_cv); mutex_exit(&ill->ill_lock); } /* * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the * driver. We construct best guess defaults for lower level information that * we need. If an interface is brought up without injection of any overriding * information from outside, we have to be ready to go with these defaults. * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) * we primarely want the dl_provider_style. * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND * at which point we assume the other part of the information is valid. */ void ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) { uchar_t *brdcst_addr; uint_t brdcst_addr_length, phys_addr_length; t_scalar_t sap_length; dl_info_ack_t *dlia; ip_m_t *ipm; dl_qos_cl_sel1_t *sel1; int min_mtu; ASSERT(IAM_WRITER_ILL(ill)); /* * Till the ill is fully up ILL_CHANGING will be set and * the ill is not globally visible. So no need for a lock. */ dlia = (dl_info_ack_t *)mp->b_rptr; ill->ill_mactype = dlia->dl_mac_type; ipm = ip_m_lookup(dlia->dl_mac_type); if (ipm == NULL) { ipm = ip_m_lookup(DL_OTHER); ASSERT(ipm != NULL); } ill->ill_media = ipm; /* * When the new DLPI stuff is ready we'll pull lengths * from dlia. */ if (dlia->dl_version == DL_VERSION_2) { brdcst_addr_length = dlia->dl_brdcst_addr_length; brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, brdcst_addr_length); if (brdcst_addr == NULL) { brdcst_addr_length = 0; } sap_length = dlia->dl_sap_length; phys_addr_length = dlia->dl_addr_length - ABS(sap_length); ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", brdcst_addr_length, sap_length, phys_addr_length)); } else { brdcst_addr_length = 6; brdcst_addr = ip_six_byte_all_ones; sap_length = -2; phys_addr_length = brdcst_addr_length; } ill->ill_bcast_addr_length = brdcst_addr_length; ill->ill_phys_addr_length = phys_addr_length; ill->ill_sap_length = sap_length; /* * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, * but we must ensure a minimum IP MTU is used since other bits of * IP will fly apart otherwise. */ min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); ill->ill_max_mtu = ill->ill_max_frag; ill->ill_type = ipm->ip_m_type; if (!ill->ill_dlpi_style_set) { if (dlia->dl_provider_style == DL_STYLE2) ill->ill_needs_attach = 1; phyint_flags_init(ill->ill_phyint, ill->ill_mactype); /* * Allocate the first ipif on this ill. We don't delay it * further as ioctl handling assumes at least one ipif exists. * * At this point we don't know whether the ill is v4 or v6. * We will know this whan the SIOCSLIFNAME happens and * the correct value for ill_isv6 will be assigned in * ipif_set_values(). We need to hold the ill lock and * clear the ILL_LL_SUBNET_PENDING flag and atomically do * the wakeup. */ (void) ipif_allocate(ill, 0, IRE_LOCAL, dlia->dl_provider_style != DL_STYLE2, B_TRUE); mutex_enter(&ill->ill_lock); ASSERT(ill->ill_dlpi_style_set == 0); ill->ill_dlpi_style_set = 1; ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; cv_broadcast(&ill->ill_cv); mutex_exit(&ill->ill_lock); freemsg(mp); return; } ASSERT(ill->ill_ipif != NULL); /* * We know whether it is IPv4 or IPv6 now, as this is the * second DL_INFO_ACK we are recieving in response to the * DL_INFO_REQ sent in ipif_set_values. */ if (ill->ill_isv6) ill->ill_sap = IP6_DL_SAP; else ill->ill_sap = IP_DL_SAP; /* * Set ipif_mtu which is used to set the IRE's * ire_max_frag value. The driver could have sent * a different mtu from what it sent last time. No * need to call ipif_mtu_change because IREs have * not yet been created. */ ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; /* * Clear all the flags that were set based on ill_bcast_addr_length * and ill_phys_addr_length (in ipif_set_values) as these could have * changed now and we need to re-evaluate. */ ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); /* * Free ill_resolver_mp and ill_bcast_mp as things could have * changed now. * * NOTE: The IPMP meta-interface is special-cased because it starts * with no underlying interfaces (and thus an unknown broadcast * address length), but we enforce that an interface is broadcast- * capable as part of allowing it to join a group. */ if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { if (ill->ill_resolver_mp != NULL) freemsg(ill->ill_resolver_mp); if (ill->ill_bcast_mp != NULL) freemsg(ill->ill_bcast_mp); if (ill->ill_flags & ILLF_XRESOLV) ill->ill_net_type = IRE_IF_RESOLVER; else ill->ill_net_type = IRE_IF_NORESOLVER; ill->ill_resolver_mp = ill_dlur_gen(NULL, ill->ill_phys_addr_length, ill->ill_sap, ill->ill_sap_length); ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); if (ill->ill_isv6) /* * Note: xresolv interfaces will eventually need NOARP * set here as well, but that will require those * external resolvers to have some knowledge of * that flag and act appropriately. Not to be changed * at present. */ ill->ill_flags |= ILLF_NONUD; else ill->ill_flags |= ILLF_NOARP; if (ill->ill_phys_addr_length == 0) { if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; } else { /* pt-pt supports multicast. */ ill->ill_flags |= ILLF_MULTICAST; ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; } } } else { ill->ill_net_type = IRE_IF_RESOLVER; if (ill->ill_bcast_mp != NULL) freemsg(ill->ill_bcast_mp); ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, ill->ill_bcast_addr_length, ill->ill_sap, ill->ill_sap_length); /* * Later detect lack of DLPI driver multicast * capability by catching DL_ENABMULTI errors in * ip_rput_dlpi. */ ill->ill_flags |= ILLF_MULTICAST; if (!ill->ill_isv6) ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; } /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ if (ill->ill_mactype == SUNW_DL_IPMP) ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); /* By default an interface does not support any CoS marking */ ill->ill_flags &= ~ILLF_COS_ENABLED; /* * If we get QoS information in DL_INFO_ACK, the device supports * some form of CoS marking, set ILLF_COS_ENABLED. */ sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, dlia->dl_qos_length); if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { ill->ill_flags |= ILLF_COS_ENABLED; } /* Clear any previous error indication. */ ill->ill_error = 0; freemsg(mp); } /* * Perform various checks to verify that an address would make sense as a * local, remote, or subnet interface address. */ static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) { ipaddr_t net_mask; /* * Don't allow all zeroes, or all ones, but allow * all ones netmask. */ if ((net_mask = ip_net_mask(addr)) == 0) return (B_FALSE); /* A given netmask overrides the "guess" netmask */ if (subnet_mask != 0) net_mask = subnet_mask; if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || (addr == (addr | ~net_mask)))) { return (B_FALSE); } /* * Even if the netmask is all ones, we do not allow address to be * 255.255.255.255 */ if (addr == INADDR_BROADCAST) return (B_FALSE); if (CLASSD(addr)) return (B_FALSE); return (B_TRUE); } #define V6_IPIF_LINKLOCAL(p) \ IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) /* * Compare two given ipifs and check if the second one is better than * the first one using the order of preference (not taking deprecated * into acount) specified in ipif_lookup_multicast(). */ static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) { /* Check the least preferred first. */ if (IS_LOOPBACK(old_ipif->ipif_ill)) { /* If both ipifs are the same, use the first one. */ if (IS_LOOPBACK(new_ipif->ipif_ill)) return (B_FALSE); else return (B_TRUE); } /* For IPv6, check for link local address. */ if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { if (IS_LOOPBACK(new_ipif->ipif_ill) || V6_IPIF_LINKLOCAL(new_ipif)) { /* The second one is equal or less preferred. */ return (B_FALSE); } else { return (B_TRUE); } } /* Then check for point to point interface. */ if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { if (IS_LOOPBACK(new_ipif->ipif_ill) || (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { return (B_FALSE); } else { return (B_TRUE); } } /* old_ipif is a normal interface, so no need to use the new one. */ return (B_FALSE); } /* * Find a mulitcast-capable ipif given an IP instance and zoneid. * The ipif must be up, and its ill must multicast-capable, not * condemned, not an underlying interface in an IPMP group, and * not a VNI interface. Order of preference: * * 1a. normal * 1b. normal, but deprecated * 2a. point to point * 2b. point to point, but deprecated * 3a. link local * 3b. link local, but deprecated * 4. loopback. */ ipif_t * ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) { ill_t *ill; ill_walk_context_t ctx; ipif_t *ipif; ipif_t *saved_ipif = NULL; ipif_t *dep_ipif = NULL; rw_enter(&ipst->ips_ill_g_lock, RW_READER); if (isv6) ill = ILL_START_WALK_V6(&ctx, ipst); else ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { mutex_enter(&ill->ill_lock); if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || !ILL_CAN_LOOKUP(ill) || !(ill->ill_flags & ILLF_MULTICAST)) { mutex_exit(&ill->ill_lock); continue; } for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (zoneid != ipif->ipif_zoneid && zoneid != ALL_ZONES && ipif->ipif_zoneid != ALL_ZONES) { continue; } if (!(ipif->ipif_flags & IPIF_UP) || !IPIF_CAN_LOOKUP(ipif)) { continue; } /* * Found one candidate. If it is deprecated, * remember it in dep_ipif. If it is not deprecated, * remember it in saved_ipif. */ if (ipif->ipif_flags & IPIF_DEPRECATED) { if (dep_ipif == NULL) { dep_ipif = ipif; } else if (ipif_comp_multi(dep_ipif, ipif, isv6)) { /* * If the previous dep_ipif does not * belong to the same ill, we've done * a ipif_refhold() on it. So we need * to release it. */ if (dep_ipif->ipif_ill != ill) ipif_refrele(dep_ipif); dep_ipif = ipif; } continue; } if (saved_ipif == NULL) { saved_ipif = ipif; } else { if (ipif_comp_multi(saved_ipif, ipif, isv6)) { if (saved_ipif->ipif_ill != ill) ipif_refrele(saved_ipif); saved_ipif = ipif; } } } /* * Before going to the next ill, do a ipif_refhold() on the * saved ones. */ if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) ipif_refhold_locked(saved_ipif); if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) ipif_refhold_locked(dep_ipif); mutex_exit(&ill->ill_lock); } rw_exit(&ipst->ips_ill_g_lock); /* * If we have only the saved_ipif, return it. But if we have both * saved_ipif and dep_ipif, check to see which one is better. */ if (saved_ipif != NULL) { if (dep_ipif != NULL) { if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { ipif_refrele(saved_ipif); return (dep_ipif); } else { ipif_refrele(dep_ipif); return (saved_ipif); } } return (saved_ipif); } else { return (dep_ipif); } } /* * This function is called when an application does not specify an interface * to be used for multicast traffic (joining a group/sending data). It * calls ire_lookup_multi() to look for an interface route for the * specified multicast group. Doing this allows the administrator to add * prefix routes for multicast to indicate which interface to be used for * multicast traffic in the above scenario. The route could be for all * multicast (224.0/4), for a single multicast group (a /32 route) or * anything in between. If there is no such multicast route, we just find * any multicast capable interface and return it. The returned ipif * is refhold'ed. */ ipif_t * ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) { ire_t *ire; ipif_t *ipif; ire = ire_lookup_multi(group, zoneid, ipst); if (ire != NULL) { ipif = ire->ire_ipif; ipif_refhold(ipif); ire_refrele(ire); return (ipif); } return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); } /* * Look for an ipif with the specified interface address and destination. * The destination address is used only for matching point-to-point interfaces. */ ipif_t * ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) { ipif_t *ipif; ill_t *ill; ill_walk_context_t ctx; ipsq_t *ipsq; if (error != NULL) *error = 0; /* * First match all the point-to-point interfaces * before looking at non-point-to-point interfaces. * This is done to avoid returning non-point-to-point * ipif instead of unnumbered point-to-point ipif. */ rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { GRAB_CONN_LOCK(q); mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { /* Allow the ipif to be down */ if ((ipif->ipif_flags & IPIF_POINTOPOINT) && (ipif->ipif_lcl_addr == if_addr) && (ipif->ipif_pp_dst_addr == dst)) { /* * The block comment at the start of ipif_down * explains the use of the macros used below */ if (IPIF_CAN_LOOKUP(ipif)) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); RELEASE_CONN_LOCK(q); rw_exit(&ipst->ips_ill_g_lock); return (ipif); } else if (IPIF_CAN_WAIT(ipif, q)) { ipsq = ill->ill_phyint->phyint_ipsq; mutex_enter(&ipsq->ipsq_lock); mutex_enter(&ipsq->ipsq_xop->ipx_lock); mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); mutex_exit(&ipsq->ipsq_xop->ipx_lock); mutex_exit(&ipsq->ipsq_lock); RELEASE_CONN_LOCK(q); if (error != NULL) *error = EINPROGRESS; return (NULL); } } } mutex_exit(&ill->ill_lock); RELEASE_CONN_LOCK(q); } rw_exit(&ipst->ips_ill_g_lock); /* lookup the ipif based on interface address */ ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, ipst); ASSERT(ipif == NULL || !ipif->ipif_isv6); return (ipif); } /* * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). */ static ipif_t * ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, boolean_t match_illgrp, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) { ipif_t *ipif; ill_t *ill; boolean_t ptp = B_FALSE; ipsq_t *ipsq; ill_walk_context_t ctx; if (error != NULL) *error = 0; rw_enter(&ipst->ips_ill_g_lock, RW_READER); /* * Repeat twice, first based on local addresses and * next time for pointopoint. */ repeat: ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (match_ill != NULL && ill != match_ill && (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { continue; } GRAB_CONN_LOCK(q); mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES) continue; /* Allow the ipif to be down */ if ((!ptp && (ipif->ipif_lcl_addr == addr) && ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && (ipif->ipif_pp_dst_addr == addr))) { /* * The block comment at the start of ipif_down * explains the use of the macros used below */ if (IPIF_CAN_LOOKUP(ipif)) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); RELEASE_CONN_LOCK(q); rw_exit(&ipst->ips_ill_g_lock); return (ipif); } else if (IPIF_CAN_WAIT(ipif, q)) { ipsq = ill->ill_phyint->phyint_ipsq; mutex_enter(&ipsq->ipsq_lock); mutex_enter(&ipsq->ipsq_xop->ipx_lock); mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); mutex_exit(&ipsq->ipsq_xop->ipx_lock); mutex_exit(&ipsq->ipsq_lock); RELEASE_CONN_LOCK(q); if (error != NULL) *error = EINPROGRESS; return (NULL); } } } mutex_exit(&ill->ill_lock); RELEASE_CONN_LOCK(q); } /* If we already did the ptp case, then we are done */ if (ptp) { rw_exit(&ipst->ips_ill_g_lock); if (error != NULL) *error = ENXIO; return (NULL); } ptp = B_TRUE; goto repeat; } /* * Check if the address exists in the system. * We don't hold the conn_lock as we will not perform defered ipsqueue * operation. */ boolean_t ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) { ipif_t *ipif; ill_t *ill; ill_walk_context_t ctx; rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES) continue; /* Allow the ipif to be down */ /* * XXX Different from ipif_lookup_addr(), we don't do * twice lookups. As from bind()'s point of view, we * may return once we find a match. */ if (((ipif->ipif_lcl_addr == addr) && ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || ((ipif->ipif_flags & IPIF_POINTOPOINT) && (ipif->ipif_pp_dst_addr == addr))) { /* * Allow bind() to be successful even if the * ipif is with IPIF_CHANGING bit set. */ mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); return (B_TRUE); } } mutex_exit(&ill->ill_lock); } rw_exit(&ipst->ips_ill_g_lock); return (B_FALSE); } /* * Lookup an ipif with the specified address. For point-to-point links we * look for matches on either the destination address or the local address, * but we skip the local address check if IPIF_UNNUMBERED is set. If the * `match_ill' argument is non-NULL, the lookup is restricted to that ill * (or illgrp if `match_ill' is in an IPMP group). */ ipif_t * ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) { return (ipif_lookup_addr_common(addr, match_ill, B_TRUE, zoneid, q, mp, func, error, ipst)); } /* * Special abbreviated version of ipif_lookup_addr() that doesn't match * `match_ill' across the IPMP group. This function is only needed in some * corner-cases; almost everything should use ipif_lookup_addr(). */ static ipif_t * ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) { ASSERT(match_ill != NULL); return (ipif_lookup_addr_common(addr, match_ill, B_FALSE, ALL_ZONES, NULL, NULL, NULL, NULL, ipst)); } /* * Look for an ipif with the specified address. For point-point links * we look for matches on either the destination address and the local * address, but we ignore the check on the local address if IPIF_UNNUMBERED * is set. * If the `match_ill' argument is non-NULL, the lookup is restricted to that * ill (or illgrp if `match_ill' is in an IPMP group). * Return the zoneid for the ipif which matches. ALL_ZONES if no match. */ zoneid_t ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) { zoneid_t zoneid; ipif_t *ipif; ill_t *ill; boolean_t ptp = B_FALSE; ill_walk_context_t ctx; rw_enter(&ipst->ips_ill_g_lock, RW_READER); /* * Repeat twice, first based on local addresses and * next time for pointopoint. */ repeat: ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (match_ill != NULL && ill != match_ill && !IS_IN_SAME_ILLGRP(ill, match_ill)) { continue; } mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { /* Allow the ipif to be down */ if ((!ptp && (ipif->ipif_lcl_addr == addr) && ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && (ipif->ipif_pp_dst_addr == addr)) && !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { zoneid = ipif->ipif_zoneid; mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); /* * If ipif_zoneid was ALL_ZONES then we have * a trusted extensions shared IP address. * In that case GLOBAL_ZONEID works to send. */ if (zoneid == ALL_ZONES) zoneid = GLOBAL_ZONEID; return (zoneid); } } mutex_exit(&ill->ill_lock); } /* If we already did the ptp case, then we are done */ if (ptp) { rw_exit(&ipst->ips_ill_g_lock); return (ALL_ZONES); } ptp = B_TRUE; goto repeat; } /* * Look for an ipif that matches the specified remote address i.e. the * ipif that would receive the specified packet. * First look for directly connected interfaces and then do a recursive * IRE lookup and pick the first ipif corresponding to the source address in the * ire. * Returns: held ipif */ ipif_t * ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) { ipif_t *ipif; ire_t *ire; ip_stack_t *ipst = ill->ill_ipst; ASSERT(!ill->ill_isv6); /* * Someone could be changing this ipif currently or change it * after we return this. Thus a few packets could use the old * old values. However structure updates/creates (ire, ilg, ilm etc) * will atomically be updated or cleaned up with the new value * Thus we don't need a lock to check the flags or other attrs below. */ mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (!IPIF_CAN_LOOKUP(ipif)) continue; if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES) continue; /* Allow the ipif to be down */ if (ipif->ipif_flags & IPIF_POINTOPOINT) { if ((ipif->ipif_pp_dst_addr == addr) || (!(ipif->ipif_flags & IPIF_UNNUMBERED) && ipif->ipif_lcl_addr == addr)) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); return (ipif); } } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); return (ipif); } } mutex_exit(&ill->ill_lock); ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, NULL, MATCH_IRE_RECURSIVE, ipst); if (ire != NULL) { /* * The callers of this function wants to know the * interface on which they have to send the replies * back. For IREs that have ire_stq and ire_ipif * derived from different ills, we really don't care * what we return here. */ ipif = ire->ire_ipif; if (ipif != NULL) { ipif_refhold(ipif); ire_refrele(ire); return (ipif); } ire_refrele(ire); } /* Pick the first interface */ ipif = ipif_get_next_ipif(NULL, ill); return (ipif); } /* * This func does not prevent refcnt from increasing. But if * the caller has taken steps to that effect, then this func * can be used to determine whether the ill has become quiescent */ static boolean_t ill_is_quiescent(ill_t *ill) { ipif_t *ipif; ASSERT(MUTEX_HELD(&ill->ill_lock)); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { return (B_FALSE); } } if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { return (B_FALSE); } return (B_TRUE); } boolean_t ill_is_freeable(ill_t *ill) { ipif_t *ipif; ASSERT(MUTEX_HELD(&ill->ill_lock)); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { return (B_FALSE); } } if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { return (B_FALSE); } return (B_TRUE); } /* * This func does not prevent refcnt from increasing. But if * the caller has taken steps to that effect, then this func * can be used to determine whether the ipif has become quiescent */ static boolean_t ipif_is_quiescent(ipif_t *ipif) { ill_t *ill; ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { return (B_FALSE); } ill = ipif->ipif_ill; if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || ill->ill_logical_down) { return (B_TRUE); } /* This is the last ipif going down or being deleted on this ill */ if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { return (B_FALSE); } return (B_TRUE); } /* * return true if the ipif can be destroyed: the ipif has to be quiescent * with zero references from ire/nce/ilm to it. */ static boolean_t ipif_is_freeable(ipif_t *ipif) { ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); ASSERT(ipif->ipif_id != 0); return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif)); } /* * The ipif/ill/ire has been refreled. Do the tail processing. * Determine if the ipif or ill in question has become quiescent and if so * wakeup close and/or restart any queued pending ioctl that is waiting * for the ipif_down (or ill_down) */ void ipif_ill_refrele_tail(ill_t *ill) { mblk_t *mp; conn_t *connp; ipsq_t *ipsq; ipxop_t *ipx; ipif_t *ipif; dl_notify_ind_t *dlindp; ASSERT(MUTEX_HELD(&ill->ill_lock)); if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { /* ip_modclose() may be waiting */ cv_broadcast(&ill->ill_cv); } ipsq = ill->ill_phyint->phyint_ipsq; mutex_enter(&ipsq->ipsq_lock); ipx = ipsq->ipsq_xop; mutex_enter(&ipx->ipx_lock); if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ goto unlock; ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); ipif = ipx->ipx_pending_ipif; if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ goto unlock; switch (ipx->ipx_waitfor) { case IPIF_DOWN: if (!ipif_is_quiescent(ipif)) goto unlock; break; case IPIF_FREE: if (!ipif_is_freeable(ipif)) goto unlock; break; case ILL_DOWN: if (!ill_is_quiescent(ill)) goto unlock; break; case ILL_FREE: /* * ILL_FREE is only for loopback; normal ill teardown waits * synchronously in ip_modclose() without using ipx_waitfor, * handled by the cv_broadcast() at the top of this function. */ if (!ill_is_freeable(ill)) goto unlock; break; default: cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", (void *)ipsq, ipx->ipx_waitfor); } ill_refhold_locked(ill); /* for qwriter_ip() call below */ mutex_exit(&ipx->ipx_lock); mp = ipsq_pending_mp_get(ipsq, &connp); mutex_exit(&ipsq->ipsq_lock); mutex_exit(&ill->ill_lock); ASSERT(mp != NULL); /* * NOTE: all of the qwriter_ip() calls below use CUR_OP since * we can only get here when the current operation decides it * it needs to quiesce via ipsq_pending_mp_add(). */ switch (mp->b_datap->db_type) { case M_PCPROTO: case M_PROTO: /* * For now, only DL_NOTIFY_IND messages can use this facility. */ dlindp = (dl_notify_ind_t *)mp->b_rptr; ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); switch (dlindp->dl_notification) { case DL_NOTE_PHYS_ADDR: qwriter_ip(ill, ill->ill_rq, mp, ill_set_phys_addr_tail, CUR_OP, B_TRUE); return; case DL_NOTE_REPLUMB: qwriter_ip(ill, ill->ill_rq, mp, ill_replumb_tail, CUR_OP, B_TRUE); return; default: ASSERT(0); ill_refrele(ill); } break; case M_ERROR: case M_HANGUP: qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, B_TRUE); return; case M_IOCTL: case M_IOCDATA: qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); return; default: cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " "db_type %d\n", (void *)mp, mp->b_datap->db_type); } return; unlock: mutex_exit(&ipsq->ipsq_lock); mutex_exit(&ipx->ipx_lock); mutex_exit(&ill->ill_lock); } #ifdef DEBUG /* Reuse trace buffer from beginning (if reached the end) and record trace */ static void th_trace_rrecord(th_trace_t *th_trace) { tr_buf_t *tr_buf; uint_t lastref; lastref = th_trace->th_trace_lastref; lastref++; if (lastref == TR_BUF_MAX) lastref = 0; th_trace->th_trace_lastref = lastref; tr_buf = &th_trace->th_trbuf[lastref]; tr_buf->tr_time = lbolt; tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); } static void th_trace_free(void *value) { th_trace_t *th_trace = value; ASSERT(th_trace->th_refcnt == 0); kmem_free(th_trace, sizeof (*th_trace)); } /* * Find or create the per-thread hash table used to track object references. * The ipst argument is NULL if we shouldn't allocate. * * Accesses per-thread data, so there's no need to lock here. */ static mod_hash_t * th_trace_gethash(ip_stack_t *ipst) { th_hash_t *thh; if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { mod_hash_t *mh; char name[256]; size_t objsize, rshift; int retv; if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) return (NULL); (void) snprintf(name, sizeof (name), "th_trace_%p", (void *)curthread); /* * We use mod_hash_create_extended here rather than the more * obvious mod_hash_create_ptrhash because the latter has a * hard-coded KM_SLEEP, and we'd prefer to fail rather than * block. */ objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), MAX(sizeof (ire_t), sizeof (nce_t))); rshift = highbit(objsize); mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, th_trace_free, mod_hash_byptr, (void *)rshift, mod_hash_ptrkey_cmp, KM_NOSLEEP); if (mh == NULL) { kmem_free(thh, sizeof (*thh)); return (NULL); } thh->thh_hash = mh; thh->thh_ipst = ipst; /* * We trace ills, ipifs, ires, and nces. All of these are * per-IP-stack, so the lock on the thread list is as well. */ rw_enter(&ip_thread_rwlock, RW_WRITER); list_insert_tail(&ip_thread_list, thh); rw_exit(&ip_thread_rwlock); retv = tsd_set(ip_thread_data, thh); ASSERT(retv == 0); } return (thh != NULL ? thh->thh_hash : NULL); } boolean_t th_trace_ref(const void *obj, ip_stack_t *ipst) { th_trace_t *th_trace; mod_hash_t *mh; mod_hash_val_t val; if ((mh = th_trace_gethash(ipst)) == NULL) return (B_FALSE); /* * Attempt to locate the trace buffer for this obj and thread. * If it does not exist, then allocate a new trace buffer and * insert into the hash. */ if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); if (th_trace == NULL) return (B_FALSE); th_trace->th_id = curthread; if (mod_hash_insert(mh, (mod_hash_key_t)obj, (mod_hash_val_t)th_trace) != 0) { kmem_free(th_trace, sizeof (th_trace_t)); return (B_FALSE); } } else { th_trace = (th_trace_t *)val; } ASSERT(th_trace->th_refcnt >= 0 && th_trace->th_refcnt < TR_BUF_MAX - 1); th_trace->th_refcnt++; th_trace_rrecord(th_trace); return (B_TRUE); } /* * For the purpose of tracing a reference release, we assume that global * tracing is always on and that the same thread initiated the reference hold * is releasing. */ void th_trace_unref(const void *obj) { int retv; mod_hash_t *mh; th_trace_t *th_trace; mod_hash_val_t val; mh = th_trace_gethash(NULL); retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); ASSERT(retv == 0); th_trace = (th_trace_t *)val; ASSERT(th_trace->th_refcnt > 0); th_trace->th_refcnt--; th_trace_rrecord(th_trace); } /* * If tracing has been disabled, then we assume that the reference counts are * now useless, and we clear them out before destroying the entries. */ void th_trace_cleanup(const void *obj, boolean_t trace_disable) { th_hash_t *thh; mod_hash_t *mh; mod_hash_val_t val; th_trace_t *th_trace; int retv; rw_enter(&ip_thread_rwlock, RW_READER); for (thh = list_head(&ip_thread_list); thh != NULL; thh = list_next(&ip_thread_list, thh)) { if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, &val) == 0) { th_trace = (th_trace_t *)val; if (trace_disable) th_trace->th_refcnt = 0; retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); ASSERT(retv == 0); } } rw_exit(&ip_thread_rwlock); } void ipif_trace_ref(ipif_t *ipif) { ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); if (ipif->ipif_trace_disable) return; if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { ipif->ipif_trace_disable = B_TRUE; ipif_trace_cleanup(ipif); } } void ipif_untrace_ref(ipif_t *ipif) { ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); if (!ipif->ipif_trace_disable) th_trace_unref(ipif); } void ill_trace_ref(ill_t *ill) { ASSERT(MUTEX_HELD(&ill->ill_lock)); if (ill->ill_trace_disable) return; if (!th_trace_ref(ill, ill->ill_ipst)) { ill->ill_trace_disable = B_TRUE; ill_trace_cleanup(ill); } } void ill_untrace_ref(ill_t *ill) { ASSERT(MUTEX_HELD(&ill->ill_lock)); if (!ill->ill_trace_disable) th_trace_unref(ill); } /* * Called when ipif is unplumbed or when memory alloc fails. Note that on * failure, ipif_trace_disable is set. */ static void ipif_trace_cleanup(const ipif_t *ipif) { th_trace_cleanup(ipif, ipif->ipif_trace_disable); } /* * Called when ill is unplumbed or when memory alloc fails. Note that on * failure, ill_trace_disable is set. */ static void ill_trace_cleanup(const ill_t *ill) { th_trace_cleanup(ill, ill->ill_trace_disable); } #endif /* DEBUG */ void ipif_refhold_locked(ipif_t *ipif) { ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); ipif->ipif_refcnt++; IPIF_TRACE_REF(ipif); } void ipif_refhold(ipif_t *ipif) { ill_t *ill; ill = ipif->ipif_ill; mutex_enter(&ill->ill_lock); ipif->ipif_refcnt++; IPIF_TRACE_REF(ipif); mutex_exit(&ill->ill_lock); } /* * Must not be called while holding any locks. Otherwise if this is * the last reference to be released there is a chance of recursive mutex * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying * to restart an ioctl. */ void ipif_refrele(ipif_t *ipif) { ill_t *ill; ill = ipif->ipif_ill; mutex_enter(&ill->ill_lock); ASSERT(ipif->ipif_refcnt != 0); ipif->ipif_refcnt--; IPIF_UNTRACE_REF(ipif); if (ipif->ipif_refcnt != 0) { mutex_exit(&ill->ill_lock); return; } /* Drops the ill_lock */ ipif_ill_refrele_tail(ill); } ipif_t * ipif_get_next_ipif(ipif_t *curr, ill_t *ill) { ipif_t *ipif; mutex_enter(&ill->ill_lock); for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); ipif != NULL; ipif = ipif->ipif_next) { if (!IPIF_CAN_LOOKUP(ipif)) continue; ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); return (ipif); } mutex_exit(&ill->ill_lock); return (NULL); } /* * TODO: make this table extendible at run time * Return a pointer to the mac type info for 'mac_type' */ static ip_m_t * ip_m_lookup(t_uscalar_t mac_type) { ip_m_t *ipm; for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) if (ipm->ip_m_mac_type == mac_type) return (ipm); return (NULL); } /* * ip_rt_add is called to add an IPv4 route to the forwarding table. * ipif_arg is passed in to associate it with the correct interface. * We may need to restart this operation if the ipif cannot be looked up * due to an exclusive operation that is currently in progress. The restart * entry point is specified by 'func' */ int ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, struct rtsa_s *sp, ip_stack_t *ipst) { ire_t *ire; ire_t *gw_ire = NULL; ipif_t *ipif = NULL; boolean_t ipif_refheld = B_FALSE; uint_t type; int match_flags = MATCH_IRE_TYPE; int error; tsol_gc_t *gc = NULL; tsol_gcgrp_t *gcgrp = NULL; boolean_t gcgrp_xtraref = B_FALSE; ip1dbg(("ip_rt_add:")); if (ire_arg != NULL) *ire_arg = NULL; /* * If this is the case of RTF_HOST being set, then we set the netmask * to all ones (regardless if one was supplied). */ if (flags & RTF_HOST) mask = IP_HOST_MASK; /* * Prevent routes with a zero gateway from being created (since * interfaces can currently be plumbed and brought up no assigned * address). */ if (gw_addr == 0) return (ENETUNREACH); /* * Get the ipif, if any, corresponding to the gw_addr */ ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, ipst); if (ipif != NULL) { if (IS_VNI(ipif->ipif_ill)) { ipif_refrele(ipif); return (EINVAL); } ipif_refheld = B_TRUE; } else if (error == EINPROGRESS) { ip1dbg(("ip_rt_add: null and EINPROGRESS")); return (EINPROGRESS); } else { error = 0; } if (ipif != NULL) { ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); } else { ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); } /* * GateD will attempt to create routes with a loopback interface * address as the gateway and with RTF_GATEWAY set. We allow * these routes to be added, but create them as interface routes * since the gateway is an interface address. */ if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { flags &= ~RTF_GATEWAY; if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && mask == IP_HOST_MASK) { ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, ALL_ZONES, NULL, match_flags, ipst); if (ire != NULL) { ire_refrele(ire); if (ipif_refheld) ipif_refrele(ipif); return (EEXIST); } ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" "for 0x%x\n", (void *)ipif, ipif->ipif_ire_type, ntohl(ipif->ipif_lcl_addr))); ire = ire_create( (uchar_t *)&dst_addr, /* dest address */ (uchar_t *)&mask, /* mask */ (uchar_t *)&ipif->ipif_src_addr, NULL, /* no gateway */ &ipif->ipif_mtu, NULL, ipif->ipif_rq, /* recv-from queue */ NULL, /* no send-to queue */ ipif->ipif_ire_type, /* LOOPBACK */ ipif, 0, 0, 0, (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, &ire_uinfo_null, NULL, NULL, ipst); if (ire == NULL) { if (ipif_refheld) ipif_refrele(ipif); return (ENOMEM); } error = ire_add(&ire, q, mp, func, B_FALSE); if (error == 0) goto save_ire; if (ipif_refheld) ipif_refrele(ipif); return (error); } } /* * Traditionally, interface routes are ones where RTF_GATEWAY isn't set * and the gateway address provided is one of the system's interface * addresses. By using the routing socket interface and supplying an * RTA_IFP sockaddr with an interface index, an alternate method of * specifying an interface route to be created is available which uses * the interface index that specifies the outgoing interface rather than * the address of an outgoing interface (which may not be able to * uniquely identify an interface). When coupled with the RTF_GATEWAY * flag, routes can be specified which not only specify the next-hop to * be used when routing to a certain prefix, but also which outgoing * interface should be used. * * Previously, interfaces would have unique addresses assigned to them * and so the address assigned to a particular interface could be used * to identify a particular interface. One exception to this was the * case of an unnumbered interface (where IPIF_UNNUMBERED was set). * * With the advent of IPv6 and its link-local addresses, this * restriction was relaxed and interfaces could share addresses between * themselves. In fact, typically all of the link-local interfaces on * an IPv6 node or router will have the same link-local address. In * order to differentiate between these interfaces, the use of an * interface index is necessary and this index can be carried inside a * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction * of using the interface index, however, is that all of the ipif's that * are part of an ill have the same index and so the RTA_IFP sockaddr * cannot be used to differentiate between ipif's (or logical * interfaces) that belong to the same ill (physical interface). * * For example, in the following case involving IPv4 interfaces and * logical interfaces * * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 * * the ipif's corresponding to each of these interface routes can be * uniquely identified by the "gateway" (actually interface address). * * In this case involving multiple IPv6 default routes to a particular * link-local gateway, the use of RTA_IFP is necessary to specify which * default route is of interest: * * default fe80::123:4567:89ab:cdef U if0 * default fe80::123:4567:89ab:cdef U if1 */ /* RTF_GATEWAY not set */ if (!(flags & RTF_GATEWAY)) { queue_t *stq; if (sp != NULL) { ip2dbg(("ip_rt_add: gateway security attributes " "cannot be set with interface route\n")); if (ipif_refheld) ipif_refrele(ipif); return (EINVAL); } /* * As the interface index specified with the RTA_IFP sockaddr is * the same for all ipif's off of an ill, the matching logic * below uses MATCH_IRE_ILL if such an index was specified. * This means that routes sharing the same prefix when added * using a RTA_IFP sockaddr must have distinct interface * indices (namely, they must be on distinct ill's). * * On the other hand, since the gateway address will usually be * different for each ipif on the system, the matching logic * uses MATCH_IRE_IPIF in the case of a traditional interface * route. This means that interface routes for the same prefix * can be created if they belong to distinct ipif's and if a * RTA_IFP sockaddr is not present. */ if (ipif_arg != NULL) { if (ipif_refheld) { ipif_refrele(ipif); ipif_refheld = B_FALSE; } ipif = ipif_arg; match_flags |= MATCH_IRE_ILL; } else { /* * Check the ipif corresponding to the gw_addr */ if (ipif == NULL) return (ENETUNREACH); match_flags |= MATCH_IRE_IPIF; } ASSERT(ipif != NULL); /* * We check for an existing entry at this point. * * Since a netmask isn't passed in via the ioctl interface * (SIOCADDRT), we don't check for a matching netmask in that * case. */ if (!ioctl_msg) match_flags |= MATCH_IRE_MASK; ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); if (ire != NULL) { ire_refrele(ire); if (ipif_refheld) ipif_refrele(ipif); return (EEXIST); } stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) ? ipif->ipif_rq : ipif->ipif_wq; /* * Create a copy of the IRE_LOOPBACK, * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with * the modified address and netmask. */ ire = ire_create( (uchar_t *)&dst_addr, (uint8_t *)&mask, (uint8_t *)&ipif->ipif_src_addr, NULL, &ipif->ipif_mtu, NULL, NULL, stq, ipif->ipif_net_type, ipif, 0, 0, 0, flags, &ire_uinfo_null, NULL, NULL, ipst); if (ire == NULL) { if (ipif_refheld) ipif_refrele(ipif); return (ENOMEM); } /* * Some software (for example, GateD and Sun Cluster) attempts * to create (what amount to) IRE_PREFIX routes with the * loopback address as the gateway. This is primarily done to * set up prefixes with the RTF_REJECT flag set (for example, * when generating aggregate routes.) * * If the IRE type (as defined by ipif->ipif_net_type) is * IRE_LOOPBACK, then we map the request into a * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as * these interface routes, by definition, can only be that. * * Needless to say, the real IRE_LOOPBACK is NOT created by this * routine, but rather using ire_create() directly. * */ if (ipif->ipif_net_type == IRE_LOOPBACK) { ire->ire_type = IRE_IF_NORESOLVER; ire->ire_flags |= RTF_BLACKHOLE; } error = ire_add(&ire, q, mp, func, B_FALSE); if (error == 0) goto save_ire; /* * In the result of failure, ire_add() will have already * deleted the ire in question, so there is no need to * do that here. */ if (ipif_refheld) ipif_refrele(ipif); return (error); } if (ipif_refheld) { ipif_refrele(ipif); ipif_refheld = B_FALSE; } /* * Get an interface IRE for the specified gateway. * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the * gateway, it is currently unreachable and we fail the request * accordingly. */ ipif = ipif_arg; if (ipif_arg != NULL) match_flags |= MATCH_IRE_ILL; again: gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); if (gw_ire == NULL) { /* * With IPMP, we allow host routes to influence in.mpathd's * target selection. However, if the test addresses are on * their own network, the above lookup will fail since the * underlying IRE_INTERFACEs are marked hidden. So allow * hidden test IREs to be found and try again. */ if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) { match_flags |= MATCH_IRE_MARK_TESTHIDDEN; goto again; } return (ENETUNREACH); } /* * We create one of three types of IREs as a result of this request * based on the netmask. A netmask of all ones (which is automatically * assumed when RTF_HOST is set) results in an IRE_HOST being created. * An all zeroes netmask implies a default route so an IRE_DEFAULT is * created. Otherwise, an IRE_PREFIX route is created for the * destination prefix. */ if (mask == IP_HOST_MASK) type = IRE_HOST; else if (mask == 0) type = IRE_DEFAULT; else type = IRE_PREFIX; /* check for a duplicate entry */ ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); if (ire != NULL) { ire_refrele(gw_ire); ire_refrele(ire); return (EEXIST); } /* Security attribute exists */ if (sp != NULL) { tsol_gcgrp_addr_t ga; /* find or create the gateway credentials group */ ga.ga_af = AF_INET; IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); /* we hold reference to it upon success */ gcgrp = gcgrp_lookup(&ga, B_TRUE); if (gcgrp == NULL) { ire_refrele(gw_ire); return (ENOMEM); } /* * Create and add the security attribute to the group; a * reference to the group is made upon allocating a new * entry successfully. If it finds an already-existing * entry for the security attribute in the group, it simply * returns it and no new reference is made to the group. */ gc = gc_create(sp, gcgrp, &gcgrp_xtraref); if (gc == NULL) { /* release reference held by gcgrp_lookup */ GCGRP_REFRELE(gcgrp); ire_refrele(gw_ire); return (ENOMEM); } } /* Create the IRE. */ ire = ire_create( (uchar_t *)&dst_addr, /* dest address */ (uchar_t *)&mask, /* mask */ /* src address assigned by the caller? */ (uchar_t *)(((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) ? &src_addr : NULL), (uchar_t *)&gw_addr, /* gateway address */ &gw_ire->ire_max_frag, NULL, /* no src nce */ NULL, /* no recv-from queue */ NULL, /* no send-to queue */ (ushort_t)type, /* IRE type */ ipif_arg, 0, 0, 0, flags, &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ gc, /* security attribute */ NULL, ipst); /* * The ire holds a reference to the 'gc' and the 'gc' holds a * reference to the 'gcgrp'. We can now release the extra reference * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. */ if (gcgrp_xtraref) GCGRP_REFRELE(gcgrp); if (ire == NULL) { if (gc != NULL) GC_REFRELE(gc); ire_refrele(gw_ire); return (ENOMEM); } /* * POLICY: should we allow an RTF_HOST with address INADDR_ANY? * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? */ /* Add the new IRE. */ error = ire_add(&ire, q, mp, func, B_FALSE); if (error != 0) { /* * In the result of failure, ire_add() will have already * deleted the ire in question, so there is no need to * do that here. */ ire_refrele(gw_ire); return (error); } if (flags & RTF_MULTIRT) { /* * Invoke the CGTP (multirouting) filtering module * to add the dst address in the filtering database. * Replicated inbound packets coming from that address * will be filtered to discard the duplicates. * It is not necessary to call the CGTP filter hook * when the dst address is a broadcast or multicast, * because an IP source address cannot be a broadcast * or a multicast. */ ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); if (ire_dst != NULL) { ip_cgtp_bcast_add(ire, ire_dst, ipst); ire_refrele(ire_dst); goto save_ire; } if (ipst->ips_ip_cgtp_filter_ops != NULL && !CLASSD(ire->ire_addr)) { int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( ipst->ips_netstack->netstack_stackid, ire->ire_addr, ire->ire_gateway_addr, ire->ire_src_addr, gw_ire->ire_src_addr); if (res != 0) { ire_refrele(gw_ire); ire_delete(ire); return (res); } } } /* * Now that the prefix IRE entry has been created, delete any * existing gateway IRE cache entries as well as any IRE caches * using the gateway, and force them to be created through * ip_newroute. */ if (gc != NULL) { ASSERT(gcgrp != NULL); ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); } save_ire: if (gw_ire != NULL) { ire_refrele(gw_ire); } if (ipif != NULL) { /* * Save enough information so that we can recreate the IRE if * the interface goes down and then up. The metrics associated * with the route will be saved as well when rts_setmetrics() is * called after the IRE has been created. In the case where * memory cannot be allocated, none of this information will be * saved. */ ipif_save_ire(ipif, ire); } if (ioctl_msg) ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); if (ire_arg != NULL) { /* * Store the ire that was successfully added into where ire_arg * points to so that callers don't have to look it up * themselves (but they are responsible for ire_refrele()ing * the ire when they are finished with it). */ *ire_arg = ire; } else { ire_refrele(ire); /* Held in ire_add */ } if (ipif_refheld) ipif_refrele(ipif); return (0); } /* * ip_rt_delete is called to delete an IPv4 route. * ipif_arg is passed in to associate it with the correct interface. * We may need to restart this operation if the ipif cannot be looked up * due to an exclusive operation that is currently in progress. The restart * entry point is specified by 'func' */ /* ARGSUSED4 */ int ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) { ire_t *ire = NULL; ipif_t *ipif; boolean_t ipif_refheld = B_FALSE; uint_t type; uint_t match_flags = MATCH_IRE_TYPE; int err = 0; ip1dbg(("ip_rt_delete:")); /* * If this is the case of RTF_HOST being set, then we set the netmask * to all ones. Otherwise, we use the netmask if one was supplied. */ if (flags & RTF_HOST) { mask = IP_HOST_MASK; match_flags |= MATCH_IRE_MASK; } else if (rtm_addrs & RTA_NETMASK) { match_flags |= MATCH_IRE_MASK; } /* * Note that RTF_GATEWAY is never set on a delete, therefore * we check if the gateway address is one of our interfaces first, * and fall back on RTF_GATEWAY routes. * * This makes it possible to delete an original * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. * * As the interface index specified with the RTA_IFP sockaddr is the * same for all ipif's off of an ill, the matching logic below uses * MATCH_IRE_ILL if such an index was specified. This means a route * sharing the same prefix and interface index as the the route * intended to be deleted might be deleted instead if a RTA_IFP sockaddr * is specified in the request. * * On the other hand, since the gateway address will usually be * different for each ipif on the system, the matching logic * uses MATCH_IRE_IPIF in the case of a traditional interface * route. This means that interface routes for the same prefix can be * uniquely identified if they belong to distinct ipif's and if a * RTA_IFP sockaddr is not present. * * For more detail on specifying routes by gateway address and by * interface index, see the comments in ip_rt_add(). */ ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, ipst); if (ipif != NULL) ipif_refheld = B_TRUE; else if (err == EINPROGRESS) return (err); else err = 0; if (ipif != NULL) { if (ipif_arg != NULL) { if (ipif_refheld) { ipif_refrele(ipif); ipif_refheld = B_FALSE; } ipif = ipif_arg; match_flags |= MATCH_IRE_ILL; } else { match_flags |= MATCH_IRE_IPIF; } if (ipif->ipif_ire_type == IRE_LOOPBACK) { ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, ALL_ZONES, NULL, match_flags, ipst); } if (ire == NULL) { ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); } } if (ire == NULL) { /* * At this point, the gateway address is not one of our own * addresses or a matching interface route was not found. We * set the IRE type to lookup based on whether * this is a host route, a default route or just a prefix. * * If an ipif_arg was passed in, then the lookup is based on an * interface index so MATCH_IRE_ILL is added to match_flags. * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is * set as the route being looked up is not a traditional * interface route. */ match_flags &= ~MATCH_IRE_IPIF; match_flags |= MATCH_IRE_GW; if (ipif_arg != NULL) match_flags |= MATCH_IRE_ILL; if (mask == IP_HOST_MASK) type = IRE_HOST; else if (mask == 0) type = IRE_DEFAULT; else type = IRE_PREFIX; ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); } if (ipif_refheld) ipif_refrele(ipif); /* ipif is not refheld anymore */ if (ire == NULL) return (ESRCH); if (ire->ire_flags & RTF_MULTIRT) { /* * Invoke the CGTP (multirouting) filtering module * to remove the dst address from the filtering database. * Packets coming from that address will no longer be * filtered to remove duplicates. */ if (ipst->ips_ip_cgtp_filter_ops != NULL) { err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( ipst->ips_netstack->netstack_stackid, ire->ire_addr, ire->ire_gateway_addr); } ip_cgtp_bcast_delete(ire, ipst); } ipif = ire->ire_ipif; if (ipif != NULL) ipif_remove_ire(ipif, ire); if (ioctl_msg) ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); ire_delete(ire); ire_refrele(ire); return (err); } /* * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. */ /* ARGSUSED */ int ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) { ipaddr_t dst_addr; ipaddr_t gw_addr; ipaddr_t mask; int error = 0; mblk_t *mp1; struct rtentry *rt; ipif_t *ipif = NULL; ip_stack_t *ipst; ASSERT(q->q_next == NULL); ipst = CONNQ_TO_IPST(q); ip1dbg(("ip_siocaddrt:")); /* Existence of mp1 verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; rt = (struct rtentry *)mp1->b_rptr; dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; /* * If the RTF_HOST flag is on, this is a request to assign a gateway * to a particular host address. In this case, we set the netmask to * all ones for the particular destination address. Otherwise, * determine the netmask to be used based on dst_addr and the interfaces * in use. */ if (rt->rt_flags & RTF_HOST) { mask = IP_HOST_MASK; } else { /* * Note that ip_subnet_mask returns a zero mask in the case of * default (an all-zeroes address). */ mask = ip_subnet_mask(dst_addr, &ipif, ipst); } error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); if (ipif != NULL) ipif_refrele(ipif); return (error); } /* * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. */ /* ARGSUSED */ int ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) { ipaddr_t dst_addr; ipaddr_t gw_addr; ipaddr_t mask; int error; mblk_t *mp1; struct rtentry *rt; ipif_t *ipif = NULL; ip_stack_t *ipst; ASSERT(q->q_next == NULL); ipst = CONNQ_TO_IPST(q); ip1dbg(("ip_siocdelrt:")); /* Existence of mp1 verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; rt = (struct rtentry *)mp1->b_rptr; dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; /* * If the RTF_HOST flag is on, this is a request to delete a gateway * to a particular host address. In this case, we set the netmask to * all ones for the particular destination address. Otherwise, * determine the netmask to be used based on dst_addr and the interfaces * in use. */ if (rt->rt_flags & RTF_HOST) { mask = IP_HOST_MASK; } else { /* * Note that ip_subnet_mask returns a zero mask in the case of * default (an all-zeroes address). */ mask = ip_subnet_mask(dst_addr, &ipif, ipst); } error = ip_rt_delete(dst_addr, mask, gw_addr, RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, mp, ip_process_ioctl, ipst); if (ipif != NULL) ipif_refrele(ipif); return (error); } /* * Enqueue the mp onto the ipsq, chained by b_next. * b_prev stores the function to be executed later, and b_queue the queue * where this mp originated. */ void ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, ill_t *pending_ill) { conn_t *connp; ipxop_t *ipx = ipsq->ipsq_xop; ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); ASSERT(MUTEX_HELD(&ipx->ipx_lock)); ASSERT(func != NULL); mp->b_queue = q; mp->b_prev = (void *)func; mp->b_next = NULL; switch (type) { case CUR_OP: if (ipx->ipx_mptail != NULL) { ASSERT(ipx->ipx_mphead != NULL); ipx->ipx_mptail->b_next = mp; } else { ASSERT(ipx->ipx_mphead == NULL); ipx->ipx_mphead = mp; } ipx->ipx_mptail = mp; break; case NEW_OP: if (ipsq->ipsq_xopq_mptail != NULL) { ASSERT(ipsq->ipsq_xopq_mphead != NULL); ipsq->ipsq_xopq_mptail->b_next = mp; } else { ASSERT(ipsq->ipsq_xopq_mphead == NULL); ipsq->ipsq_xopq_mphead = mp; } ipsq->ipsq_xopq_mptail = mp; ipx->ipx_ipsq_queued = B_TRUE; break; case SWITCH_OP: ASSERT(ipsq->ipsq_swxop != NULL); /* only one switch operation is currently allowed */ ASSERT(ipsq->ipsq_switch_mp == NULL); ipsq->ipsq_switch_mp = mp; ipx->ipx_ipsq_queued = B_TRUE; break; default: cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); } if (CONN_Q(q) && pending_ill != NULL) { connp = Q_TO_CONN(q); ASSERT(MUTEX_HELD(&connp->conn_lock)); connp->conn_oper_pending_ill = pending_ill; } } /* * Dequeue the next message that requested exclusive access to this IPSQ's * xop. Specifically: * * 1. If we're still processing the current operation on `ipsq', then * dequeue the next message for the operation (from ipx_mphead), or * return NULL if there are no queued messages for the operation. * These messages are queued via CUR_OP to qwriter_ip() and friends. * * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is * not set) see if the ipsq has requested an xop switch. If so, switch * `ipsq' to a different xop. Xop switches only happen when joining or * leaving IPMP groups and require a careful dance -- see the comments * in-line below for details. If we're leaving a group xop or if we're * joining a group xop and become writer on it, then we proceed to (3). * Otherwise, we return NULL and exit the xop. * * 3. For each IPSQ in the xop, return any switch operation stored on * ipsq_switch_mp (set via SWITCH_OP); these must be processed before * any other messages queued on the IPSQ. Otherwise, dequeue the next * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. * Note that if the phyint tied to `ipsq' is not using IPMP there will * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for * each phyint in the group, including the IPMP meta-interface phyint. */ static mblk_t * ipsq_dq(ipsq_t *ipsq) { ill_t *illv4, *illv6; mblk_t *mp; ipsq_t *xopipsq; ipsq_t *leftipsq = NULL; ipxop_t *ipx; phyint_t *phyi = ipsq->ipsq_phyint; ip_stack_t *ipst = ipsq->ipsq_ipst; boolean_t emptied = B_FALSE; /* * Grab all the locks we need in the defined order (ill_g_lock -> * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. */ rw_enter(&ipst->ips_ill_g_lock, ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); mutex_enter(&ipsq->ipsq_lock); ipx = ipsq->ipsq_xop; mutex_enter(&ipx->ipx_lock); /* * Dequeue the next message associated with the current exclusive * operation, if any. */ if ((mp = ipx->ipx_mphead) != NULL) { ipx->ipx_mphead = mp->b_next; if (ipx->ipx_mphead == NULL) ipx->ipx_mptail = NULL; mp->b_next = (void *)ipsq; goto out; } if (ipx->ipx_current_ipif != NULL) goto empty; if (ipsq->ipsq_swxop != NULL) { /* * The exclusive operation that is now being completed has * requested a switch to a different xop. This happens * when an interface joins or leaves an IPMP group. Joins * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb * (phyint_free()), or interface plumb for an ill type * not in the IPMP group (ip_rput_dlpi_writer()). * * Xop switches are not allowed on the IPMP meta-interface. */ ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { /* * We're switching back to our own xop, so we have two * xop's to drain/exit: our own, and the group xop * that we are leaving. * * First, pull ourselves out of the group ipsq list. * This is safe since we're writer on ill_g_lock. */ ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); xopipsq = ipx->ipx_ipsq; while (xopipsq->ipsq_next != ipsq) xopipsq = xopipsq->ipsq_next; xopipsq->ipsq_next = ipsq->ipsq_next; ipsq->ipsq_next = ipsq; ipsq->ipsq_xop = ipsq->ipsq_swxop; ipsq->ipsq_swxop = NULL; /* * Second, prepare to exit the group xop. The actual * ipsq_exit() is done at the end of this function * since we cannot hold any locks across ipsq_exit(). * Note that although we drop the group's ipx_lock, no * threads can proceed since we're still ipx_writer. */ leftipsq = xopipsq; mutex_exit(&ipx->ipx_lock); /* * Third, set ipx to point to our own xop (which was * inactive and therefore can be entered). */ ipx = ipsq->ipsq_xop; mutex_enter(&ipx->ipx_lock); ASSERT(ipx->ipx_writer == NULL); ASSERT(ipx->ipx_current_ipif == NULL); } else { /* * We're switching from our own xop to a group xop. * The requestor of the switch must ensure that the * group xop cannot go away (e.g. by ensuring the * phyint associated with the xop cannot go away). * * If we can become writer on our new xop, then we'll * do the drain. Otherwise, the current writer of our * new xop will do the drain when it exits. * * First, splice ourselves into the group IPSQ list. * This is safe since we're writer on ill_g_lock. */ ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); xopipsq = ipsq->ipsq_swxop->ipx_ipsq; while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) xopipsq = xopipsq->ipsq_next; xopipsq->ipsq_next = ipsq; ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; ipsq->ipsq_xop = ipsq->ipsq_swxop; ipsq->ipsq_swxop = NULL; /* * Second, exit our own xop, since it's now unused. * This is safe since we've got the only reference. */ ASSERT(ipx->ipx_writer == curthread); ipx->ipx_writer = NULL; VERIFY(--ipx->ipx_reentry_cnt == 0); ipx->ipx_ipsq_queued = B_FALSE; mutex_exit(&ipx->ipx_lock); /* * Third, set ipx to point to our new xop, and check * if we can become writer on it. If we cannot, then * the current writer will drain the IPSQ group when * it exits. Our ipsq_xop is guaranteed to be stable * because we're still holding ipsq_lock. */ ipx = ipsq->ipsq_xop; mutex_enter(&ipx->ipx_lock); if (ipx->ipx_writer != NULL || ipx->ipx_current_ipif != NULL) { goto out; } } /* * Fourth, become writer on our new ipx before we continue * with the drain. Note that we never dropped ipsq_lock * above, so no other thread could've raced with us to * become writer first. Also, we're holding ipx_lock, so * no other thread can examine the ipx right now. */ ASSERT(ipx->ipx_current_ipif == NULL); ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); VERIFY(ipx->ipx_reentry_cnt++ == 0); ipx->ipx_writer = curthread; ipx->ipx_forced = B_FALSE; #ifdef DEBUG ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); #endif } xopipsq = ipsq; do { /* * So that other operations operate on a consistent and * complete phyint, a switch message on an IPSQ must be * handled prior to any other operations on that IPSQ. */ if ((mp = xopipsq->ipsq_switch_mp) != NULL) { xopipsq->ipsq_switch_mp = NULL; ASSERT(mp->b_next == NULL); mp->b_next = (void *)xopipsq; goto out; } if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { xopipsq->ipsq_xopq_mphead = mp->b_next; if (xopipsq->ipsq_xopq_mphead == NULL) xopipsq->ipsq_xopq_mptail = NULL; mp->b_next = (void *)xopipsq; goto out; } } while ((xopipsq = xopipsq->ipsq_next) != ipsq); empty: /* * There are no messages. Further, we are holding ipx_lock, hence no * new messages can end up on any IPSQ in the xop. */ ipx->ipx_writer = NULL; ipx->ipx_forced = B_FALSE; VERIFY(--ipx->ipx_reentry_cnt == 0); ipx->ipx_ipsq_queued = B_FALSE; emptied = B_TRUE; #ifdef DEBUG ipx->ipx_depth = 0; #endif out: mutex_exit(&ipx->ipx_lock); mutex_exit(&ipsq->ipsq_lock); /* * If we completely emptied the xop, then wake up any threads waiting * to enter any of the IPSQ's associated with it. */ if (emptied) { xopipsq = ipsq; do { if ((phyi = xopipsq->ipsq_phyint) == NULL) continue; illv4 = phyi->phyint_illv4; illv6 = phyi->phyint_illv6; GRAB_ILL_LOCKS(illv4, illv6); if (illv4 != NULL) cv_broadcast(&illv4->ill_cv); if (illv6 != NULL) cv_broadcast(&illv6->ill_cv); RELEASE_ILL_LOCKS(illv4, illv6); } while ((xopipsq = xopipsq->ipsq_next) != ipsq); } rw_exit(&ipst->ips_ill_g_lock); /* * Now that all locks are dropped, exit the IPSQ we left. */ if (leftipsq != NULL) ipsq_exit(leftipsq); return (mp); } /* * Enter the ipsq corresponding to ill, by waiting synchronously till * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq * will have to drain completely before ipsq_enter returns success. * ipx_current_ipif will be set if some exclusive op is in progress, * and the ipsq_exit logic will start the next enqueued op after * completion of the current op. If 'force' is used, we don't wait * for the enqueued ops. This is needed when a conn_close wants to * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb * of an ill can also use this option. But we dont' use it currently. */ #define ENTER_SQ_WAIT_TICKS 100 boolean_t ipsq_enter(ill_t *ill, boolean_t force, int type) { ipsq_t *ipsq; ipxop_t *ipx; boolean_t waited_enough = B_FALSE; /* * Note that the relationship between ill and ipsq is fixed as long as * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the * relationship between the IPSQ and xop cannot change. However, * since we cannot hold ipsq_lock across the cv_wait(), it may change * while we're waiting. We wait on ill_cv and rely on ipsq_exit() * waking up all ills in the xop when it becomes available. */ mutex_enter(&ill->ill_lock); for (;;) { if (ill->ill_state_flags & ILL_CONDEMNED) { mutex_exit(&ill->ill_lock); return (B_FALSE); } ipsq = ill->ill_phyint->phyint_ipsq; mutex_enter(&ipsq->ipsq_lock); ipx = ipsq->ipsq_xop; mutex_enter(&ipx->ipx_lock); if (ipx->ipx_writer == NULL && (type == CUR_OP || ipx->ipx_current_ipif == NULL || waited_enough)) break; if (!force || ipx->ipx_writer != NULL) { mutex_exit(&ipx->ipx_lock); mutex_exit(&ipsq->ipsq_lock); cv_wait(&ill->ill_cv, &ill->ill_lock); } else { mutex_exit(&ipx->ipx_lock); mutex_exit(&ipsq->ipsq_lock); (void) cv_timedwait(&ill->ill_cv, &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS); waited_enough = B_TRUE; } } ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); ASSERT(ipx->ipx_reentry_cnt == 0); ipx->ipx_writer = curthread; ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); ipx->ipx_reentry_cnt++; #ifdef DEBUG ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); #endif mutex_exit(&ipx->ipx_lock); mutex_exit(&ipsq->ipsq_lock); mutex_exit(&ill->ill_lock); return (B_TRUE); } boolean_t ill_perim_enter(ill_t *ill) { return (ipsq_enter(ill, B_FALSE, CUR_OP)); } void ill_perim_exit(ill_t *ill) { ipsq_exit(ill->ill_phyint->phyint_ipsq); } /* * The ipsq_t (ipsq) is the synchronization data structure used to serialize * certain critical operations like plumbing (i.e. most set ioctls), multicast * joins, igmp/mld timers, etc. There is one ipsq per phyint. The ipsq * serializes exclusive ioctls issued by applications on a per ipsq basis in * ipsq_xopq_mphead. It also protects against multiple threads executing in * the ipsq. Responses from the driver pertain to the current ioctl (say a * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing * up the interface) and are enqueued in ipx_mphead. * * If a thread does not want to reenter the ipsq when it is already writer, * it must make sure that the specified reentry point to be called later * when the ipsq is empty, nor any code path starting from the specified reentry * point must never ever try to enter the ipsq again. Otherwise it can lead * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. * When the thread that is currently exclusive finishes, it (ipsq_exit) * dequeues the requests waiting to become exclusive in ipx_mphead and calls * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next * ioctl if the current ioctl has completed. If the current ioctl is still * in progress it simply returns. The current ioctl could be waiting for * a response from another module (arp or the driver or could be waiting for * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the * execution of the ioctl and ipsq_exit does not start the next ioctl unless * ipx_current_ipif is NULL which happens only once the ioctl is complete and * all associated DLPI operations have completed. */ /* * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ * on success, or NULL on failure. The caller ensures ipif/ill is valid by * refholding it as necessary. If the IPSQ cannot be entered and `func' is * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ * can be entered. If `func' is NULL, then `q' and `mp' are ignored. */ ipsq_t * ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, boolean_t reentry_ok) { ipsq_t *ipsq; ipxop_t *ipx; /* Only 1 of ipif or ill can be specified */ ASSERT((ipif != NULL) ^ (ill != NULL)); if (ipif != NULL) ill = ipif->ipif_ill; /* * lock ordering: conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. * ipx of an ipsq can't change when ipsq_lock is held. */ GRAB_CONN_LOCK(q); mutex_enter(&ill->ill_lock); ipsq = ill->ill_phyint->phyint_ipsq; mutex_enter(&ipsq->ipsq_lock); ipx = ipsq->ipsq_xop; mutex_enter(&ipx->ipx_lock); /* * 1. Enter the ipsq if we are already writer and reentry is ok. * (Note: If the caller does not specify reentry_ok then neither * 'func' nor any of its callees must ever attempt to enter the ipsq * again. Otherwise it can lead to an infinite loop * 2. Enter the ipsq if there is no current writer and this attempted * entry is part of the current operation * 3. Enter the ipsq if there is no current writer and this is a new * operation and the operation queue is empty and there is no * operation currently in progress */ if ((ipx->ipx_writer == curthread && reentry_ok) || (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL)))) { /* Success. */ ipx->ipx_reentry_cnt++; ipx->ipx_writer = curthread; ipx->ipx_forced = B_FALSE; mutex_exit(&ipx->ipx_lock); mutex_exit(&ipsq->ipsq_lock); mutex_exit(&ill->ill_lock); RELEASE_CONN_LOCK(q); #ifdef DEBUG ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); #endif return (ipsq); } if (func != NULL) ipsq_enq(ipsq, q, mp, func, type, ill); mutex_exit(&ipx->ipx_lock); mutex_exit(&ipsq->ipsq_lock); mutex_exit(&ill->ill_lock); RELEASE_CONN_LOCK(q); return (NULL); } /* * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures * ill is valid by refholding it if necessary; we will refrele. If the IPSQ * cannot be entered, the mp is queued for completion. */ void qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, boolean_t reentry_ok) { ipsq_t *ipsq; ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); /* * Drop the caller's refhold on the ill. This is safe since we either * entered the IPSQ (and thus are exclusive), or failed to enter the * IPSQ, in which case we return without accessing ill anymore. This * is needed because func needs to see the correct refcount. * e.g. removeif can work only then. */ ill_refrele(ill); if (ipsq != NULL) { (*func)(ipsq, q, mp, NULL); ipsq_exit(ipsq); } } /* * Exit the specified IPSQ. If this is the final exit on it then drain it * prior to exiting. Caller must be writer on the specified IPSQ. */ void ipsq_exit(ipsq_t *ipsq) { mblk_t *mp; ipsq_t *mp_ipsq; queue_t *q; phyint_t *phyi; ipsq_func_t func; ASSERT(IAM_WRITER_IPSQ(ipsq)); ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { ipsq->ipsq_xop->ipx_reentry_cnt--; return; } for (;;) { phyi = ipsq->ipsq_phyint; mp = ipsq_dq(ipsq); mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; /* * If we've changed to a new IPSQ, and the phyint associated * with the old one has gone away, free the old IPSQ. Note * that this cannot happen while the IPSQ is in a group. */ if (mp_ipsq != ipsq && phyi == NULL) { ASSERT(ipsq->ipsq_next == ipsq); ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); ipsq_delete(ipsq); } if (mp == NULL) break; q = mp->b_queue; func = (ipsq_func_t)mp->b_prev; ipsq = mp_ipsq; mp->b_next = mp->b_prev = NULL; mp->b_queue = NULL; /* * If 'q' is an conn queue, it is valid, since we did a * a refhold on the conn at the start of the ioctl. * If 'q' is an ill queue, it is valid, since close of an * ill will clean up its IPSQ. */ (*func)(ipsq, q, mp, NULL); } } /* * Start the current exclusive operation on `ipsq'; associate it with `ipif' * and `ioccmd'. */ void ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) { ill_t *ill = ipif->ipif_ill; ipxop_t *ipx = ipsq->ipsq_xop; ASSERT(IAM_WRITER_IPSQ(ipsq)); ASSERT(ipx->ipx_current_ipif == NULL); ASSERT(ipx->ipx_current_ioctl == 0); ipx->ipx_current_done = B_FALSE; ipx->ipx_current_ioctl = ioccmd; mutex_enter(&ipx->ipx_lock); ipx->ipx_current_ipif = ipif; mutex_exit(&ipx->ipx_lock); /* * Set IPIF_CHANGING on one or more ipifs associated with the * current exclusive operation. IPIF_CHANGING prevents any new * references to the ipif (so that the references will eventually * drop to zero) and also prevents any "get" operations (e.g., * SIOCGLIFFLAGS) from being able to access the ipif until the * operation has completed and the ipif is again in a stable state. * * For ioctls, IPIF_CHANGING is set on the ipif associated with the * ioctl. For internal operations (where ioccmd is zero), all ipifs * on the ill are marked with IPIF_CHANGING since it's unclear which * ipifs will be affected. * * Note that SIOCLIFREMOVEIF is a special case as it sets * IPIF_CONDEMNED internally after identifying the right ipif to * operate on. */ switch (ioccmd) { case SIOCLIFREMOVEIF: break; case 0: mutex_enter(&ill->ill_lock); ipif = ipif->ipif_ill->ill_ipif; for (; ipif != NULL; ipif = ipif->ipif_next) ipif->ipif_state_flags |= IPIF_CHANGING; mutex_exit(&ill->ill_lock); break; default: mutex_enter(&ill->ill_lock); ipif->ipif_state_flags |= IPIF_CHANGING; mutex_exit(&ill->ill_lock); } } /* * Finish the current exclusive operation on `ipsq'. Usually, this will allow * the next exclusive operation to begin once we ipsq_exit(). However, if * pending DLPI operations remain, then we will wait for the queue to drain * before allowing the next exclusive operation to begin. This ensures that * DLPI operations from one exclusive operation are never improperly processed * as part of a subsequent exclusive operation. */ void ipsq_current_finish(ipsq_t *ipsq) { ipxop_t *ipx = ipsq->ipsq_xop; t_uscalar_t dlpi_pending = DL_PRIM_INVAL; ipif_t *ipif = ipx->ipx_current_ipif; ASSERT(IAM_WRITER_IPSQ(ipsq)); /* * For SIOCLIFREMOVEIF, the ipif has been already been blown away * (but in that case, IPIF_CHANGING will already be clear and no * pending DLPI messages can remain). */ if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { ill_t *ill = ipif->ipif_ill; mutex_enter(&ill->ill_lock); dlpi_pending = ill->ill_dlpi_pending; if (ipx->ipx_current_ioctl == 0) { ipif = ill->ill_ipif; for (; ipif != NULL; ipif = ipif->ipif_next) ipif->ipif_state_flags &= ~IPIF_CHANGING; } else { ipif->ipif_state_flags &= ~IPIF_CHANGING; } mutex_exit(&ill->ill_lock); } ASSERT(!ipx->ipx_current_done); ipx->ipx_current_done = B_TRUE; ipx->ipx_current_ioctl = 0; if (dlpi_pending == DL_PRIM_INVAL) { mutex_enter(&ipx->ipx_lock); ipx->ipx_current_ipif = NULL; mutex_exit(&ipx->ipx_lock); } } /* * The ill is closing. Flush all messages on the ipsq that originated * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead * for this ill since ipsq_enter could not have entered until then. * New messages can't be queued since the CONDEMNED flag is set. */ static void ipsq_flush(ill_t *ill) { queue_t *q; mblk_t *prev; mblk_t *mp; mblk_t *mp_next; ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; ASSERT(IAM_WRITER_ILL(ill)); /* * Flush any messages sent up by the driver. */ mutex_enter(&ipx->ipx_lock); for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { mp_next = mp->b_next; q = mp->b_queue; if (q == ill->ill_rq || q == ill->ill_wq) { /* dequeue mp */ if (prev == NULL) ipx->ipx_mphead = mp->b_next; else prev->b_next = mp->b_next; if (ipx->ipx_mptail == mp) { ASSERT(mp_next == NULL); ipx->ipx_mptail = prev; } inet_freemsg(mp); } else { prev = mp; } } mutex_exit(&ipx->ipx_lock); (void) ipsq_pending_mp_cleanup(ill, NULL); ipsq_xopq_mp_cleanup(ill, NULL); ill_pending_mp_cleanup(ill); } /* * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, * refhold and return the associated ipif */ /* ARGSUSED */ int ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, cmd_info_t *ci, ipsq_func_t func) { boolean_t exists; struct iftun_req *ta; ipif_t *ipif; ill_t *ill; boolean_t isv6; mblk_t *mp1; int error; conn_t *connp; ip_stack_t *ipst; /* Existence verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; ta = (struct iftun_req *)mp1->b_rptr; /* * Null terminate the string to protect against buffer * overrun. String was generated by user code and may not * be trusted. */ ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; connp = Q_TO_CONN(q); isv6 = connp->conn_af_isv6; ipst = connp->conn_netstack->netstack_ip; /* Disallows implicit create */ ipif = ipif_lookup_on_name(ta->ifta_lifr_name, mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); if (ipif == NULL) return (error); if (ipif->ipif_id != 0) { /* * We really don't want to set/get tunnel parameters * on virtual tunnel interfaces. Only allow the * base tunnel to do these. */ ipif_refrele(ipif); return (EINVAL); } /* * Send down to tunnel mod for ioctl processing. * Will finish ioctl in ip_rput_other(). */ ill = ipif->ipif_ill; if (ill->ill_net_type == IRE_LOOPBACK) { ipif_refrele(ipif); return (EOPNOTSUPP); } if (ill->ill_wq == NULL) { ipif_refrele(ipif); return (ENXIO); } /* * Mark the ioctl as coming from an IPv6 interface for * tun's convenience. */ if (ill->ill_isv6) ta->ifta_flags |= 0x80000000; ci->ci_ipif = ipif; return (0); } /* * Parse an ifreq or lifreq struct coming down ioctls and refhold * and return the associated ipif. * Return value: * Non zero: An error has occurred. ci may not be filled out. * zero : ci is filled out with the ioctl cmd in ci.ci_name, and * a held ipif in ci.ci_ipif. */ int ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, cmd_info_t *ci, ipsq_func_t func) { char *name; struct ifreq *ifr; struct lifreq *lifr; ipif_t *ipif = NULL; ill_t *ill; conn_t *connp; boolean_t isv6; boolean_t exists; int err; mblk_t *mp1; zoneid_t zoneid; ip_stack_t *ipst; if (q->q_next != NULL) { ill = (ill_t *)q->q_ptr; isv6 = ill->ill_isv6; connp = NULL; zoneid = ALL_ZONES; ipst = ill->ill_ipst; } else { ill = NULL; connp = Q_TO_CONN(q); isv6 = connp->conn_af_isv6; zoneid = connp->conn_zoneid; if (zoneid == GLOBAL_ZONEID) { /* global zone can access ipifs in all zones */ zoneid = ALL_ZONES; } ipst = connp->conn_netstack->netstack_ip; } /* Has been checked in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; if (ipip->ipi_cmd_type == IF_CMD) { /* This a old style SIOC[GS]IF* command */ ifr = (struct ifreq *)mp1->b_rptr; /* * Null terminate the string to protect against buffer * overrun. String was generated by user code and may not * be trusted. */ ifr->ifr_name[IFNAMSIZ - 1] = '\0'; name = ifr->ifr_name; ci->ci_sin = (sin_t *)&ifr->ifr_addr; ci->ci_sin6 = NULL; ci->ci_lifr = (struct lifreq *)ifr; } else { /* This a new style SIOC[GS]LIF* command */ ASSERT(ipip->ipi_cmd_type == LIF_CMD); lifr = (struct lifreq *)mp1->b_rptr; /* * Null terminate the string to protect against buffer * overrun. String was generated by user code and may not * be trusted. */ lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; name = lifr->lifr_name; ci->ci_sin = (sin_t *)&lifr->lifr_addr; ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; ci->ci_lifr = lifr; } if (ipip->ipi_cmd == SIOCSLIFNAME) { /* * The ioctl will be failed if the ioctl comes down * an conn stream */ if (ill == NULL) { /* * Not an ill queue, return EINVAL same as the * old error code. */ return (ENXIO); } ipif = ill->ill_ipif; ipif_refhold(ipif); } else { ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, &exists, isv6, zoneid, (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, ipst); if (ipif == NULL) { if (err == EINPROGRESS) return (err); err = 0; /* Ensure we don't use it below */ } } /* * Old style [GS]IFCMD does not admit IPv6 ipif */ if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { ipif_refrele(ipif); return (ENXIO); } if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && name[0] == '\0') { /* * Handle a or a SIOC?IF* with a null name * during plumb (on the ill queue before the I_PLINK). */ ipif = ill->ill_ipif; ipif_refhold(ipif); } if (ipif == NULL) return (ENXIO); ci->ci_ipif = ipif; return (0); } /* * Return the total number of ipifs. */ static uint_t ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) { uint_t numifs = 0; ill_t *ill; ill_walk_context_t ctx; ipif_t *ipif; rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (IS_UNDER_IPMP(ill)) continue; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_zoneid == zoneid || ipif->ipif_zoneid == ALL_ZONES) numifs++; } } rw_exit(&ipst->ips_ill_g_lock); return (numifs); } /* * Return the total number of ipifs. */ static uint_t ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) { uint_t numifs = 0; ill_t *ill; ipif_t *ipif; ill_walk_context_t ctx; ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); rw_enter(&ipst->ips_ill_g_lock, RW_READER); if (family == AF_INET) ill = ILL_START_WALK_V4(&ctx, ipst); else if (family == AF_INET6) ill = ILL_START_WALK_V6(&ctx, ipst); else ill = ILL_START_WALK_ALL(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) continue; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if ((ipif->ipif_flags & IPIF_NOXMIT) && !(lifn_flags & LIFC_NOXMIT)) continue; if ((ipif->ipif_flags & IPIF_TEMPORARY) && !(lifn_flags & LIFC_TEMPORARY)) continue; if (((ipif->ipif_flags & (IPIF_NOXMIT|IPIF_NOLOCAL| IPIF_DEPRECATED)) || IS_LOOPBACK(ill) || !(ipif->ipif_flags & IPIF_UP)) && (lifn_flags & LIFC_EXTERNAL_SOURCE)) continue; if (zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES && (zoneid != GLOBAL_ZONEID || !(lifn_flags & LIFC_ALLZONES))) continue; numifs++; } } rw_exit(&ipst->ips_ill_g_lock); return (numifs); } uint_t ip_get_lifsrcofnum(ill_t *ill) { uint_t numifs = 0; ill_t *ill_head = ill; ip_stack_t *ipst = ill->ill_ipst; /* * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some * other thread may be trying to relink the ILLs in this usesrc group * and adjusting the ill_usesrc_grp_next pointers */ rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); if ((ill->ill_usesrc_ifindex == 0) && (ill->ill_usesrc_grp_next != NULL)) { for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); ill = ill->ill_usesrc_grp_next) numifs++; } rw_exit(&ipst->ips_ill_g_usesrc_lock); return (numifs); } /* Null values are passed in for ipif, sin, and ifreq */ /* ARGSUSED */ int ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { int *nump; conn_t *connp = Q_TO_CONN(q); ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ /* Existence of b_cont->b_cont checked in ip_wput_nondata */ nump = (int *)mp->b_cont->b_cont->b_rptr; *nump = ip_get_numifs(connp->conn_zoneid, connp->conn_netstack->netstack_ip); ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); return (0); } /* Null values are passed in for ipif, sin, and ifreq */ /* ARGSUSED */ int ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct lifnum *lifn; mblk_t *mp1; conn_t *connp = Q_TO_CONN(q); ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ /* Existence checked in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; lifn = (struct lifnum *)mp1->b_rptr; switch (lifn->lifn_family) { case AF_UNSPEC: case AF_INET: case AF_INET6: break; default: return (EAFNOSUPPORT); } lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, connp->conn_zoneid, connp->conn_netstack->netstack_ip); ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); return (0); } /* ARGSUSED */ int ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { STRUCT_HANDLE(ifconf, ifc); mblk_t *mp1; struct iocblk *iocp; struct ifreq *ifr; ill_walk_context_t ctx; ill_t *ill; ipif_t *ipif; struct sockaddr_in *sin; int32_t ifclen; zoneid_t zoneid; ip_stack_t *ipst = CONNQ_TO_IPST(q); ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ ip1dbg(("ip_sioctl_get_ifconf")); /* Existence verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; iocp = (struct iocblk *)mp->b_rptr; zoneid = Q_TO_CONN(q)->conn_zoneid; /* * The original SIOCGIFCONF passed in a struct ifconf which specified * the user buffer address and length into which the list of struct * ifreqs was to be copied. Since AT&T Streams does not seem to * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, * the SIOCGIFCONF operation was redefined to simply provide * a large output buffer into which we are supposed to jam the ifreq * array. The same ioctl command code was used, despite the fact that * both the applications and the kernel code had to change, thus making * it impossible to support both interfaces. * * For reasons not good enough to try to explain, the following * algorithm is used for deciding what to do with one of these: * If the IOCTL comes in as an I_STR, it is assumed to be of the new * form with the output buffer coming down as the continuation message. * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, * and we have to copy in the ifconf structure to find out how big the * output buffer is and where to copy out to. Sure no problem... * */ STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { int numifs = 0; size_t ifc_bufsize; /* * Must be (better be!) continuation of a TRANSPARENT * IOCTL. We just copied in the ifconf structure. */ STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, (struct ifconf *)mp1->b_rptr); /* * Allocate a buffer to hold requested information. * * If ifc_len is larger than what is needed, we only * allocate what we will use. * * If ifc_len is smaller than what is needed, return * EINVAL. * * XXX: the ill_t structure can hava 2 counters, for * v4 and v6 (not just ill_ipif_up_count) to store the * number of interfaces for a device, so we don't need * to count them here... */ numifs = ip_get_numifs(zoneid, ipst); ifclen = STRUCT_FGET(ifc, ifc_len); ifc_bufsize = numifs * sizeof (struct ifreq); if (ifc_bufsize > ifclen) { if (iocp->ioc_cmd == O_SIOCGIFCONF) { /* old behaviour */ return (EINVAL); } else { ifc_bufsize = ifclen; } } mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); if (mp1 == NULL) return (ENOMEM); mp1->b_wptr = mp1->b_rptr + ifc_bufsize; } bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); /* * the SIOCGIFCONF ioctl only knows about * IPv4 addresses, so don't try to tell * it about interfaces with IPv6-only * addresses. (Last parm 'isv6' is B_FALSE) */ ifr = (struct ifreq *)mp1->b_rptr; rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (IS_UNDER_IPMP(ill)) continue; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES) continue; if ((uchar_t *)&ifr[1] > mp1->b_wptr) { if (iocp->ioc_cmd == O_SIOCGIFCONF) { /* old behaviour */ rw_exit(&ipst->ips_ill_g_lock); return (EINVAL); } else { goto if_copydone; } } ipif_get_name(ipif, ifr->ifr_name, sizeof (ifr->ifr_name)); sin = (sin_t *)&ifr->ifr_addr; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_lcl_addr; ifr++; } } if_copydone: rw_exit(&ipst->ips_ill_g_lock); mp1->b_wptr = (uchar_t *)ifr; if (STRUCT_BUF(ifc) != NULL) { STRUCT_FSET(ifc, ifc_len, (int)((uchar_t *)ifr - mp1->b_rptr)); } return (0); } /* * Get the interfaces using the address hosted on the interface passed in, * as a source adddress */ /* ARGSUSED */ int ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { mblk_t *mp1; ill_t *ill, *ill_head; ipif_t *ipif, *orig_ipif; int numlifs = 0; size_t lifs_bufsize, lifsmaxlen; struct lifreq *lifr; struct iocblk *iocp = (struct iocblk *)mp->b_rptr; uint_t ifindex; zoneid_t zoneid; int err = 0; boolean_t isv6 = B_FALSE; struct sockaddr_in *sin; struct sockaddr_in6 *sin6; STRUCT_HANDLE(lifsrcof, lifs); ip_stack_t *ipst; ipst = CONNQ_TO_IPST(q); ASSERT(q->q_next == NULL); zoneid = Q_TO_CONN(q)->conn_zoneid; /* Existence verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; /* * Must be (better be!) continuation of a TRANSPARENT * IOCTL. We just copied in the lifsrcof structure. */ STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, (struct lifsrcof *)mp1->b_rptr); if (MBLKL(mp1) != STRUCT_SIZE(lifs)) return (EINVAL); ifindex = STRUCT_FGET(lifs, lifs_ifindex); isv6 = (Q_TO_CONN(q))->conn_af_isv6; ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); if (ipif == NULL) { ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", ifindex)); return (err); } /* Allocate a buffer to hold requested information */ numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); lifs_bufsize = numlifs * sizeof (struct lifreq); lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); /* The actual size needed is always returned in lifs_len */ STRUCT_FSET(lifs, lifs_len, lifs_bufsize); /* If the amount we need is more than what is passed in, abort */ if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { ipif_refrele(ipif); return (0); } mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); if (mp1 == NULL) { ipif_refrele(ipif); return (ENOMEM); } mp1->b_wptr = mp1->b_rptr + lifs_bufsize; bzero(mp1->b_rptr, lifs_bufsize); lifr = (struct lifreq *)mp1->b_rptr; ill = ill_head = ipif->ipif_ill; orig_ipif = ipif; /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ill->ill_usesrc_grp_next; /* start from next ill */ for (; (ill != NULL) && (ill != ill_head); ill = ill->ill_usesrc_grp_next) { if ((uchar_t *)&lifr[1] > mp1->b_wptr) break; ipif = ill->ill_ipif; ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); if (ipif->ipif_isv6) { sin6 = (sin6_t *)&lifr->lifr_addr; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipif->ipif_v6lcl_addr; lifr->lifr_addrlen = ip_mask_to_plen_v6( &ipif->ipif_v6net_mask); } else { sin = (sin_t *)&lifr->lifr_addr; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_lcl_addr; lifr->lifr_addrlen = ip_mask_to_plen( ipif->ipif_net_mask); } lifr++; } rw_exit(&ipst->ips_ill_g_usesrc_lock); rw_exit(&ipst->ips_ill_g_lock); ipif_refrele(orig_ipif); mp1->b_wptr = (uchar_t *)lifr; STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); return (0); } /* ARGSUSED */ int ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { mblk_t *mp1; int list; ill_t *ill; ipif_t *ipif; int flags; int numlifs = 0; size_t lifc_bufsize; struct lifreq *lifr; sa_family_t family; struct sockaddr_in *sin; struct sockaddr_in6 *sin6; ill_walk_context_t ctx; struct iocblk *iocp = (struct iocblk *)mp->b_rptr; int32_t lifclen; zoneid_t zoneid; STRUCT_HANDLE(lifconf, lifc); ip_stack_t *ipst = CONNQ_TO_IPST(q); ip1dbg(("ip_sioctl_get_lifconf")); ASSERT(q->q_next == NULL); zoneid = Q_TO_CONN(q)->conn_zoneid; /* Existence verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; /* * An extended version of SIOCGIFCONF that takes an * additional address family and flags field. * AF_UNSPEC retrieve both IPv4 and IPv6. * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT * interfaces are omitted. * Similarly, IPIF_TEMPORARY interfaces are omitted * unless LIFC_TEMPORARY is specified. * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE * has priority over LIFC_NOXMIT. */ STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) return (EINVAL); /* * Must be (better be!) continuation of a TRANSPARENT * IOCTL. We just copied in the lifconf structure. */ STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); family = STRUCT_FGET(lifc, lifc_family); flags = STRUCT_FGET(lifc, lifc_flags); switch (family) { case AF_UNSPEC: /* * walk all ILL's. */ list = MAX_G_HEADS; break; case AF_INET: /* * walk only IPV4 ILL's. */ list = IP_V4_G_HEAD; break; case AF_INET6: /* * walk only IPV6 ILL's. */ list = IP_V6_G_HEAD; break; default: return (EAFNOSUPPORT); } /* * Allocate a buffer to hold requested information. * * If lifc_len is larger than what is needed, we only * allocate what we will use. * * If lifc_len is smaller than what is needed, return * EINVAL. */ numlifs = ip_get_numlifs(family, flags, zoneid, ipst); lifc_bufsize = numlifs * sizeof (struct lifreq); lifclen = STRUCT_FGET(lifc, lifc_len); if (lifc_bufsize > lifclen) { if (iocp->ioc_cmd == O_SIOCGLIFCONF) return (EINVAL); else lifc_bufsize = lifclen; } mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); if (mp1 == NULL) return (ENOMEM); mp1->b_wptr = mp1->b_rptr + lifc_bufsize; bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); lifr = (struct lifreq *)mp1->b_rptr; rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ill_first(list, list, &ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) continue; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if ((ipif->ipif_flags & IPIF_NOXMIT) && !(flags & LIFC_NOXMIT)) continue; if ((ipif->ipif_flags & IPIF_TEMPORARY) && !(flags & LIFC_TEMPORARY)) continue; if (((ipif->ipif_flags & (IPIF_NOXMIT|IPIF_NOLOCAL| IPIF_DEPRECATED)) || IS_LOOPBACK(ill) || !(ipif->ipif_flags & IPIF_UP)) && (flags & LIFC_EXTERNAL_SOURCE)) continue; if (zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES && (zoneid != GLOBAL_ZONEID || !(flags & LIFC_ALLZONES))) continue; if ((uchar_t *)&lifr[1] > mp1->b_wptr) { if (iocp->ioc_cmd == O_SIOCGLIFCONF) { rw_exit(&ipst->ips_ill_g_lock); return (EINVAL); } else { goto lif_copydone; } } ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); lifr->lifr_type = ill->ill_type; if (ipif->ipif_isv6) { sin6 = (sin6_t *)&lifr->lifr_addr; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipif->ipif_v6lcl_addr; lifr->lifr_addrlen = ip_mask_to_plen_v6( &ipif->ipif_v6net_mask); } else { sin = (sin_t *)&lifr->lifr_addr; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_lcl_addr; lifr->lifr_addrlen = ip_mask_to_plen( ipif->ipif_net_mask); } lifr++; } } lif_copydone: rw_exit(&ipst->ips_ill_g_lock); mp1->b_wptr = (uchar_t *)lifr; if (STRUCT_BUF(lifc) != NULL) { STRUCT_FSET(lifc, lifc_len, (int)((uchar_t *)lifr - mp1->b_rptr)); } return (0); } static void ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) { ip6_asp_t *table; size_t table_size; mblk_t *data_mp; struct iocblk *iocp = (struct iocblk *)mp->b_rptr; ip_stack_t *ipst; if (q->q_next == NULL) ipst = CONNQ_TO_IPST(q); else ipst = ILLQ_TO_IPST(q); /* These two ioctls are I_STR only */ if (iocp->ioc_count == TRANSPARENT) { miocnak(q, mp, 0, EINVAL); return; } data_mp = mp->b_cont; if (data_mp == NULL) { /* The user passed us a NULL argument */ table = NULL; table_size = iocp->ioc_count; } else { /* * The user provided a table. The stream head * may have copied in the user data in chunks, * so make sure everything is pulled up * properly. */ if (MBLKL(data_mp) < iocp->ioc_count) { mblk_t *new_data_mp; if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { miocnak(q, mp, 0, ENOMEM); return; } freemsg(data_mp); data_mp = new_data_mp; mp->b_cont = data_mp; } table = (ip6_asp_t *)data_mp->b_rptr; table_size = iocp->ioc_count; } switch (iocp->ioc_cmd) { case SIOCGIP6ADDRPOLICY: iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); if (iocp->ioc_rval == -1) iocp->ioc_error = EINVAL; #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 else if (table != NULL && (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { ip6_asp_t *src = table; ip6_asp32_t *dst = (void *)table; int count = table_size / sizeof (ip6_asp_t); int i; /* * We need to do an in-place shrink of the array * to match the alignment attributes of the * 32-bit ABI looking at it. */ /* LINTED: logical expression always true: op "||" */ ASSERT(sizeof (*src) > sizeof (*dst)); for (i = 1; i < count; i++) bcopy(src + i, dst + i, sizeof (*dst)); } #endif break; case SIOCSIP6ADDRPOLICY: ASSERT(mp->b_prev == NULL); mp->b_prev = (void *)q; #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 /* * We pass in the datamodel here so that the ip6_asp_replace() * routine can handle converting from 32-bit to native formats * where necessary. * * A better way to handle this might be to convert the inbound * data structure here, and hang it off a new 'mp'; thus the * ip6_asp_replace() logic would always be dealing with native * format data structures.. * * (An even simpler way to handle these ioctls is to just * add a 32-bit trailing 'pad' field to the ip6_asp_t structure * and just recompile everything that depends on it.) */ #endif ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, iocp->ioc_flag & IOC_MODELS); return; } DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; qreply(q, mp); } static void ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) { mblk_t *data_mp; struct dstinforeq *dir; uint8_t *end, *cur; in6_addr_t *daddr, *saddr; ipaddr_t v4daddr; ire_t *ire; char *slabel, *dlabel; boolean_t isipv4; int match_ire; ill_t *dst_ill; ipif_t *src_ipif, *ire_ipif; struct iocblk *iocp = (struct iocblk *)mp->b_rptr; zoneid_t zoneid; ip_stack_t *ipst = CONNQ_TO_IPST(q); ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ zoneid = Q_TO_CONN(q)->conn_zoneid; /* * This ioctl is I_STR only, and must have a * data mblk following the M_IOCTL mblk. */ data_mp = mp->b_cont; if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { miocnak(q, mp, 0, EINVAL); return; } if (MBLKL(data_mp) < iocp->ioc_count) { mblk_t *new_data_mp; if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { miocnak(q, mp, 0, ENOMEM); return; } freemsg(data_mp); data_mp = new_data_mp; mp->b_cont = data_mp; } match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; for (cur = data_mp->b_rptr, end = data_mp->b_wptr; end - cur >= sizeof (struct dstinforeq); cur += sizeof (struct dstinforeq)) { dir = (struct dstinforeq *)cur; daddr = &dir->dir_daddr; saddr = &dir->dir_saddr; /* * ip_addr_scope_v6() and ip6_asp_lookup() handle * v4 mapped addresses; ire_ftable_lookup[_v6]() * and ipif_select_source[_v6]() do not. */ dir->dir_dscope = ip_addr_scope_v6(daddr); dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); if (isipv4) { IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); ire = ire_ftable_lookup(v4daddr, NULL, NULL, 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); } else { ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); } if (ire == NULL) { dir->dir_dreachable = 0; /* move on to next dst addr */ continue; } dir->dir_dreachable = 1; ire_ipif = ire->ire_ipif; if (ire_ipif == NULL) goto next_dst; /* * We expect to get back an interface ire or a * gateway ire cache entry. For both types, the * output interface is ire_ipif->ipif_ill. */ dst_ill = ire_ipif->ipif_ill; dir->dir_dmactype = dst_ill->ill_mactype; if (isipv4) { src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); } else { src_ipif = ipif_select_source_v6(dst_ill, daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid); } if (src_ipif == NULL) goto next_dst; *saddr = src_ipif->ipif_v6lcl_addr; dir->dir_sscope = ip_addr_scope_v6(saddr); slabel = ip6_asp_lookup(saddr, NULL, ipst); dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); dir->dir_sdeprecated = (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; ipif_refrele(src_ipif); next_dst: ire_refrele(ire); } miocack(q, mp, iocp->ioc_count, 0); } /* * Check if this is an address assigned to this machine. * Skips interfaces that are down by using ire checks. * Translates mapped addresses to v4 addresses and then * treats them as such, returning true if the v4 address * associated with this mapped address is configured. * Note: Applications will have to be careful what they do * with the response; use of mapped addresses limits * what can be done with the socket, especially with * respect to socket options and ioctls - neither IPv4 * options nor IPv6 sticky options/ancillary data options * may be used. */ /* ARGSUSED */ int ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) { struct sioc_addrreq *sia; sin_t *sin; ire_t *ire; mblk_t *mp1; zoneid_t zoneid; ip_stack_t *ipst; ip1dbg(("ip_sioctl_tmyaddr")); ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ zoneid = Q_TO_CONN(q)->conn_zoneid; ipst = CONNQ_TO_IPST(q); /* Existence verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; sia = (struct sioc_addrreq *)mp1->b_rptr; sin = (sin_t *)&sia->sa_addr; switch (sin->sin_family) { case AF_INET6: { sin6_t *sin6 = (sin6_t *)sin; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { ipaddr_t v4_addr; IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4_addr); ire = ire_ctable_lookup(v4_addr, 0, IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); } else { in6_addr_t v6addr; v6addr = sin6->sin6_addr; ire = ire_ctable_lookup_v6(&v6addr, 0, IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); } break; } case AF_INET: { ipaddr_t v4addr; v4addr = sin->sin_addr.s_addr; ire = ire_ctable_lookup(v4addr, 0, IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); break; } default: return (EAFNOSUPPORT); } if (ire != NULL) { sia->sa_res = 1; ire_refrele(ire); } else { sia->sa_res = 0; } return (0); } /* * Check if this is an address assigned on-link i.e. neighbor, * and makes sure it's reachable from the current zone. * Returns true for my addresses as well. * Translates mapped addresses to v4 addresses and then * treats them as such, returning true if the v4 address * associated with this mapped address is configured. * Note: Applications will have to be careful what they do * with the response; use of mapped addresses limits * what can be done with the socket, especially with * respect to socket options and ioctls - neither IPv4 * options nor IPv6 sticky options/ancillary data options * may be used. */ /* ARGSUSED */ int ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) { struct sioc_addrreq *sia; sin_t *sin; mblk_t *mp1; ire_t *ire = NULL; zoneid_t zoneid; ip_stack_t *ipst; ip1dbg(("ip_sioctl_tonlink")); ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ zoneid = Q_TO_CONN(q)->conn_zoneid; ipst = CONNQ_TO_IPST(q); /* Existence verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; sia = (struct sioc_addrreq *)mp1->b_rptr; sin = (sin_t *)&sia->sa_addr; /* * Match addresses with a zero gateway field to avoid * routes going through a router. * Exclude broadcast and multicast addresses. */ switch (sin->sin_family) { case AF_INET6: { sin6_t *sin6 = (sin6_t *)sin; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { ipaddr_t v4_addr; IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4_addr); if (!CLASSD(v4_addr)) { ire = ire_route_lookup(v4_addr, 0, 0, 0, NULL, NULL, zoneid, NULL, MATCH_IRE_GW, ipst); } } else { in6_addr_t v6addr; in6_addr_t v6gw; v6addr = sin6->sin6_addr; v6gw = ipv6_all_zeros; if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { ire = ire_route_lookup_v6(&v6addr, 0, &v6gw, 0, NULL, NULL, zoneid, NULL, MATCH_IRE_GW, ipst); } } break; } case AF_INET: { ipaddr_t v4addr; v4addr = sin->sin_addr.s_addr; if (!CLASSD(v4addr)) { ire = ire_route_lookup(v4addr, 0, 0, 0, NULL, NULL, zoneid, NULL, MATCH_IRE_GW, ipst); } break; } default: return (EAFNOSUPPORT); } sia->sa_res = 0; if (ire != NULL) { if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| IRE_LOCAL|IRE_LOOPBACK)) { sia->sa_res = 1; } ire_refrele(ire); } return (0); } /* * TBD: implement when kernel maintaines a list of site prefixes. */ /* ARGSUSED */ int ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { return (ENXIO); } /* ARGSUSED */ int ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) { ill_t *ill; mblk_t *mp1; conn_t *connp; boolean_t success; ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* ioctl comes down on an conn */ ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); connp = Q_TO_CONN(q); mp->b_datap->db_type = M_IOCTL; /* * Send down a copy. (copymsg does not copy b_next/b_prev). * The original mp contains contaminated b_next values due to 'mi', * which is needed to do the mi_copy_done. Unfortunately if we * send down the original mblk itself and if we are popped due to an * an unplumb before the response comes back from tunnel, * the streamhead (which does a freemsg) will see this contaminated * message and the assertion in freemsg about non-null b_next/b_prev * will panic a DEBUG kernel. */ mp1 = copymsg(mp); if (mp1 == NULL) return (ENOMEM); ill = ipif->ipif_ill; mutex_enter(&connp->conn_lock); mutex_enter(&ill->ill_lock); if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 0); } else { success = ill_pending_mp_add(ill, connp, mp); } mutex_exit(&ill->ill_lock); mutex_exit(&connp->conn_lock); if (success) { ip1dbg(("sending down tunparam request ")); putnext(ill->ill_wq, mp1); return (EINPROGRESS); } else { /* The conn has started closing */ freemsg(mp1); return (EINTR); } } /* * ARP IOCTLs. * How does IP get in the business of fronting ARP configuration/queries? * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) * are by tradition passed in through a datagram socket. That lands in IP. * As it happens, this is just as well since the interface is quite crude in * that it passes in no information about protocol or hardware types, or * interface association. After making the protocol assumption, IP is in * the position to look up the name of the ILL, which ARP will need, and * format a request that can be handled by ARP. The request is passed up * stream to ARP, and the original IOCTL is completed by IP when ARP passes * back a response. ARP supports its own set of more general IOCTLs, in * case anyone is interested. */ /* ARGSUSED */ int ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) { mblk_t *mp1; mblk_t *mp2; mblk_t *pending_mp; ipaddr_t ipaddr; area_t *area; struct iocblk *iocp; conn_t *connp; struct arpreq *ar; struct xarpreq *xar; int flags, alength; uchar_t *lladdr; ire_t *ire; ip_stack_t *ipst; ill_t *ill = ipif->ipif_ill; ill_t *proxy_ill = NULL; ipmp_arpent_t *entp = NULL; boolean_t if_arp_ioctl = B_FALSE; boolean_t proxyarp = B_FALSE; ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); connp = Q_TO_CONN(q); ipst = connp->conn_netstack->netstack_ip; if (ipip->ipi_cmd_type == XARP_CMD) { /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; ar = NULL; flags = xar->xarp_flags; lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); /* * Validate against user's link layer address length * input and name and addr length limits. */ alength = ill->ill_phys_addr_length; if (ipip->ipi_cmd == SIOCSXARP) { if (alength != xar->xarp_ha.sdl_alen || (alength + xar->xarp_ha.sdl_nlen > sizeof (xar->xarp_ha.sdl_data))) return (EINVAL); } } else { /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; xar = NULL; flags = ar->arp_flags; lladdr = (uchar_t *)ar->arp_ha.sa_data; /* * Theoretically, the sa_family could tell us what link * layer type this operation is trying to deal with. By * common usage AF_UNSPEC means ethernet. We'll assume * any attempt to use the SIOC?ARP ioctls is for ethernet, * for now. Our new SIOC*XARP ioctls can be used more * generally. * * If the underlying media happens to have a non 6 byte * address, arp module will fail set/get, but the del * operation will succeed. */ alength = 6; if ((ipip->ipi_cmd != SIOCDARP) && (alength != ill->ill_phys_addr_length)) { return (EINVAL); } } ipaddr = sin->sin_addr.s_addr; /* * IPMP ARP special handling: * * 1. Since ARP mappings must appear consistent across the group, * prohibit changing ARP mappings on the underlying interfaces. * * 2. Since ARP mappings for IPMP data addresses are maintained by * IP itself, prohibit changing them. * * 3. For proxy ARP, use a functioning hardware address in the group, * provided one exists. If one doesn't, just add the entry as-is; * ipmp_illgrp_refresh_arpent() will refresh it if things change. */ if (IS_UNDER_IPMP(ill)) { if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) return (EPERM); } if (IS_IPMP(ill)) { ipmp_illgrp_t *illg = ill->ill_grp; switch (ipip->ipi_cmd) { case SIOCSARP: case SIOCSXARP: proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); if (proxy_ill != NULL) { proxyarp = B_TRUE; if (!ipmp_ill_is_active(proxy_ill)) proxy_ill = ipmp_illgrp_next_ill(illg); if (proxy_ill != NULL) lladdr = proxy_ill->ill_phys_addr; } /* FALLTHRU */ case SIOCDARP: case SIOCDXARP: ire = ire_ctable_lookup(ipaddr, 0, IRE_LOCAL, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); if (ire != NULL) { ire_refrele(ire); return (EPERM); } } } /* * We are going to pass up to ARP a packet chain that looks * like: * * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK * * Get a copy of the original IOCTL mblk to head the chain, * to be sent up (in mp1). Also get another copy to store * in the ill_pending_mp list, for matching the response * when it comes back from ARP. */ mp1 = copyb(mp); pending_mp = copymsg(mp); if (mp1 == NULL || pending_mp == NULL) { if (mp1 != NULL) freeb(mp1); if (pending_mp != NULL) inet_freemsg(pending_mp); return (ENOMEM); } mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, (caddr_t)&ipaddr); if (mp2 == NULL) { freeb(mp1); inet_freemsg(pending_mp); return (ENOMEM); } /* Put together the chain. */ mp1->b_cont = mp2; mp1->b_datap->db_type = M_IOCTL; mp2->b_cont = mp; mp2->b_datap->db_type = M_DATA; iocp = (struct iocblk *)mp1->b_rptr; /* * An M_IOCDATA's payload (struct copyresp) is mostly the same as an * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a * cp_private field (or cp_rval on 32-bit systems) in place of the * ioc_count field; set ioc_count to be correct. */ iocp->ioc_count = MBLKL(mp1->b_cont); /* * Set the proper command in the ARP message. * Convert the SIOC{G|S|D}ARP calls into our * AR_ENTRY_xxx calls. */ area = (area_t *)mp2->b_rptr; switch (iocp->ioc_cmd) { case SIOCDARP: case SIOCDXARP: /* * We defer deleting the corresponding IRE until * we return from arp. */ area->area_cmd = AR_ENTRY_DELETE; area->area_proto_mask_offset = 0; break; case SIOCGARP: case SIOCGXARP: area->area_cmd = AR_ENTRY_SQUERY; area->area_proto_mask_offset = 0; break; case SIOCSARP: case SIOCSXARP: /* * Delete the corresponding ire to make sure IP will * pick up any change from arp. */ if (!if_arp_ioctl) { (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); } else { ipif_t *ipif = ipif_get_next_ipif(NULL, ill); if (ipif != NULL) { (void) ip_ire_clookup_and_delete(ipaddr, ipif, ipst); ipif_refrele(ipif); } } break; } iocp->ioc_cmd = area->area_cmd; /* * Fill in the rest of the ARP operation fields. */ area->area_hw_addr_length = alength; bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); /* Translate the flags. */ if (flags & ATF_PERM) area->area_flags |= ACE_F_PERMANENT; if (flags & ATF_PUBL) area->area_flags |= ACE_F_PUBLISH; if (flags & ATF_AUTHORITY) area->area_flags |= ACE_F_AUTHORITY; /* * If this is a permanent AR_ENTRY_ADD on the IPMP interface, track it * so that IP can update ARP as the active ills in the group change. */ if (IS_IPMP(ill) && area->area_cmd == AR_ENTRY_ADD && (area->area_flags & ACE_F_PERMANENT)) { entp = ipmp_illgrp_create_arpent(ill->ill_grp, mp2, proxyarp); /* * The second part of the conditional below handles a corner * case: if this is proxy ARP and the IPMP group has no active * interfaces, we can't send the request to ARP now since it * won't be able to build an ACE. So we return success and * notify ARP about the proxy ARP entry once an interface * becomes active. */ if (entp == NULL || (proxyarp && proxy_ill == NULL)) { mp2->b_cont = NULL; inet_freemsg(mp1); inet_freemsg(pending_mp); return (entp == NULL ? ENOMEM : 0); } } /* * Before sending 'mp' to ARP, we have to clear the b_next * and b_prev. Otherwise if STREAMS encounters such a message * in freemsg(), (because ARP can close any time) it can cause * a panic. But mi code needs the b_next and b_prev values of * mp->b_cont, to complete the ioctl. So we store it here * in pending_mp->bcont, and restore it in ip_sioctl_iocack() * when the response comes down from ARP. */ pending_mp->b_cont->b_next = mp->b_cont->b_next; pending_mp->b_cont->b_prev = mp->b_cont->b_prev; mp->b_cont->b_next = NULL; mp->b_cont->b_prev = NULL; mutex_enter(&connp->conn_lock); mutex_enter(&ill->ill_lock); /* conn has not yet started closing, hence this can't fail */ if (ipip->ipi_flags & IPI_WR) { VERIFY(ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), pending_mp, 0) != 0); } else { VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); } mutex_exit(&ill->ill_lock); mutex_exit(&connp->conn_lock); /* * Up to ARP it goes. The response will come back in ip_wput() as an * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. */ putnext(ill->ill_rq, mp1); /* * If we created an IPMP ARP entry, mark that we've notified ARP. */ if (entp != NULL) ipmp_illgrp_mark_arpent(ill->ill_grp, entp); return (EINPROGRESS); } /* * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify * the associated sin and refhold and return the associated ipif via `ci'. */ int ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, cmd_info_t *ci, ipsq_func_t func) { mblk_t *mp1; int err; sin_t *sin; conn_t *connp; ipif_t *ipif; ire_t *ire = NULL; ill_t *ill = NULL; boolean_t exists; ip_stack_t *ipst; struct arpreq *ar; struct xarpreq *xar; struct sockaddr_dl *sdl; /* ioctl comes down on a conn */ ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); connp = Q_TO_CONN(q); if (connp->conn_af_isv6) return (ENXIO); ipst = connp->conn_netstack->netstack_ip; /* Verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; if (ipip->ipi_cmd_type == XARP_CMD) { ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); xar = (struct xarpreq *)mp1->b_rptr; sin = (sin_t *)&xar->xarp_pa; sdl = &xar->xarp_ha; if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) return (ENXIO); if (sdl->sdl_nlen >= LIFNAMSIZ) return (EINVAL); } else { ASSERT(ipip->ipi_cmd_type == ARP_CMD); ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); ar = (struct arpreq *)mp1->b_rptr; sin = (sin_t *)&ar->arp_pa; } if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), mp, func, &err, ipst); if (ipif == NULL) return (err); if (ipif->ipif_id != 0) { ipif_refrele(ipif); return (ENXIO); } } else { /* * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen * of 0: use the IP address to find the ipif. If the IP * address is an IPMP test address, ire_ftable_lookup() will * find the wrong ill, so we first do an ipif_lookup_addr(). */ ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, CONNP_TO_WQ(connp), mp, func, &err, ipst); if (ipif == NULL) { ire = ire_ftable_lookup(sin->sin_addr.s_addr, 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, NULL, MATCH_IRE_TYPE, ipst); if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { if (ire != NULL) ire_refrele(ire); return (ENXIO); } ipif = ill->ill_ipif; ipif_refhold(ipif); ire_refrele(ire); } } if (ipif->ipif_net_type != IRE_IF_RESOLVER) { ipif_refrele(ipif); return (ENXIO); } ci->ci_sin = sin; ci->ci_ipif = ipif; return (0); } /* * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it * up and thus an ill can join that illgrp. * * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than * open()/close() primarily because close() is not allowed to fail or block * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent * state if I_UNLINK didn't occur. * * Note that for each plumb/unplumb operation, we may end up here more than * once because of the way ifconfig works. However, it's OK to link the same * illgrp more than once, or unlink an illgrp that's already unlinked. */ static int ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) { int err; ip_stack_t *ipst = ill->ill_ipst; ASSERT(IS_IPMP(ill)); ASSERT(IAM_WRITER_ILL(ill)); switch (ioccmd) { case I_LINK: return (ENOTSUP); case I_PLINK: rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); rw_exit(&ipst->ips_ipmp_lock); break; case I_PUNLINK: /* * Require all UP ipifs be brought down prior to unlinking the * illgrp so any associated IREs (and other state) is torched. */ if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) return (EBUSY); /* * NOTE: We hold ipmp_lock across the unlink to prevent a race * with an SIOCSLIFGROUPNAME request from an ill trying to * join this group. Specifically: ills trying to join grab * ipmp_lock and bump a "pending join" counter checked by * ipmp_illgrp_unlink_grp(). During the unlink no new pending * joins can occur (since we have ipmp_lock). Once we drop * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not * find the illgrp (since we unlinked it) and will return * EAFNOSUPPORT. This will then take them back through the * IPMP meta-interface plumbing logic in ifconfig, and thus * back through I_PLINK above. */ rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); err = ipmp_illgrp_unlink_grp(ill->ill_grp); rw_exit(&ipst->ips_ipmp_lock); return (err); default: break; } return (0); } /* * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also * atomically set/clear the muxids. Also complete the ioctl by acking or * naking it. Note that the code is structured such that the link type, * whether it's persistent or not, is treated equally. ifconfig(1M) and * its clones use the persistent link, while pppd(1M) and perhaps many * other daemons may use non-persistent link. When combined with some * ill_t states, linking and unlinking lower streams may be used as * indicators of dynamic re-plumbing events [see PSARC/1999/348]. */ /* ARGSUSED */ void ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) { mblk_t *mp1, *mp2; struct linkblk *li; struct ipmx_s *ipmxp; ill_t *ill; int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; int err = 0; boolean_t entered_ipsq = B_FALSE; boolean_t islink; ip_stack_t *ipst; if (CONN_Q(q)) ipst = CONNQ_TO_IPST(q); else ipst = ILLQ_TO_IPST(q); ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || ioccmd == I_LINK || ioccmd == I_UNLINK); islink = (ioccmd == I_PLINK || ioccmd == I_LINK); mp1 = mp->b_cont; /* This is the linkblk info */ li = (struct linkblk *)mp1->b_rptr; /* * ARP has added this special mblk, and the utility is asking us * to perform consistency checks, and also atomically set the * muxid. Ifconfig is an example. It achieves this by using * /dev/arp as the mux to plink the arp stream, and pushes arp on * to /dev/udp[6] stream for use as the mux when plinking the IP * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c * and other comments in this routine for more details. */ mp2 = mp1->b_cont; /* This is added by ARP */ /* * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than * ifconfig which didn't push ARP on top of the dummy mux, we won't * get the special mblk above. For backward compatibility, we * request ip_sioctl_plink_ipmod() to skip the consistency checks. * The utility will use SIOCSLIFMUXID to store the muxids. This is * not atomic, and can leave the streams unplumbable if the utility * is interrupted before it does the SIOCSLIFMUXID. */ if (mp2 == NULL) { err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); if (err == EINPROGRESS) return; goto done; } /* * This is an I_{P}LINK sent down by ifconfig through the ARP module; * ARP has appended this last mblk to tell us whether the lower stream * is an arp-dev stream or an IP module stream. */ ipmxp = (struct ipmx_s *)mp2->b_rptr; if (ipmxp->ipmx_arpdev_stream) { /* * The lower stream is the arp-dev stream. */ ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, q, mp, ip_sioctl_plink, &err, NULL, ipst); if (ill == NULL) { if (err == EINPROGRESS) return; err = EINVAL; goto done; } if (ipsq == NULL) { ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, NEW_OP, B_FALSE); if (ipsq == NULL) { ill_refrele(ill); return; } entered_ipsq = B_TRUE; } ASSERT(IAM_WRITER_ILL(ill)); ill_refrele(ill); /* * To ensure consistency between IP and ARP, the following * LIFO scheme is used in plink/punlink. (IP first, ARP last). * This is because the muxid's are stored in the IP stream on * the ill. * * I_{P}LINK: ifconfig plinks the IP stream before plinking * the ARP stream. On an arp-dev stream, IP checks that it is * not yet plinked, and it also checks that the corresponding * IP stream is already plinked. * * I_{P}UNLINK: ifconfig punlinks the ARP stream before * punlinking the IP stream. IP does not allow punlink of the * IP stream unless the arp stream has been punlinked. */ if ((islink && (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || (!islink && ill->ill_arp_muxid != li->l_index)) { err = EINVAL; goto done; } if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) goto done; ill->ill_arp_muxid = islink ? li->l_index : 0; } else { /* * The lower stream is probably an IP module stream. Do * consistency checking. */ err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); if (err == EINPROGRESS) return; } done: if (err == 0) miocack(q, mp, 0, 0); else miocnak(q, mp, 0, err); /* Conn was refheld in ip_sioctl_copyin_setup */ if (CONN_Q(q)) CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); if (entered_ipsq) ipsq_exit(ipsq); } /* * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP * module stream). If `doconsist' is set, then do the extended consistency * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. * Returns zero on success, EINPROGRESS if the operation is still pending, or * an error code on failure. */ static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, struct linkblk *li, boolean_t doconsist) { int err = 0; ill_t *ill; queue_t *ipwq, *dwq; const char *name; struct qinit *qinfo; boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); boolean_t entered_ipsq = B_FALSE; /* * Walk the lower stream to verify it's the IP module stream. * The IP module is identified by its name, wput function, * and non-NULL q_next. STREAMS ensures that the lower stream * (li->l_qbot) will not vanish until this ioctl completes. */ for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { qinfo = ipwq->q_qinfo; name = qinfo->qi_minfo->mi_idname; if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { break; } } /* * If this isn't an IP module stream, bail. */ if (ipwq == NULL) return (0); ill = ipwq->q_ptr; ASSERT(ill != NULL); if (ipsq == NULL) { ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, NEW_OP, B_FALSE); if (ipsq == NULL) return (EINPROGRESS); entered_ipsq = B_TRUE; } ASSERT(IAM_WRITER_ILL(ill)); if (doconsist) { /* * Consistency checking requires that I_{P}LINK occurs * prior to setting ill_ip_muxid, and that I_{P}UNLINK * occurs prior to clearing ill_arp_muxid. */ if ((islink && ill->ill_ip_muxid != 0) || (!islink && ill->ill_arp_muxid != 0)) { err = EINVAL; goto done; } } if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) goto done; /* * As part of I_{P}LINKing, stash the number of downstream modules and * the read queue of the module immediately below IP in the ill. * These are used during the capability negotiation below. */ ill->ill_lmod_rq = NULL; ill->ill_lmod_cnt = 0; if (islink && ((dwq = ipwq->q_next) != NULL)) { ill->ill_lmod_rq = RD(dwq); for (; dwq != NULL; dwq = dwq->q_next) ill->ill_lmod_cnt++; } if (doconsist) ill->ill_ip_muxid = islink ? li->l_index : 0; /* * Mark the ipsq busy until the capability operations initiated below * complete. The PLINK/UNLINK ioctl itself completes when our caller * returns, but the capability operation may complete asynchronously * much later. */ ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); /* * If there's at least one up ipif on this ill, then we're bound to * the underlying driver via DLPI. In that case, renegotiate * capabilities to account for any possible change in modules * interposed between IP and the driver. */ if (ill->ill_ipif_up_count > 0) { if (islink) ill_capability_probe(ill); else ill_capability_reset(ill, B_FALSE); } ipsq_current_finish(ipsq); done: if (entered_ipsq) ipsq_exit(ipsq); return (err); } /* * Search the ioctl command in the ioctl tables and return a pointer * to the ioctl command information. The ioctl command tables are * static and fully populated at compile time. */ ip_ioctl_cmd_t * ip_sioctl_lookup(int ioc_cmd) { int index; ip_ioctl_cmd_t *ipip; ip_ioctl_cmd_t *ipip_end; if (ioc_cmd == IPI_DONTCARE) return (NULL); /* * Do a 2 step search. First search the indexed table * based on the least significant byte of the ioctl cmd. * If we don't find a match, then search the misc table * serially. */ index = ioc_cmd & 0xFF; if (index < ip_ndx_ioctl_count) { ipip = &ip_ndx_ioctl_table[index]; if (ipip->ipi_cmd == ioc_cmd) { /* Found a match in the ndx table */ return (ipip); } } /* Search the misc table */ ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { if (ipip->ipi_cmd == ioc_cmd) /* Found a match in the misc table */ return (ipip); } return (NULL); } /* * Wrapper function for resuming deferred ioctl processing * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. */ /* ARGSUSED */ void ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) { ip_sioctl_copyin_setup(q, mp); } /* * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle * in either I_STR or TRANSPARENT form, using the mi_copy facility. * We establish here the size of the block to be copied in. mi_copyin * arranges for this to happen, an processing continues in ip_wput with * an M_IOCDATA message. */ void ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) { int copyin_size; struct iocblk *iocp = (struct iocblk *)mp->b_rptr; ip_ioctl_cmd_t *ipip; cred_t *cr; ip_stack_t *ipst; if (CONN_Q(q)) ipst = CONNQ_TO_IPST(q); else ipst = ILLQ_TO_IPST(q); ipip = ip_sioctl_lookup(iocp->ioc_cmd); if (ipip == NULL) { /* * The ioctl is not one we understand or own. * Pass it along to be processed down stream, * if this is a module instance of IP, else nak * the ioctl. */ if (q->q_next == NULL) { goto nak; } else { putnext(q, mp); return; } } /* * If this is deferred, then we will do all the checks when we * come back. */ if ((iocp->ioc_cmd == SIOCGDSTINFO || iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); return; } /* * Only allow a very small subset of IP ioctls on this stream if * IP is a module and not a driver. Allowing ioctls to be processed * in this case may cause assert failures or data corruption. * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few * ioctls allowed on an IP module stream, after which this stream * normally becomes a multiplexor (at which time the stream head * will fail all ioctls). */ if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { if (ipip->ipi_flags & IPI_PASS_DOWN) { /* * Pass common Streams ioctls which the IP * module does not own or consume along to * be processed down stream. */ putnext(q, mp); return; } else { goto nak; } } /* Make sure we have ioctl data to process. */ if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) goto nak; /* * Prefer dblk credential over ioctl credential; some synthesized * ioctls have kcred set because there's no way to crhold() * a credential in some contexts. (ioc_cr is not crfree() by * the framework; the caller of ioctl needs to hold the reference * for the duration of the call). */ cr = msg_getcred(mp, NULL); if (cr == NULL) cr = iocp->ioc_cr; /* Make sure normal users don't send down privileged ioctls */ if ((ipip->ipi_flags & IPI_PRIV) && (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { /* We checked the privilege earlier but log it here */ miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); return; } /* * The ioctl command tables can only encode fixed length * ioctl data. If the length is variable, the table will * encode the length as zero. Such special cases are handled * below in the switch. */ if (ipip->ipi_copyin_size != 0) { mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); return; } switch (iocp->ioc_cmd) { case O_SIOCGIFCONF: case SIOCGIFCONF: /* * This IOCTL is hilarious. See comments in * ip_sioctl_get_ifconf for the story. */ if (iocp->ioc_count == TRANSPARENT) copyin_size = SIZEOF_STRUCT(ifconf, iocp->ioc_flag); else copyin_size = iocp->ioc_count; mi_copyin(q, mp, NULL, copyin_size); return; case O_SIOCGLIFCONF: case SIOCGLIFCONF: copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); mi_copyin(q, mp, NULL, copyin_size); return; case SIOCGLIFSRCOF: copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); mi_copyin(q, mp, NULL, copyin_size); return; case SIOCGIP6ADDRPOLICY: ip_sioctl_ip6addrpolicy(q, mp); ip6_asp_table_refrele(ipst); return; case SIOCSIP6ADDRPOLICY: ip_sioctl_ip6addrpolicy(q, mp); return; case SIOCGDSTINFO: ip_sioctl_dstinfo(q, mp); ip6_asp_table_refrele(ipst); return; case I_PLINK: case I_PUNLINK: case I_LINK: case I_UNLINK: /* * We treat non-persistent link similarly as the persistent * link case, in terms of plumbing/unplumbing, as well as * dynamic re-plumbing events indicator. See comments * in ip_sioctl_plink() for more. * * Request can be enqueued in the 'ipsq' while waiting * to become exclusive. So bump up the conn ref. */ if (CONN_Q(q)) CONN_INC_REF(Q_TO_CONN(q)); ip_sioctl_plink(NULL, q, mp, NULL); return; case ND_GET: case ND_SET: /* * Use of the nd table requires holding the reader lock. * Modifying the nd table thru nd_load/nd_unload requires * the writer lock. */ rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { rw_exit(&ipst->ips_ip_g_nd_lock); if (iocp->ioc_error) iocp->ioc_count = 0; mp->b_datap->db_type = M_IOCACK; qreply(q, mp); return; } rw_exit(&ipst->ips_ip_g_nd_lock); /* * We don't understand this subioctl of ND_GET / ND_SET. * Maybe intended for some driver / module below us */ if (q->q_next) { putnext(q, mp); } else { iocp->ioc_error = ENOENT; mp->b_datap->db_type = M_IOCNAK; iocp->ioc_count = 0; qreply(q, mp); } return; case IP_IOCTL: ip_wput_ioctl(q, mp); return; default: cmn_err(CE_PANIC, "should not happen "); } nak: if (mp->b_cont != NULL) { freemsg(mp->b_cont); mp->b_cont = NULL; } iocp->ioc_error = EINVAL; mp->b_datap->db_type = M_IOCNAK; iocp->ioc_count = 0; qreply(q, mp); } /* ip_wput hands off ARP IOCTL responses to us */ /* ARGSUSED3 */ void ip_sioctl_iocack(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) { struct arpreq *ar; struct xarpreq *xar; area_t *area; mblk_t *area_mp; struct iocblk *iocp; mblk_t *orig_ioc_mp, *tmp; struct iocblk *orig_iocp; ill_t *ill; conn_t *connp = NULL; mblk_t *pending_mp; int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; int *flagsp; char *storage = NULL; sin_t *sin; ipaddr_t addr; int err; ip_stack_t *ipst; ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); ill = q->q_ptr; ASSERT(ill != NULL); ipst = ill->ill_ipst; /* * We should get back from ARP a packet chain that looks like: * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK */ if (!(area_mp = mp->b_cont) || (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || !(orig_ioc_mp = area_mp->b_cont) || !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { freemsg(mp); return; } orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; tmp = (orig_ioc_mp->b_cont)->b_cont; if ((orig_iocp->ioc_cmd == SIOCGXARP) || (orig_iocp->ioc_cmd == SIOCSXARP) || (orig_iocp->ioc_cmd == SIOCDXARP)) { x_arp_ioctl = B_TRUE; xar = (struct xarpreq *)tmp->b_rptr; sin = (sin_t *)&xar->xarp_pa; flagsp = &xar->xarp_flags; storage = xar->xarp_ha.sdl_data; if (xar->xarp_ha.sdl_nlen != 0) ifx_arp_ioctl = B_TRUE; } else { ar = (struct arpreq *)tmp->b_rptr; sin = (sin_t *)&ar->arp_pa; flagsp = &ar->arp_flags; storage = ar->arp_ha.sa_data; } iocp = (struct iocblk *)mp->b_rptr; /* * Find the pending message; if we're exclusive, it'll be on our IPSQ. * Otherwise, we can find it from our ioc_id. */ if (ipsq != NULL) pending_mp = ipsq_pending_mp_get(ipsq, &connp); else pending_mp = ill_pending_mp_get(ill, &connp, iocp->ioc_id); if (pending_mp == NULL) { ASSERT(connp == NULL); inet_freemsg(mp); return; } ASSERT(connp != NULL); q = CONNP_TO_WQ(connp); /* Uncouple the internally generated IOCTL from the original one */ area = (area_t *)area_mp->b_rptr; area_mp->b_cont = NULL; /* * Restore the b_next and b_prev used by mi code. This is needed * to complete the ioctl using mi* functions. We stored them in * the pending mp prior to sending the request to ARP. */ orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; inet_freemsg(pending_mp); /* * We're done if there was an error or if this is not an SIOCG{X}ARP * Catch the case where there is an IRE_CACHE by no entry in the * arp table. */ addr = sin->sin_addr.s_addr; if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { ire_t *ire; dl_unitdata_req_t *dlup; mblk_t *llmp; int addr_len; ill_t *ipsqill = NULL; if (ifx_arp_ioctl) { /* * There's no need to lookup the ill, since * we've already done that when we started * processing the ioctl and sent the message * to ARP on that ill. So use the ill that * is stored in q->q_ptr. */ ipsqill = ill; ire = ire_ctable_lookup(addr, 0, IRE_CACHE, ipsqill->ill_ipif, ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); } else { ire = ire_ctable_lookup(addr, 0, IRE_CACHE, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); if (ire != NULL) ipsqill = ire_to_ill(ire); } if ((x_arp_ioctl) && (ipsqill != NULL)) storage += ill_xarp_info(&xar->xarp_ha, ipsqill); if (ire != NULL) { /* * Since the ire obtained from cachetable is used for * mac addr copying below, treat an incomplete ire as if * as if we never found it. */ if (ire->ire_nce != NULL && ire->ire_nce->nce_state != ND_REACHABLE) { ire_refrele(ire); ire = NULL; ipsqill = NULL; goto errack; } *flagsp = ATF_INUSE; llmp = (ire->ire_nce != NULL ? ire->ire_nce->nce_res_mp : NULL); if (llmp != NULL && ipsqill != NULL) { uchar_t *macaddr; addr_len = ipsqill->ill_phys_addr_length; if (x_arp_ioctl && ((addr_len + ipsqill->ill_name_length) > sizeof (xar->xarp_ha.sdl_data))) { ire_refrele(ire); freemsg(mp); ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, ipsq); return; } *flagsp |= ATF_COM; dlup = (dl_unitdata_req_t *)llmp->b_rptr; if (ipsqill->ill_sap_length < 0) macaddr = llmp->b_rptr + dlup->dl_dest_addr_offset; else macaddr = llmp->b_rptr + dlup->dl_dest_addr_offset + ipsqill->ill_sap_length; /* * For SIOCGARP, MAC address length * validation has already been done * before the ioctl was issued to ARP to * allow it to progress only on 6 byte * addressable (ethernet like) media. Thus * the mac address copying can not overwrite * the sa_data area below. */ bcopy(macaddr, storage, addr_len); } /* Ditch the internal IOCTL. */ freemsg(mp); ire_refrele(ire); ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); return; } } /* * If this was a failed AR_ENTRY_ADD or a successful AR_ENTRY_DELETE * on the IPMP meta-interface, ensure any ARP entries added in * ip_sioctl_arp() are deleted. */ if (IS_IPMP(ill) && ((iocp->ioc_error != 0 && iocp->ioc_cmd == AR_ENTRY_ADD) || ((iocp->ioc_error == 0 && iocp->ioc_cmd == AR_ENTRY_DELETE)))) { ipmp_illgrp_t *illg = ill->ill_grp; ipmp_arpent_t *entp; if ((entp = ipmp_illgrp_lookup_arpent(illg, &addr)) != NULL) ipmp_illgrp_destroy_arpent(illg, entp); } /* * Delete the coresponding IRE_CACHE if any. * Reset the error if there was one (in case there was no entry * in arp.) */ if (iocp->ioc_cmd == AR_ENTRY_DELETE) { ipif_t *ipintf = NULL; if (ifx_arp_ioctl) { /* * There's no need to lookup the ill, since * we've already done that when we started * processing the ioctl and sent the message * to ARP on that ill. So use the ill that * is stored in q->q_ptr. */ ipintf = ill->ill_ipif; } if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { /* * The address in "addr" may be an entry for a * router. If that's true, then any off-net * IRE_CACHE entries that go through the router * with address "addr" must be clobbered. Use * ire_walk to achieve this goal. */ if (ifx_arp_ioctl) ire_walk_ill_v4(MATCH_IRE_ILL, 0, ire_delete_cache_gw, (char *)&addr, ill); else ire_walk_v4(ire_delete_cache_gw, (char *)&addr, ALL_ZONES, ipst); iocp->ioc_error = 0; } } errack: if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { err = iocp->ioc_error; freemsg(mp); ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, ipsq); return; } /* * Completion of an SIOCG{X}ARP. Translate the information from * the area_t into the struct {x}arpreq. */ if (x_arp_ioctl) { storage += ill_xarp_info(&xar->xarp_ha, ill); if ((ill->ill_phys_addr_length + ill->ill_name_length) > sizeof (xar->xarp_ha.sdl_data)) { freemsg(mp); ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, ipsq); return; } } *flagsp = ATF_INUSE; if (area->area_flags & ACE_F_PERMANENT) *flagsp |= ATF_PERM; if (area->area_flags & ACE_F_PUBLISH) *flagsp |= ATF_PUBL; if (area->area_flags & ACE_F_AUTHORITY) *flagsp |= ATF_AUTHORITY; if (area->area_hw_addr_length != 0) { *flagsp |= ATF_COM; /* * For SIOCGARP, MAC address length validation has * already been done before the ioctl was issued to ARP * to allow it to progress only on 6 byte addressable * (ethernet like) media. Thus the mac address copying * can not overwrite the sa_data area below. */ bcopy((char *)area + area->area_hw_addr_offset, storage, area->area_hw_addr_length); } /* Ditch the internal IOCTL. */ freemsg(mp); /* Complete the original. */ ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); } /* * Create a new logical interface. If ipif_id is zero (i.e. not a logical * interface) create the next available logical interface for this * physical interface. * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an * ipif with the specified name. * * If the address family is not AF_UNSPEC then set the address as well. * * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. * * Executed as a writer on the ill. * So no lock is needed to traverse the ipif chain, or examine the * phyint flags. */ /* ARGSUSED */ int ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) { mblk_t *mp1; struct lifreq *lifr; boolean_t isv6; boolean_t exists; char *name; char *endp; char *cp; int namelen; ipif_t *ipif; long id; ipsq_t *ipsq; ill_t *ill; sin_t *sin; int err = 0; boolean_t found_sep = B_FALSE; conn_t *connp; zoneid_t zoneid; ip_stack_t *ipst = CONNQ_TO_IPST(q); ASSERT(q->q_next == NULL); ip1dbg(("ip_sioctl_addif\n")); /* Existence of mp1 has been checked in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; /* * Null terminate the string to protect against buffer * overrun. String was generated by user code and may not * be trusted. */ lifr = (struct lifreq *)mp1->b_rptr; lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; name = lifr->lifr_name; ASSERT(CONN_Q(q)); connp = Q_TO_CONN(q); isv6 = connp->conn_af_isv6; zoneid = connp->conn_zoneid; namelen = mi_strlen(name); if (namelen == 0) return (EINVAL); exists = B_FALSE; if ((namelen + 1 == sizeof (ipif_loopback_name)) && (mi_strcmp(name, ipif_loopback_name) == 0)) { /* * Allow creating lo0 using SIOCLIFADDIF. * can't be any other writer thread. So can pass null below * for the last 4 args to ipif_lookup_name. */ ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); /* Prevent any further action */ if (ipif == NULL) { return (ENOBUFS); } else if (!exists) { /* We created the ipif now and as writer */ ipif_refrele(ipif); return (0); } else { ill = ipif->ipif_ill; ill_refhold(ill); ipif_refrele(ipif); } } else { /* Look for a colon in the name. */ endp = &name[namelen]; for (cp = endp; --cp > name; ) { if (*cp == IPIF_SEPARATOR_CHAR) { found_sep = B_TRUE; /* * Reject any non-decimal aliases for plumbing * of logical interfaces. Aliases with leading * zeroes are also rejected as they introduce * ambiguity in the naming of the interfaces. * Comparing with "0" takes care of all such * cases. */ if ((strncmp("0", cp+1, 1)) == 0) return (EINVAL); if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || id <= 0 || *endp != '\0') { return (EINVAL); } *cp = '\0'; break; } } ill = ill_lookup_on_name(name, B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); if (found_sep) *cp = IPIF_SEPARATOR_CHAR; if (ill == NULL) return (err); } ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, B_TRUE); /* * Release the refhold due to the lookup, now that we are excl * or we are just returning */ ill_refrele(ill); if (ipsq == NULL) return (EINPROGRESS); /* We are now exclusive on the IPSQ */ ASSERT(IAM_WRITER_ILL(ill)); if (found_sep) { /* Now see if there is an IPIF with this unit number. */ for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_id == id) { err = EEXIST; goto done; } } } /* * We use IRE_LOCAL for lo0:1 etc. for "receive only" use * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() * instead. */ if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, B_TRUE, B_TRUE)) == NULL) { err = ENOBUFS; goto done; } /* Return created name with ioctl */ (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, IPIF_SEPARATOR_CHAR, ipif->ipif_id); ip1dbg(("created %s\n", lifr->lifr_name)); /* Set address */ sin = (sin_t *)&lifr->lifr_addr; if (sin->sin_family != AF_UNSPEC) { err = ip_sioctl_addr(ipif, sin, q, mp, &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); } done: ipsq_exit(ipsq); return (err); } /* * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical * interface) delete it based on the IP address (on this physical interface). * Otherwise delete it based on the ipif_id. * Also, special handling to allow a removeif of lo0. */ /* ARGSUSED */ int ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) { conn_t *connp; ill_t *ill = ipif->ipif_ill; boolean_t success; ip_stack_t *ipst; ipst = CONNQ_TO_IPST(q); ASSERT(q->q_next == NULL); ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); connp = Q_TO_CONN(q); /* * Special case for unplumbing lo0 (the loopback physical interface). * If unplumbing lo0, the incoming address structure has been * initialized to all zeros. When unplumbing lo0, all its logical * interfaces must be removed too. * * Note that this interface may be called to remove a specific * loopback logical interface (eg, lo0:1). But in that case * ipif->ipif_id != 0 so that the code path for that case is the * same as any other interface (meaning it skips the code directly * below). */ if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { if (sin->sin_family == AF_UNSPEC && (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { /* * Mark it condemned. No new ref. will be made to ill. */ mutex_enter(&ill->ill_lock); ill->ill_state_flags |= ILL_CONDEMNED; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { ipif->ipif_state_flags |= IPIF_CONDEMNED; } mutex_exit(&ill->ill_lock); ipif = ill->ill_ipif; /* unplumb the loopback interface */ ill_delete(ill); mutex_enter(&connp->conn_lock); mutex_enter(&ill->ill_lock); /* Are any references to this ill active */ if (ill_is_freeable(ill)) { mutex_exit(&ill->ill_lock); mutex_exit(&connp->conn_lock); ill_delete_tail(ill); mi_free(ill); return (0); } success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, ILL_FREE); mutex_exit(&connp->conn_lock); mutex_exit(&ill->ill_lock); if (success) return (EINPROGRESS); else return (EINTR); } } if (ipif->ipif_id == 0) { ipsq_t *ipsq; /* Find based on address */ if (ipif->ipif_isv6) { sin6_t *sin6; if (sin->sin_family != AF_INET6) return (EAFNOSUPPORT); sin6 = (sin6_t *)sin; /* We are a writer, so we should be able to lookup */ ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, ipst); } else { if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); /* We are a writer, so we should be able to lookup */ ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, ipst); } if (ipif == NULL) { return (EADDRNOTAVAIL); } /* * It is possible for a user to send an SIOCLIFREMOVEIF with * lifr_name of the physical interface but with an ip address * lifr_addr of a logical interface plumbed over it. * So update ipx_current_ipif now that ipif points to the * correct one. */ ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; ipsq->ipsq_xop->ipx_current_ipif = ipif; /* This is a writer */ ipif_refrele(ipif); } /* * Can not delete instance zero since it is tied to the ill. */ if (ipif->ipif_id == 0) return (EBUSY); mutex_enter(&ill->ill_lock); ipif->ipif_state_flags |= IPIF_CONDEMNED; mutex_exit(&ill->ill_lock); ipif_free(ipif); mutex_enter(&connp->conn_lock); mutex_enter(&ill->ill_lock); /* Are any references to this ipif active */ if (ipif_is_freeable(ipif)) { mutex_exit(&ill->ill_lock); mutex_exit(&connp->conn_lock); ipif_non_duplicate(ipif); ipif_down_tail(ipif); ipif_free_tail(ipif); /* frees ipif */ return (0); } success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, IPIF_FREE); mutex_exit(&ill->ill_lock); mutex_exit(&connp->conn_lock); if (success) return (EINPROGRESS); else return (EINTR); } /* * Restart the removeif ioctl. The refcnt has gone down to 0. * The ipif is already condemned. So can't find it thru lookups. */ /* ARGSUSED */ int ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) { ill_t *ill = ipif->ipif_ill; ASSERT(IAM_WRITER_IPIF(ipif)); ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { ASSERT(ill->ill_state_flags & ILL_CONDEMNED); ill_delete_tail(ill); mi_free(ill); return (0); } ipif_non_duplicate(ipif); ipif_down_tail(ipif); ipif_free_tail(ipif); ILL_UNMARK_CHANGING(ill); return (0); } /* * Set the local interface address. * Allow an address of all zero when the interface is down. */ /* ARGSUSED */ int ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) { int err = 0; in6_addr_t v6addr; boolean_t need_up = B_FALSE; ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); if (ipif->ipif_isv6) { sin6_t *sin6; ill_t *ill; phyint_t *phyi; if (sin->sin_family != AF_INET6) return (EAFNOSUPPORT); sin6 = (sin6_t *)sin; v6addr = sin6->sin6_addr; ill = ipif->ipif_ill; phyi = ill->ill_phyint; /* * Enforce that true multicast interfaces have a link-local * address for logical unit 0. */ if (ipif->ipif_id == 0 && (ill->ill_flags & ILLF_MULTICAST) && !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && !(phyi->phyint_flags & (PHYI_LOOPBACK)) && !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { return (EADDRNOTAVAIL); } /* * up interfaces shouldn't have the unspecified address * unless they also have the IPIF_NOLOCAL flags set and * have a subnet assigned. */ if ((ipif->ipif_flags & IPIF_UP) && IN6_IS_ADDR_UNSPECIFIED(&v6addr) && (!(ipif->ipif_flags & IPIF_NOLOCAL) || IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { return (EADDRNOTAVAIL); } if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) return (EADDRNOTAVAIL); } else { ipaddr_t addr; if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); addr = sin->sin_addr.s_addr; /* Allow 0 as the local address. */ if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) return (EADDRNOTAVAIL); IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); } /* * Even if there is no change we redo things just to rerun * ipif_set_default. */ if (ipif->ipif_flags & IPIF_UP) { /* * Setting a new local address, make sure * we have net and subnet bcast ire's for * the old address if we need them. */ if (!ipif->ipif_isv6) ipif_check_bcast_ires(ipif); /* * If the interface is already marked up, * we call ipif_down which will take care * of ditching any IREs that have been set * up based on the old interface address. */ err = ipif_logical_down(ipif, q, mp); if (err == EINPROGRESS) return (err); ipif_down_tail(ipif); need_up = 1; } err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); return (err); } int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, boolean_t need_up) { in6_addr_t v6addr; in6_addr_t ov6addr; ipaddr_t addr; sin6_t *sin6; int sinlen; int err = 0; ill_t *ill = ipif->ipif_ill; boolean_t need_dl_down; boolean_t need_arp_down; struct iocblk *iocp; iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); /* Must cancel any pending timer before taking the ill_lock */ if (ipif->ipif_recovery_id != 0) (void) untimeout(ipif->ipif_recovery_id); ipif->ipif_recovery_id = 0; if (ipif->ipif_isv6) { sin6 = (sin6_t *)sin; v6addr = sin6->sin6_addr; sinlen = sizeof (struct sockaddr_in6); } else { addr = sin->sin_addr.s_addr; IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); sinlen = sizeof (struct sockaddr_in); } mutex_enter(&ill->ill_lock); ov6addr = ipif->ipif_v6lcl_addr; ipif->ipif_v6lcl_addr = v6addr; sctp_update_ipif_addr(ipif, ov6addr); if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { ipif->ipif_v6src_addr = ipv6_all_zeros; } else { ipif->ipif_v6src_addr = v6addr; } ipif->ipif_addr_ready = 0; /* * If the interface was previously marked as a duplicate, then since * we've now got a "new" address, it should no longer be considered a * duplicate -- even if the "new" address is the same as the old one. * Note that if all ipifs are down, we may have a pending ARP down * event to handle. This is because we want to recover from duplicates * and thus delay tearing down ARP until the duplicates have been * removed or disabled. */ need_dl_down = need_arp_down = B_FALSE; if (ipif->ipif_flags & IPIF_DUPLICATE) { need_arp_down = !need_up; ipif->ipif_flags &= ~IPIF_DUPLICATE; if (--ill->ill_ipif_dup_count == 0 && !need_up && ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { need_dl_down = B_TRUE; } } if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && !ill->ill_is_6to4tun) { queue_t *wqp = ill->ill_wq; /* * The local address of this interface is a 6to4 address, * check if this interface is in fact a 6to4 tunnel or just * an interface configured with a 6to4 address. We are only * interested in the former. */ if (wqp != NULL) { while ((wqp->q_next != NULL) && (wqp->q_next->q_qinfo != NULL) && (wqp->q_next->q_qinfo->qi_minfo != NULL)) { if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum == TUN6TO4_MODID) { /* set for use in IP */ ill->ill_is_6to4tun = 1; break; } wqp = wqp->q_next; } } } ipif_set_default(ipif); /* * When publishing an interface address change event, we only notify * the event listeners of the new address. It is assumed that if they * actively care about the addresses assigned that they will have * already discovered the previous address assigned (if there was one.) * * Don't attach nic event message for SIOCLIFADDIF ioctl. */ if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), NE_ADDRESS_CHANGE, sin, sinlen); } mutex_exit(&ill->ill_lock); if (need_up) { /* * Now bring the interface back up. If this * is the only IPIF for the ILL, ipif_up * will have to re-bind to the device, so * we may get back EINPROGRESS, in which * case, this IOCTL will get completed in * ip_rput_dlpi when we see the DL_BIND_ACK. */ err = ipif_up(ipif, q, mp); } if (need_dl_down) ill_dl_down(ill); if (need_arp_down) ipif_resolver_down(ipif); return (err); } /* * Restart entry point to restart the address set operation after the * refcounts have dropped to zero. */ /* ARGSUSED */ int ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); ipif_down_tail(ipif); return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); } /* ARGSUSED */ int ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { sin6_t *sin6 = (struct sockaddr_in6 *)sin; struct lifreq *lifr = (struct lifreq *)if_req; ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * The net mask and address can't change since we have a * reference to the ipif. So no lock is necessary. */ if (ipif->ipif_isv6) { *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipif->ipif_v6lcl_addr; ASSERT(ipip->ipi_cmd_type == LIF_CMD); lifr->lifr_addrlen = ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); } else { *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_lcl_addr; if (ipip->ipi_cmd_type == LIF_CMD) { lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); } } return (0); } /* * Set the destination address for a pt-pt interface. */ /* ARGSUSED */ int ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { int err = 0; in6_addr_t v6addr; boolean_t need_up = B_FALSE; ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); if (ipif->ipif_isv6) { sin6_t *sin6; if (sin->sin_family != AF_INET6) return (EAFNOSUPPORT); sin6 = (sin6_t *)sin; v6addr = sin6->sin6_addr; if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) return (EADDRNOTAVAIL); } else { ipaddr_t addr; if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); addr = sin->sin_addr.s_addr; if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) return (EADDRNOTAVAIL); IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); } if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) return (0); /* No change */ if (ipif->ipif_flags & IPIF_UP) { /* * If the interface is already marked up, * we call ipif_down which will take care * of ditching any IREs that have been set * up based on the old pp dst address. */ err = ipif_logical_down(ipif, q, mp); if (err == EINPROGRESS) return (err); ipif_down_tail(ipif); need_up = B_TRUE; } /* * could return EINPROGRESS. If so ioctl will complete in * ip_rput_dlpi_writer */ err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); return (err); } static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, boolean_t need_up) { in6_addr_t v6addr; ill_t *ill = ipif->ipif_ill; int err = 0; boolean_t need_dl_down; boolean_t need_arp_down; ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, ipif->ipif_id, (void *)ipif)); /* Must cancel any pending timer before taking the ill_lock */ if (ipif->ipif_recovery_id != 0) (void) untimeout(ipif->ipif_recovery_id); ipif->ipif_recovery_id = 0; if (ipif->ipif_isv6) { sin6_t *sin6; sin6 = (sin6_t *)sin; v6addr = sin6->sin6_addr; } else { ipaddr_t addr; addr = sin->sin_addr.s_addr; IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); } mutex_enter(&ill->ill_lock); /* Set point to point destination address. */ if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { /* * Allow this as a means of creating logical * pt-pt interfaces on top of e.g. an Ethernet. * XXX Undocumented HACK for testing. * pt-pt interfaces are created with NUD disabled. */ ipif->ipif_flags |= IPIF_POINTOPOINT; ipif->ipif_flags &= ~IPIF_BROADCAST; if (ipif->ipif_isv6) ill->ill_flags |= ILLF_NONUD; } /* * If the interface was previously marked as a duplicate, then since * we've now got a "new" address, it should no longer be considered a * duplicate -- even if the "new" address is the same as the old one. * Note that if all ipifs are down, we may have a pending ARP down * event to handle. */ need_dl_down = need_arp_down = B_FALSE; if (ipif->ipif_flags & IPIF_DUPLICATE) { need_arp_down = !need_up; ipif->ipif_flags &= ~IPIF_DUPLICATE; if (--ill->ill_ipif_dup_count == 0 && !need_up && ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { need_dl_down = B_TRUE; } } /* Set the new address. */ ipif->ipif_v6pp_dst_addr = v6addr; /* Make sure subnet tracks pp_dst */ ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; mutex_exit(&ill->ill_lock); if (need_up) { /* * Now bring the interface back up. If this * is the only IPIF for the ILL, ipif_up * will have to re-bind to the device, so * we may get back EINPROGRESS, in which * case, this IOCTL will get completed in * ip_rput_dlpi when we see the DL_BIND_ACK. */ err = ipif_up(ipif, q, mp); } if (need_dl_down) ill_dl_down(ill); if (need_arp_down) ipif_resolver_down(ipif); return (err); } /* * Restart entry point to restart the dstaddress set operation after the * refcounts have dropped to zero. */ /* ARGSUSED */ int ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ipif_down_tail(ipif); return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); } /* ARGSUSED */ int ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { sin6_t *sin6 = (struct sockaddr_in6 *)sin; ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * Get point to point destination address. The addresses can't * change since we hold a reference to the ipif. */ if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) return (EADDRNOTAVAIL); if (ipif->ipif_isv6) { ASSERT(ipip->ipi_cmd_type == LIF_CMD); *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; } else { *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; } return (0); } /* * Set interface flags. Many flags require special handling (e.g., * bringing the interface down); see below for details. * * NOTE : We really don't enforce that ipif_id zero should be used * for setting any flags other than IFF_LOGINT_FLAGS. This * is because applications generally does SICGLIFFLAGS and * ORs in the new flags (that affects the logical) and does a * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the * flags that will be turned on is correct with respect to * ipif_id 0. For backward compatibility reasons, it is not done. */ /* ARGSUSED */ int ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { uint64_t turn_on; uint64_t turn_off; int err = 0; phyint_t *phyi; ill_t *ill; uint64_t intf_flags, cantchange_flags; boolean_t phyint_flags_modified = B_FALSE; uint64_t flags; struct ifreq *ifr; struct lifreq *lifr; boolean_t set_linklocal = B_FALSE; boolean_t zero_source = B_FALSE; ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); ill = ipif->ipif_ill; phyi = ill->ill_phyint; if (ipip->ipi_cmd_type == IF_CMD) { ifr = (struct ifreq *)if_req; flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); } else { lifr = (struct lifreq *)if_req; flags = lifr->lifr_flags; } intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; /* * Have the flags been set correctly until now? */ ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); /* * Compare the new flags to the old, and partition * into those coming on and those going off. * For the 16 bit command keep the bits above bit 16 unchanged. */ if (ipip->ipi_cmd == SIOCSIFFLAGS) flags |= intf_flags & ~0xFFFF; /* * Explicitly fail attempts to change flags that are always invalid on * an IPMP meta-interface. */ if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) return (EINVAL); /* * Check which flags will change; silently ignore flags which userland * is not allowed to control. (Because these flags may change between * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's * control, we need to silently ignore them rather than fail.) */ cantchange_flags = IFF_CANTCHANGE; if (IS_IPMP(ill)) cantchange_flags |= IFF_IPMP_CANTCHANGE; turn_on = (flags ^ intf_flags) & ~cantchange_flags; if (turn_on == 0) return (0); /* No change */ turn_off = intf_flags & turn_on; turn_on ^= turn_off; /* * All test addresses must be IFF_DEPRECATED (to ensure source address * selection avoids them) -- so force IFF_DEPRECATED on, and do not * allow it to be turned off. */ if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && (turn_on|intf_flags) & IFF_NOFAILOVER) return (EINVAL); if (turn_on & IFF_NOFAILOVER) { turn_on |= IFF_DEPRECATED; flags |= IFF_DEPRECATED; } /* * On underlying interfaces, only allow applications to manage test * addresses -- otherwise, they may get confused when the address * moves as part of being brought up. Likewise, prevent an * application-managed test address from being converted to a data * address. To prevent migration of administratively up addresses in * the kernel, we don't allow them to be converted either. */ if (IS_UNDER_IPMP(ill)) { const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) return (EINVAL); if ((turn_off & IFF_NOFAILOVER) && (flags & (appflags | IFF_UP | IFF_DUPLICATE))) return (EINVAL); } /* * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on * IPv6 interfaces. */ if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) return (EINVAL); /* * cannot turn off IFF_NOXMIT on VNI interfaces. */ if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) return (EINVAL); /* * Don't allow the IFF_ROUTER flag to be turned on on loopback * interfaces. It makes no sense in that context. */ if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) return (EINVAL); if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) zero_source = B_TRUE; /* * For IPv6 ipif_id 0, don't allow the interface to be up without * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. * If the link local address isn't set, and can be set, it will get * set later on in this function. */ if (ipif->ipif_id == 0 && ipif->ipif_isv6 && (flags & IFF_UP) && !zero_source && IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { if (ipif_cant_setlinklocal(ipif)) return (EINVAL); set_linklocal = B_TRUE; } /* * If we modify physical interface flags, we'll potentially need to * send up two routing socket messages for the changes (one for the * IPv4 ill, and another for the IPv6 ill). Note that here. */ if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) phyint_flags_modified = B_TRUE; /* * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE * (otherwise, we'd immediately use them, defeating standby). Also, * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We * also don't allow PHYI_STANDBY if VNI is enabled since its semantics * will not be honored. */ if (turn_on & PHYI_STANDBY) { /* * No need to grab ill_g_usesrc_lock here; see the * synchronization notes in ip.c. */ if (ill->ill_usesrc_grp_next != NULL || intf_flags & PHYI_INACTIVE) return (EINVAL); if (!(flags & PHYI_FAILED)) { flags |= PHYI_INACTIVE; turn_on |= PHYI_INACTIVE; } } if (turn_off & PHYI_STANDBY) { flags &= ~PHYI_INACTIVE; turn_off |= PHYI_INACTIVE; } /* * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both * would end up on. */ if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == (PHYI_FAILED | PHYI_INACTIVE)) return (EINVAL); /* * If ILLF_ROUTER changes, we need to change the ip forwarding * status of the interface. */ if ((turn_on | turn_off) & ILLF_ROUTER) (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); /* * If the interface is not UP and we are not going to * bring it UP, record the flags and return. When the * interface comes UP later, the right actions will be * taken. */ if (!(ipif->ipif_flags & IPIF_UP) && !(turn_on & IPIF_UP)) { /* Record new flags in their respective places. */ mutex_enter(&ill->ill_lock); mutex_enter(&ill->ill_phyint->phyint_lock); ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); mutex_exit(&ill->ill_lock); mutex_exit(&ill->ill_phyint->phyint_lock); /* * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the * same to the kernel: if any of them has been set by * userland, the interface cannot be used for data traffic. */ if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { ASSERT(!IS_IPMP(ill)); /* * It's possible the ill is part of an "anonymous" * IPMP group rather than a real group. In that case, * there are no other interfaces in the group and thus * no need to call ipmp_phyint_refresh_active(). */ if (IS_UNDER_IPMP(ill)) ipmp_phyint_refresh_active(phyi); } if (phyint_flags_modified) { if (phyi->phyint_illv4 != NULL) { ip_rts_ifmsg(phyi->phyint_illv4-> ill_ipif, RTSQ_DEFAULT); } if (phyi->phyint_illv6 != NULL) { ip_rts_ifmsg(phyi->phyint_illv6-> ill_ipif, RTSQ_DEFAULT); } } return (0); } else if (set_linklocal || zero_source) { mutex_enter(&ill->ill_lock); if (set_linklocal) ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; if (zero_source) ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; mutex_exit(&ill->ill_lock); } /* * Disallow IPv6 interfaces coming up that have the unspecified address, * or point-to-point interfaces with an unspecified destination. We do * allow the address to be unspecified for IPIF_NOLOCAL interfaces that * have a subnet assigned, which is how in.ndpd currently manages its * onlink prefix list when no addresses are configured with those * prefixes. */ if (ipif->ipif_isv6 && ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || ((ipif->ipif_flags & IPIF_POINTOPOINT) && IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { return (EINVAL); } /* * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination * from being brought up. */ if (!ipif->ipif_isv6 && ((ipif->ipif_flags & IPIF_POINTOPOINT) && ipif->ipif_pp_dst_addr == INADDR_ANY)) { return (EINVAL); } /* * The only flag changes that we currently take specific action on are * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and * IPIF_NOFAILOVER. This is done by bring the ipif down, changing the * flags and bringing it back up again. For IPIF_NOFAILOVER, the act * of bringing it back up will trigger the address to be moved. */ if ((turn_on|turn_off) & (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| IPIF_NOFAILOVER)) { /* * Taking this ipif down, make sure we have * valid net and subnet bcast ire's for other * logical interfaces, if we need them. */ if (!ipif->ipif_isv6) ipif_check_bcast_ires(ipif); if (((ipif->ipif_flags | turn_on) & IPIF_UP) && !(turn_off & IPIF_UP)) { if (ipif->ipif_flags & IPIF_UP) ill->ill_logical_down = 1; turn_on &= ~IPIF_UP; } err = ipif_down(ipif, q, mp); ip1dbg(("ipif_down returns %d err ", err)); if (err == EINPROGRESS) return (err); ipif_down_tail(ipif); } return (ip_sioctl_flags_tail(ipif, flags, q, mp)); } static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) { ill_t *ill; phyint_t *phyi; uint64_t turn_on, turn_off; uint64_t intf_flags, cantchange_flags; boolean_t phyint_flags_modified = B_FALSE; int err = 0; boolean_t set_linklocal = B_FALSE; boolean_t zero_source = B_FALSE; ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", ipif->ipif_ill->ill_name, ipif->ipif_id)); ASSERT(IAM_WRITER_IPIF(ipif)); ill = ipif->ipif_ill; phyi = ill->ill_phyint; intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; cantchange_flags = IFF_CANTCHANGE | IFF_UP; if (IS_IPMP(ill)) cantchange_flags |= IFF_IPMP_CANTCHANGE; turn_on = (flags ^ intf_flags) & ~cantchange_flags; turn_off = intf_flags & turn_on; turn_on ^= turn_off; if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) phyint_flags_modified = B_TRUE; /* * Now we change the flags. Track current value of * other flags in their respective places. */ mutex_enter(&ill->ill_lock); mutex_enter(&phyi->phyint_lock); ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { set_linklocal = B_TRUE; ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; } if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { zero_source = B_TRUE; ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; } mutex_exit(&ill->ill_lock); mutex_exit(&phyi->phyint_lock); if (set_linklocal) (void) ipif_setlinklocal(ipif); if (zero_source) ipif->ipif_v6src_addr = ipv6_all_zeros; else ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; /* * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to * the kernel: if any of them has been set by userland, the interface * cannot be used for data traffic. */ if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { ASSERT(!IS_IPMP(ill)); /* * It's possible the ill is part of an "anonymous" IPMP group * rather than a real group. In that case, there are no other * interfaces in the group and thus no need for us to call * ipmp_phyint_refresh_active(). */ if (IS_UNDER_IPMP(ill)) ipmp_phyint_refresh_active(phyi); } if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { /* * XXX ipif_up really does not know whether a phyint flags * was modified or not. So, it sends up information on * only one routing sockets message. As we don't bring up * the interface and also set PHYI_ flags simultaneously * it should be okay. */ err = ipif_up(ipif, q, mp); } else { /* * Make sure routing socket sees all changes to the flags. * ipif_up_done* handles this when we use ipif_up. */ if (phyint_flags_modified) { if (phyi->phyint_illv4 != NULL) { ip_rts_ifmsg(phyi->phyint_illv4-> ill_ipif, RTSQ_DEFAULT); } if (phyi->phyint_illv6 != NULL) { ip_rts_ifmsg(phyi->phyint_illv6-> ill_ipif, RTSQ_DEFAULT); } } else { ip_rts_ifmsg(ipif, RTSQ_DEFAULT); } /* * Update the flags in SCTP's IPIF list, ipif_up() will do * this in need_up case. */ sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); } return (err); } /* * Restart the flags operation now that the refcounts have dropped to zero. */ /* ARGSUSED */ int ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { uint64_t flags; struct ifreq *ifr = if_req; struct lifreq *lifr = if_req; ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ipif_down_tail(ipif); if (ipip->ipi_cmd_type == IF_CMD) { /* cast to uint16_t prevents unwanted sign extension */ flags = (uint16_t)ifr->ifr_flags; } else { flags = lifr->lifr_flags; } return (ip_sioctl_flags_tail(ipif, flags, q, mp)); } /* * Can operate on either a module or a driver queue. */ /* ARGSUSED */ int ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { /* * Has the flags been set correctly till now ? */ ill_t *ill = ipif->ipif_ill; phyint_t *phyi = ill->ill_phyint; ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); /* * Need a lock since some flags can be set even when there are * references to the ipif. */ mutex_enter(&ill->ill_lock); if (ipip->ipi_cmd_type == IF_CMD) { struct ifreq *ifr = (struct ifreq *)if_req; /* Get interface flags (low 16 only). */ ifr->ifr_flags = ((ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags) & 0xffff); } else { struct lifreq *lifr = (struct lifreq *)if_req; /* Get interface flags. */ lifr->lifr_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; } mutex_exit(&ill->ill_lock); return (0); } /* ARGSUSED */ int ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { int mtu; int ip_min_mtu; struct ifreq *ifr; struct lifreq *lifr; ire_t *ire; ip_stack_t *ipst; ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipip->ipi_cmd_type == IF_CMD) { ifr = (struct ifreq *)if_req; mtu = ifr->ifr_metric; } else { lifr = (struct lifreq *)if_req; mtu = lifr->lifr_mtu; } if (ipif->ipif_isv6) ip_min_mtu = IPV6_MIN_MTU; else ip_min_mtu = IP_MIN_MTU; if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) return (EINVAL); /* * Change the MTU size in all relevant ire's. * Mtu change Vs. new ire creation - protocol below. * First change ipif_mtu and the ire_max_frag of the * interface ire. Then do an ire walk and change the * ire_max_frag of all affected ires. During ire_add * under the bucket lock, set the ire_max_frag of the * new ire being created from the ipif/ire from which * it is being derived. If an mtu change happens after * the ire is added, the new ire will be cleaned up. * Conversely if the mtu change happens before the ire * is added, ire_add will see the new value of the mtu. */ ipif->ipif_mtu = mtu; ipif->ipif_flags |= IPIF_FIXEDMTU; if (ipif->ipif_isv6) ire = ipif_to_ire_v6(ipif); else ire = ipif_to_ire(ipif); if (ire != NULL) { ire->ire_max_frag = ipif->ipif_mtu; ire_refrele(ire); } ipst = ipif->ipif_ill->ill_ipst; if (ipif->ipif_flags & IPIF_UP) { if (ipif->ipif_isv6) ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, ipst); else ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, ipst); } /* Update the MTU in SCTP's list */ sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); return (0); } /* Get interface MTU. */ /* ARGSUSED */ int ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { struct ifreq *ifr; struct lifreq *lifr; ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipip->ipi_cmd_type == IF_CMD) { ifr = (struct ifreq *)if_req; ifr->ifr_metric = ipif->ipif_mtu; } else { lifr = (struct lifreq *)if_req; lifr->lifr_mtu = ipif->ipif_mtu; } return (0); } /* Set interface broadcast address. */ /* ARGSUSED2 */ int ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { ipaddr_t addr; ire_t *ire; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, ipif->ipif_id)); ASSERT(IAM_WRITER_IPIF(ipif)); if (!(ipif->ipif_flags & IPIF_BROADCAST)) return (EADDRNOTAVAIL); ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); addr = sin->sin_addr.s_addr; if (ipif->ipif_flags & IPIF_UP) { /* * If we are already up, make sure the new * broadcast address makes sense. If it does, * there should be an IRE for it already. * Don't match on ipif, only on the ill * since we are sharing these now. */ ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, ALL_ZONES, NULL, (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); if (ire == NULL) { return (EINVAL); } else { ire_refrele(ire); } } /* * Changing the broadcast addr for this ipif. * Make sure we have valid net and subnet bcast * ire's for other logical interfaces, if needed. */ if (addr != ipif->ipif_brd_addr) ipif_check_bcast_ires(ipif); IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); return (0); } /* Get interface broadcast address. */ /* ARGSUSED */ int ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (!(ipif->ipif_flags & IPIF_BROADCAST)) return (EADDRNOTAVAIL); /* IPIF_BROADCAST not possible with IPv6 */ ASSERT(!ipif->ipif_isv6); *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_brd_addr; return (0); } /* * This routine is called to handle the SIOCS*IFNETMASK IOCTL. */ /* ARGSUSED */ int ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { int err = 0; in6_addr_t v6mask; ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); if (ipif->ipif_isv6) { sin6_t *sin6; if (sin->sin_family != AF_INET6) return (EAFNOSUPPORT); sin6 = (sin6_t *)sin; v6mask = sin6->sin6_addr; } else { ipaddr_t mask; if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); mask = sin->sin_addr.s_addr; V4MASK_TO_V6(mask, v6mask); } /* * No big deal if the interface isn't already up, or the mask * isn't really changing, or this is pt-pt. */ if (!(ipif->ipif_flags & IPIF_UP) || IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || (ipif->ipif_flags & IPIF_POINTOPOINT)) { ipif->ipif_v6net_mask = v6mask; if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); } return (0); } /* * Make sure we have valid net and subnet broadcast ire's * for the old netmask, if needed by other logical interfaces. */ if (!ipif->ipif_isv6) ipif_check_bcast_ires(ipif); err = ipif_logical_down(ipif, q, mp); if (err == EINPROGRESS) return (err); ipif_down_tail(ipif); err = ip_sioctl_netmask_tail(ipif, sin, q, mp); return (err); } static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) { in6_addr_t v6mask; int err = 0; ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipif->ipif_isv6) { sin6_t *sin6; sin6 = (sin6_t *)sin; v6mask = sin6->sin6_addr; } else { ipaddr_t mask; mask = sin->sin_addr.s_addr; V4MASK_TO_V6(mask, v6mask); } ipif->ipif_v6net_mask = v6mask; if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); } err = ipif_up(ipif, q, mp); if (err == 0 || err == EINPROGRESS) { /* * The interface must be DL_BOUND if this packet has to * go out on the wire. Since we only go through a logical * down and are bound with the driver during an internal * down/up that is satisfied. */ if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { /* Potentially broadcast an address mask reply. */ ipif_mask_reply(ipif); } } return (err); } /* ARGSUSED */ int ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ipif_down_tail(ipif); return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); } /* Get interface net mask. */ /* ARGSUSED */ int ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { struct lifreq *lifr = (struct lifreq *)if_req; struct sockaddr_in6 *sin6 = (sin6_t *)sin; ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * net mask can't change since we have a reference to the ipif. */ if (ipif->ipif_isv6) { ASSERT(ipip->ipi_cmd_type == LIF_CMD); *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipif->ipif_v6net_mask; lifr->lifr_addrlen = ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); } else { *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_net_mask; if (ipip->ipi_cmd_type == LIF_CMD) { lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); } } return (0); } /* ARGSUSED */ int ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * Since no applications should ever be setting metrics on underlying * interfaces, we explicitly fail to smoke 'em out. */ if (IS_UNDER_IPMP(ipif->ipif_ill)) return (EINVAL); /* * Set interface metric. We don't use this for * anything but we keep track of it in case it is * important to routing applications or such. */ if (ipip->ipi_cmd_type == IF_CMD) { struct ifreq *ifr; ifr = (struct ifreq *)if_req; ipif->ipif_metric = ifr->ifr_metric; } else { struct lifreq *lifr; lifr = (struct lifreq *)if_req; ipif->ipif_metric = lifr->lifr_metric; } return (0); } /* ARGSUSED */ int ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { /* Get interface metric. */ ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipip->ipi_cmd_type == IF_CMD) { struct ifreq *ifr; ifr = (struct ifreq *)if_req; ifr->ifr_metric = ipif->ipif_metric; } else { struct lifreq *lifr; lifr = (struct lifreq *)if_req; lifr->lifr_metric = ipif->ipif_metric; } return (0); } /* ARGSUSED */ int ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * Set the muxid returned from I_PLINK. */ if (ipip->ipi_cmd_type == IF_CMD) { struct ifreq *ifr = (struct ifreq *)if_req; ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; } else { struct lifreq *lifr = (struct lifreq *)if_req; ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; } return (0); } /* ARGSUSED */ int ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * Get the muxid saved in ill for I_PUNLINK. */ if (ipip->ipi_cmd_type == IF_CMD) { struct ifreq *ifr = (struct ifreq *)if_req; ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; } else { struct lifreq *lifr = (struct lifreq *)if_req; lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; } return (0); } /* * Set the subnet prefix. Does not modify the broadcast address. */ /* ARGSUSED */ int ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { int err = 0; in6_addr_t v6addr; in6_addr_t v6mask; boolean_t need_up = B_FALSE; int addrlen; ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); addrlen = ((struct lifreq *)if_req)->lifr_addrlen; if (ipif->ipif_isv6) { sin6_t *sin6; if (sin->sin_family != AF_INET6) return (EAFNOSUPPORT); sin6 = (sin6_t *)sin; v6addr = sin6->sin6_addr; if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) return (EADDRNOTAVAIL); } else { ipaddr_t addr; if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); addr = sin->sin_addr.s_addr; if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) return (EADDRNOTAVAIL); IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); /* Add 96 bits */ addrlen += IPV6_ABITS - IP_ABITS; } if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) return (EINVAL); /* Check if bits in the address is set past the mask */ if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) return (EINVAL); if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) return (0); /* No change */ if (ipif->ipif_flags & IPIF_UP) { /* * If the interface is already marked up, * we call ipif_down which will take care * of ditching any IREs that have been set * up based on the old interface address. */ err = ipif_logical_down(ipif, q, mp); if (err == EINPROGRESS) return (err); ipif_down_tail(ipif); need_up = B_TRUE; } err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); return (err); } static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, queue_t *q, mblk_t *mp, boolean_t need_up) { ill_t *ill = ipif->ipif_ill; int err = 0; ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* Set the new address. */ mutex_enter(&ill->ill_lock); ipif->ipif_v6net_mask = v6mask; if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); } mutex_exit(&ill->ill_lock); if (need_up) { /* * Now bring the interface back up. If this * is the only IPIF for the ILL, ipif_up * will have to re-bind to the device, so * we may get back EINPROGRESS, in which * case, this IOCTL will get completed in * ip_rput_dlpi when we see the DL_BIND_ACK. */ err = ipif_up(ipif, q, mp); if (err == EINPROGRESS) return (err); } return (err); } /* ARGSUSED */ int ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { int addrlen; in6_addr_t v6addr; in6_addr_t v6mask; struct lifreq *lifr = (struct lifreq *)if_req; ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ipif_down_tail(ipif); addrlen = lifr->lifr_addrlen; if (ipif->ipif_isv6) { sin6_t *sin6; sin6 = (sin6_t *)sin; v6addr = sin6->sin6_addr; } else { ipaddr_t addr; addr = sin->sin_addr.s_addr; IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); addrlen += IPV6_ABITS - IP_ABITS; } (void) ip_plen_to_mask_v6(addrlen, &v6mask); return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); } /* ARGSUSED */ int ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { struct lifreq *lifr = (struct lifreq *)if_req; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(ipip->ipi_cmd_type == LIF_CMD); if (ipif->ipif_isv6) { *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipif->ipif_v6subnet; lifr->lifr_addrlen = ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); } else { *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_subnet; lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); } return (0); } /* * Set the IPv6 address token. */ /* ARGSUSED */ int ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipi, void *if_req) { ill_t *ill = ipif->ipif_ill; int err; in6_addr_t v6addr; in6_addr_t v6mask; boolean_t need_up = B_FALSE; int i; sin6_t *sin6 = (sin6_t *)sin; struct lifreq *lifr = (struct lifreq *)if_req; int addrlen; ip1dbg(("ip_sioctl_token(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); addrlen = lifr->lifr_addrlen; /* Only allow for logical unit zero i.e. not on "le0:17" */ if (ipif->ipif_id != 0) return (EINVAL); if (!ipif->ipif_isv6) return (EINVAL); if (addrlen > IPV6_ABITS) return (EINVAL); v6addr = sin6->sin6_addr; /* * The length of the token is the length from the end. To get * the proper mask for this, compute the mask of the bits not * in the token; ie. the prefix, and then xor to get the mask. */ if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) return (EINVAL); for (i = 0; i < 4; i++) { v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; } if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && ill->ill_token_length == addrlen) return (0); /* No change */ if (ipif->ipif_flags & IPIF_UP) { err = ipif_logical_down(ipif, q, mp); if (err == EINPROGRESS) return (err); ipif_down_tail(ipif); need_up = B_TRUE; } err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); return (err); } static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, mblk_t *mp, boolean_t need_up) { in6_addr_t v6addr; in6_addr_t v6mask; ill_t *ill = ipif->ipif_ill; int i; int err = 0; ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); v6addr = sin6->sin6_addr; /* * The length of the token is the length from the end. To get * the proper mask for this, compute the mask of the bits not * in the token; ie. the prefix, and then xor to get the mask. */ (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); for (i = 0; i < 4; i++) v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; mutex_enter(&ill->ill_lock); V6_MASK_COPY(v6addr, v6mask, ill->ill_token); ill->ill_token_length = addrlen; mutex_exit(&ill->ill_lock); if (need_up) { /* * Now bring the interface back up. If this * is the only IPIF for the ILL, ipif_up * will have to re-bind to the device, so * we may get back EINPROGRESS, in which * case, this IOCTL will get completed in * ip_rput_dlpi when we see the DL_BIND_ACK. */ err = ipif_up(ipif, q, mp); if (err == EINPROGRESS) return (err); } return (err); } /* ARGSUSED */ int ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipi, void *if_req) { ill_t *ill; sin6_t *sin6 = (sin6_t *)sin; struct lifreq *lifr = (struct lifreq *)if_req; ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipif->ipif_id != 0) return (EINVAL); ill = ipif->ipif_ill; if (!ill->ill_isv6) return (ENXIO); *sin6 = sin6_null; sin6->sin6_family = AF_INET6; ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); sin6->sin6_addr = ill->ill_token; lifr->lifr_addrlen = ill->ill_token_length; return (0); } /* * Set (hardware) link specific information that might override * what was acquired through the DL_INFO_ACK. * The logic is as follows. * * become exclusive * set CHANGING flag * change mtu on affected IREs * clear CHANGING flag * * An ire add that occurs before the CHANGING flag is set will have its mtu * changed by the ip_sioctl_lnkinfo. * * During the time the CHANGING flag is set, no new ires will be added to the * bucket, and ire add will fail (due the CHANGING flag). * * An ire add that occurs after the CHANGING flag is set will have the right mtu * before it is added to the bucket. * * Obviously only 1 thread can set the CHANGING flag and we need to become * exclusive to set the flag. */ /* ARGSUSED */ int ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipi, void *if_req) { ill_t *ill = ipif->ipif_ill; ipif_t *nipif; int ip_min_mtu; boolean_t mtu_walk = B_FALSE; struct lifreq *lifr = (struct lifreq *)if_req; lif_ifinfo_req_t *lir; ire_t *ire; ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); lir = &lifr->lifr_ifinfo; ASSERT(IAM_WRITER_IPIF(ipif)); /* Only allow for logical unit zero i.e. not on "le0:17" */ if (ipif->ipif_id != 0) return (EINVAL); /* Set interface MTU. */ if (ipif->ipif_isv6) ip_min_mtu = IPV6_MIN_MTU; else ip_min_mtu = IP_MIN_MTU; /* * Verify values before we set anything. Allow zero to * mean unspecified. */ if (lir->lir_maxmtu != 0 && (lir->lir_maxmtu > ill->ill_max_frag || lir->lir_maxmtu < ip_min_mtu)) return (EINVAL); if (lir->lir_reachtime != 0 && lir->lir_reachtime > ND_MAX_REACHTIME) return (EINVAL); if (lir->lir_reachretrans != 0 && lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) return (EINVAL); mutex_enter(&ill->ill_lock); ill->ill_state_flags |= ILL_CHANGING; for (nipif = ill->ill_ipif; nipif != NULL; nipif = nipif->ipif_next) { nipif->ipif_state_flags |= IPIF_CHANGING; } if (lir->lir_maxmtu != 0) { ill->ill_max_mtu = lir->lir_maxmtu; ill->ill_user_mtu = lir->lir_maxmtu; mtu_walk = B_TRUE; } mutex_exit(&ill->ill_lock); if (lir->lir_reachtime != 0) ill->ill_reachable_time = lir->lir_reachtime; if (lir->lir_reachretrans != 0) ill->ill_reachable_retrans_time = lir->lir_reachretrans; ill->ill_max_hops = lir->lir_maxhops; ill->ill_max_buf = ND_MAX_Q; if (mtu_walk) { /* * Set the MTU on all ipifs associated with this ill except * for those whose MTU was fixed via SIOCSLIFMTU. */ for (nipif = ill->ill_ipif; nipif != NULL; nipif = nipif->ipif_next) { if (nipif->ipif_flags & IPIF_FIXEDMTU) continue; nipif->ipif_mtu = ill->ill_max_mtu; if (!(nipif->ipif_flags & IPIF_UP)) continue; if (nipif->ipif_isv6) ire = ipif_to_ire_v6(nipif); else ire = ipif_to_ire(nipif); if (ire != NULL) { ire->ire_max_frag = ipif->ipif_mtu; ire_refrele(ire); } ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, nipif, ill); } } mutex_enter(&ill->ill_lock); for (nipif = ill->ill_ipif; nipif != NULL; nipif = nipif->ipif_next) { nipif->ipif_state_flags &= ~IPIF_CHANGING; } ILL_UNMARK_CHANGING(ill); mutex_exit(&ill->ill_lock); /* * Refresh IPMP meta-interface MTU if necessary. */ if (IS_UNDER_IPMP(ill)) ipmp_illgrp_refresh_mtu(ill->ill_grp); return (0); } /* ARGSUSED */ int ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipi, void *if_req) { struct lif_ifinfo_req *lir; ill_t *ill = ipif->ipif_ill; ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipif->ipif_id != 0) return (EINVAL); lir = &((struct lifreq *)if_req)->lifr_ifinfo; lir->lir_maxhops = ill->ill_max_hops; lir->lir_reachtime = ill->ill_reachable_time; lir->lir_reachretrans = ill->ill_reachable_retrans_time; lir->lir_maxmtu = ill->ill_max_mtu; return (0); } /* * Return best guess as to the subnet mask for the specified address. * Based on the subnet masks for all the configured interfaces. * * We end up returning a zero mask in the case of default, multicast or * experimental. */ static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) { ipaddr_t net_mask; ill_t *ill; ipif_t *ipif; ill_walk_context_t ctx; ipif_t *fallback_ipif = NULL; net_mask = ip_net_mask(addr); if (net_mask == 0) { *ipifp = NULL; return (0); } /* Let's check to see if this is maybe a local subnet route. */ /* this function only applies to IPv4 interfaces */ rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (!IPIF_CAN_LOOKUP(ipif)) continue; if (!(ipif->ipif_flags & IPIF_UP)) continue; if ((ipif->ipif_subnet & net_mask) == (addr & net_mask)) { /* * Don't trust pt-pt interfaces if there are * other interfaces. */ if (ipif->ipif_flags & IPIF_POINTOPOINT) { if (fallback_ipif == NULL) { ipif_refhold_locked(ipif); fallback_ipif = ipif; } continue; } /* * Fine. Just assume the same net mask as the * directly attached subnet interface is using. */ ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); if (fallback_ipif != NULL) ipif_refrele(fallback_ipif); *ipifp = ipif; return (ipif->ipif_net_mask); } } mutex_exit(&ill->ill_lock); } rw_exit(&ipst->ips_ill_g_lock); *ipifp = fallback_ipif; return ((fallback_ipif != NULL) ? fallback_ipif->ipif_net_mask : net_mask); } /* * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. */ static void ip_wput_ioctl(queue_t *q, mblk_t *mp) { IOCP iocp; ipft_t *ipft; ipllc_t *ipllc; mblk_t *mp1; cred_t *cr; int error = 0; conn_t *connp; ip1dbg(("ip_wput_ioctl")); iocp = (IOCP)mp->b_rptr; mp1 = mp->b_cont; if (mp1 == NULL) { iocp->ioc_error = EINVAL; mp->b_datap->db_type = M_IOCNAK; iocp->ioc_count = 0; qreply(q, mp); return; } /* * These IOCTLs provide various control capabilities to * upstream agents such as ULPs and processes. There * are currently two such IOCTLs implemented. They * are used by TCP to provide update information for * existing IREs and to forcibly delete an IRE for a * host that is not responding, thereby forcing an * attempt at a new route. */ iocp->ioc_error = EINVAL; if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) goto done; ipllc = (ipllc_t *)mp1->b_rptr; for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { if (ipllc->ipllc_cmd == ipft->ipft_cmd) break; } /* * prefer credential from mblk over ioctl; * see ip_sioctl_copyin_setup */ cr = msg_getcred(mp, NULL); if (cr == NULL) cr = iocp->ioc_cr; /* * Refhold the conn in case the request gets queued up in some lookup */ ASSERT(CONN_Q(q)); connp = Q_TO_CONN(q); CONN_INC_REF(connp); if (ipft->ipft_pfi && ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || pullupmsg(mp1, ipft->ipft_min_size))) { error = (*ipft->ipft_pfi)(q, (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); } if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { /* * CONN_OPER_PENDING_DONE happens in the function called * through ipft_pfi above. */ return; } CONN_OPER_PENDING_DONE(connp); if (ipft->ipft_flags & IPFT_F_NO_REPLY) { freemsg(mp); return; } iocp->ioc_error = error; done: mp->b_datap->db_type = M_IOCACK; if (iocp->ioc_error) iocp->ioc_count = 0; qreply(q, mp); } /* * Lookup an ipif using the sequence id (ipif_seqid) */ ipif_t * ipif_lookup_seqid(ill_t *ill, uint_t seqid) { ipif_t *ipif; ASSERT(MUTEX_HELD(&ill->ill_lock)); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) return (ipif); } return (NULL); } /* * Assign a unique id for the ipif. This is used later when we send * IRES to ARP for resolution where we initialize ire_ipif_seqid * to the value pointed by ire_ipif->ipif_seqid. Later when the * IRE is added, we verify that ipif has not disappeared. */ static void ipif_assign_seqid(ipif_t *ipif) { ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); } /* * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are * administratively down (i.e., no DAD), of the same type, and locked. Note * that the clone is complete -- including the seqid -- and the expectation is * that the caller will either free or overwrite `sipif' before it's unlocked. */ static void ipif_clone(const ipif_t *sipif, ipif_t *dipif) { ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); ASSERT(sipif->ipif_arp_del_mp == NULL); ASSERT(dipif->ipif_arp_del_mp == NULL); ASSERT(sipif->ipif_igmp_rpt == NULL); ASSERT(dipif->ipif_igmp_rpt == NULL); ASSERT(sipif->ipif_multicast_up == 0); ASSERT(dipif->ipif_multicast_up == 0); ASSERT(sipif->ipif_joined_allhosts == 0); ASSERT(dipif->ipif_joined_allhosts == 0); dipif->ipif_mtu = sipif->ipif_mtu; dipif->ipif_flags = sipif->ipif_flags; dipif->ipif_metric = sipif->ipif_metric; dipif->ipif_zoneid = sipif->ipif_zoneid; dipif->ipif_v6subnet = sipif->ipif_v6subnet; dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; dipif->ipif_v6src_addr = sipif->ipif_v6src_addr; dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; /* * While dipif is down right now, it might've been up before. Since * it's changing identity, its packet counters need to be reset. */ dipif->ipif_ib_pkt_count = 0; dipif->ipif_ob_pkt_count = 0; dipif->ipif_fo_pkt_count = 0; /* * As per the comment atop the function, we assume that these sipif * fields will be changed before sipif is unlocked. */ dipif->ipif_seqid = sipif->ipif_seqid; dipif->ipif_saved_ire_mp = sipif->ipif_saved_ire_mp; dipif->ipif_saved_ire_cnt = sipif->ipif_saved_ire_cnt; dipif->ipif_state_flags = sipif->ipif_state_flags; } /* * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then * transfer the xop to `dipif'. Requires that all ipifs are administratively * down (i.e., no DAD), of the same type, and unlocked. */ static void ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) { ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; ipxop_t *ipx = ipsq->ipsq_xop; ASSERT(sipif != dipif); ASSERT(sipif != virgipif); /* * Grab all of the locks that protect the ipif in a defined order. */ GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); if (sipif > dipif) { mutex_enter(&sipif->ipif_saved_ire_lock); mutex_enter(&dipif->ipif_saved_ire_lock); } else { mutex_enter(&dipif->ipif_saved_ire_lock); mutex_enter(&sipif->ipif_saved_ire_lock); } ipif_clone(sipif, dipif); if (virgipif != NULL) { ipif_clone(virgipif, sipif); mi_free(virgipif); } mutex_exit(&sipif->ipif_saved_ire_lock); mutex_exit(&dipif->ipif_saved_ire_lock); RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); /* * Transfer ownership of the current xop, if necessary. */ if (ipx->ipx_current_ipif == sipif) { ASSERT(ipx->ipx_pending_ipif == NULL); mutex_enter(&ipx->ipx_lock); ipx->ipx_current_ipif = dipif; mutex_exit(&ipx->ipx_lock); } if (virgipif == NULL) mi_free(sipif); } /* * Insert the ipif, so that the list of ipifs on the ill will be sorted * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will * be inserted into the first space available in the list. The value of * ipif_id will then be set to the appropriate value for its position. */ static int ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) { ill_t *ill; ipif_t *tipif; ipif_t **tipifp; int id; ip_stack_t *ipst; ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || IAM_WRITER_IPIF(ipif)); ill = ipif->ipif_ill; ASSERT(ill != NULL); ipst = ill->ill_ipst; /* * In the case of lo0:0 we already hold the ill_g_lock. * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> * ipif_insert. */ if (acquire_g_lock) rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); mutex_enter(&ill->ill_lock); id = ipif->ipif_id; tipifp = &(ill->ill_ipif); if (id == -1) { /* need to find a real id */ id = 0; while ((tipif = *tipifp) != NULL) { ASSERT(tipif->ipif_id >= id); if (tipif->ipif_id != id) break; /* non-consecutive id */ id++; tipifp = &(tipif->ipif_next); } /* limit number of logical interfaces */ if (id >= ipst->ips_ip_addrs_per_if) { mutex_exit(&ill->ill_lock); if (acquire_g_lock) rw_exit(&ipst->ips_ill_g_lock); return (-1); } ipif->ipif_id = id; /* assign new id */ } else if (id < ipst->ips_ip_addrs_per_if) { /* we have a real id; insert ipif in the right place */ while ((tipif = *tipifp) != NULL) { ASSERT(tipif->ipif_id != id); if (tipif->ipif_id > id) break; /* found correct location */ tipifp = &(tipif->ipif_next); } } else { mutex_exit(&ill->ill_lock); if (acquire_g_lock) rw_exit(&ipst->ips_ill_g_lock); return (-1); } ASSERT(tipifp != &(ill->ill_ipif) || id == 0); ipif->ipif_next = tipif; *tipifp = ipif; mutex_exit(&ill->ill_lock); if (acquire_g_lock) rw_exit(&ipst->ips_ill_g_lock); return (0); } static void ipif_remove(ipif_t *ipif) { ipif_t **ipifp; ill_t *ill = ipif->ipif_ill; ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); mutex_enter(&ill->ill_lock); ipifp = &ill->ill_ipif; for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { if (*ipifp == ipif) { *ipifp = ipif->ipif_next; break; } } mutex_exit(&ill->ill_lock); } /* * Allocate and initialize a new interface control structure. (Always * called as writer.) * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill * is not part of the global linked list of ills. ipif_seqid is unique * in the system and to preserve the uniqueness, it is assigned only * when ill becomes part of the global list. At that point ill will * have a name. If it doesn't get assigned here, it will get assigned * in ipif_set_values() as part of SIOCSLIFNAME processing. * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set * the interface flags or any other information from the DL_INFO_ACK for * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at * this point. The flags etc. will be set in ip_ll_subnet_defaults when the * second DL_INFO_ACK comes in from the driver. */ static ipif_t * ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, boolean_t insert) { ipif_t *ipif; ip_stack_t *ipst = ill->ill_ipst; ip1dbg(("ipif_allocate(%s:%d ill %p)\n", ill->ill_name, id, (void *)ill)); ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) return (NULL); *ipif = ipif_zero; /* start clean */ ipif->ipif_ill = ill; ipif->ipif_id = id; /* could be -1 */ /* * Inherit the zoneid from the ill; for the shared stack instance * this is always the global zone */ ipif->ipif_zoneid = ill->ill_zoneid; mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); ipif->ipif_refcnt = 0; ipif->ipif_saved_ire_cnt = 0; if (insert) { if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) { mi_free(ipif); return (NULL); } /* -1 id should have been replaced by real id */ id = ipif->ipif_id; ASSERT(id >= 0); } if (ill->ill_name[0] != '\0') ipif_assign_seqid(ipif); /* * If this is the zeroth ipif on the IPMP ill, create the illgrp * (which must not exist yet because the zeroth ipif is created once * per ill). However, do not not link it to the ipmp_grp_t until * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. */ if (id == 0 && IS_IPMP(ill)) { if (ipmp_illgrp_create(ill) == NULL) { if (insert) { rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); ipif_remove(ipif); rw_exit(&ipst->ips_ill_g_lock); } mi_free(ipif); return (NULL); } } /* * We grab ill_lock to protect the flag changes. The ipif is still * not up and can't be looked up until the ioctl completes and the * IPIF_CHANGING flag is cleared. */ mutex_enter(&ill->ill_lock); ipif->ipif_ire_type = ire_type; if (ipif->ipif_isv6) { ill->ill_flags |= ILLF_IPV6; } else { ipaddr_t inaddr_any = INADDR_ANY; ill->ill_flags |= ILLF_IPV4; /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ IN6_IPADDR_TO_V4MAPPED(inaddr_any, &ipif->ipif_v6lcl_addr); IN6_IPADDR_TO_V4MAPPED(inaddr_any, &ipif->ipif_v6src_addr); IN6_IPADDR_TO_V4MAPPED(inaddr_any, &ipif->ipif_v6subnet); IN6_IPADDR_TO_V4MAPPED(inaddr_any, &ipif->ipif_v6net_mask); IN6_IPADDR_TO_V4MAPPED(inaddr_any, &ipif->ipif_v6brd_addr); IN6_IPADDR_TO_V4MAPPED(inaddr_any, &ipif->ipif_v6pp_dst_addr); } /* * Don't set the interface flags etc. now, will do it in * ip_ll_subnet_defaults. */ if (!initialize) goto out; ipif->ipif_mtu = ill->ill_max_mtu; /* * NOTE: The IPMP meta-interface is special-cased because it starts * with no underlying interfaces (and thus an unknown broadcast * address length), but all interfaces that can be placed into an IPMP * group are required to be broadcast-capable. */ if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { /* * Later detect lack of DLPI driver multicast capability by * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). */ ill->ill_flags |= ILLF_MULTICAST; if (!ipif->ipif_isv6) ipif->ipif_flags |= IPIF_BROADCAST; } else { if (ill->ill_net_type != IRE_LOOPBACK) { if (ipif->ipif_isv6) /* * Note: xresolv interfaces will eventually need * NOARP set here as well, but that will require * those external resolvers to have some * knowledge of that flag and act appropriately. * Not to be changed at present. */ ill->ill_flags |= ILLF_NONUD; else ill->ill_flags |= ILLF_NOARP; } if (ill->ill_phys_addr_length == 0) { if (IS_VNI(ill)) { ipif->ipif_flags |= IPIF_NOXMIT; } else { /* pt-pt supports multicast. */ ill->ill_flags |= ILLF_MULTICAST; if (ill->ill_net_type != IRE_LOOPBACK) ipif->ipif_flags |= IPIF_POINTOPOINT; } } } out: mutex_exit(&ill->ill_lock); return (ipif); } /* * If appropriate, send a message up to the resolver delete the entry * for the address of this interface which is going out of business. * (Always called as writer). * * NOTE : We need to check for NULL mps as some of the fields are * initialized only for some interface types. See ipif_resolver_up() * for details. */ void ipif_resolver_down(ipif_t *ipif) { mblk_t *mp; ill_t *ill = ipif->ipif_ill; ip1dbg(("ipif_resolver_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); ASSERT(IAM_WRITER_IPIF(ipif)); if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) return; /* Delete the mapping for the local address */ mp = ipif->ipif_arp_del_mp; if (mp != NULL) { ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); putnext(ill->ill_rq, mp); ipif->ipif_arp_del_mp = NULL; } /* * Make IPMP aware of the deleted data address. */ if (IS_IPMP(ill)) ipmp_illgrp_del_ipif(ill->ill_grp, ipif); /* * If this is the last ipif that is going down and there are no * duplicate addresses we may yet attempt to re-probe, then we need to * clean up ARP completely. */ if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { /* * If this was the last ipif on an IPMP interface, purge any * IPMP ARP entries associated with it. */ if (IS_IPMP(ill)) ipmp_illgrp_refresh_arpent(ill->ill_grp); /* Send up AR_INTERFACE_DOWN message */ mp = ill->ill_arp_down_mp; if (mp != NULL) { ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); putnext(ill->ill_rq, mp); ill->ill_arp_down_mp = NULL; } /* Tell ARP to delete the multicast mappings */ mp = ill->ill_arp_del_mapping_mp; if (mp != NULL) { ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); putnext(ill->ill_rq, mp); ill->ill_arp_del_mapping_mp = NULL; } } } /* * Set up the multicast mappings for `ipif' in ARP. If `arp_add_mapping_mp' * is non-NULL, then upon success it will contain an mblk that can be passed * to ARP to create the mapping. Otherwise, if it's NULL, upon success ARP * will have already been notified to create the mapping. Returns zero on * success, -1 upon failure. */ int ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) { mblk_t *del_mp = NULL; mblk_t *add_mp = NULL; mblk_t *mp; ill_t *ill = ipif->ipif_ill; phyint_t *phyi = ill->ill_phyint; ipaddr_t addr, mask, extract_mask = 0; arma_t *arma; uint8_t *maddr, *bphys_addr; uint32_t hw_start; dl_unitdata_req_t *dlur; ASSERT(IAM_WRITER_IPIF(ipif)); if (ipif->ipif_flags & IPIF_POINTOPOINT) return (0); /* * IPMP meta-interfaces don't have any inherent multicast mappings, * and instead use the ones on the underlying interfaces. */ if (IS_IPMP(ill)) return (0); /* * Delete the existing mapping from ARP. Normally, ipif_down() -> * ipif_resolver_down() will send this up to ARP, but it may be that * we are enabling PHYI_MULTI_BCAST via ip_rput_dlpi_writer(). */ mp = ill->ill_arp_del_mapping_mp; if (mp != NULL) { ip1dbg(("ipif_arp_setup_multicast: arp cmd %x for %s:%u\n", *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); putnext(ill->ill_rq, mp); ill->ill_arp_del_mapping_mp = NULL; } if (arp_add_mapping_mp != NULL) *arp_add_mapping_mp = NULL; /* * Check that the address is not to long for the constant * length reserved in the template arma_t. */ if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) return (-1); /* Add mapping mblk */ addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); mask = (ipaddr_t)htonl(IN_CLASSD_NET); add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, (caddr_t)&addr); if (add_mp == NULL) return (-1); arma = (arma_t *)add_mp->b_rptr; maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); arma->arma_hw_addr_length = ill->ill_phys_addr_length; /* * Determine the broadcast address. */ dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; if (ill->ill_sap_length < 0) bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; else bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + ill->ill_sap_length; /* * Check PHYI_MULTI_BCAST and length of physical * address to determine if we use the mapping or the * broadcast address. */ if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, bphys_addr, maddr, &hw_start, &extract_mask)) phyi->phyint_flags |= PHYI_MULTI_BCAST; if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || (ill->ill_flags & ILLF_MULTICAST)) { /* Make sure this will not match the "exact" entry. */ addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, (caddr_t)&addr); if (del_mp == NULL) { freemsg(add_mp); return (-1); } bcopy(&extract_mask, (char *)arma + arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); if (phyi->phyint_flags & PHYI_MULTI_BCAST) { /* Use link-layer broadcast address for MULTI_BCAST */ bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); ip2dbg(("ipif_arp_setup_multicast: adding" " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); } else { arma->arma_hw_mapping_start = hw_start; ip2dbg(("ipif_arp_setup_multicast: adding multicast" " ARP setup for %s\n", ill->ill_name)); } } else { freemsg(add_mp); ASSERT(del_mp == NULL); /* It is neither MULTICAST nor MULTI_BCAST */ return (0); } ASSERT(add_mp != NULL && del_mp != NULL); ASSERT(ill->ill_arp_del_mapping_mp == NULL); ill->ill_arp_del_mapping_mp = del_mp; if (arp_add_mapping_mp != NULL) { /* The caller just wants the mblks allocated */ *arp_add_mapping_mp = add_mp; } else { /* The caller wants us to send it to arp */ putnext(ill->ill_rq, add_mp); } return (0); } /* * Get the resolver set up for a new IP address. (Always called as writer.) * Called both for IPv4 and IPv6 interfaces, though it only sets up the * resolver for v6 if it's an ILLF_XRESOLV interface. Honors ILLF_NOARP. * * The enumerated value res_act tunes the behavior: * * Res_act_initial: set up all the resolver structures for a new * IP address. * * Res_act_defend: tell ARP that it needs to send a single gratuitous * ARP message in defense of the address. * * Res_act_rebind: tell ARP to change the hardware address for an IP * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). * * Returns zero on success, or an errno upon failure. */ int ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) { mblk_t *arp_up_mp = NULL; mblk_t *arp_down_mp = NULL; mblk_t *arp_add_mp = NULL; mblk_t *arp_del_mp = NULL; mblk_t *arp_add_mapping_mp = NULL; mblk_t *arp_del_mapping_mp = NULL; ill_t *ill = ipif->ipif_ill; int err = ENOMEM; boolean_t added_ipif = B_FALSE; boolean_t publish; boolean_t was_dup; ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); ASSERT(IAM_WRITER_IPIF(ipif)); was_dup = B_FALSE; if (res_act == Res_act_initial) { ipif->ipif_addr_ready = 0; /* * We're bringing an interface up here. There's no way that we * should need to shut down ARP now. */ mutex_enter(&ill->ill_lock); if (ipif->ipif_flags & IPIF_DUPLICATE) { ipif->ipif_flags &= ~IPIF_DUPLICATE; ill->ill_ipif_dup_count--; was_dup = B_TRUE; } mutex_exit(&ill->ill_lock); } if (ipif->ipif_recovery_id != 0) (void) untimeout(ipif->ipif_recovery_id); ipif->ipif_recovery_id = 0; if (ill->ill_net_type != IRE_IF_RESOLVER) { ipif->ipif_addr_ready = 1; return (0); } /* NDP will set the ipif_addr_ready flag when it's ready */ if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) return (0); if (ill->ill_isv6) { /* * External resolver for IPv6 */ ASSERT(res_act == Res_act_initial); publish = !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr); } else { /* * IPv4 arp case. If the ARP stream has already started * closing, fail this request for ARP bringup. Else * record the fact that an ARP bringup is pending. */ mutex_enter(&ill->ill_lock); if (ill->ill_arp_closing) { mutex_exit(&ill->ill_lock); err = EINVAL; goto failed; } else { if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && !was_dup) ill->ill_arp_bringup_pending = 1; mutex_exit(&ill->ill_lock); } publish = (ipif->ipif_lcl_addr != INADDR_ANY); } if (IS_IPMP(ill) && publish) { /* * If we're here via ipif_up(), then the ipif won't be bound * yet -- add it to the group, which will bind it if possible. * (We would add it in ipif_up(), but deleting on failure * there is gruesome.) If we're here via ipmp_ill_bind_ipif(), * then the ipif has already been added to the group and we * just need to use the binding. */ if (ipmp_ipif_bound_ill(ipif) == NULL) { if (ipmp_illgrp_add_ipif(ill->ill_grp, ipif) == NULL) { /* * We couldn't bind the ipif to an ill yet, * so we have nothing to publish. */ publish = B_FALSE; } added_ipif = B_TRUE; } } /* * Add an entry for the local address in ARP only if it * is not UNNUMBERED and it is suitable for publishing. */ if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && publish) { if (res_act == Res_act_defend) { arp_add_mp = ipif_area_alloc(ipif, ACE_F_DEFEND); if (arp_add_mp == NULL) goto failed; /* * If we're just defending our address now, then * there's no need to set up ARP multicast mappings. * The publish command is enough. */ goto done; } /* * Allocate an ARP add message and an ARP delete message (the * latter is saved for use when the address goes down). */ if ((arp_add_mp = ipif_area_alloc(ipif, 0)) == NULL) goto failed; if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) goto failed; if (res_act != Res_act_initial) goto arp_setup_multicast; } else { if (res_act != Res_act_initial) goto done; } /* * Need to bring up ARP or setup multicast mapping only * when the first interface is coming UP. */ if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0 || was_dup) goto done; /* * Allocate an ARP down message (to be saved) and an ARP up message. */ arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); if (arp_down_mp == NULL) goto failed; arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); if (arp_up_mp == NULL) goto failed; if (ipif->ipif_flags & IPIF_POINTOPOINT) goto done; arp_setup_multicast: /* * Setup the multicast mappings. This function initializes * ill_arp_del_mapping_mp also. This does not need to be done for * IPv6, or for the IPMP interface (since it has no link-layer). */ if (!ill->ill_isv6 && !IS_IPMP(ill)) { err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); if (err != 0) goto failed; ASSERT(ill->ill_arp_del_mapping_mp != NULL); ASSERT(arp_add_mapping_mp != NULL); } done: if (arp_up_mp != NULL) { ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", ill->ill_name, ipif->ipif_id)); putnext(ill->ill_rq, arp_up_mp); arp_up_mp = NULL; } if (arp_add_mp != NULL) { ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", ill->ill_name, ipif->ipif_id)); /* * If it's an extended ARP implementation, then we'll wait to * hear that DAD has finished before using the interface. */ if (!ill->ill_arp_extend) ipif->ipif_addr_ready = 1; putnext(ill->ill_rq, arp_add_mp); arp_add_mp = NULL; } else { ipif->ipif_addr_ready = 1; } if (arp_add_mapping_mp != NULL) { ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", ill->ill_name, ipif->ipif_id)); putnext(ill->ill_rq, arp_add_mapping_mp); arp_add_mapping_mp = NULL; } if (res_act == Res_act_initial) { if (ill->ill_flags & ILLF_NOARP) err = ill_arp_off(ill); else err = ill_arp_on(ill); if (err != 0) { ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); goto failed; } } if (arp_del_mp != NULL) { ASSERT(ipif->ipif_arp_del_mp == NULL); ipif->ipif_arp_del_mp = arp_del_mp; } if (arp_down_mp != NULL) { ASSERT(ill->ill_arp_down_mp == NULL); ill->ill_arp_down_mp = arp_down_mp; } if (arp_del_mapping_mp != NULL) { ASSERT(ill->ill_arp_del_mapping_mp == NULL); ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; } return ((ill->ill_ipif_up_count != 0 || was_dup || ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); failed: ip1dbg(("ipif_resolver_up: FAILED\n")); if (added_ipif) ipmp_illgrp_del_ipif(ill->ill_grp, ipif); freemsg(arp_add_mp); freemsg(arp_del_mp); freemsg(arp_add_mapping_mp); freemsg(arp_up_mp); freemsg(arp_down_mp); ill->ill_arp_bringup_pending = 0; return (err); } /* * This routine restarts IPv4 duplicate address detection (DAD) when a link has * just gone back up. */ static void ipif_arp_start_dad(ipif_t *ipif) { ill_t *ill = ipif->ipif_ill; mblk_t *arp_add_mp; /* ACE_F_UNVERIFIED restarts DAD */ if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || (ipif->ipif_flags & IPIF_UNNUMBERED) || ipif->ipif_lcl_addr == INADDR_ANY || (arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) { /* * If we can't contact ARP for some reason, that's not really a * problem. Just send out the routing socket notification that * DAD completion would have done, and continue. */ ipif_mask_reply(ipif); ipif_up_notify(ipif); ipif->ipif_addr_ready = 1; return; } putnext(ill->ill_rq, arp_add_mp); } static void ipif_ndp_start_dad(ipif_t *ipif) { nce_t *nce; nce = ndp_lookup_v6(ipif->ipif_ill, B_TRUE, &ipif->ipif_v6lcl_addr, B_FALSE); if (nce == NULL) return; if (!ndp_restart_dad(nce)) { /* * If we can't restart DAD for some reason, that's not really a * problem. Just send out the routing socket notification that * DAD completion would have done, and continue. */ ipif_up_notify(ipif); ipif->ipif_addr_ready = 1; } NCE_REFRELE(nce); } /* * Restart duplicate address detection on all interfaces on the given ill. * * This is called when an interface transitions from down to up * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). * * Note that since the underlying physical link has transitioned, we must cause * at least one routing socket message to be sent here, either via DAD * completion or just by default on the first ipif. (If we don't do this, then * in.mpathd will see long delays when doing link-based failure recovery.) */ void ill_restart_dad(ill_t *ill, boolean_t went_up) { ipif_t *ipif; if (ill == NULL) return; /* * If layer two doesn't support duplicate address detection, then just * send the routing socket message now and be done with it. */ if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || (!ill->ill_isv6 && !ill->ill_arp_extend)) { ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); return; } for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (went_up) { if (ipif->ipif_flags & IPIF_UP) { if (ill->ill_isv6) ipif_ndp_start_dad(ipif); else ipif_arp_start_dad(ipif); } else if (ill->ill_isv6 && (ipif->ipif_flags & IPIF_DUPLICATE)) { /* * For IPv4, the ARP module itself will * automatically start the DAD process when it * sees DL_NOTE_LINK_UP. We respond to the * AR_CN_READY at the completion of that task. * For IPv6, we must kick off the bring-up * process now. */ ndp_do_recovery(ipif); } else { /* * Unfortunately, the first ipif is "special" * and represents the underlying ill in the * routing socket messages. Thus, when this * one ipif is down, we must still notify so * that the user knows the IFF_RUNNING status * change. (If the first ipif is up, then * we'll handle eventual routing socket * notification via DAD completion.) */ if (ipif == ill->ill_ipif) { ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); } } } else { /* * After link down, we'll need to send a new routing * message when the link comes back, so clear * ipif_addr_ready. */ ipif->ipif_addr_ready = 0; } } /* * If we've torn down links, then notify the user right away. */ if (!went_up) ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); } static void ipsq_delete(ipsq_t *ipsq) { ipxop_t *ipx = ipsq->ipsq_xop; ipsq->ipsq_ipst = NULL; ASSERT(ipsq->ipsq_phyint == NULL); ASSERT(ipsq->ipsq_xop != NULL); ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); ASSERT(ipx->ipx_pending_mp == NULL); kmem_free(ipsq, sizeof (ipsq_t)); } static int ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) { int err; ipif_t *ipif; if (ill == NULL) return (0); ASSERT(IAM_WRITER_ILL(ill)); ill->ill_up_ipifs = B_TRUE; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_was_up) { if (!(ipif->ipif_flags & IPIF_UP)) err = ipif_up(ipif, q, mp); ipif->ipif_was_up = B_FALSE; if (err != 0) { ASSERT(err == EINPROGRESS); return (err); } } } mutex_enter(&ill->ill_lock); ill->ill_state_flags &= ~ILL_CHANGING; mutex_exit(&ill->ill_lock); ill->ill_up_ipifs = B_FALSE; return (0); } /* * This function is called to bring up all the ipifs that were up before * bringing the ill down via ill_down_ipifs(). */ int ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) { int err; ASSERT(IAM_WRITER_ILL(ill)); err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); if (err != 0) return (err); return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); } /* * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring * down the ipifs without sending DL_UNBIND_REQ to the driver. */ static void ill_down_ipifs(ill_t *ill, boolean_t logical) { ipif_t *ipif; ASSERT(IAM_WRITER_ILL(ill)); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { /* * We go through the ipif_down logic even if the ipif * is already down, since routes can be added based * on down ipifs. Going through ipif_down once again * will delete any IREs created based on these routes. */ if (ipif->ipif_flags & IPIF_UP) ipif->ipif_was_up = B_TRUE; /* * Need to re-create net/subnet bcast ires if * they are dependent on ipif. */ if (!ipif->ipif_isv6) ipif_check_bcast_ires(ipif); if (logical) { (void) ipif_logical_down(ipif, NULL, NULL); ipif_non_duplicate(ipif); ipif_down_tail(ipif); } else { (void) ipif_down(ipif, NULL, NULL); } } } /* * Redo source address selection. This is called when a * non-NOLOCAL/DEPRECATED/ANYCAST ipif comes up. */ void ill_update_source_selection(ill_t *ill) { ipif_t *ipif; ASSERT(IAM_WRITER_ILL(ill)); /* * Underlying interfaces are only used for test traffic and thus * should always send with their (deprecated) source addresses. */ if (IS_UNDER_IPMP(ill)) return; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ill->ill_isv6) ipif_recreate_interface_routes_v6(NULL, ipif); else ipif_recreate_interface_routes(NULL, ipif); } } /* * Finish the group join started in ip_sioctl_groupname(). */ /* ARGSUSED */ static void ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) { ill_t *ill = q->q_ptr; phyint_t *phyi = ill->ill_phyint; ipmp_grp_t *grp = phyi->phyint_grp; ip_stack_t *ipst = ill->ill_ipst; /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ ASSERT(!IS_IPMP(ill) && grp != NULL); ASSERT(IAM_WRITER_IPSQ(ipsq)); if (phyi->phyint_illv4 != NULL) { rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); VERIFY(grp->gr_pendv4-- > 0); rw_exit(&ipst->ips_ipmp_lock); ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); } if (phyi->phyint_illv6 != NULL) { rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); VERIFY(grp->gr_pendv6-- > 0); rw_exit(&ipst->ips_ipmp_lock); ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); } freemsg(mp); } /* * Process an SIOCSLIFGROUPNAME request. */ /* ARGSUSED */ int ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct lifreq *lifr = ifreq; ill_t *ill = ipif->ipif_ill; ip_stack_t *ipst = ill->ill_ipst; phyint_t *phyi = ill->ill_phyint; ipmp_grp_t *grp = phyi->phyint_grp; mblk_t *ipsq_mp; int err = 0; /* * Note that phyint_grp can only change here, where we're exclusive. */ ASSERT(IAM_WRITER_ILL(ill)); if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || (phyi->phyint_flags & PHYI_VIRTUAL)) return (EINVAL); lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); /* * If the name hasn't changed, there's nothing to do. */ if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) goto unlock; /* * Handle requests to rename an IPMP meta-interface. * * Note that creation of the IPMP meta-interface is handled in * userland through the standard plumbing sequence. As part of the * plumbing the IPMP meta-interface, its initial groupname is set to * the name of the interface (see ipif_set_values_tail()). */ if (IS_IPMP(ill)) { err = ipmp_grp_rename(grp, lifr->lifr_groupname); goto unlock; } /* * Handle requests to add or remove an IP interface from a group. */ if (lifr->lifr_groupname[0] != '\0') { /* add */ /* * Moves are handled by first removing the interface from * its existing group, and then adding it to another group. * So, fail if it's already in a group. */ if (IS_UNDER_IPMP(ill)) { err = EALREADY; goto unlock; } grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); if (grp == NULL) { err = ENOENT; goto unlock; } /* * Check if the phyint and its ills are suitable for * inclusion into the group. */ if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) goto unlock; /* * Checks pass; join the group, and enqueue the remaining * illgrp joins for when we've become part of the group xop * and are exclusive across its IPSQs. Since qwriter_ip() * requires an mblk_t to scribble on, and since `mp' will be * freed as part of completing the ioctl, allocate another. */ if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { err = ENOMEM; goto unlock; } /* * Before we drop ipmp_lock, bump gr_pend* to ensure that the * IPMP meta-interface ills needed by `phyi' cannot go away * before ip_join_illgrps() is called back. See the comments * in ip_sioctl_plink_ipmp() for more. */ if (phyi->phyint_illv4 != NULL) grp->gr_pendv4++; if (phyi->phyint_illv6 != NULL) grp->gr_pendv6++; rw_exit(&ipst->ips_ipmp_lock); ipmp_phyint_join_grp(phyi, grp); ill_refhold(ill); qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, SWITCH_OP, B_FALSE); return (0); } else { /* * Request to remove the interface from a group. If the * interface is not in a group, this trivially succeeds. */ rw_exit(&ipst->ips_ipmp_lock); if (IS_UNDER_IPMP(ill)) ipmp_phyint_leave_grp(phyi); return (0); } unlock: rw_exit(&ipst->ips_ipmp_lock); return (err); } /* * Process an SIOCGLIFBINDING request. */ /* ARGSUSED */ int ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { ill_t *ill; struct lifreq *lifr = ifreq; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; if (!IS_IPMP(ipif->ipif_ill)) return (EINVAL); rw_enter(&ipst->ips_ipmp_lock, RW_READER); if ((ill = ipif->ipif_bound_ill) == NULL) lifr->lifr_binding[0] = '\0'; else (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); rw_exit(&ipst->ips_ipmp_lock); return (0); } /* * Process an SIOCGLIFGROUPNAME request. */ /* ARGSUSED */ int ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { ipmp_grp_t *grp; struct lifreq *lifr = ifreq; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; rw_enter(&ipst->ips_ipmp_lock, RW_READER); if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) lifr->lifr_groupname[0] = '\0'; else (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); rw_exit(&ipst->ips_ipmp_lock); return (0); } /* * Process an SIOCGLIFGROUPINFO request. */ /* ARGSUSED */ int ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy) { ipmp_grp_t *grp; lifgroupinfo_t *lifgr; ip_stack_t *ipst = CONNQ_TO_IPST(q); /* ip_wput_nondata() verified mp->b_cont->b_cont */ lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; rw_enter(&ipst->ips_ipmp_lock, RW_READER); if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { rw_exit(&ipst->ips_ipmp_lock); return (ENOENT); } ipmp_grp_info(grp, lifgr); rw_exit(&ipst->ips_ipmp_lock); return (0); } static void ill_dl_down(ill_t *ill) { /* * The ill is down; unbind but stay attached since we're still * associated with a PPA. If we have negotiated DLPI capabilites * with the data link service provider (IDS_OK) then reset them. * The interval between unbinding and rebinding is potentially * unbounded hence we cannot assume things will be the same. * The DLPI capabilities will be probed again when the data link * is brought up. */ mblk_t *mp = ill->ill_unbind_mp; ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); ill->ill_unbind_mp = NULL; if (mp != NULL) { ip1dbg(("ill_dl_down: %s (%u) for %s\n", dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, ill->ill_name)); mutex_enter(&ill->ill_lock); ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; mutex_exit(&ill->ill_lock); /* * ip_rput does not pass up normal (M_PROTO) DLPI messages * after ILL_CONDEMNED is set. So in the unplumb case, we call * ill_capability_dld_disable disable rightaway. If this is not * an unplumb operation then the disable happens on receipt of * the capab ack via ip_rput_dlpi_writer -> * ill_capability_ack_thr. In both cases the order of * the operations seen by DLD is capability disable followed * by DL_UNBIND. Also the DLD capability disable needs a * cv_wait'able context. */ if (ill->ill_state_flags & ILL_CONDEMNED) ill_capability_dld_disable(ill); ill_capability_reset(ill, B_FALSE); ill_dlpi_send(ill, mp); } /* * Toss all of our multicast memberships. We could keep them, but * then we'd have to do bookkeeping of any joins and leaves performed * by the application while the the interface is down (we can't just * issue them because arp cannot currently process AR_ENTRY_SQUERY's * on a downed interface). */ ill_leave_multicast(ill); mutex_enter(&ill->ill_lock); ill->ill_dl_up = 0; ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); mutex_exit(&ill->ill_lock); } static void ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) { union DL_primitives *dlp; t_uscalar_t prim; boolean_t waitack = B_FALSE; ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); dlp = (union DL_primitives *)mp->b_rptr; prim = dlp->dl_primitive; ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", dl_primstr(prim), prim, ill->ill_name)); switch (prim) { case DL_PHYS_ADDR_REQ: { dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; ill->ill_phys_addr_pend = dlpap->dl_addr_type; break; } case DL_BIND_REQ: mutex_enter(&ill->ill_lock); ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; mutex_exit(&ill->ill_lock); break; } /* * Except for the ACKs for the M_PCPROTO messages, all other ACKs * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore * we only wait for the ACK of the DL_UNBIND_REQ. */ mutex_enter(&ill->ill_lock); if (!(ill->ill_state_flags & ILL_CONDEMNED) || (prim == DL_UNBIND_REQ)) { ill->ill_dlpi_pending = prim; waitack = B_TRUE; } mutex_exit(&ill->ill_lock); putnext(ill->ill_wq, mp); /* * There is no ack for DL_NOTIFY_CONF messages */ if (waitack && prim == DL_NOTIFY_CONF) ill_dlpi_done(ill, prim); } /* * Helper function for ill_dlpi_send(). */ /* ARGSUSED */ static void ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) { ill_dlpi_send(q->q_ptr, mp); } /* * Send a DLPI control message to the driver but make sure there * is only one outstanding message. Uses ill_dlpi_pending to tell * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() * when an ACK or a NAK is received to process the next queued message. */ void ill_dlpi_send(ill_t *ill, mblk_t *mp) { mblk_t **mpp; ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); /* * To ensure that any DLPI requests for current exclusive operation * are always completely sent before any DLPI messages for other * operations, require writer access before enqueuing. */ if (!IAM_WRITER_ILL(ill)) { ill_refhold(ill); /* qwriter_ip() does the ill_refrele() */ qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, NEW_OP, B_TRUE); return; } mutex_enter(&ill->ill_lock); if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { /* Must queue message. Tail insertion */ mpp = &ill->ill_dlpi_deferred; while (*mpp != NULL) mpp = &((*mpp)->b_next); ip1dbg(("ill_dlpi_send: deferring request for %s\n", ill->ill_name)); *mpp = mp; mutex_exit(&ill->ill_lock); return; } mutex_exit(&ill->ill_lock); ill_dlpi_dispatch(ill, mp); } static void ill_capability_send(ill_t *ill, mblk_t *mp) { ill->ill_capab_pending_cnt++; ill_dlpi_send(ill, mp); } void ill_capability_done(ill_t *ill) { ASSERT(ill->ill_capab_pending_cnt != 0); ill_dlpi_done(ill, DL_CAPABILITY_REQ); ill->ill_capab_pending_cnt--; if (ill->ill_capab_pending_cnt == 0 && ill->ill_dlpi_capab_state == IDCS_OK) ill_capability_reset_alloc(ill); } /* * Send all deferred DLPI messages without waiting for their ACKs. */ void ill_dlpi_send_deferred(ill_t *ill) { mblk_t *mp, *nextmp; /* * Clear ill_dlpi_pending so that the message is not queued in * ill_dlpi_send(). */ mutex_enter(&ill->ill_lock); ill->ill_dlpi_pending = DL_PRIM_INVAL; mp = ill->ill_dlpi_deferred; ill->ill_dlpi_deferred = NULL; mutex_exit(&ill->ill_lock); for (; mp != NULL; mp = nextmp) { nextmp = mp->b_next; mp->b_next = NULL; ill_dlpi_send(ill, mp); } } /* * Check if the DLPI primitive `prim' is pending; print a warning if not. */ boolean_t ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) { t_uscalar_t pending; mutex_enter(&ill->ill_lock); if (ill->ill_dlpi_pending == prim) { mutex_exit(&ill->ill_lock); return (B_TRUE); } /* * During teardown, ill_dlpi_dispatch() will send DLPI requests * without waiting, so don't print any warnings in that case. */ if (ill->ill_state_flags & ILL_CONDEMNED) { mutex_exit(&ill->ill_lock); return (B_FALSE); } pending = ill->ill_dlpi_pending; mutex_exit(&ill->ill_lock); if (pending == DL_PRIM_INVAL) { (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, "received unsolicited ack for %s on %s\n", dl_primstr(prim), ill->ill_name); } else { (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, "received unexpected ack for %s on %s (expecting %s)\n", dl_primstr(prim), ill->ill_name, dl_primstr(pending)); } return (B_FALSE); } /* * Complete the current DLPI operation associated with `prim' on `ill' and * start the next queued DLPI operation (if any). If there are no queued DLPI * operations and the ill's current exclusive IPSQ operation has finished * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See * the comments above ipsq_current_finish() for details. */ void ill_dlpi_done(ill_t *ill, t_uscalar_t prim) { mblk_t *mp; ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; ipxop_t *ipx = ipsq->ipsq_xop; ASSERT(IAM_WRITER_IPSQ(ipsq)); mutex_enter(&ill->ill_lock); ASSERT(prim != DL_PRIM_INVAL); ASSERT(ill->ill_dlpi_pending == prim); ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); if ((mp = ill->ill_dlpi_deferred) == NULL) { ill->ill_dlpi_pending = DL_PRIM_INVAL; if (ipx->ipx_current_done) { mutex_enter(&ipx->ipx_lock); ipx->ipx_current_ipif = NULL; mutex_exit(&ipx->ipx_lock); } cv_signal(&ill->ill_cv); mutex_exit(&ill->ill_lock); return; } ill->ill_dlpi_deferred = mp->b_next; mp->b_next = NULL; mutex_exit(&ill->ill_lock); ill_dlpi_dispatch(ill, mp); } void conn_delete_ire(conn_t *connp, caddr_t arg) { ipif_t *ipif = (ipif_t *)arg; ire_t *ire; /* * Look at the cached ires on conns which has pointers to ipifs. * We just call ire_refrele which clears up the reference * to ire. Called when a conn closes. Also called from ipif_free * to cleanup indirect references to the stale ipif via the cached ire. */ mutex_enter(&connp->conn_lock); ire = connp->conn_ire_cache; if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { connp->conn_ire_cache = NULL; mutex_exit(&connp->conn_lock); IRE_REFRELE_NOTR(ire); return; } mutex_exit(&connp->conn_lock); } /* * Some operations (e.g., ipif_down()) conditionally delete a number * of IREs. Those IREs may have been previously cached in the conn structure. * This ipcl_walk() walker function releases all references to such IREs based * on the condemned flag. */ /* ARGSUSED */ void conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) { ire_t *ire; mutex_enter(&connp->conn_lock); ire = connp->conn_ire_cache; if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { connp->conn_ire_cache = NULL; mutex_exit(&connp->conn_lock); IRE_REFRELE_NOTR(ire); return; } mutex_exit(&connp->conn_lock); } /* * Take down a specific interface, but don't lose any information about it. * (Always called as writer.) * This function goes through the down sequence even if the interface is * already down. There are 2 reasons. * a. Currently we permit interface routes that depend on down interfaces * to be added. This behaviour itself is questionable. However it appears * that both Solaris and 4.3 BSD have exhibited this behaviour for a long * time. We go thru the cleanup in order to remove these routes. * b. The bringup of the interface could fail in ill_dl_up i.e. we get * DL_ERROR_ACK in response to the the DL_BIND request. The interface is * down, but we need to cleanup i.e. do ill_dl_down and * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. * * IP-MT notes: * * Model of reference to interfaces. * * The following members in ipif_t track references to the ipif. * int ipif_refcnt; Active reference count * uint_t ipif_ire_cnt; Number of ire's referencing this ipif * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. * * The following members in ill_t track references to the ill. * int ill_refcnt; active refcnt * uint_t ill_ire_cnt; Number of ires referencing ill * uint_t ill_nce_cnt; Number of nces referencing ill * uint_t ill_ilm_cnt; Number of ilms referencing ill * * Reference to an ipif or ill can be obtained in any of the following ways. * * Through the lookup functions ipif_lookup_* / ill_lookup_* functions * Pointers to ipif / ill from other data structures viz ire and conn. * Implicit reference to the ipif / ill by holding a reference to the ire. * * The ipif/ill lookup functions return a reference held ipif / ill. * ipif_refcnt and ill_refcnt track the reference counts respectively. * This is a purely dynamic reference count associated with threads holding * references to the ipif / ill. Pointers from other structures do not * count towards this reference count. * * ipif_ire_cnt/ill_ire_cnt is the number of ire's * associated with the ipif/ill. This is incremented whenever a new * ire is created referencing the ipif/ill. This is done atomically inside * ire_add_v[46] where the ire is actually added to the ire hash table. * The count is decremented in ire_inactive where the ire is destroyed. * * nce's reference ill's thru nce_ill and the count of nce's associated with * an ill is recorded in ill_nce_cnt. This is incremented atomically in * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the * table. Similarly it is decremented in ndp_inactive() where the nce * is destroyed. * * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) * is incremented in ilm_add_v6() and decremented before the ilm is freed * in ilm_walker_cleanup() or ilm_delete(). * * Flow of ioctls involving interface down/up * * The following is the sequence of an attempt to set some critical flags on an * up interface. * ip_sioctl_flags * ipif_down * wait for ipif to be quiescent * ipif_down_tail * ip_sioctl_flags_tail * * All set ioctls that involve down/up sequence would have a skeleton similar * to the above. All the *tail functions are called after the refcounts have * dropped to the appropriate values. * * The mechanism to quiesce an ipif is as follows. * * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed * on the ipif. Callers either pass a flag requesting wait or the lookup * functions will return NULL. * * Delete all ires referencing this ipif * * Any thread attempting to do an ipif_refhold on an ipif that has been * obtained thru a cached pointer will first make sure that * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then * increment the refcount. * * The above guarantees that the ipif refcount will eventually come down to * zero and the ipif will quiesce, once all threads that currently hold a * reference to the ipif refrelease the ipif. The ipif is quiescent after the * ipif_refcount has dropped to zero and all ire's associated with this ipif * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() * in ip.h * * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. * * Threads trying to lookup an ipif or ill can pass a flag requesting * wait and restart if the ipif / ill cannot be looked up currently. * For eg. bind, and route operations (Eg. route add / delete) cannot return * failure if the ipif is currently undergoing an exclusive operation, and * hence pass the flag. The mblk is then enqueued in the ipsq and the operation * is restarted by ipsq_exit() when the current exclusive operation completes. * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't * change while the ill_lock is held. Before dropping the ill_lock we acquire * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish * until we release the ipsq_lock, even though the the ill/ipif state flags * can change after we drop the ill_lock. * * An attempt to send out a packet using an ipif that is currently * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this * operation and restart it later when the exclusive condition on the ipif ends. * This is an example of not passing the wait flag to the lookup functions. For * example an attempt to refhold and use conn->conn_multicast_ipif and send * out a multicast packet on that ipif will fail while the ipif is * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is * currently IPIF_CHANGING will also fail. */ int ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) { ill_t *ill = ipif->ipif_ill; conn_t *connp; boolean_t success; boolean_t ipif_was_up = B_FALSE; ip_stack_t *ipst = ill->ill_ipst; ASSERT(IAM_WRITER_IPIF(ipif)); ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); if (ipif->ipif_flags & IPIF_UP) { mutex_enter(&ill->ill_lock); ipif->ipif_flags &= ~IPIF_UP; ASSERT(ill->ill_ipif_up_count > 0); --ill->ill_ipif_up_count; mutex_exit(&ill->ill_lock); ipif_was_up = B_TRUE; /* Update status in SCTP's list */ sctp_update_ipif(ipif, SCTP_IPIF_DOWN); ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); } /* * Blow away memberships we established in ipif_multicast_up(). */ ipif_multicast_down(ipif); /* * Remove from the mapping for __sin6_src_id. We insert only * when the address is not INADDR_ANY. As IPv4 addresses are * stored as mapped addresses, we need to check for mapped * INADDR_ANY also. */ if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && !(ipif->ipif_flags & IPIF_NOLOCAL)) { int err; err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); if (err != 0) { ip0dbg(("ipif_down: srcid_remove %d\n", err)); } } /* * Delete all IRE's pointing at this ipif or its source address. */ if (ipif->ipif_isv6) { ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, ipst); } else { ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, ipst); } if (ipif_was_up && ill->ill_ipif_up_count == 0) { /* * Since the interface is now down, it may have just become * inactive. Note that this needs to be done even for a * lll_logical_down(), or ARP entries will not get correctly * restored when the interface comes back up. */ if (IS_UNDER_IPMP(ill)) ipmp_ill_refresh_active(ill); } /* * Cleaning up the conn_ire_cache or conns must be done only after the * ires have been deleted above. Otherwise a thread could end up * caching an ire in a conn after we have finished the cleanup of the * conn. The caching is done after making sure that the ire is not yet * condemned. Also documented in the block comment above ip_output */ ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); /* Also, delete the ires cached in SCTP */ sctp_ire_cache_flush(ipif); /* * Update any other ipifs which have used "our" local address as * a source address. This entails removing and recreating IRE_INTERFACE * entries for such ipifs. */ if (ipif->ipif_isv6) ipif_update_other_ipifs_v6(ipif); else ipif_update_other_ipifs(ipif); /* * neighbor-discovery or arp entries for this interface. */ ipif_ndp_down(ipif); /* * If mp is NULL the caller will wait for the appropriate refcnt. * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down * and ill_delete -> ipif_free -> ipif_down */ if (mp == NULL) { ASSERT(q == NULL); return (0); } if (CONN_Q(q)) { connp = Q_TO_CONN(q); mutex_enter(&connp->conn_lock); } else { connp = NULL; } mutex_enter(&ill->ill_lock); /* * Are there any ire's pointing to this ipif that are still active ? * If this is the last ipif going down, are there any ire's pointing * to this ill that are still active ? */ if (ipif_is_quiescent(ipif)) { mutex_exit(&ill->ill_lock); if (connp != NULL) mutex_exit(&connp->conn_lock); return (0); } ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", ill->ill_name, (void *)ill)); /* * Enqueue the mp atomically in ipsq_pending_mp. When the refcount * drops down, the operation will be restarted by ipif_ill_refrele_tail * which in turn is called by the last refrele on the ipif/ill/ire. */ success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); if (!success) { /* The conn is closing. So just return */ ASSERT(connp != NULL); mutex_exit(&ill->ill_lock); mutex_exit(&connp->conn_lock); return (EINTR); } mutex_exit(&ill->ill_lock); if (connp != NULL) mutex_exit(&connp->conn_lock); return (EINPROGRESS); } void ipif_down_tail(ipif_t *ipif) { ill_t *ill = ipif->ipif_ill; /* * Skip any loopback interface (null wq). * If this is the last logical interface on the ill * have ill_dl_down tell the driver we are gone (unbind) * Note that lun 0 can ipif_down even though * there are other logical units that are up. * This occurs e.g. when we change a "significant" IFF_ flag. */ if (ill->ill_wq != NULL && !ill->ill_logical_down && ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && ill->ill_dl_up) { ill_dl_down(ill); } ill->ill_logical_down = 0; /* * Has to be after removing the routes in ipif_down_delete_ire. */ ipif_resolver_down(ipif); ip_rts_ifmsg(ipif, RTSQ_DEFAULT); ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); } /* * Bring interface logically down without bringing the physical interface * down e.g. when the netmask is changed. This avoids long lasting link * negotiations between an ethernet interface and a certain switches. */ static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) { /* * The ill_logical_down flag is a transient flag. It is set here * and is cleared once the down has completed in ipif_down_tail. * This flag does not indicate whether the ill stream is in the * DL_BOUND state with the driver. Instead this flag is used by * ipif_down_tail to determine whether to DL_UNBIND the stream with * the driver. The state of the ill stream i.e. whether it is * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. */ ipif->ipif_ill->ill_logical_down = 1; return (ipif_down(ipif, q, mp)); } /* * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. * If the usesrc client ILL is already part of a usesrc group or not, * in either case a ire_stq with the matching usesrc client ILL will * locate the IRE's that need to be deleted. We want IREs to be created * with the new source address. */ static void ipif_delete_cache_ire(ire_t *ire, char *ill_arg) { ill_t *ucill = (ill_t *)ill_arg; ASSERT(IAM_WRITER_ILL(ucill)); if (ire->ire_stq == NULL) return; if ((ire->ire_type == IRE_CACHE) && ((ill_t *)ire->ire_stq->q_ptr == ucill)) ire_delete(ire); } /* * ire_walk routine to delete every IRE dependent on the interface * address that is going down. (Always called as writer.) * Works for both v4 and v6. * In addition for checking for ire_ipif matches it also checks for * IRE_CACHE entries which have the same source address as the * disappearing ipif since ipif_select_source might have picked * that source. Note that ipif_down/ipif_update_other_ipifs takes * care of any IRE_INTERFACE with the disappearing source address. */ static void ipif_down_delete_ire(ire_t *ire, char *ipif_arg) { ipif_t *ipif = (ipif_t *)ipif_arg; ASSERT(IAM_WRITER_IPIF(ipif)); if (ire->ire_ipif == NULL) return; if (ire->ire_ipif != ipif) { /* * Look for a matching source address. */ if (ire->ire_type != IRE_CACHE) return; if (ipif->ipif_flags & IPIF_NOLOCAL) return; if (ire->ire_ipversion == IPV4_VERSION) { if (ire->ire_src_addr != ipif->ipif_src_addr) return; } else { if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, &ipif->ipif_v6lcl_addr)) return; } ire_delete(ire); return; } /* * ire_delete() will do an ire_flush_cache which will delete * all ire_ipif matches */ ire_delete(ire); } /* * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or * 2) when an interface is brought up or down (on that ill). * This ensures that the IRE_CACHE entries don't retain stale source * address selection results. */ void ill_ipif_cache_delete(ire_t *ire, char *ill_arg) { ill_t *ill = (ill_t *)ill_arg; ASSERT(IAM_WRITER_ILL(ill)); ASSERT(ire->ire_type == IRE_CACHE); /* * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches * ill, but we only want to delete the IRE if ire_ipif matches. */ ASSERT(ire->ire_ipif != NULL); if (ill == ire->ire_ipif->ipif_ill) ire_delete(ire); } /* * Delete all the IREs whose ire_stq's reference `ill_arg'. IPMP uses this * instead of ill_ipif_cache_delete() because ire_ipif->ipif_ill references * the IPMP ill. */ void ill_stq_cache_delete(ire_t *ire, char *ill_arg) { ill_t *ill = (ill_t *)ill_arg; ASSERT(IAM_WRITER_ILL(ill)); ASSERT(ire->ire_type == IRE_CACHE); /* * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches * ill, but we only want to delete the IRE if ire_stq matches. */ if (ire->ire_stq->q_ptr == ill_arg) ire_delete(ire); } /* * Delete all the IREs whose ire_stq's reference any ill in the same IPMP * group as `ill_arg'. Used by ipmp_ill_deactivate() to flush all IRE_CACHE * entries for the illgrp. */ void ill_grp_cache_delete(ire_t *ire, char *ill_arg) { ill_t *ill = (ill_t *)ill_arg; ASSERT(IAM_WRITER_ILL(ill)); if (ire->ire_type == IRE_CACHE && IS_IN_SAME_ILLGRP((ill_t *)ire->ire_stq->q_ptr, ill)) { ire_delete(ire); } } /* * Delete all broadcast IREs with a source address on `ill_arg'. */ static void ill_broadcast_delete(ire_t *ire, char *ill_arg) { ill_t *ill = (ill_t *)ill_arg; ASSERT(IAM_WRITER_ILL(ill)); ASSERT(ire->ire_type == IRE_BROADCAST); if (ire->ire_ipif->ipif_ill == ill) ire_delete(ire); } /* * Initiate deallocate of an IPIF. Always called as writer. Called by * ill_delete or ip_sioctl_removeif. */ static void ipif_free(ipif_t *ipif) { ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; ASSERT(IAM_WRITER_IPIF(ipif)); if (ipif->ipif_recovery_id != 0) (void) untimeout(ipif->ipif_recovery_id); ipif->ipif_recovery_id = 0; /* Remove conn references */ reset_conn_ipif(ipif); /* * Make sure we have valid net and subnet broadcast ire's for the * other ipif's which share them with this ipif. */ if (!ipif->ipif_isv6) ipif_check_bcast_ires(ipif); /* * Take down the interface. We can be called either from ill_delete * or from ip_sioctl_removeif. */ (void) ipif_down(ipif, NULL, NULL); /* * Now that the interface is down, there's no chance it can still * become a duplicate. Cancel any timer that may have been set while * tearing down. */ if (ipif->ipif_recovery_id != 0) (void) untimeout(ipif->ipif_recovery_id); ipif->ipif_recovery_id = 0; rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); /* Remove pointers to this ill in the multicast routing tables */ reset_mrt_vif_ipif(ipif); /* If necessary, clear the cached source ipif rotor. */ if (ipif->ipif_ill->ill_src_ipif == ipif) ipif->ipif_ill->ill_src_ipif = NULL; rw_exit(&ipst->ips_ill_g_lock); } static void ipif_free_tail(ipif_t *ipif) { mblk_t *mp; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; /* * Free state for addition IRE_IF_[NO]RESOLVER ire's. */ mutex_enter(&ipif->ipif_saved_ire_lock); mp = ipif->ipif_saved_ire_mp; ipif->ipif_saved_ire_mp = NULL; mutex_exit(&ipif->ipif_saved_ire_lock); freemsg(mp); /* * Need to hold both ill_g_lock and ill_lock while * inserting or removing an ipif from the linked list * of ipifs hanging off the ill. */ rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); ASSERT(ilm_walk_ipif(ipif) == 0); #ifdef DEBUG ipif_trace_cleanup(ipif); #endif /* Ask SCTP to take it out of it list */ sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); /* Get it out of the ILL interface list. */ ipif_remove(ipif); rw_exit(&ipst->ips_ill_g_lock); mutex_destroy(&ipif->ipif_saved_ire_lock); ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); ASSERT(ipif->ipif_recovery_id == 0); /* Free the memory. */ mi_free(ipif); } /* * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" * is zero. */ void ipif_get_name(const ipif_t *ipif, char *buf, int len) { char lbuf[LIFNAMSIZ]; char *name; size_t name_len; buf[0] = '\0'; name = ipif->ipif_ill->ill_name; name_len = ipif->ipif_ill->ill_name_length; if (ipif->ipif_id != 0) { (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, ipif->ipif_id); name = lbuf; name_len = mi_strlen(name) + 1; } len -= 1; buf[len] = '\0'; len = MIN(len, name_len); bcopy(name, buf, len); } /* * Find an IPIF based on the name passed in. Names can be of the * form (e.g., le0), :<#> (e.g., le0:1), * The string can have forms like <#> (e.g., le0), * <#>. (e.g. le0.foo), or .<#> (e.g. ip.tun3). * When there is no colon, the implied unit id is zero. must * correspond to the name of an ILL. (May be called as writer.) */ static ipif_t * ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) { char *cp; char *endp; long id; ill_t *ill; ipif_t *ipif; uint_t ire_type; boolean_t did_alloc = B_FALSE; ipsq_t *ipsq; if (error != NULL) *error = 0; /* * If the caller wants to us to create the ipif, make sure we have a * valid zoneid */ ASSERT(!do_alloc || zoneid != ALL_ZONES); if (namelen == 0) { if (error != NULL) *error = ENXIO; return (NULL); } *exists = B_FALSE; /* Look for a colon in the name. */ endp = &name[namelen]; for (cp = endp; --cp > name; ) { if (*cp == IPIF_SEPARATOR_CHAR) break; } if (*cp == IPIF_SEPARATOR_CHAR) { /* * Reject any non-decimal aliases for logical * interfaces. Aliases with leading zeroes * are also rejected as they introduce ambiguity * in the naming of the interfaces. * In order to confirm with existing semantics, * and to not break any programs/script relying * on that behaviour, if<0>:0 is considered to be * a valid interface. * * If alias has two or more digits and the first * is zero, fail. */ if (&cp[2] < endp && cp[1] == '0') { if (error != NULL) *error = EINVAL; return (NULL); } } if (cp <= name) { cp = endp; } else { *cp = '\0'; } /* * Look up the ILL, based on the portion of the name * before the slash. ill_lookup_on_name returns a held ill. * Temporary to check whether ill exists already. If so * ill_lookup_on_name will clear it. */ ill = ill_lookup_on_name(name, do_alloc, isv6, q, mp, func, error, &did_alloc, ipst); if (cp != endp) *cp = IPIF_SEPARATOR_CHAR; if (ill == NULL) return (NULL); /* Establish the unit number in the name. */ id = 0; if (cp < endp && *endp == '\0') { /* If there was a colon, the unit number follows. */ cp++; if (ddi_strtol(cp, NULL, 0, &id) != 0) { ill_refrele(ill); if (error != NULL) *error = ENXIO; return (NULL); } } GRAB_CONN_LOCK(q); mutex_enter(&ill->ill_lock); /* Now see if there is an IPIF with this unit number. */ for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_id == id) { if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES) { mutex_exit(&ill->ill_lock); RELEASE_CONN_LOCK(q); ill_refrele(ill); if (error != NULL) *error = ENXIO; return (NULL); } /* * The block comment at the start of ipif_down * explains the use of the macros used below */ if (IPIF_CAN_LOOKUP(ipif)) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); if (!did_alloc) *exists = B_TRUE; /* * Drop locks before calling ill_refrele * since it can potentially call into * ipif_ill_refrele_tail which can end up * in trying to acquire any lock. */ RELEASE_CONN_LOCK(q); ill_refrele(ill); return (ipif); } else if (IPIF_CAN_WAIT(ipif, q)) { ipsq = ill->ill_phyint->phyint_ipsq; mutex_enter(&ipsq->ipsq_lock); mutex_enter(&ipsq->ipsq_xop->ipx_lock); mutex_exit(&ill->ill_lock); ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); mutex_exit(&ipsq->ipsq_xop->ipx_lock); mutex_exit(&ipsq->ipsq_lock); RELEASE_CONN_LOCK(q); ill_refrele(ill); if (error != NULL) *error = EINPROGRESS; return (NULL); } } } RELEASE_CONN_LOCK(q); if (!do_alloc) { mutex_exit(&ill->ill_lock); ill_refrele(ill); if (error != NULL) *error = ENXIO; return (NULL); } /* * If none found, atomically allocate and return a new one. * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL * to support "receive only" use of lo0:1 etc. as is still done * below as an initial guess. * However, this is now likely to be overriden later in ipif_up_done() * when we know for sure what address has been configured on the * interface, since we might have more than one loopback interface * with a loopback address, e.g. in the case of zones, and all the * interfaces with loopback addresses need to be marked IRE_LOOPBACK. */ if (ill->ill_net_type == IRE_LOOPBACK && id == 0) ire_type = IRE_LOOPBACK; else ire_type = IRE_LOCAL; ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE); if (ipif != NULL) ipif_refhold_locked(ipif); else if (error != NULL) *error = ENOMEM; mutex_exit(&ill->ill_lock); ill_refrele(ill); return (ipif); } /* * This routine is called whenever a new address comes up on an ipif. If * we are configured to respond to address mask requests, then we are supposed * to broadcast an address mask reply at this time. This routine is also * called if we are already up, but a netmask change is made. This is legal * but might not make the system manager very popular. (May be called * as writer.) */ void ipif_mask_reply(ipif_t *ipif) { icmph_t *icmph; ipha_t *ipha; mblk_t *mp; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) if (!ipst->ips_ip_respond_to_address_mask_broadcast) return; /* ICMP mask reply is IPv4 only */ ASSERT(!ipif->ipif_isv6); /* ICMP mask reply is not for a loopback interface */ ASSERT(ipif->ipif_ill->ill_wq != NULL); mp = allocb(REPLY_LEN, BPRI_HI); if (mp == NULL) return; mp->b_wptr = mp->b_rptr + REPLY_LEN; ipha = (ipha_t *)mp->b_rptr; bzero(ipha, REPLY_LEN); *ipha = icmp_ipha; ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; ipha->ipha_src = ipif->ipif_src_addr; ipha->ipha_dst = ipif->ipif_brd_addr; ipha->ipha_length = htons(REPLY_LEN); ipha->ipha_ident = 0; icmph = (icmph_t *)&ipha[1]; icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); put(ipif->ipif_wq, mp); #undef REPLY_LEN } /* * When the mtu in the ipif changes, we call this routine through ire_walk * to update all the relevant IREs. * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. */ static void ipif_mtu_change(ire_t *ire, char *ipif_arg) { ipif_t *ipif = (ipif_t *)ipif_arg; if (ire->ire_stq == NULL || ire->ire_ipif != ipif) return; mutex_enter(&ire->ire_lock); if (ire->ire_marks & IRE_MARK_PMTU) { /* Avoid increasing the PMTU */ ire->ire_max_frag = MIN(ipif->ipif_mtu, ire->ire_max_frag); if (ire->ire_max_frag == ipif->ipif_mtu) ire->ire_marks &= ~IRE_MARK_PMTU; } else { ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); } mutex_exit(&ire->ire_lock); } /* * When the mtu in the ill changes, we call this routine through ire_walk * to update all the relevant IREs. * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. */ void ill_mtu_change(ire_t *ire, char *ill_arg) { ill_t *ill = (ill_t *)ill_arg; if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) return; mutex_enter(&ire->ire_lock); if (ire->ire_marks & IRE_MARK_PMTU) { /* Avoid increasing the PMTU */ ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, ire->ire_max_frag); if (ire->ire_max_frag == ire->ire_ipif->ipif_mtu) { ire->ire_marks &= ~IRE_MARK_PMTU; } } else { ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, IP_MAXPACKET); } mutex_exit(&ire->ire_lock); } /* * Join the ipif specific multicast groups. * Must be called after a mapping has been set up in the resolver. (Always * called as writer.) */ void ipif_multicast_up(ipif_t *ipif) { int err; ill_t *ill; ASSERT(IAM_WRITER_IPIF(ipif)); ill = ipif->ipif_ill; ip1dbg(("ipif_multicast_up\n")); if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) return; if (ipif->ipif_isv6) { in6_addr_t v6allmc = ipv6_all_hosts_mcast; in6_addr_t v6solmc = ipv6_solicited_node_mcast; v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) return; ip1dbg(("ipif_multicast_up - addmulti\n")); /* * Join the all hosts multicast address. We skip this for * underlying IPMP interfaces since they should be invisible. */ if (!IS_UNDER_IPMP(ill)) { err = ip_addmulti_v6(&v6allmc, ill, ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); if (err != 0) { ip0dbg(("ipif_multicast_up: " "all_hosts_mcast failed %d\n", err)); return; } ipif->ipif_joined_allhosts = 1; } /* * Enable multicast for the solicited node multicast address */ if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { err = ip_addmulti_v6(&v6solmc, ill, ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); if (err != 0) { ip0dbg(("ipif_multicast_up: solicited MC" " failed %d\n", err)); if (ipif->ipif_joined_allhosts) { (void) ip_delmulti_v6(&v6allmc, ill, ipif->ipif_zoneid, B_TRUE, B_TRUE); ipif->ipif_joined_allhosts = 0; } return; } } } else { if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) return; /* Join the all hosts multicast address */ ip1dbg(("ipif_multicast_up - addmulti\n")); err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); if (err) { ip0dbg(("ipif_multicast_up: failed %d\n", err)); return; } } ipif->ipif_multicast_up = 1; } /* * Blow away any multicast groups that we joined in ipif_multicast_up(). * (Explicit memberships are blown away in ill_leave_multicast() when the * ill is brought down.) */ void ipif_multicast_down(ipif_t *ipif) { int err; ASSERT(IAM_WRITER_IPIF(ipif)); ip1dbg(("ipif_multicast_down\n")); if (!ipif->ipif_multicast_up) return; ip1dbg(("ipif_multicast_down - delmulti\n")); if (!ipif->ipif_isv6) { err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, B_TRUE); if (err != 0) ip0dbg(("ipif_multicast_down: failed %d\n", err)); ipif->ipif_multicast_up = 0; return; } /* * Leave the all-hosts multicast address. */ if (ipif->ipif_joined_allhosts) { err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, ipif->ipif_zoneid, B_TRUE, B_TRUE); if (err != 0) { ip0dbg(("ipif_multicast_down: all_hosts_mcast " "failed %d\n", err)); } ipif->ipif_joined_allhosts = 0; } /* * Disable multicast for the solicited node multicast address */ if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; ipv6_multi.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, ipif->ipif_zoneid, B_TRUE, B_TRUE); if (err != 0) { ip0dbg(("ipif_multicast_down: sol MC failed %d\n", err)); } } ipif->ipif_multicast_up = 0; } /* * Used when an interface comes up to recreate any extra routes on this * interface. */ static ire_t ** ipif_recover_ire(ipif_t *ipif) { mblk_t *mp; ire_t **ipif_saved_irep; ire_t **irep; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, ipif->ipif_id)); mutex_enter(&ipif->ipif_saved_ire_lock); ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * ipif->ipif_saved_ire_cnt, KM_NOSLEEP); if (ipif_saved_irep == NULL) { mutex_exit(&ipif->ipif_saved_ire_lock); return (NULL); } irep = ipif_saved_irep; for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { ire_t *ire; queue_t *rfq; queue_t *stq; ifrt_t *ifrt; uchar_t *src_addr; uchar_t *gateway_addr; ushort_t type; /* * When the ire was initially created and then added in * ip_rt_add(), it was created either using ipif->ipif_net_type * in the case of a traditional interface route, or as one of * the IRE_OFFSUBNET types (with the exception of * IRE_HOST types ire which is created by icmp_redirect() and * which we don't need to save or recover). In the case where * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update * the ire_type to IRE_IF_NORESOLVER before calling ire_add() * to satisfy software like GateD and Sun Cluster which creates * routes using the the loopback interface's address as a * gateway. * * As ifrt->ifrt_type reflects the already updated ire_type, * ire_create() will be called in the same way here as * in ip_rt_add(), namely using ipif->ipif_net_type when * the route looks like a traditional interface route (where * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using * the saved ifrt->ifrt_type. This means that in the case where * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by * ire_create() will be an IRE_LOOPBACK, it will then be turned * into an IRE_IF_NORESOLVER and then added by ire_add(). */ ifrt = (ifrt_t *)mp->b_rptr; ASSERT(ifrt->ifrt_type != IRE_CACHE); if (ifrt->ifrt_type & IRE_INTERFACE) { rfq = NULL; stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) ? ipif->ipif_rq : ipif->ipif_wq; src_addr = (ifrt->ifrt_flags & RTF_SETSRC) ? (uint8_t *)&ifrt->ifrt_src_addr : (uint8_t *)&ipif->ipif_src_addr; gateway_addr = NULL; type = ipif->ipif_net_type; } else if (ifrt->ifrt_type & IRE_BROADCAST) { /* Recover multiroute broadcast IRE. */ rfq = ipif->ipif_rq; stq = ipif->ipif_wq; src_addr = (ifrt->ifrt_flags & RTF_SETSRC) ? (uint8_t *)&ifrt->ifrt_src_addr : (uint8_t *)&ipif->ipif_src_addr; gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; type = ifrt->ifrt_type; } else { rfq = NULL; stq = NULL; src_addr = (ifrt->ifrt_flags & RTF_SETSRC) ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; type = ifrt->ifrt_type; } /* * Create a copy of the IRE with the saved address and netmask. */ ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " "0x%x/0x%x\n", ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, ntohl(ifrt->ifrt_addr), ntohl(ifrt->ifrt_mask))); ire = ire_create( (uint8_t *)&ifrt->ifrt_addr, (uint8_t *)&ifrt->ifrt_mask, src_addr, gateway_addr, &ifrt->ifrt_max_frag, NULL, rfq, stq, type, ipif, 0, 0, 0, ifrt->ifrt_flags, &ifrt->ifrt_iulp_info, NULL, NULL, ipst); if (ire == NULL) { mutex_exit(&ipif->ipif_saved_ire_lock); kmem_free(ipif_saved_irep, ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); return (NULL); } /* * Some software (for example, GateD and Sun Cluster) attempts * to create (what amount to) IRE_PREFIX routes with the * loopback address as the gateway. This is primarily done to * set up prefixes with the RTF_REJECT flag set (for example, * when generating aggregate routes.) * * If the IRE type (as defined by ipif->ipif_net_type) is * IRE_LOOPBACK, then we map the request into a * IRE_IF_NORESOLVER. */ if (ipif->ipif_net_type == IRE_LOOPBACK) ire->ire_type = IRE_IF_NORESOLVER; /* * ire held by ire_add, will be refreled' towards the * the end of ipif_up_done */ (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); *irep = ire; irep++; ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); } mutex_exit(&ipif->ipif_saved_ire_lock); return (ipif_saved_irep); } /* * Used to set the netmask and broadcast address to default values when the * interface is brought up. (Always called as writer.) */ static void ipif_set_default(ipif_t *ipif) { ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); if (!ipif->ipif_isv6) { /* * Interface holds an IPv4 address. Default * mask is the natural netmask. */ if (!ipif->ipif_net_mask) { ipaddr_t v4mask; v4mask = ip_net_mask(ipif->ipif_lcl_addr); V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); } if (ipif->ipif_flags & IPIF_POINTOPOINT) { /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; } else { V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); } /* * NOTE: SunOS 4.X does this even if the broadcast address * has been already set thus we do the same here. */ if (ipif->ipif_flags & IPIF_BROADCAST) { ipaddr_t v4addr; v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); } } else { /* * Interface holds an IPv6-only address. Default * mask is all-ones. */ if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) ipif->ipif_v6net_mask = ipv6_all_ones; if (ipif->ipif_flags & IPIF_POINTOPOINT) { /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; } else { V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); } } } /* * Return 0 if this address can be used as local address without causing * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address * is already up on a different ill, and EADDRINUSE if it's up on the same ill. * Note that the same IPv6 link-local address is allowed as long as the ills * are not on the same link. */ int ip_addr_availability_check(ipif_t *new_ipif) { in6_addr_t our_v6addr; ill_t *ill; ipif_t *ipif; ill_walk_context_t ctx; ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; ASSERT(IAM_WRITER_IPIF(new_ipif)); ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) return (0); our_v6addr = new_ipif->ipif_v6lcl_addr; if (new_ipif->ipif_isv6) ill = ILL_START_WALK_V6(&ctx, ipst); else ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if ((ipif == new_ipif) || !(ipif->ipif_flags & IPIF_UP) || (ipif->ipif_flags & IPIF_UNNUMBERED) || !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, &our_v6addr)) continue; if (new_ipif->ipif_flags & IPIF_POINTOPOINT) new_ipif->ipif_flags |= IPIF_UNNUMBERED; else if (ipif->ipif_flags & IPIF_POINTOPOINT) ipif->ipif_flags |= IPIF_UNNUMBERED; else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) continue; else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) continue; else if (new_ipif->ipif_ill == ill) return (EADDRINUSE); else return (EADDRNOTAVAIL); } } return (0); } /* * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add * IREs for the ipif. * When the routine returns EINPROGRESS then mp has been consumed and * the ioctl will be acked from ip_rput_dlpi. */ int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) { ill_t *ill = ipif->ipif_ill; boolean_t isv6 = ipif->ipif_isv6; int err = 0; boolean_t success; uint_t ipif_orig_id; ip_stack_t *ipst = ill->ill_ipst; ASSERT(IAM_WRITER_IPIF(ipif)); ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); /* Shouldn't get here if it is already up. */ if (ipif->ipif_flags & IPIF_UP) return (EALREADY); /* * If this is a request to bring up a data address on an interface * under IPMP, then move the address to its IPMP meta-interface and * try to bring it up. One complication is that the zeroth ipif for * an ill is special, in that every ill always has one, and that code * throughout IP deferences ill->ill_ipif without holding any locks. */ if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { ipif_t *stubipif = NULL, *moveipif = NULL; ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); /* * The ipif being brought up should be quiesced. If it's not, * something has gone amiss and we need to bail out. (If it's * quiesced, we know it will remain so via IPIF_CHANGING.) */ mutex_enter(&ill->ill_lock); if (!ipif_is_quiescent(ipif)) { mutex_exit(&ill->ill_lock); return (EINVAL); } mutex_exit(&ill->ill_lock); /* * If we're going to need to allocate ipifs, do it prior * to starting the move (and grabbing locks). */ if (ipif->ipif_id == 0) { moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, B_FALSE); stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, B_FALSE); if (moveipif == NULL || stubipif == NULL) { mi_free(moveipif); mi_free(stubipif); return (ENOMEM); } } /* * Grab or transfer the ipif to move. During the move, keep * ill_g_lock held to prevent any ill walker threads from * seeing things in an inconsistent state. */ rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); if (ipif->ipif_id != 0) { ipif_remove(ipif); } else { ipif_transfer(ipif, moveipif, stubipif); ipif = moveipif; } /* * Place the ipif on the IPMP ill. If the zeroth ipif on * the IPMP ill is a stub (0.0.0.0 down address) then we * replace that one. Otherwise, pick the next available slot. */ ipif->ipif_ill = ipmp_ill; ipif_orig_id = ipif->ipif_id; if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); ipif = ipmp_ill->ill_ipif; } else { ipif->ipif_id = -1; if (ipif_insert(ipif, B_FALSE) != 0) { /* * No more available ipif_id's -- put it back * on the original ill and fail the operation. * Since we're writer on the ill, we can be * sure our old slot is still available. */ ipif->ipif_id = ipif_orig_id; ipif->ipif_ill = ill; if (ipif_orig_id == 0) { ipif_transfer(ipif, ill->ill_ipif, NULL); } else { VERIFY(ipif_insert(ipif, B_FALSE) == 0); } rw_exit(&ipst->ips_ill_g_lock); return (ENOMEM); } } rw_exit(&ipst->ips_ill_g_lock); /* * Tell SCTP that the ipif has moved. Note that even if we * had to allocate a new ipif, the original sequence id was * preserved and therefore SCTP won't know. */ sctp_move_ipif(ipif, ill, ipmp_ill); /* * If the ipif being brought up was on slot zero, then we * first need to bring up the placeholder we stuck there. In * ip_rput_dlpi_writer(), ip_arp_done(), or the recursive call * to ipif_up() itself, if we successfully bring up the * placeholder, we'll check ill_move_ipif and bring it up too. */ if (ipif_orig_id == 0) { ASSERT(ill->ill_move_ipif == NULL); ill->ill_move_ipif = ipif; if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) ASSERT(ill->ill_move_ipif == NULL); if (err != EINPROGRESS) ill->ill_move_ipif = NULL; return (err); } /* * Bring it up on the IPMP ill. */ return (ipif_up(ipif, q, mp)); } /* Skip arp/ndp for any loopback interface. */ if (ill->ill_wq != NULL) { conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; if (!ill->ill_dl_up) { /* * ill_dl_up is not yet set. i.e. we are yet to * DL_BIND with the driver and this is the first * logical interface on the ill to become "up". * Tell the driver to get going (via DL_BIND_REQ). * Note that changing "significant" IFF_ flags * address/netmask etc cause a down/up dance, but * does not cause an unbind (DL_UNBIND) with the driver */ return (ill_dl_up(ill, ipif, mp, q)); } /* * ipif_resolver_up may end up sending an * AR_INTERFACE_UP message to ARP, which would, in * turn send a DLPI message to the driver. ioctls are * serialized and so we cannot send more than one * interface up message at a time. If ipif_resolver_up * does send an interface up message to ARP, we get * EINPROGRESS and we will complete in ip_arp_done. */ ASSERT(connp != NULL || !CONN_Q(q)); if (connp != NULL) mutex_enter(&connp->conn_lock); mutex_enter(&ill->ill_lock); success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); mutex_exit(&ill->ill_lock); if (connp != NULL) mutex_exit(&connp->conn_lock); if (!success) return (EINTR); /* * Crank up the resolver. For IPv6, this cranks up the * external resolver if one is configured, but even if an * external resolver isn't configured, it must be called to * reset DAD state. For IPv6, if an external resolver is not * being used, ipif_resolver_up() will never return * EINPROGRESS, so we can always call ipif_ndp_up() here. * Note that if an external resolver is being used, there's no * need to call ipif_ndp_up() since it will do nothing. */ err = ipif_resolver_up(ipif, Res_act_initial); if (err == EINPROGRESS) { /* We will complete it in ip_arp_done() */ return (err); } if (isv6 && err == 0) err = ipif_ndp_up(ipif, B_TRUE); ASSERT(err != EINPROGRESS); mp = ipsq_pending_mp_get(ipsq, &connp); ASSERT(mp != NULL); if (err != 0) return (err); } else { /* * Interfaces without underlying hardware don't do duplicate * address detection. */ ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); ipif->ipif_addr_ready = 1; } err = isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif); if (err == 0 && ill->ill_move_ipif != NULL) { ipif = ill->ill_move_ipif; ill->ill_move_ipif = NULL; return (ipif_up(ipif, q, mp)); } return (err); } /* * Perform a bind for the physical device. * When the routine returns EINPROGRESS then mp has been consumed and * the ioctl will be acked from ip_rput_dlpi. * Allocate an unbind message and save it until ipif_down. */ static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) { areq_t *areq; mblk_t *areq_mp = NULL; mblk_t *bind_mp = NULL; mblk_t *unbind_mp = NULL; conn_t *connp; boolean_t success; uint16_t sap_addr; ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); ASSERT(IAM_WRITER_ILL(ill)); ASSERT(mp != NULL); /* Create a resolver cookie for ARP */ if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); if (areq_mp == NULL) return (ENOMEM); freemsg(ill->ill_resolver_mp); ill->ill_resolver_mp = areq_mp; areq = (areq_t *)areq_mp->b_rptr; sap_addr = ill->ill_sap; bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); } bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), DL_BIND_REQ); if (bind_mp == NULL) goto bad; ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); if (unbind_mp == NULL) goto bad; /* * Record state needed to complete this operation when the * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. */ connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; ASSERT(connp != NULL || !CONN_Q(q)); GRAB_CONN_LOCK(q); mutex_enter(&ipif->ipif_ill->ill_lock); success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); mutex_exit(&ipif->ipif_ill->ill_lock); RELEASE_CONN_LOCK(q); if (!success) goto bad; /* * Save the unbind message for ill_dl_down(); it will be consumed when * the interface goes down. */ ASSERT(ill->ill_unbind_mp == NULL); ill->ill_unbind_mp = unbind_mp; ill_dlpi_send(ill, bind_mp); /* Send down link-layer capabilities probe if not already done. */ ill_capability_probe(ill); /* * Sysid used to rely on the fact that netboots set domainname * and the like. Now that miniroot boots aren't strictly netboots * and miniroot network configuration is driven from userland * these things still need to be set. This situation can be detected * by comparing the interface being configured here to the one * dhcifname was set to reference by the boot loader. Once sysid is * converted to use dhcp_ipc_getinfo() this call can go away. */ if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (strcmp(ill->ill_name, dhcifname) == 0) && (strlen(srpc_domain) == 0)) { if (dhcpinit() != 0) cmn_err(CE_WARN, "no cached dhcp response"); } /* * This operation will complete in ip_rput_dlpi with either * a DL_BIND_ACK or DL_ERROR_ACK. */ return (EINPROGRESS); bad: ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); freemsg(bind_mp); freemsg(unbind_mp); return (ENOMEM); } uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; /* * DLPI and ARP is up. * Create all the IREs associated with an interface bring up multicast. * Set the interface flag and finish other initialization * that potentially had to be differed to after DL_BIND_ACK. */ int ipif_up_done(ipif_t *ipif) { ire_t *ire_array[20]; ire_t **irep = ire_array; ire_t **irep1; ipaddr_t net_mask = 0; ipaddr_t subnet_mask, route_mask; ill_t *ill = ipif->ipif_ill; queue_t *stq; ipif_t *src_ipif; ipif_t *tmp_ipif; boolean_t flush_ire_cache = B_TRUE; int err = 0; ire_t **ipif_saved_irep = NULL; int ipif_saved_ire_cnt; int cnt; boolean_t src_ipif_held = B_FALSE; boolean_t loopback = B_FALSE; ip_stack_t *ipst = ill->ill_ipst; ip1dbg(("ipif_up_done(%s:%u)\n", ipif->ipif_ill->ill_name, ipif->ipif_id)); /* Check if this is a loopback interface */ if (ipif->ipif_ill->ill_wq == NULL) loopback = B_TRUE; ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); /* * If all other interfaces for this ill are down or DEPRECATED, * or otherwise unsuitable for source address selection, remove * any IRE_CACHE entries for this ill to make sure source * address selection gets to take this new ipif into account. * No need to hold ill_lock while traversing the ipif list since * we are writer */ for (tmp_ipif = ill->ill_ipif; tmp_ipif; tmp_ipif = tmp_ipif->ipif_next) { if (((tmp_ipif->ipif_flags & (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || !(tmp_ipif->ipif_flags & IPIF_UP)) || (tmp_ipif == ipif)) continue; /* first useable pre-existing interface */ flush_ire_cache = B_FALSE; break; } if (flush_ire_cache) ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); /* * Figure out which way the send-to queue should go. Only * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK * should show up here. */ switch (ill->ill_net_type) { case IRE_IF_RESOLVER: stq = ill->ill_rq; break; case IRE_IF_NORESOLVER: case IRE_LOOPBACK: stq = ill->ill_wq; break; default: return (EINVAL); } if (IS_LOOPBACK(ill)) { /* * lo0:1 and subsequent ipifs were marked IRE_LOCAL in * ipif_lookup_on_name(), but in the case of zones we can have * several loopback addresses on lo0. So all the interfaces with * loopback addresses need to be marked IRE_LOOPBACK. */ if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == htonl(INADDR_LOOPBACK)) ipif->ipif_ire_type = IRE_LOOPBACK; else ipif->ipif_ire_type = IRE_LOCAL; } if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST) || ((ipif->ipif_flags & IPIF_DEPRECATED) && !(ipif->ipif_flags & IPIF_NOFAILOVER))) { /* * Can't use our source address. Select a different * source address for the IRE_INTERFACE and IRE_LOCAL */ src_ipif = ipif_select_source(ipif->ipif_ill, ipif->ipif_subnet, ipif->ipif_zoneid); if (src_ipif == NULL) src_ipif = ipif; /* Last resort */ else src_ipif_held = B_TRUE; } else { src_ipif = ipif; } /* Create all the IREs associated with this interface */ if ((ipif->ipif_lcl_addr != INADDR_ANY) && !(ipif->ipif_flags & IPIF_NOLOCAL)) { /* * If we're on a labeled system then make sure that zone- * private addresses have proper remote host database entries. */ if (is_system_labeled() && ipif->ipif_ire_type != IRE_LOOPBACK && !tsol_check_interface_address(ipif)) return (EINVAL); /* Register the source address for __sin6_src_id */ err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); if (err != 0) { ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); return (err); } /* If the interface address is set, create the local IRE. */ ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", (void *)ipif, ipif->ipif_ire_type, ntohl(ipif->ipif_lcl_addr))); *irep++ = ire_create( (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ (uchar_t *)&ip_g_all_ones, /* mask */ (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ NULL, /* no gateway */ &ip_loopback_mtuplus, /* max frag size */ NULL, ipif->ipif_rq, /* recv-from queue */ NULL, /* no send-to queue */ ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ ipif, 0, 0, 0, (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, &ire_uinfo_null, NULL, NULL, ipst); } else { ip1dbg(( "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", ipif->ipif_ire_type, ntohl(ipif->ipif_lcl_addr), (uint_t)ipif->ipif_flags)); } if ((ipif->ipif_lcl_addr != INADDR_ANY) && !(ipif->ipif_flags & IPIF_NOLOCAL)) { net_mask = ip_net_mask(ipif->ipif_lcl_addr); } else { net_mask = htonl(IN_CLASSA_NET); /* fallback */ } subnet_mask = ipif->ipif_net_mask; /* * If mask was not specified, use natural netmask of * interface address. Also, store this mask back into the * ipif struct. */ if (subnet_mask == 0) { subnet_mask = net_mask; V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); } /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && ipif->ipif_subnet != INADDR_ANY) { /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ if (ipif->ipif_flags & IPIF_POINTOPOINT) { route_mask = IP_HOST_MASK; } else { route_mask = subnet_mask; } ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " "creating if IRE ill_net_type 0x%x for 0x%x\n", (void *)ipif, (void *)ill, ill->ill_net_type, ntohl(ipif->ipif_subnet))); *irep++ = ire_create( (uchar_t *)&ipif->ipif_subnet, /* dest address */ (uchar_t *)&route_mask, /* mask */ (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ NULL, /* no gateway */ &ipif->ipif_mtu, /* max frag */ NULL, NULL, /* no recv queue */ stq, /* send-to queue */ ill->ill_net_type, /* IF_[NO]RESOLVER */ ipif, 0, 0, 0, (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, &ire_uinfo_null, NULL, NULL, ipst); } /* * Create any necessary broadcast IREs. */ if (ipif->ipif_flags & IPIF_BROADCAST) irep = ipif_create_bcast_ires(ipif, irep); ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); /* If an earlier ire_create failed, get out now */ for (irep1 = irep; irep1 > ire_array; ) { irep1--; if (*irep1 == NULL) { ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); err = ENOMEM; goto bad; } } /* * Need to atomically check for IP address availability under * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new * ills or new ipifs can be added while we are checking availability. */ rw_enter(&ipst->ips_ill_g_lock, RW_READER); mutex_enter(&ipst->ips_ip_addr_avail_lock); /* Mark it up, and increment counters. */ ipif->ipif_flags |= IPIF_UP; ill->ill_ipif_up_count++; err = ip_addr_availability_check(ipif); mutex_exit(&ipst->ips_ip_addr_avail_lock); rw_exit(&ipst->ips_ill_g_lock); if (err != 0) { /* * Our address may already be up on the same ill. In this case, * the ARP entry for our ipif replaced the one for the other * ipif. So we don't want to delete it (otherwise the other ipif * would be unable to send packets). * ip_addr_availability_check() identifies this case for us and * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL * which is the expected error code. */ if (err == EADDRINUSE) { freemsg(ipif->ipif_arp_del_mp); ipif->ipif_arp_del_mp = NULL; err = EADDRNOTAVAIL; } ill->ill_ipif_up_count--; ipif->ipif_flags &= ~IPIF_UP; goto bad; } /* * Add in all newly created IREs. ire_create_bcast() has * already checked for duplicates of the IRE_BROADCAST type. */ for (irep1 = irep; irep1 > ire_array; ) { irep1--; ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); /* * refheld by ire_add. refele towards the end of the func */ (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); } /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; ipif_saved_irep = ipif_recover_ire(ipif); if (!loopback) { /* * If the broadcast address has been set, make sure it makes * sense based on the interface address. * Only match on ill since we are sharing broadcast addresses. */ if ((ipif->ipif_brd_addr != INADDR_ANY) && (ipif->ipif_flags & IPIF_BROADCAST)) { ire_t *ire; ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, IRE_BROADCAST, ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); if (ire == NULL) { /* * If there isn't a matching broadcast IRE, * revert to the default for this netmask. */ ipif->ipif_v6brd_addr = ipv6_all_zeros; mutex_enter(&ipif->ipif_ill->ill_lock); ipif_set_default(ipif); mutex_exit(&ipif->ipif_ill->ill_lock); } else { ire_refrele(ire); } } } if (ill->ill_need_recover_multicast) { /* * Need to recover all multicast memberships in the driver. * This had to be deferred until we had attached. The same * code exists in ipif_up_done_v6() to recover IPv6 * memberships. * * Note that it would be preferable to unconditionally do the * ill_recover_multicast() in ill_dl_up(), but we cannot do * that since ill_join_allmulti() depends on ill_dl_up being * set, and it is not set until we receive a DL_BIND_ACK after * having called ill_dl_up(). */ ill_recover_multicast(ill); } if (ill->ill_ipif_up_count == 1) { /* * Since the interface is now up, it may now be active. */ if (IS_UNDER_IPMP(ill)) ipmp_ill_refresh_active(ill); /* * If this is an IPMP interface, we may now be able to * establish ARP entries. */ if (IS_IPMP(ill)) ipmp_illgrp_refresh_arpent(ill->ill_grp); } /* Join the allhosts multicast address */ ipif_multicast_up(ipif); /* * See if anybody else would benefit from our new ipif. */ if (!loopback && !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { ill_update_source_selection(ill); } for (irep1 = irep; irep1 > ire_array; ) { irep1--; if (*irep1 != NULL) { /* was held in ire_add */ ire_refrele(*irep1); } } cnt = ipif_saved_ire_cnt; for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { if (*irep1 != NULL) { /* was held in ire_add */ ire_refrele(*irep1); } } if (!loopback && ipif->ipif_addr_ready) { /* Broadcast an address mask reply. */ ipif_mask_reply(ipif); } if (ipif_saved_irep != NULL) { kmem_free(ipif_saved_irep, ipif_saved_ire_cnt * sizeof (ire_t *)); } if (src_ipif_held) ipif_refrele(src_ipif); /* * This had to be deferred until we had bound. Tell routing sockets and * others that this interface is up if it looks like the address has * been validated. Otherwise, if it isn't ready yet, wait for * duplicate address detection to do its thing. */ if (ipif->ipif_addr_ready) ipif_up_notify(ipif); return (0); bad: ip1dbg(("ipif_up_done: FAILED \n")); while (irep > ire_array) { irep--; if (*irep != NULL) ire_delete(*irep); } (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); if (ipif_saved_irep != NULL) { kmem_free(ipif_saved_irep, ipif_saved_ire_cnt * sizeof (ire_t *)); } if (src_ipif_held) ipif_refrele(src_ipif); ipif_resolver_down(ipif); return (err); } /* * Turn off the ARP with the ILLF_NOARP flag. */ static int ill_arp_off(ill_t *ill) { mblk_t *arp_off_mp = NULL; mblk_t *arp_on_mp = NULL; ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); ASSERT(IAM_WRITER_ILL(ill)); ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); /* * If the on message is still around we've already done * an arp_off without doing an arp_on thus there is no * work needed. */ if (ill->ill_arp_on_mp != NULL) return (0); /* * Allocate an ARP on message (to be saved) and an ARP off message */ arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); if (!arp_off_mp) return (ENOMEM); arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); if (!arp_on_mp) goto failed; ASSERT(ill->ill_arp_on_mp == NULL); ill->ill_arp_on_mp = arp_on_mp; /* Send an AR_INTERFACE_OFF request */ putnext(ill->ill_rq, arp_off_mp); return (0); failed: if (arp_off_mp) freemsg(arp_off_mp); return (ENOMEM); } /* * Turn on ARP by turning off the ILLF_NOARP flag. */ static int ill_arp_on(ill_t *ill) { mblk_t *mp; ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); ASSERT(IAM_WRITER_ILL(ill)); /* * Send an AR_INTERFACE_ON request if we have already done * an arp_off (which allocated the message). */ if (ill->ill_arp_on_mp != NULL) { mp = ill->ill_arp_on_mp; ill->ill_arp_on_mp = NULL; putnext(ill->ill_rq, mp); } return (0); } /* * Checks for availbility of a usable source address (if there is one) when the * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note * this selection is done regardless of the destination. */ boolean_t ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) { uint_t ifindex; ipif_t *ipif = NULL; ill_t *uill; boolean_t isv6; ip_stack_t *ipst = ill->ill_ipst; ASSERT(ill != NULL); isv6 = ill->ill_isv6; ifindex = ill->ill_usesrc_ifindex; if (ifindex != 0) { uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, ipst); if (uill == NULL) return (NULL); mutex_enter(&uill->ill_lock); for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (!IPIF_CAN_LOOKUP(ipif)) continue; if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) continue; if (!(ipif->ipif_flags & IPIF_UP)) continue; if (ipif->ipif_zoneid != zoneid) continue; if ((isv6 && IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || (ipif->ipif_lcl_addr == INADDR_ANY)) continue; mutex_exit(&uill->ill_lock); ill_refrele(uill); return (B_TRUE); } mutex_exit(&uill->ill_lock); ill_refrele(uill); } return (B_FALSE); } /* * IP source address type, sorted from worst to best. For a given type, * always prefer IP addresses on the same subnet. All-zones addresses are * suboptimal because they pose problems with unlabeled destinations. */ typedef enum { IPIF_NONE, IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ IPIF_DIFFNET, /* normal and different subnet */ IPIF_SAMENET /* normal and same subnet */ } ipif_type_t; /* * Pick the optimal ipif on `ill' for sending to destination `dst' from zone * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t * enumeration, and return the highest-rated ipif. If there's a tie, we pick * the first one, unless IPMP is used in which case we round-robin among them; * see below for more. * * Returns NULL if there is no suitable source address for the ill. * This only occurs when there is no valid source address for the ill. */ ipif_t * ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) { ill_t *usill = NULL; ill_t *ipmp_ill = NULL; ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; ipif_type_t type, best_type; tsol_tpc_t *src_rhtp, *dst_rhtp; ip_stack_t *ipst = ill->ill_ipst; boolean_t samenet; if (ill->ill_usesrc_ifindex != 0) { usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, NULL, NULL, NULL, NULL, ipst); if (usill != NULL) ill = usill; /* Select source from usesrc ILL */ else return (NULL); } /* * Test addresses should never be used for source address selection, * so if we were passed one, switch to the IPMP meta-interface. */ if (IS_UNDER_IPMP(ill)) { if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) ill = ipmp_ill; /* Select source from IPMP ill */ else return (NULL); } /* * If we're dealing with an unlabeled destination on a labeled system, * make sure that we ignore source addresses that are incompatible with * the destination's default label. That destination's default label * must dominate the minimum label on the source address. */ dst_rhtp = NULL; if (is_system_labeled()) { dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); if (dst_rhtp == NULL) return (NULL); if (dst_rhtp->tpc_tp.host_type != UNLABELED) { TPC_RELE(dst_rhtp); dst_rhtp = NULL; } } /* * Hold the ill_g_lock as reader. This makes sure that no ipif/ill * can be deleted. But an ipif/ill can get CONDEMNED any time. * After selecting the right ipif, under ill_lock make sure ipif is * not condemned, and increment refcnt. If ipif is CONDEMNED, * we retry. Inside the loop we still need to check for CONDEMNED, * but not under a lock. */ rw_enter(&ipst->ips_ill_g_lock, RW_READER); retry: /* * For source address selection, we treat the ipif list as circular * and continue until we get back to where we started. This allows * IPMP to vary source address selection (which improves inbound load * spreading) by caching its last ending point and starting from * there. NOTE: we don't have to worry about ill_src_ipif changing * ills since that can't happen on the IPMP ill. */ start_ipif = ill->ill_ipif; if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) start_ipif = ill->ill_src_ipif; ipif = start_ipif; best_ipif = NULL; best_type = IPIF_NONE; do { if ((next_ipif = ipif->ipif_next) == NULL) next_ipif = ill->ill_ipif; if (!IPIF_CAN_LOOKUP(ipif)) continue; /* Always skip NOLOCAL and ANYCAST interfaces */ if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) continue; if (!(ipif->ipif_flags & IPIF_UP) || !ipif->ipif_addr_ready) continue; if (ipif->ipif_zoneid != zoneid && ipif->ipif_zoneid != ALL_ZONES) continue; /* * Interfaces with 0.0.0.0 address are allowed to be UP, but * are not valid as source addresses. */ if (ipif->ipif_lcl_addr == INADDR_ANY) continue; /* * Check compatibility of local address for destination's * default label if we're on a labeled system. Incompatible * addresses can't be used at all. */ if (dst_rhtp != NULL) { boolean_t incompat; src_rhtp = find_tpc(&ipif->ipif_lcl_addr, IPV4_VERSION, B_FALSE); if (src_rhtp == NULL) continue; incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || src_rhtp->tpc_tp.tp_doi != dst_rhtp->tpc_tp.tp_doi || (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, &src_rhtp->tpc_tp.tp_sl_range_cipso) && !blinlset(&dst_rhtp->tpc_tp.tp_def_label, src_rhtp->tpc_tp.tp_sl_set_cipso)); TPC_RELE(src_rhtp); if (incompat) continue; } samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); if (ipif->ipif_flags & IPIF_DEPRECATED) { type = samenet ? IPIF_SAMENET_DEPRECATED : IPIF_DIFFNET_DEPRECATED; } else if (ipif->ipif_zoneid == ALL_ZONES) { type = samenet ? IPIF_SAMENET_ALLZONES : IPIF_DIFFNET_ALLZONES; } else { type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; } if (type > best_type) { best_type = type; best_ipif = ipif; if (best_type == IPIF_SAMENET) break; /* can't get better */ } } while ((ipif = next_ipif) != start_ipif); if ((ipif = best_ipif) != NULL) { mutex_enter(&ipif->ipif_ill->ill_lock); if (!IPIF_CAN_LOOKUP(ipif)) { mutex_exit(&ipif->ipif_ill->ill_lock); goto retry; } ipif_refhold_locked(ipif); /* * For IPMP, update the source ipif rotor to the next ipif, * provided we can look it up. (We must not use it if it's * IPIF_CONDEMNED since we may have grabbed ill_g_lock after * ipif_free() checked ill_src_ipif.) */ if (IS_IPMP(ill) && ipif != NULL) { next_ipif = ipif->ipif_next; if (next_ipif != NULL && IPIF_CAN_LOOKUP(next_ipif)) ill->ill_src_ipif = next_ipif; else ill->ill_src_ipif = NULL; } mutex_exit(&ipif->ipif_ill->ill_lock); } rw_exit(&ipst->ips_ill_g_lock); if (usill != NULL) ill_refrele(usill); if (ipmp_ill != NULL) ill_refrele(ipmp_ill); if (dst_rhtp != NULL) TPC_RELE(dst_rhtp); #ifdef DEBUG if (ipif == NULL) { char buf1[INET6_ADDRSTRLEN]; ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", ill->ill_name, inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); } else { char buf1[INET6_ADDRSTRLEN]; char buf2[INET6_ADDRSTRLEN]; ip1dbg(("ipif_select_source(%s, %s) -> %s\n", ipif->ipif_ill->ill_name, inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), inet_ntop(AF_INET, &ipif->ipif_lcl_addr, buf2, sizeof (buf2)))); } #endif /* DEBUG */ return (ipif); } /* * If old_ipif is not NULL, see if ipif was derived from old * ipif and if so, recreate the interface route by re-doing * source address selection. This happens when ipif_down -> * ipif_update_other_ipifs calls us. * * If old_ipif is NULL, just redo the source address selection * if needed. This happens when ipif_up_done calls us. */ static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) { ire_t *ire; ire_t *ipif_ire; queue_t *stq; ipif_t *nipif; ill_t *ill; boolean_t need_rele = B_FALSE; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); ill = ipif->ipif_ill; if (!(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { /* * Can't possibly have borrowed the source * from old_ipif. */ return; } /* * Is there any work to be done? No work if the address * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( * ipif_select_source() does not borrow addresses from * NOLOCAL and ANYCAST interfaces). */ if ((old_ipif != NULL) && ((old_ipif->ipif_lcl_addr == INADDR_ANY) || (old_ipif->ipif_ill->ill_wq == NULL) || (old_ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)))) { return; } /* * Perform the same checks as when creating the * IRE_INTERFACE in ipif_up_done. */ if (!(ipif->ipif_flags & IPIF_UP)) return; if ((ipif->ipif_flags & IPIF_NOXMIT) || (ipif->ipif_subnet == INADDR_ANY)) return; ipif_ire = ipif_to_ire(ipif); if (ipif_ire == NULL) return; /* * We know that ipif uses some other source for its * IRE_INTERFACE. Is it using the source of this * old_ipif? */ if (old_ipif != NULL && old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { ire_refrele(ipif_ire); return; } if (ip_debug > 2) { /* ip1dbg */ pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" " src %s\n", AF_INET, &ipif_ire->ire_src_addr); } stq = ipif_ire->ire_stq; /* * Can't use our source address. Select a different * source address for the IRE_INTERFACE. */ nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); if (nipif == NULL) { /* Last resort - all ipif's have IPIF_NOLOCAL */ nipif = ipif; } else { need_rele = B_TRUE; } ire = ire_create( (uchar_t *)&ipif->ipif_subnet, /* dest pref */ (uchar_t *)&ipif->ipif_net_mask, /* mask */ (uchar_t *)&nipif->ipif_src_addr, /* src addr */ NULL, /* no gateway */ &ipif->ipif_mtu, /* max frag */ NULL, /* no src nce */ NULL, /* no recv from queue */ stq, /* send-to queue */ ill->ill_net_type, /* IF_[NO]RESOLVER */ ipif, 0, 0, 0, 0, &ire_uinfo_null, NULL, NULL, ipst); if (ire != NULL) { ire_t *ret_ire; int error; /* * We don't need ipif_ire anymore. We need to delete * before we add so that ire_add does not detect * duplicates. */ ire_delete(ipif_ire); ret_ire = ire; error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); ASSERT(error == 0); ASSERT(ire == ret_ire); /* Held in ire_add */ ire_refrele(ret_ire); } /* * Either we are falling through from above or could not * allocate a replacement. */ ire_refrele(ipif_ire); if (need_rele) ipif_refrele(nipif); } /* * This old_ipif is going away. * * Determine if any other ipif's are using our address as * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or * IPIF_DEPRECATED). * Find the IRE_INTERFACE for such ipifs and recreate them * to use an different source address following the rules in * ipif_up_done. */ static void ipif_update_other_ipifs(ipif_t *old_ipif) { ipif_t *ipif; ill_t *ill; char buf[INET6_ADDRSTRLEN]; ASSERT(IAM_WRITER_IPIF(old_ipif)); ill = old_ipif->ipif_ill; ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", ill->ill_name, inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, buf, sizeof (buf)))); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif == old_ipif) continue; ipif_recreate_interface_routes(old_ipif, ipif); } } /* ARGSUSED */ int if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) { /* * ill_phyint_reinit merged the v4 and v6 into a single * ipsq. We might not have been able to complete the * operation in ipif_set_values, if we could not become * exclusive. If so restart it here. */ return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); } /* * Can operate on either a module or a driver queue. * Returns an error if not a module queue. */ /* ARGSUSED */ int if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) { queue_t *q1 = q; char *cp; char interf_name[LIFNAMSIZ]; uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; if (q->q_next == NULL) { ip1dbg(( "if_unitsel: IF_UNITSEL: no q_next\n")); return (EINVAL); } if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') return (EALREADY); do { q1 = q1->q_next; } while (q1->q_next); cp = q1->q_qinfo->qi_minfo->mi_idname; (void) sprintf(interf_name, "%s%d", cp, ppa); /* * Here we are not going to delay the ioack until after * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the * original ioctl message before sending the requests. */ return (ipif_set_values(q, mp, interf_name, &ppa)); } /* ARGSUSED */ int ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) { return (ENXIO); } /* * Refresh all IRE_BROADCAST entries associated with `ill' to ensure the * minimum (but complete) set exist. This is necessary when adding or * removing an interface to/from an IPMP group, since interfaces in an * IPMP group use the IRE_BROADCAST entries for the IPMP group (whenever * its test address subnets overlap with IPMP data addresses). It's also * used to refresh the IRE_BROADCAST entries associated with the IPMP * interface when the nominated broadcast interface changes. */ void ill_refresh_bcast(ill_t *ill) { ire_t *ire_array[12]; /* max ipif_create_bcast_ires() can create */ ire_t **irep; ipif_t *ipif; ASSERT(!ill->ill_isv6); ASSERT(IAM_WRITER_ILL(ill)); /* * Remove any old broadcast IREs. */ ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_BROADCAST, ill_broadcast_delete, ill, ill); /* * Create new ones for any ipifs that are up and broadcast-capable. */ for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if ((ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST)) != (IPIF_UP|IPIF_BROADCAST)) continue; irep = ipif_create_bcast_ires(ipif, ire_array); while (irep-- > ire_array) { (void) ire_add(irep, NULL, NULL, NULL, B_FALSE); if (*irep != NULL) ire_refrele(*irep); } } } /* * Create any IRE_BROADCAST entries for `ipif', and store those entries in * `irep'. Returns a pointer to the next free `irep' entry (just like * ire_check_and_create_bcast()). */ static ire_t ** ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) { ipaddr_t addr; ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); ipaddr_t subnetmask = ipif->ipif_net_mask; int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); ASSERT(ipif->ipif_flags & IPIF_BROADCAST); if (ipif->ipif_lcl_addr == INADDR_ANY || (ipif->ipif_flags & IPIF_NOLOCAL)) netmask = htonl(IN_CLASSA_NET); /* fallback */ irep = ire_check_and_create_bcast(ipif, 0, irep, flags); irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); /* * For backward compatibility, we create net broadcast IREs based on * the old "IP address class system", since some old machines only * respond to these class derived net broadcast. However, we must not * create these net broadcast IREs if the subnetmask is shorter than * the IP address class based derived netmask. Otherwise, we may * create a net broadcast address which is the same as an IP address * on the subnet -- and then TCP will refuse to talk to that address. */ if (netmask < subnetmask) { addr = netmask & ipif->ipif_subnet; irep = ire_check_and_create_bcast(ipif, addr, irep, flags); irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, flags); } /* * Don't create IRE_BROADCAST IREs for the interface if the subnetmask * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already * created. Creating these broadcast IREs will only create confusion * as `addr' will be the same as the IP address. */ if (subnetmask != 0xFFFFFFFF) { addr = ipif->ipif_subnet; irep = ire_check_and_create_bcast(ipif, addr, irep, flags); irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, irep, flags); } return (irep); } /* * Broadcast IRE info structure used in the functions below. Since we * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. */ typedef struct bcast_ireinfo { uchar_t bi_type; /* BCAST_* value from below */ uchar_t bi_willdie:1, /* will this IRE be going away? */ bi_needrep:1, /* do we need to replace it? */ bi_haverep:1, /* have we replaced it? */ bi_pad:5; ipaddr_t bi_addr; /* IRE address */ ipif_t *bi_backup; /* last-ditch ipif to replace it on */ } bcast_ireinfo_t; enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; /* * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and * return B_TRUE if it should immediately be used to recreate the IRE. */ static boolean_t ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) { ipaddr_t addr; ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); switch (bireinfop->bi_type) { case BCAST_NET: addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); if (addr != bireinfop->bi_addr) return (B_FALSE); break; case BCAST_SUBNET: if (ipif->ipif_subnet != bireinfop->bi_addr) return (B_FALSE); break; } bireinfop->bi_needrep = 1; if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { if (bireinfop->bi_backup == NULL) bireinfop->bi_backup = ipif; return (B_FALSE); } return (B_TRUE); } /* * Create the broadcast IREs described by `bireinfop' on `ipif', and return * them ala ire_check_and_create_bcast(). */ static ire_t ** ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) { ipaddr_t mask, addr; ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); addr = bireinfop->bi_addr; irep = ire_create_bcast(ipif, addr, irep); switch (bireinfop->bi_type) { case BCAST_NET: mask = ip_net_mask(ipif->ipif_subnet); irep = ire_create_bcast(ipif, addr | ~mask, irep); break; case BCAST_SUBNET: mask = ipif->ipif_net_mask; irep = ire_create_bcast(ipif, addr | ~mask, irep); break; } bireinfop->bi_haverep = 1; return (irep); } /* * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' * going away, and determine if any of the broadcast IREs (named by `bireinfop') * that are going away are still needed. If so, have ipif_create_bcast() * recreate them (except for the deprecated case, as explained below). */ static ire_t ** ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, ire_t **irep) { int i; ipif_t *ipif; ASSERT(!ill->ill_isv6); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { /* * Skip this ipif if it's (a) the one being taken down, (b) * not in the same zone, or (c) has no valid local address. */ if (ipif == test_ipif || ipif->ipif_zoneid != test_ipif->ipif_zoneid || ipif->ipif_subnet == 0 || (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != (IPIF_UP|IPIF_BROADCAST)) continue; /* * For each dying IRE that hasn't yet been replaced, see if * `ipif' needs it and whether the IRE should be recreated on * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() * will return B_FALSE even if `ipif' needs the IRE on the * hopes that we'll later find a needy non-deprecated ipif. * However, the ipif is recorded in bi_backup for possible * subsequent use by ipif_check_bcast_ires(). */ for (i = 0; i < BCAST_COUNT; i++) { if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) continue; if (!ipif_consider_bcast(ipif, &bireinfo[i])) continue; irep = ipif_create_bcast(ipif, &bireinfo[i], irep); } /* * If we've replaced all of the broadcast IREs that are going * to be taken down, we know we're done. */ for (i = 0; i < BCAST_COUNT; i++) { if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) break; } if (i == BCAST_COUNT) break; } return (irep); } /* * Check if `test_ipif' (which is going away) is associated with any existing * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were * using those broadcast IREs. If so, recreate the broadcast IREs on one or * more of those other ipifs. (The old IREs will be deleted in ipif_down().) * * This is necessary because broadcast IREs are shared. In particular, a * given ill has one set of all-zeroes and all-ones broadcast IREs (for every * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the * same zone, they will share the same set of broadcast IREs. * * Note: the upper bound of 12 IREs comes from the worst case of replacing all * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). */ static void ipif_check_bcast_ires(ipif_t *test_ipif) { ill_t *ill = test_ipif->ipif_ill; ire_t *ire, *ire_array[12]; /* see note above */ ire_t **irep1, **irep = &ire_array[0]; uint_t i, willdie; ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); bcast_ireinfo_t bireinfo[BCAST_COUNT]; ASSERT(!test_ipif->ipif_isv6); ASSERT(IAM_WRITER_IPIF(test_ipif)); /* * No broadcast IREs for the LOOPBACK interface * or others such as point to point and IPIF_NOXMIT. */ if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || (test_ipif->ipif_flags & IPIF_NOXMIT)) return; bzero(bireinfo, sizeof (bireinfo)); bireinfo[0].bi_type = BCAST_ALLZEROES; bireinfo[0].bi_addr = 0; bireinfo[1].bi_type = BCAST_ALLONES; bireinfo[1].bi_addr = INADDR_BROADCAST; bireinfo[2].bi_type = BCAST_NET; bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; if (test_ipif->ipif_net_mask != 0) mask = test_ipif->ipif_net_mask; bireinfo[3].bi_type = BCAST_SUBNET; bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; /* * Figure out what (if any) broadcast IREs will die as a result of * `test_ipif' going away. If none will die, we're done. */ for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); if (ire != NULL) { willdie++; bireinfo[i].bi_willdie = 1; ire_refrele(ire); } } if (willdie == 0) return; /* * Walk through all the ipifs that will be affected by the dying IREs, * and recreate the IREs as necessary. Note that all interfaces in an * IPMP illgrp share the same broadcast IREs, and thus the entire * illgrp must be walked, starting with the IPMP meta-interface (so * that broadcast IREs end up on it whenever possible). */ if (IS_UNDER_IPMP(ill)) ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { ipmp_illgrp_t *illg = ill->ill_grp; ill = list_head(&illg->ig_if); for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) { for (i = 0; i < BCAST_COUNT; i++) { if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) break; } if (i == BCAST_COUNT) break; irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); } } /* * Scan through the set of broadcast IREs and see if there are any * that we need to replace that have not yet been replaced. If so, * replace them using the appropriate backup ipif. */ for (i = 0; i < BCAST_COUNT; i++) { if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) irep = ipif_create_bcast(bireinfo[i].bi_backup, &bireinfo[i], irep); } /* * If we can't create all of them, don't add any of them. (Code in * ip_wput_ire() and ire_to_ill() assumes that we always have a * non-loopback copy and loopback copy for a given address.) */ for (irep1 = irep; irep1 > ire_array; ) { irep1--; if (*irep1 == NULL) { ip0dbg(("ipif_check_bcast_ires: can't create " "IRE_BROADCAST, memory allocation failure\n")); while (irep > ire_array) { irep--; if (*irep != NULL) ire_delete(*irep); } return; } } for (irep1 = irep; irep1 > ire_array; ) { irep1--; if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) ire_refrele(*irep1); /* Held in ire_add */ } } /* * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* * from lifr_flags and the name from lifr_name. * Set IFF_IPV* and ill_isv6 prior to doing the lookup * since ipif_lookup_on_name uses the _isv6 flags when matching. * Returns EINPROGRESS when mp has been consumed by queueing it on * ill_pending_mp and the ioctl will complete in ip_rput. * * Can operate on either a module or a driver queue. * Returns an error if not a module queue. */ /* ARGSUSED */ int ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { ill_t *ill = q->q_ptr; phyint_t *phyi; ip_stack_t *ipst; struct lifreq *lifr = if_req; uint64_t new_flags; ASSERT(ipif != NULL); ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); if (q->q_next == NULL) { ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); return (EINVAL); } /* * If we are not writer on 'q' then this interface exists already * and previous lookups (ip_extract_lifreq()) found this ipif -- * so return EALREADY. */ if (ill != ipif->ipif_ill) return (EALREADY); if (ill->ill_name[0] != '\0') return (EALREADY); /* * If there's another ill already with the requested name, ensure * that it's of the same type. Otherwise, ill_phyint_reinit() will * fuse together two unrelated ills, which will cause chaos. */ ipst = ill->ill_ipst; phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, lifr->lifr_name, NULL); if (phyi != NULL) { ill_t *ill_mate = phyi->phyint_illv4; if (ill_mate == NULL) ill_mate = phyi->phyint_illv6; ASSERT(ill_mate != NULL); if (ill_mate->ill_media->ip_m_mac_type != ill->ill_media->ip_m_mac_type) { ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " "use the same ill name on differing media\n")); return (EINVAL); } } /* * We start off as IFF_IPV4 in ipif_allocate and become * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. * The only flags that we read from user space are IFF_IPV4, * IFF_IPV6, IFF_XRESOLV and IFF_BROADCAST. * * This ill has not been inserted into the global list. * So we are still single threaded and don't need any lock * * Saniy check the flags. */ if ((lifr->lifr_flags & IFF_BROADCAST) && ((lifr->lifr_flags & IFF_IPV6) || (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { ip1dbg(("ip_sioctl_slifname: link not broadcast capable " "or IPv6 i.e., no broadcast \n")); return (EINVAL); } new_flags = lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_XRESOLV|IFF_BROADCAST); if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " "IFF_IPV4 or IFF_IPV6\n")); return (EINVAL); } /* * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. */ if ((new_flags & IFF_XRESOLV) && !(new_flags & IFF_IPV6) && !(ipif->ipif_isv6)) { ip1dbg(("ip_sioctl_slifname: XRESOLV only allowed on " "IPv6 interface\n")); return (EINVAL); } /* * We always start off as IPv4, so only need to check for IPv6. */ if ((new_flags & IFF_IPV6) != 0) { ill->ill_flags |= ILLF_IPV6; ill->ill_flags &= ~ILLF_IPV4; } if ((new_flags & IFF_BROADCAST) != 0) ipif->ipif_flags |= IPIF_BROADCAST; else ipif->ipif_flags &= ~IPIF_BROADCAST; if ((new_flags & IFF_XRESOLV) != 0) ill->ill_flags |= ILLF_XRESOLV; else ill->ill_flags &= ~ILLF_XRESOLV; /* We started off as V4. */ if (ill->ill_flags & ILLF_IPV6) { ill->ill_phyint->phyint_illv6 = ill; ill->ill_phyint->phyint_illv4 = NULL; } return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); } /* ARGSUSED */ int ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { /* * ill_phyint_reinit merged the v4 and v6 into a single * ipsq. We might not have been able to complete the * slifname in ipif_set_values, if we could not become * exclusive. If so restart it here */ return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); } /* * Return a pointer to the ipif which matches the index, IP version type and * zoneid. */ ipif_t * ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) { ill_t *ill; ipif_t *ipif = NULL; ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || (q != NULL && mp != NULL && func != NULL && err != NULL)); if (err != NULL) *err = 0; ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); if (ill != NULL) { mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || zoneid == ipif->ipif_zoneid || ipif->ipif_zoneid == ALL_ZONES)) { ipif_refhold_locked(ipif); break; } } mutex_exit(&ill->ill_lock); ill_refrele(ill); if (ipif == NULL && err != NULL) *err = ENXIO; } return (ipif); } /* * Change an existing physical interface's index. If the new index * is acceptable we update the index and the phyint_list_avl_by_index tree. * Finally, we update other systems which may have a dependence on the * index value. */ /* ARGSUSED */ int ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { ill_t *ill; phyint_t *phyi; struct ifreq *ifr = (struct ifreq *)ifreq; struct lifreq *lifr = (struct lifreq *)ifreq; uint_t old_index, index; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; avl_index_t where; if (ipip->ipi_cmd_type == IF_CMD) index = ifr->ifr_index; else index = lifr->lifr_index; /* * Only allow on physical interface. Also, index zero is illegal. */ ill = ipif->ipif_ill; phyi = ill->ill_phyint; if (ipif->ipif_id != 0 || index == 0) { return (EINVAL); } /* If the index is not changing, no work to do */ if (phyi->phyint_ifindex == index) return (0); /* * Use phyint_exists() to determine if the new interface index * is already in use. If the index is unused then we need to * change the phyint's position in the phyint_list_avl_by_index * tree. If we do not do this, subsequent lookups (using the new * index value) will not find the phyint. */ rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); if (phyint_exists(index, ipst)) { rw_exit(&ipst->ips_ill_g_lock); return (EEXIST); } /* The new index is unused. Set it in the phyint. */ old_index = phyi->phyint_ifindex; phyi->phyint_ifindex = index; avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, &index, &where); avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi, where); rw_exit(&ipst->ips_ill_g_lock); /* Update SCTP's ILL list */ sctp_ill_reindex(ill, old_index); /* Send the routing sockets message */ ip_rts_ifmsg(ipif, RTSQ_DEFAULT); if (ILL_OTHER(ill)) ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); return (0); } /* ARGSUSED */ int ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct ifreq *ifr = (struct ifreq *)ifreq; struct lifreq *lifr = (struct lifreq *)ifreq; ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* Get the interface index */ if (ipip->ipi_cmd_type == IF_CMD) { ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; } else { lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; } return (0); } /* ARGSUSED */ int ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct lifreq *lifr = (struct lifreq *)ifreq; ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* Get the interface zone */ ASSERT(ipip->ipi_cmd_type == LIF_CMD); lifr->lifr_zoneid = ipif->ipif_zoneid; return (0); } /* * Set the zoneid of an interface. */ /* ARGSUSED */ int ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct lifreq *lifr = (struct lifreq *)ifreq; int err = 0; boolean_t need_up = B_FALSE; zone_t *zptr; zone_status_t status; zoneid_t zoneid; ASSERT(ipip->ipi_cmd_type == LIF_CMD); if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { if (!is_system_labeled()) return (ENOTSUP); zoneid = GLOBAL_ZONEID; } /* cannot assign instance zero to a non-global zone */ if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) return (ENOTSUP); /* * Cannot assign to a zone that doesn't exist or is shutting down. In * the event of a race with the zone shutdown processing, since IP * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the * interface will be cleaned up even if the zone is shut down * immediately after the status check. If the interface can't be brought * down right away, and the zone is shut down before the restart * function is called, we resolve the possible races by rechecking the * zone status in the restart function. */ if ((zptr = zone_find_by_id(zoneid)) == NULL) return (EINVAL); status = zone_status_get(zptr); zone_rele(zptr); if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) return (EINVAL); if (ipif->ipif_flags & IPIF_UP) { /* * If the interface is already marked up, * we call ipif_down which will take care * of ditching any IREs that have been set * up based on the old interface address. */ err = ipif_logical_down(ipif, q, mp); if (err == EINPROGRESS) return (err); ipif_down_tail(ipif); need_up = B_TRUE; } err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); return (err); } static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, queue_t *q, mblk_t *mp, boolean_t need_up) { int err = 0; ip_stack_t *ipst; ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (CONN_Q(q)) ipst = CONNQ_TO_IPST(q); else ipst = ILLQ_TO_IPST(q); /* * For exclusive stacks we don't allow a different zoneid than * global. */ if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && zoneid != GLOBAL_ZONEID) return (EINVAL); /* Set the new zone id. */ ipif->ipif_zoneid = zoneid; /* Update sctp list */ sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); if (need_up) { /* * Now bring the interface back up. If this * is the only IPIF for the ILL, ipif_up * will have to re-bind to the device, so * we may get back EINPROGRESS, in which * case, this IOCTL will get completed in * ip_rput_dlpi when we see the DL_BIND_ACK. */ err = ipif_up(ipif, q, mp); } return (err); } /* ARGSUSED */ int ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { struct lifreq *lifr = (struct lifreq *)if_req; zoneid_t zoneid; zone_t *zptr; zone_status_t status; ASSERT(ipif->ipif_id != 0); ASSERT(ipip->ipi_cmd_type == LIF_CMD); if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) zoneid = GLOBAL_ZONEID; ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * We recheck the zone status to resolve the following race condition: * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; * 2) hme0:1 is up and can't be brought down right away; * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; * 3) zone "myzone" is halted; the zone status switches to * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list * the interfaces to remove - hme0:1 is not returned because it's not * yet in "myzone", so it won't be removed; * 4) the restart function for SIOCSLIFZONE is called; without the * status check here, we would have hme0:1 in "myzone" after it's been * destroyed. * Note that if the status check fails, we need to bring the interface * back to its state prior to ip_sioctl_slifzone(), hence the call to * ipif_up_done[_v6](). */ status = ZONE_IS_UNINITIALIZED; if ((zptr = zone_find_by_id(zoneid)) != NULL) { status = zone_status_get(zptr); zone_rele(zptr); } if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { if (ipif->ipif_isv6) { (void) ipif_up_done_v6(ipif); } else { (void) ipif_up_done(ipif); } return (EINVAL); } ipif_down_tail(ipif); return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, B_TRUE)); } /* * Return the number of addresses on `ill' with one or more of the values * in `set' set and all of the values in `clear' clear. */ static uint_t ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) { ipif_t *ipif; uint_t cnt = 0; ASSERT(IAM_WRITER_ILL(ill)); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) cnt++; return (cnt); } /* * Return the number of migratable addresses on `ill' that are under * application control. */ uint_t ill_appaddr_cnt(const ill_t *ill) { return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, IPIF_NOFAILOVER)); } /* * Return the number of point-to-point addresses on `ill'. */ uint_t ill_ptpaddr_cnt(const ill_t *ill) { return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); } /* ARGSUSED */ int ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct lifreq *lifr = ifreq; ASSERT(q->q_next == NULL); ASSERT(CONN_Q(q)); ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); return (0); } /* Find the previous ILL in this usesrc group */ static ill_t * ill_prev_usesrc(ill_t *uill) { ill_t *ill; for (ill = uill->ill_usesrc_grp_next; ASSERT(ill), ill->ill_usesrc_grp_next != uill; ill = ill->ill_usesrc_grp_next) /* do nothing */; return (ill); } /* * Release all members of the usesrc group. This routine is called * from ill_delete when the interface being unplumbed is the * group head. */ static void ill_disband_usesrc_group(ill_t *uill) { ill_t *next_ill, *tmp_ill; ip_stack_t *ipst = uill->ill_ipst; ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); next_ill = uill->ill_usesrc_grp_next; do { ASSERT(next_ill != NULL); tmp_ill = next_ill->ill_usesrc_grp_next; ASSERT(tmp_ill != NULL); next_ill->ill_usesrc_grp_next = NULL; next_ill->ill_usesrc_ifindex = 0; next_ill = tmp_ill; } while (next_ill->ill_usesrc_ifindex != 0); uill->ill_usesrc_grp_next = NULL; } /* * Remove the client usesrc ILL from the list and relink to a new list */ int ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) { ill_t *ill, *tmp_ill; ip_stack_t *ipst = ucill->ill_ipst; ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); /* * Check if the usesrc client ILL passed in is not already * in use as a usesrc ILL i.e one whose source address is * in use OR a usesrc ILL is not already in use as a usesrc * client ILL */ if ((ucill->ill_usesrc_ifindex == 0) || (uill->ill_usesrc_ifindex != 0)) { return (-1); } ill = ill_prev_usesrc(ucill); ASSERT(ill->ill_usesrc_grp_next != NULL); /* Remove from the current list */ if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { /* Only two elements in the list */ ASSERT(ill->ill_usesrc_ifindex == 0); ill->ill_usesrc_grp_next = NULL; } else { ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; } if (ifindex == 0) { ucill->ill_usesrc_ifindex = 0; ucill->ill_usesrc_grp_next = NULL; return (0); } ucill->ill_usesrc_ifindex = ifindex; tmp_ill = uill->ill_usesrc_grp_next; uill->ill_usesrc_grp_next = ucill; ucill->ill_usesrc_grp_next = (tmp_ill != NULL) ? tmp_ill : uill; return (0); } /* * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in * ip.c for locking details. */ /* ARGSUSED */ int ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct lifreq *lifr = (struct lifreq *)ifreq; boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, ill_flag_changed = B_FALSE; ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; int err = 0, ret; uint_t ifindex; ipsq_t *ipsq = NULL; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; ASSERT(IAM_WRITER_IPIF(ipif)); ASSERT(q->q_next == NULL); ASSERT(CONN_Q(q)); isv6 = (Q_TO_CONN(q))->conn_af_isv6; ifindex = lifr->lifr_index; if (ifindex == 0) { if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { /* non usesrc group interface, nothing to reset */ return (0); } ifindex = usesrc_cli_ill->ill_usesrc_ifindex; /* valid reset request */ reset_flg = B_TRUE; } usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, ip_process_ioctl, &err, ipst); if (usesrc_ill == NULL) { return (err); } ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, NEW_OP, B_TRUE); if (ipsq == NULL) { err = EINPROGRESS; /* Operation enqueued on the ipsq of the usesrc ILL */ goto done; } /* USESRC isn't currently supported with IPMP */ if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { err = ENOTSUP; goto done; } /* * USESRC isn't compatible with the STANDBY flag. (STANDBY is only * used by IPMP underlying interfaces, but someone might think it's * more general and try to use it independently with VNI.) */ if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { err = ENOTSUP; goto done; } /* * If the client is already in use as a usesrc_ill or a usesrc_ill is * already a client then return EINVAL */ if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { err = EINVAL; goto done; } /* * If the ill_usesrc_ifindex field is already set to what it needs to * be then this is a duplicate operation. */ if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { err = 0; goto done; } ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, usesrc_ill->ill_isv6)); /* * The next step ensures that no new ires will be created referencing * the client ill, until the ILL_CHANGING flag is cleared. Then * we go through an ire walk deleting all ire caches that reference * the client ill. New ires referencing the client ill that are added * to the ire table before the ILL_CHANGING flag is set, will be * cleaned up by the ire walk below. Attempt to add new ires referencing * the client ill while the ILL_CHANGING flag is set will be failed * during the ire_add in ire_atomic_start. ire_atomic_start atomically * checks (under the ill_g_usesrc_lock) that the ire being added * is not stale, i.e the ire_stq and ire_ipif are consistent and * belong to the same usesrc group. */ mutex_enter(&usesrc_cli_ill->ill_lock); usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; mutex_exit(&usesrc_cli_ill->ill_lock); ill_flag_changed = B_TRUE; if (ipif->ipif_isv6) ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, ALL_ZONES, ipst); else ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, ALL_ZONES, ipst); /* * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next * and the ill_usesrc_ifindex fields */ rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); if (reset_flg) { ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); if (ret != 0) { err = EINVAL; } rw_exit(&ipst->ips_ill_g_usesrc_lock); goto done; } /* * Four possibilities to consider: * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't * 4. Both are part of their respective usesrc groups */ if ((usesrc_ill->ill_usesrc_grp_next == NULL) && (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); usesrc_cli_ill->ill_usesrc_ifindex = ifindex; usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { usesrc_cli_ill->ill_usesrc_ifindex = ifindex; /* Insert at head of list */ usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill->ill_usesrc_grp_next; usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; } else { ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, ifindex); if (ret != 0) err = EINVAL; } rw_exit(&ipst->ips_ill_g_usesrc_lock); done: if (ill_flag_changed) { mutex_enter(&usesrc_cli_ill->ill_lock); usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; mutex_exit(&usesrc_cli_ill->ill_lock); } if (ipsq != NULL) ipsq_exit(ipsq); /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ ill_refrele(usesrc_ill); return (err); } /* * comparison function used by avl. */ static int ill_phyint_compare_index(const void *index_ptr, const void *phyip) { uint_t index; ASSERT(phyip != NULL && index_ptr != NULL); index = *((uint_t *)index_ptr); /* * let the phyint with the lowest index be on top. */ if (((phyint_t *)phyip)->phyint_ifindex < index) return (1); if (((phyint_t *)phyip)->phyint_ifindex > index) return (-1); return (0); } /* * comparison function used by avl. */ static int ill_phyint_compare_name(const void *name_ptr, const void *phyip) { ill_t *ill; int res = 0; ASSERT(phyip != NULL && name_ptr != NULL); if (((phyint_t *)phyip)->phyint_illv4) ill = ((phyint_t *)phyip)->phyint_illv4; else ill = ((phyint_t *)phyip)->phyint_illv6; ASSERT(ill != NULL); res = strcmp(ill->ill_name, (char *)name_ptr); if (res > 0) return (1); else if (res < 0) return (-1); return (0); } /* * This function is called on the unplumb path via ill_glist_delete() when * there are no ills left on the phyint and thus the phyint can be freed. */ static void phyint_free(phyint_t *phyi) { ip_stack_t *ipst = PHYINT_TO_IPST(phyi); ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); /* * If this phyint was an IPMP meta-interface, blow away the group. * This is safe to do because all of the illgrps have already been * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. * If we're cleaning up as a result of failed initialization, * phyint_grp may be NULL. */ if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); ipmp_grp_destroy(phyi->phyint_grp); phyi->phyint_grp = NULL; rw_exit(&ipst->ips_ipmp_lock); } /* * If this interface was under IPMP, take it out of the group. */ if (phyi->phyint_grp != NULL) ipmp_phyint_leave_grp(phyi); /* * Delete the phyint and disassociate its ipsq. The ipsq itself * will be freed in ipsq_exit(). */ phyi->phyint_ipsq->ipsq_phyint = NULL; phyi->phyint_name[0] = '\0'; mi_free(phyi); } /* * Attach the ill to the phyint structure which can be shared by both * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This * function is called from ipif_set_values and ill_lookup_on_name (for * loopback) where we know the name of the ill. We lookup the ill and if * there is one present already with the name use that phyint. Otherwise * reuse the one allocated by ill_init. */ static void ill_phyint_reinit(ill_t *ill) { boolean_t isv6 = ill->ill_isv6; phyint_t *phyi_old; phyint_t *phyi; avl_index_t where = 0; ill_t *ill_other = NULL; ip_stack_t *ipst = ill->ill_ipst; ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); phyi_old = ill->ill_phyint; ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && phyi_old->phyint_illv6 == NULL)); ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && phyi_old->phyint_illv4 == NULL)); ASSERT(phyi_old->phyint_ifindex == 0); /* * Now that our ill has a name, set it in the phyint. */ (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, ill->ill_name, &where); /* * 1. We grabbed the ill_g_lock before inserting this ill into * the global list of ills. So no other thread could have located * this ill and hence the ipsq of this ill is guaranteed to be empty. * 2. Now locate the other protocol instance of this ill. * 3. Now grab both ill locks in the right order, and the phyint lock of * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq * of neither ill can change. * 4. Merge the phyint and thus the ipsq as well of this ill onto the * other ill. * 5. Release all locks. */ /* * Look for IPv4 if we are initializing IPv6 or look for IPv6 if * we are initializing IPv4. */ if (phyi != NULL) { ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; ASSERT(ill_other->ill_phyint != NULL); ASSERT((isv6 && !ill_other->ill_isv6) || (!isv6 && ill_other->ill_isv6)); GRAB_ILL_LOCKS(ill, ill_other); /* * We are potentially throwing away phyint_flags which * could be different from the one that we obtain from * ill_other->ill_phyint. But it is okay as we are assuming * that the state maintained within IP is correct. */ mutex_enter(&phyi->phyint_lock); if (isv6) { ASSERT(phyi->phyint_illv6 == NULL); phyi->phyint_illv6 = ill; } else { ASSERT(phyi->phyint_illv4 == NULL); phyi->phyint_illv4 = ill; } /* * Delete the old phyint and make its ipsq eligible * to be freed in ipsq_exit(). */ phyi_old->phyint_illv4 = NULL; phyi_old->phyint_illv6 = NULL; phyi_old->phyint_ipsq->ipsq_phyint = NULL; phyi_old->phyint_name[0] = '\0'; mi_free(phyi_old); } else { mutex_enter(&ill->ill_lock); /* * We don't need to acquire any lock, since * the ill is not yet visible globally and we * have not yet released the ill_g_lock. */ phyi = phyi_old; mutex_enter(&phyi->phyint_lock); /* XXX We need a recovery strategy here. */ if (!phyint_assign_ifindex(phyi, ipst)) cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, (void *)phyi, where); (void) avl_find(&ipst->ips_phyint_g_list-> phyint_list_avl_by_index, &phyi->phyint_ifindex, &where); avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, (void *)phyi, where); } /* * Reassigning ill_phyint automatically reassigns the ipsq also. * pending mp is not affected because that is per ill basis. */ ill->ill_phyint = phyi; /* * Now that the phyint's ifindex has been assigned, complete the * remaining */ ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; if (ill->ill_isv6) { ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = ill->ill_phyint->phyint_ifindex; ill->ill_mcast_type = ipst->ips_mld_max_version; } else { ill->ill_mcast_type = ipst->ips_igmp_max_version; } /* * Generate an event within the hooks framework to indicate that * a new interface has just been added to IP. For this event to * be generated, the network interface must, at least, have an * ifindex assigned to it. (We don't generate the event for * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) * * This needs to be run inside the ill_g_lock perimeter to ensure * that the ordering of delivered events to listeners matches the * order of them in the kernel. */ if (!IS_LOOPBACK(ill)) { ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, ill->ill_name_length); } RELEASE_ILL_LOCKS(ill, ill_other); mutex_exit(&phyi->phyint_lock); } /* * Notify any downstream modules of the name of this interface. * An M_IOCTL is used even though we don't expect a successful reply. * Any reply message from the driver (presumably an M_IOCNAK) will * eventually get discarded somewhere upstream. The message format is * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig * to IP. */ static void ip_ifname_notify(ill_t *ill, queue_t *q) { mblk_t *mp1, *mp2; struct iocblk *iocp; struct lifreq *lifr; mp1 = mkiocb(SIOCSLIFNAME); if (mp1 == NULL) return; mp2 = allocb(sizeof (struct lifreq), BPRI_HI); if (mp2 == NULL) { freeb(mp1); return; } mp1->b_cont = mp2; iocp = (struct iocblk *)mp1->b_rptr; iocp->ioc_count = sizeof (struct lifreq); lifr = (struct lifreq *)mp2->b_rptr; mp2->b_wptr += sizeof (struct lifreq); bzero(lifr, sizeof (struct lifreq)); (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); lifr->lifr_ppa = ill->ill_ppa; lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); putnext(q, mp1); } static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) { int err; ip_stack_t *ipst = ill->ill_ipst; phyint_t *phyi = ill->ill_phyint; /* Set the obsolete NDD per-interface forwarding name. */ err = ill_set_ndd_name(ill); if (err != 0) { cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", err); } /* * Now that ill_name is set, the configuration for the IPMP * meta-interface can be performed. */ if (IS_IPMP(ill)) { rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); /* * If phyi->phyint_grp is NULL, then this is the first IPMP * meta-interface and we need to create the IPMP group. */ if (phyi->phyint_grp == NULL) { /* * If someone has renamed another IPMP group to have * the same name as our interface, bail. */ if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { rw_exit(&ipst->ips_ipmp_lock); return (EEXIST); } phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); if (phyi->phyint_grp == NULL) { rw_exit(&ipst->ips_ipmp_lock); return (ENOMEM); } } rw_exit(&ipst->ips_ipmp_lock); } /* Tell downstream modules where they are. */ ip_ifname_notify(ill, q); /* * ill_dl_phys returns EINPROGRESS in the usual case. * Error cases are ENOMEM ... */ err = ill_dl_phys(ill, ipif, mp, q); /* * If there is no IRE expiration timer running, get one started. * igmp and mld timers will be triggered by the first multicast */ if (ipst->ips_ip_ire_expire_id == 0) { /* * acquire the lock and check again. */ mutex_enter(&ipst->ips_ip_trash_timer_lock); if (ipst->ips_ip_ire_expire_id == 0) { ipst->ips_ip_ire_expire_id = timeout( ip_trash_timer_expire, ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); } mutex_exit(&ipst->ips_ip_trash_timer_lock); } if (ill->ill_isv6) { mutex_enter(&ipst->ips_mld_slowtimeout_lock); if (ipst->ips_mld_slowtimeout_id == 0) { ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, (void *)ipst, MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); } mutex_exit(&ipst->ips_mld_slowtimeout_lock); } else { mutex_enter(&ipst->ips_igmp_slowtimeout_lock); if (ipst->ips_igmp_slowtimeout_id == 0) { ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, (void *)ipst, MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); } mutex_exit(&ipst->ips_igmp_slowtimeout_lock); } return (err); } /* * Common routine for ppa and ifname setting. Should be called exclusive. * * Returns EINPROGRESS when mp has been consumed by queueing it on * ill_pending_mp and the ioctl will complete in ip_rput. * * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return * the new name and new ppa in lifr_name and lifr_ppa respectively. * For SLIFNAME, we pass these values back to the userland. */ static int ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) { ill_t *ill; ipif_t *ipif; ipsq_t *ipsq; char *ppa_ptr; char *old_ptr; char old_char; int error; ip_stack_t *ipst; ip1dbg(("ipif_set_values: interface %s\n", interf_name)); ASSERT(q->q_next != NULL); ASSERT(interf_name != NULL); ill = (ill_t *)q->q_ptr; ipst = ill->ill_ipst; ASSERT(ill->ill_ipst != NULL); ASSERT(ill->ill_name[0] == '\0'); ASSERT(IAM_WRITER_ILL(ill)); ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); ASSERT(ill->ill_ppa == UINT_MAX); /* The ppa is sent down by ifconfig or is chosen */ if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { return (EINVAL); } /* * make sure ppa passed in is same as ppa in the name. * This check is not made when ppa == UINT_MAX in that case ppa * in the name could be anything. System will choose a ppa and * update new_ppa_ptr and inter_name to contain the choosen ppa. */ if (*new_ppa_ptr != UINT_MAX) { /* stoi changes the pointer */ old_ptr = ppa_ptr; /* * ifconfig passed in 0 for the ppa for DLPI 1 style devices * (they don't have an externally visible ppa). We assign one * here so that we can manage the interface. Note that in * the past this value was always 0 for DLPI 1 drivers. */ if (*new_ppa_ptr == 0) *new_ppa_ptr = stoi(&old_ptr); else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) return (EINVAL); } /* * terminate string before ppa * save char at that location. */ old_char = ppa_ptr[0]; ppa_ptr[0] = '\0'; ill->ill_ppa = *new_ppa_ptr; /* * Finish as much work now as possible before calling ill_glist_insert * which makes the ill globally visible and also merges it with the * other protocol instance of this phyint. The remaining work is * done after entering the ipsq which may happen sometime later. * ill_set_ndd_name occurs after the ill has been made globally visible. */ ipif = ill->ill_ipif; /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ ipif_assign_seqid(ipif); if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) ill->ill_flags |= ILLF_IPV4; ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ ASSERT((ipif->ipif_flags & IPIF_UP) == 0); if (ill->ill_flags & ILLF_IPV6) { ill->ill_isv6 = B_TRUE; if (ill->ill_rq != NULL) { ill->ill_rq->q_qinfo = &iprinitv6; ill->ill_wq->q_qinfo = &ipwinitv6; } /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ ipif->ipif_v6lcl_addr = ipv6_all_zeros; ipif->ipif_v6src_addr = ipv6_all_zeros; ipif->ipif_v6subnet = ipv6_all_zeros; ipif->ipif_v6net_mask = ipv6_all_zeros; ipif->ipif_v6brd_addr = ipv6_all_zeros; ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; /* * point-to-point or Non-mulicast capable * interfaces won't do NUD unless explicitly * configured to do so. */ if (ipif->ipif_flags & IPIF_POINTOPOINT || !(ill->ill_flags & ILLF_MULTICAST)) { ill->ill_flags |= ILLF_NONUD; } /* Make sure IPv4 specific flag is not set on IPv6 if */ if (ill->ill_flags & ILLF_NOARP) { /* * Note: xresolv interfaces will eventually need * NOARP set here as well, but that will require * those external resolvers to have some * knowledge of that flag and act appropriately. * Not to be changed at present. */ ill->ill_flags &= ~ILLF_NOARP; } /* * Set the ILLF_ROUTER flag according to the global * IPv6 forwarding policy. */ if (ipst->ips_ipv6_forward != 0) ill->ill_flags |= ILLF_ROUTER; } else if (ill->ill_flags & ILLF_IPV4) { ill->ill_isv6 = B_FALSE; IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); /* * Set the ILLF_ROUTER flag according to the global * IPv4 forwarding policy. */ if (ipst->ips_ip_g_forward != 0) ill->ill_flags |= ILLF_ROUTER; } ASSERT(ill->ill_phyint != NULL); /* * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will * be completed in ill_glist_insert -> ill_phyint_reinit */ if (!ill_allocate_mibs(ill)) return (ENOMEM); /* * Pick a default sap until we get the DL_INFO_ACK back from * the driver. */ if (ill->ill_sap == 0) { if (ill->ill_isv6) ill->ill_sap = IP6_DL_SAP; else ill->ill_sap = IP_DL_SAP; } ill->ill_ifname_pending = 1; ill->ill_ifname_pending_err = 0; /* * When the first ipif comes up in ipif_up_done(), multicast groups * that were joined while this ill was not bound to the DLPI link need * to be recovered by ill_recover_multicast(). */ ill->ill_need_recover_multicast = 1; ill_refhold(ill); rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); if ((error = ill_glist_insert(ill, interf_name, (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { ill->ill_ppa = UINT_MAX; ill->ill_name[0] = '\0'; /* * undo null termination done above. */ ppa_ptr[0] = old_char; rw_exit(&ipst->ips_ill_g_lock); ill_refrele(ill); return (error); } ASSERT(ill->ill_name_length <= LIFNAMSIZ); /* * When we return the buffer pointed to by interf_name should contain * the same name as in ill_name. * If a ppa was choosen by the system (ppa passed in was UINT_MAX) * the buffer pointed to by new_ppa_ptr would not contain the right ppa * so copy full name and update the ppa ptr. * When ppa passed in != UINT_MAX all values are correct just undo * null termination, this saves a bcopy. */ if (*new_ppa_ptr == UINT_MAX) { bcopy(ill->ill_name, interf_name, ill->ill_name_length); *new_ppa_ptr = ill->ill_ppa; } else { /* * undo null termination done above. */ ppa_ptr[0] = old_char; } /* Let SCTP know about this ILL */ sctp_update_ill(ill, SCTP_ILL_INSERT); ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, B_TRUE); rw_exit(&ipst->ips_ill_g_lock); ill_refrele(ill); if (ipsq == NULL) return (EINPROGRESS); /* * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. */ if (ipsq->ipsq_xop->ipx_current_ipif == NULL) ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); else ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); error = ipif_set_values_tail(ill, ipif, mp, q); ipsq_exit(ipsq); if (error != 0 && error != EINPROGRESS) { /* * restore previous values */ ill->ill_isv6 = B_FALSE; } return (error); } void ipif_init(ip_stack_t *ipst) { int i; for (i = 0; i < MAX_G_HEADS; i++) { ipst->ips_ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ipst->ips_ill_g_heads[i]; ipst->ips_ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ipst->ips_ill_g_heads[i]; } avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, ill_phyint_compare_index, sizeof (phyint_t), offsetof(struct phyint, phyint_avl_by_index)); avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, ill_phyint_compare_name, sizeof (phyint_t), offsetof(struct phyint, phyint_avl_by_name)); } /* * Lookup the ipif corresponding to the onlink destination address. For * point-to-point interfaces, it matches with remote endpoint destination * address. For point-to-multipoint interfaces it only tries to match the * destination with the interface's subnet address. The longest, most specific * match is found to take care of such rare network configurations like - * le0: 129.146.1.1/16 * le1: 129.146.2.2/24 * * This is used by SO_DONTROUTE and IP_NEXTHOP. Since neither of those are * supported on underlying interfaces in an IPMP group, underlying interfaces * are ignored when looking up a match. (If we didn't ignore them, we'd * risk using a test address as a source for outgoing traffic.) */ ipif_t * ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) { ipif_t *ipif, *best_ipif; ill_t *ill; ill_walk_context_t ctx; ASSERT(zoneid != ALL_ZONES); best_ipif = NULL; rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (IS_UNDER_IPMP(ill)) continue; mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (!IPIF_CAN_LOOKUP(ipif)) continue; if (ipif->ipif_zoneid != zoneid && ipif->ipif_zoneid != ALL_ZONES) continue; /* * Point-to-point case. Look for exact match with * destination address. */ if (ipif->ipif_flags & IPIF_POINTOPOINT) { if (ipif->ipif_pp_dst_addr == addr) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); if (best_ipif != NULL) ipif_refrele(best_ipif); return (ipif); } } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { /* * Point-to-multipoint case. Looping through to * find the most specific match. If there are * multiple best match ipif's then prefer ipif's * that are UP. If there is only one best match * ipif and it is DOWN we must still return it. */ if ((best_ipif == NULL) || (ipif->ipif_net_mask > best_ipif->ipif_net_mask) || ((ipif->ipif_net_mask == best_ipif->ipif_net_mask) && ((ipif->ipif_flags & IPIF_UP) && (!(best_ipif->ipif_flags & IPIF_UP))))) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); if (best_ipif != NULL) ipif_refrele(best_ipif); best_ipif = ipif; rw_enter(&ipst->ips_ill_g_lock, RW_READER); mutex_enter(&ill->ill_lock); } } } mutex_exit(&ill->ill_lock); } rw_exit(&ipst->ips_ill_g_lock); return (best_ipif); } /* * Save enough information so that we can recreate the IRE if * the interface goes down and then up. */ static void ipif_save_ire(ipif_t *ipif, ire_t *ire) { mblk_t *save_mp; save_mp = allocb(sizeof (ifrt_t), BPRI_MED); if (save_mp != NULL) { ifrt_t *ifrt; save_mp->b_wptr += sizeof (ifrt_t); ifrt = (ifrt_t *)save_mp->b_rptr; bzero(ifrt, sizeof (ifrt_t)); ifrt->ifrt_type = ire->ire_type; ifrt->ifrt_addr = ire->ire_addr; ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; ifrt->ifrt_src_addr = ire->ire_src_addr; ifrt->ifrt_mask = ire->ire_mask; ifrt->ifrt_flags = ire->ire_flags; ifrt->ifrt_max_frag = ire->ire_max_frag; mutex_enter(&ipif->ipif_saved_ire_lock); save_mp->b_cont = ipif->ipif_saved_ire_mp; ipif->ipif_saved_ire_mp = save_mp; ipif->ipif_saved_ire_cnt++; mutex_exit(&ipif->ipif_saved_ire_lock); } } static void ipif_remove_ire(ipif_t *ipif, ire_t *ire) { mblk_t **mpp; mblk_t *mp; ifrt_t *ifrt; /* Remove from ipif_saved_ire_mp list if it is there */ mutex_enter(&ipif->ipif_saved_ire_lock); for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; mpp = &(*mpp)->b_cont) { /* * On a given ipif, the triple of address, gateway and * mask is unique for each saved IRE (in the case of * ordinary interface routes, the gateway address is * all-zeroes). */ mp = *mpp; ifrt = (ifrt_t *)mp->b_rptr; if (ifrt->ifrt_addr == ire->ire_addr && ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && ifrt->ifrt_mask == ire->ire_mask) { *mpp = mp->b_cont; ipif->ipif_saved_ire_cnt--; freeb(mp); break; } } mutex_exit(&ipif->ipif_saved_ire_lock); } /* * IP multirouting broadcast routes handling * Append CGTP broadcast IREs to regular ones created * at ifconfig time. */ static void ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) { ire_t *ire_prim; ASSERT(ire != NULL); ASSERT(ire_dst != NULL); ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); if (ire_prim != NULL) { /* * We are in the special case of broadcasts for * CGTP. We add an IRE_BROADCAST that holds * the RTF_MULTIRT flag, the destination * address of ire_dst and the low level * info of ire_prim. In other words, CGTP * broadcast is added to the redundant ipif. */ ipif_t *ipif_prim; ire_t *bcast_ire; ipif_prim = ire_prim->ire_ipif; ip2dbg(("ip_cgtp_filter_bcast_add: " "ire_dst %p, ire_prim %p, ipif_prim %p\n", (void *)ire_dst, (void *)ire_prim, (void *)ipif_prim)); bcast_ire = ire_create( (uchar_t *)&ire->ire_addr, (uchar_t *)&ip_g_all_ones, (uchar_t *)&ire_dst->ire_src_addr, (uchar_t *)&ire->ire_gateway_addr, &ipif_prim->ipif_mtu, NULL, ipif_prim->ipif_rq, ipif_prim->ipif_wq, IRE_BROADCAST, ipif_prim, 0, 0, 0, ire->ire_flags, &ire_uinfo_null, NULL, NULL, ipst); if (bcast_ire != NULL) { if (ire_add(&bcast_ire, NULL, NULL, NULL, B_FALSE) == 0) { ip2dbg(("ip_cgtp_filter_bcast_add: " "added bcast_ire %p\n", (void *)bcast_ire)); ipif_save_ire(bcast_ire->ire_ipif, bcast_ire); ire_refrele(bcast_ire); } } ire_refrele(ire_prim); } } /* * IP multirouting broadcast routes handling * Remove the broadcast ire */ static void ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) { ire_t *ire_dst; ASSERT(ire != NULL); ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); if (ire_dst != NULL) { ire_t *ire_prim; ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); if (ire_prim != NULL) { ipif_t *ipif_prim; ire_t *bcast_ire; ipif_prim = ire_prim->ire_ipif; ip2dbg(("ip_cgtp_filter_bcast_delete: " "ire_dst %p, ire_prim %p, ipif_prim %p\n", (void *)ire_dst, (void *)ire_prim, (void *)ipif_prim)); bcast_ire = ire_ctable_lookup(ire->ire_addr, ire->ire_gateway_addr, IRE_BROADCAST, ipif_prim, ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | MATCH_IRE_MASK, ipst); if (bcast_ire != NULL) { ip2dbg(("ip_cgtp_filter_bcast_delete: " "looked up bcast_ire %p\n", (void *)bcast_ire)); ipif_remove_ire(bcast_ire->ire_ipif, bcast_ire); ire_delete(bcast_ire); ire_refrele(bcast_ire); } ire_refrele(ire_prim); } ire_refrele(ire_dst); } } /* * IPsec hardware acceleration capabilities related functions. */ /* * Free a per-ill IPsec capabilities structure. */ static void ill_ipsec_capab_free(ill_ipsec_capab_t *capab) { if (capab->auth_hw_algs != NULL) kmem_free(capab->auth_hw_algs, capab->algs_size); if (capab->encr_hw_algs != NULL) kmem_free(capab->encr_hw_algs, capab->algs_size); if (capab->encr_algparm != NULL) kmem_free(capab->encr_algparm, capab->encr_algparm_size); kmem_free(capab, sizeof (ill_ipsec_capab_t)); } /* * Allocate a new per-ill IPsec capabilities structure. This structure * is specific to an IPsec protocol (AH or ESP). It is implemented as * an array which specifies, for each algorithm, whether this algorithm * is supported by the ill or not. */ static ill_ipsec_capab_t * ill_ipsec_capab_alloc(void) { ill_ipsec_capab_t *capab; uint_t nelems; capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); if (capab == NULL) return (NULL); /* we need one bit per algorithm */ nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); /* allocate memory to store algorithm flags */ capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); if (capab->encr_hw_algs == NULL) goto nomem; capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); if (capab->auth_hw_algs == NULL) goto nomem; /* * Leave encr_algparm NULL for now since we won't need it half * the time */ return (capab); nomem: ill_ipsec_capab_free(capab); return (NULL); } /* * Resize capability array. Since we're exclusive, this is OK. */ static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) { ipsec_capab_algparm_t *nalp, *oalp; uint32_t olen, nlen; oalp = capab->encr_algparm; olen = capab->encr_algparm_size; if (oalp != NULL) { if (algid < capab->encr_algparm_end) return (B_TRUE); } nlen = (algid + 1) * sizeof (*nalp); nalp = kmem_zalloc(nlen, KM_NOSLEEP); if (nalp == NULL) return (B_FALSE); if (oalp != NULL) { bcopy(oalp, nalp, olen); kmem_free(oalp, olen); } capab->encr_algparm = nalp; capab->encr_algparm_size = nlen; capab->encr_algparm_end = algid + 1; return (B_TRUE); } /* * Compare the capabilities of the specified ill with the protocol * and algorithms specified by the SA passed as argument. * If they match, returns B_TRUE, B_FALSE if they do not match. * * The ill can be passed as a pointer to it, or by specifying its index * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). * * Called by ipsec_out_is_accelerated() do decide whether an outbound * packet is eligible for hardware acceleration, and by * ill_ipsec_capab_send_all() to decide whether a SA must be sent down * to a particular ill. */ boolean_t ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, ipsa_t *sa, netstack_t *ns) { boolean_t sa_isv6; uint_t algid; struct ill_ipsec_capab_s *cpp; boolean_t need_refrele = B_FALSE; ip_stack_t *ipst = ns->netstack_ip; if (ill == NULL) { ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, NULL, NULL, NULL, ipst); if (ill == NULL) { ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); return (B_FALSE); } need_refrele = B_TRUE; } /* * Use the address length specified by the SA to determine * if it corresponds to a IPv6 address, and fail the matching * if the isv6 flag passed as argument does not match. * Note: this check is used for SADB capability checking before * sending SA information to an ill. */ sa_isv6 = (sa->ipsa_addrfam == AF_INET6); if (sa_isv6 != ill_isv6) /* protocol mismatch */ goto done; /* * Check if the ill supports the protocol, algorithm(s) and * key size(s) specified by the SA, and get the pointers to * the algorithms supported by the ill. */ switch (sa->ipsa_type) { case SADB_SATYPE_ESP: if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) /* ill does not support ESP acceleration */ goto done; cpp = ill->ill_ipsec_capab_esp; algid = sa->ipsa_auth_alg; if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) goto done; algid = sa->ipsa_encr_alg; if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) goto done; if (algid < cpp->encr_algparm_end) { ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; if (sa->ipsa_encrkeybits < alp->minkeylen) goto done; if (sa->ipsa_encrkeybits > alp->maxkeylen) goto done; } break; case SADB_SATYPE_AH: if (!(ill->ill_capabilities & ILL_CAPAB_AH)) /* ill does not support AH acceleration */ goto done; if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, ill->ill_ipsec_capab_ah->auth_hw_algs)) goto done; break; } if (need_refrele) ill_refrele(ill); return (B_TRUE); done: if (need_refrele) ill_refrele(ill); return (B_FALSE); } /* * Add a new ill to the list of IPsec capable ills. * Called from ill_capability_ipsec_ack() when an ACK was received * indicating that IPsec hardware processing was enabled for an ill. * * ill must point to the ill for which acceleration was enabled. * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. */ static void ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) { ipsec_capab_ill_t **ills, *cur_ill, *new_ill; uint_t sa_type; uint_t ipproto; ip_stack_t *ipst = ill->ill_ipst; ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || (dl_cap == DL_CAPAB_IPSEC_ESP)); switch (dl_cap) { case DL_CAPAB_IPSEC_AH: sa_type = SADB_SATYPE_AH; ills = &ipst->ips_ipsec_capab_ills_ah; ipproto = IPPROTO_AH; break; case DL_CAPAB_IPSEC_ESP: sa_type = SADB_SATYPE_ESP; ills = &ipst->ips_ipsec_capab_ills_esp; ipproto = IPPROTO_ESP; break; } rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); /* * Add ill index to list of hardware accelerators. If * already in list, do nothing. */ for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) ; if (cur_ill == NULL) { /* if this is a new entry for this ill */ new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); if (new_ill == NULL) { rw_exit(&ipst->ips_ipsec_capab_ills_lock); return; } new_ill->ill_index = ill->ill_phyint->phyint_ifindex; new_ill->ill_isv6 = ill->ill_isv6; new_ill->next = *ills; *ills = new_ill; } else if (!sadb_resync) { /* not resync'ing SADB and an entry exists for this ill */ rw_exit(&ipst->ips_ipsec_capab_ills_lock); return; } rw_exit(&ipst->ips_ipsec_capab_ills_lock); if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) /* * IPsec module for protocol loaded, initiate dump * of the SADB to this ill. */ sadb_ill_download(ill, sa_type); } /* * Remove an ill from the list of IPsec capable ills. */ static void ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) { ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; ip_stack_t *ipst = ill->ill_ipst; ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || dl_cap == DL_CAPAB_IPSEC_ESP); ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : &ipst->ips_ipsec_capab_ills_esp; rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); prev_ill = NULL; for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) ; if (cur_ill == NULL) { /* entry not found */ rw_exit(&ipst->ips_ipsec_capab_ills_lock); return; } if (prev_ill == NULL) { /* entry at front of list */ *ills = NULL; } else { prev_ill->next = cur_ill->next; } kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); rw_exit(&ipst->ips_ipsec_capab_ills_lock); } /* * Called by SADB to send a DL_CONTROL_REQ message to every ill * supporting the specified IPsec protocol acceleration. * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. * We free the mblk and, if sa is non-null, release the held referece. */ void ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, netstack_t *ns) { ipsec_capab_ill_t *ici, *cur_ici; ill_t *ill; mblk_t *nmp, *mp_ship_list = NULL, *next_mp; ip_stack_t *ipst = ns->netstack_ip; ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : ipst->ips_ipsec_capab_ills_esp; rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { ill = ill_lookup_on_ifindex(cur_ici->ill_index, cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); /* * Handle the case where the ill goes away while the SADB is * attempting to send messages. If it's going away, it's * nuking its shadow SADB, so we don't care.. */ if (ill == NULL) continue; if (sa != NULL) { /* * Make sure capabilities match before * sending SA to ill. */ if (!ipsec_capab_match(ill, cur_ici->ill_index, cur_ici->ill_isv6, sa, ipst->ips_netstack)) { ill_refrele(ill); continue; } mutex_enter(&sa->ipsa_lock); sa->ipsa_flags |= IPSA_F_HW; mutex_exit(&sa->ipsa_lock); } /* * Copy template message, and add it to the front * of the mblk ship list. We want to avoid holding * the ipsec_capab_ills_lock while sending the * message to the ills. * * The b_next and b_prev are temporarily used * to build a list of mblks to be sent down, and to * save the ill to which they must be sent. */ nmp = copymsg(mp); if (nmp == NULL) { ill_refrele(ill); continue; } ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); nmp->b_next = mp_ship_list; mp_ship_list = nmp; nmp->b_prev = (mblk_t *)ill; } rw_exit(&ipst->ips_ipsec_capab_ills_lock); for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { /* restore the mblk to a sane state */ next_mp = nmp->b_next; nmp->b_next = NULL; ill = (ill_t *)nmp->b_prev; nmp->b_prev = NULL; ill_dlpi_send(ill, nmp); ill_refrele(ill); } if (sa != NULL) IPSA_REFRELE(sa); freemsg(mp); } /* * Derive an interface id from the link layer address. * Knows about IEEE 802 and IEEE EUI-64 mappings. */ static boolean_t ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) { char *addr; if (ill->ill_phys_addr_length != ETHERADDRL) return (B_FALSE); /* Form EUI-64 like address */ addr = (char *)&v6addr->s6_addr32[2]; bcopy(ill->ill_phys_addr, addr, 3); addr[0] ^= 0x2; /* Toggle Universal/Local bit */ addr[3] = (char)0xff; addr[4] = (char)0xfe; bcopy(ill->ill_phys_addr + 3, addr + 5, 3); return (B_TRUE); } /* ARGSUSED */ static boolean_t ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) { return (B_FALSE); } typedef struct ipmp_ifcookie { uint32_t ic_hostid; char ic_ifname[LIFNAMSIZ]; char ic_zonename[ZONENAME_MAX]; } ipmp_ifcookie_t; /* * Construct a pseudo-random interface ID for the IPMP interface that's both * predictable and (almost) guaranteed to be unique. */ static boolean_t ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) { zone_t *zp; uint8_t *addr; uchar_t hash[16]; ulong_t hostid; MD5_CTX ctx; ipmp_ifcookie_t ic = { 0 }; ASSERT(IS_IPMP(ill)); (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); ic.ic_hostid = htonl((uint32_t)hostid); (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); zone_rele(zp); } MD5Init(&ctx); MD5Update(&ctx, &ic, sizeof (ic)); MD5Final(hash, &ctx); /* * Map the hash to an interface ID per the basic approach in RFC3041. */ addr = &v6addr->s6_addr8[8]; bcopy(hash + 8, addr, sizeof (uint64_t)); addr[0] &= ~0x2; /* set local bit */ return (B_TRUE); } /* ARGSUSED */ static boolean_t ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, uint32_t *hw_start, in6_addr_t *v6_extract_mask) { /* * Multicast address mappings used over Ethernet/802.X. * This address is used as a base for mappings. */ static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 0x00, 0x00, 0x00}; /* * Extract low order 32 bits from IPv6 multicast address. * Or that into the link layer address, starting from the * second byte. */ *hw_start = 2; v6_extract_mask->s6_addr32[0] = 0; v6_extract_mask->s6_addr32[1] = 0; v6_extract_mask->s6_addr32[2] = 0; v6_extract_mask->s6_addr32[3] = 0xffffffffU; bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); return (B_TRUE); } /* * Indicate by return value whether multicast is supported. If not, * this code should not touch/change any parameters. */ /* ARGSUSED */ static boolean_t ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, uint32_t *hw_start, ipaddr_t *extract_mask) { /* * Multicast address mappings used over Ethernet/802.X. * This address is used as a base for mappings. */ static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; if (phys_length != ETHERADDRL) return (B_FALSE); *extract_mask = htonl(0x007fffff); *hw_start = 2; bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); return (B_TRUE); } /* * Derive IPoIB interface id from the link layer address. */ static boolean_t ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) { char *addr; if (ill->ill_phys_addr_length != 20) return (B_FALSE); addr = (char *)&v6addr->s6_addr32[2]; bcopy(ill->ill_phys_addr + 12, addr, 8); /* * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit * in the globally assigned EUI-64 GUID to 1, in violation of IEEE * rules. In these cases, the IBA considers these GUIDs to be in * "Modified EUI-64" format, and thus toggling the u/l bit is not * required; vendors are required not to assign global EUI-64's * that differ only in u/l bit values, thus guaranteeing uniqueness * of the interface identifier. Whether the GUID is in modified * or proper EUI-64 format, the ipv6 identifier must have the u/l * bit set to 1. */ addr[0] |= 2; /* Set Universal/Local bit to 1 */ return (B_TRUE); } /* * Note on mapping from multicast IP addresses to IPoIB multicast link * addresses. IPoIB multicast link addresses are based on IBA link addresses. * The format of an IPoIB multicast address is: * * 4 byte QPN Scope Sign. Pkey * +--------------------------------------------+ * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | * +--------------------------------------------+ * * The Scope and Pkey components are properties of the IBA port and * network interface. They can be ascertained from the broadcast address. * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. */ static boolean_t ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, uint32_t *hw_start, in6_addr_t *v6_extract_mask) { /* * Base IPoIB IPv6 multicast address used for mappings. * Does not contain the IBA scope/Pkey values. */ static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; /* * Extract low order 80 bits from IPv6 multicast address. * Or that into the link layer address, starting from the * sixth byte. */ *hw_start = 6; bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); /* * Now fill in the IBA scope/Pkey values from the broadcast address. */ *(maddr + 5) = *(bphys_addr + 5); *(maddr + 8) = *(bphys_addr + 8); *(maddr + 9) = *(bphys_addr + 9); v6_extract_mask->s6_addr32[0] = 0; v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); v6_extract_mask->s6_addr32[2] = 0xffffffffU; v6_extract_mask->s6_addr32[3] = 0xffffffffU; return (B_TRUE); } static boolean_t ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, uint32_t *hw_start, ipaddr_t *extract_mask) { /* * Base IPoIB IPv4 multicast address used for mappings. * Does not contain the IBA scope/Pkey values. */ static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) return (B_FALSE); /* * Extract low order 28 bits from IPv4 multicast address. * Or that into the link layer address, starting from the * sixteenth byte. */ *extract_mask = htonl(0x0fffffff); *hw_start = 16; bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); /* * Now fill in the IBA scope/Pkey values from the broadcast address. */ *(maddr + 5) = *(bphys_addr + 5); *(maddr + 8) = *(bphys_addr + 8); *(maddr + 9) = *(bphys_addr + 9); return (B_TRUE); } /* * Returns B_TRUE if an ipif is present in the given zone, matching some flags * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with * the link-local address is preferred. */ boolean_t ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) { ipif_t *ipif; ipif_t *maybe_ipif = NULL; mutex_enter(&ill->ill_lock); if (ill->ill_state_flags & ILL_CONDEMNED) { mutex_exit(&ill->ill_lock); if (ipifp != NULL) *ipifp = NULL; return (B_FALSE); } for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (!IPIF_CAN_LOOKUP(ipif)) continue; if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && ipif->ipif_zoneid != ALL_ZONES) continue; if ((ipif->ipif_flags & flags) != flags) continue; if (ipifp == NULL) { mutex_exit(&ill->ill_lock); ASSERT(maybe_ipif == NULL); return (B_TRUE); } if (!ill->ill_isv6 || IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); *ipifp = ipif; return (B_TRUE); } if (maybe_ipif == NULL) maybe_ipif = ipif; } if (ipifp != NULL) { if (maybe_ipif != NULL) ipif_refhold_locked(maybe_ipif); *ipifp = maybe_ipif; } mutex_exit(&ill->ill_lock); return (maybe_ipif != NULL); } /* * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) * If a pointer to an ipif_t is returned then the caller will need to do * an ill_refrele(). */ ipif_t * ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, ip_stack_t *ipst) { ipif_t *ipif; ill_t *ill; ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, ipst); if (ill == NULL) return (NULL); mutex_enter(&ill->ill_lock); if (ill->ill_state_flags & ILL_CONDEMNED) { mutex_exit(&ill->ill_lock); ill_refrele(ill); return (NULL); } for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (!IPIF_CAN_LOOKUP(ipif)) continue; if (lifidx == ipif->ipif_id) { ipif_refhold_locked(ipif); break; } } mutex_exit(&ill->ill_lock); ill_refrele(ill); return (ipif); } /* * Flush the fastpath by deleting any nce's that are waiting for the fastpath, * There is one exceptions IRE_BROADCAST are difficult to recreate, * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() * for details. */ void ill_fastpath_flush(ill_t *ill) { ip_stack_t *ipst = ill->ill_ipst; nce_fastpath_list_dispatch(ill, NULL, NULL); ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); } /* * Set the physical address information for `ill' to the contents of the * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be * asynchronous if `ill' cannot immediately be quiesced -- in which case * EINPROGRESS will be returned. */ int ill_set_phys_addr(ill_t *ill, mblk_t *mp) { ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; ASSERT(IAM_WRITER_IPSQ(ipsq)); if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && dlindp->dl_data != DL_CURR_PHYS_ADDR) { /* Changing DL_IPV6_TOKEN is not yet supported */ return (0); } /* * We need to store up to two copies of `mp' in `ill'. Due to the * design of ipsq_pending_mp_add(), we can't pass them as separate * arguments to ill_set_phys_addr_tail(). Instead, chain them * together here, then pull 'em apart in ill_set_phys_addr_tail(). */ if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { freemsg(mp); return (ENOMEM); } ipsq_current_start(ipsq, ill->ill_ipif, 0); /* * If we can quiesce the ill, then set the address. If not, then * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). */ ill_down_ipifs(ill, B_TRUE); mutex_enter(&ill->ill_lock); if (!ill_is_quiescent(ill)) { /* call cannot fail since `conn_t *' argument is NULL */ (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, mp, ILL_DOWN); mutex_exit(&ill->ill_lock); return (EINPROGRESS); } mutex_exit(&ill->ill_lock); ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); return (0); } /* * Once the ill associated with `q' has quiesced, set its physical address * information to the values in `addrmp'. Note that two copies of `addrmp' * are passed (linked by b_cont), since we sometimes need to save two distinct * copies in the ill_t, and our context doesn't permit sleeping or allocation * failure (we'll free the other copy if it's not needed). Since the ill_t * is quiesced, we know any stale IREs with the old address information have * already been removed, so we don't need to call ill_fastpath_flush(). */ /* ARGSUSED */ static void ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) { ill_t *ill = q->q_ptr; mblk_t *addrmp2 = unlinkb(addrmp); dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; uint_t addrlen, addroff; ASSERT(IAM_WRITER_IPSQ(ipsq)); addroff = dlindp->dl_addr_offset; addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); switch (dlindp->dl_data) { case DL_IPV6_LINK_LAYER_ADDR: ill_set_ndmp(ill, addrmp, addroff, addrlen); freemsg(addrmp2); break; case DL_CURR_PHYS_ADDR: freemsg(ill->ill_phys_addr_mp); ill->ill_phys_addr = addrmp->b_rptr + addroff; ill->ill_phys_addr_mp = addrmp; ill->ill_phys_addr_length = addrlen; if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) ill_set_ndmp(ill, addrmp2, addroff, addrlen); else freemsg(addrmp2); break; default: ASSERT(0); } /* * If there are ipifs to bring up, ill_up_ipifs() will return * EINPROGRESS, and ipsq_current_finish() will be called by * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is * brought up. */ if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) ipsq_current_finish(ipsq); } /* * Helper routine for setting the ill_nd_lla fields. */ void ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) { freemsg(ill->ill_nd_lla_mp); ill->ill_nd_lla = ndmp->b_rptr + addroff; ill->ill_nd_lla_mp = ndmp; ill->ill_nd_lla_len = addrlen; } /* * Replumb the ill. */ int ill_replumb(ill_t *ill, mblk_t *mp) { ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; ASSERT(IAM_WRITER_IPSQ(ipsq)); ipsq_current_start(ipsq, ill->ill_ipif, 0); /* * If we can quiesce the ill, then continue. If not, then * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). */ ill_down_ipifs(ill, B_FALSE); mutex_enter(&ill->ill_lock); if (!ill_is_quiescent(ill)) { /* call cannot fail since `conn_t *' argument is NULL */ (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, mp, ILL_DOWN); mutex_exit(&ill->ill_lock); return (EINPROGRESS); } mutex_exit(&ill->ill_lock); ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); return (0); } /* ARGSUSED */ static void ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) { ill_t *ill = q->q_ptr; ASSERT(IAM_WRITER_IPSQ(ipsq)); ill_down_ipifs_tail(ill); freemsg(ill->ill_replumb_mp); ill->ill_replumb_mp = copyb(mp); /* * Successfully quiesced and brought down the interface, now we send * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the * DL_NOTE_REPLUMB message. */ mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, DL_NOTIFY_CONF); ASSERT(mp != NULL); ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = DL_NOTE_REPLUMB_DONE; ill_dlpi_send(ill, mp); /* * If there are ipifs to bring up, ill_up_ipifs() will return * EINPROGRESS, and ipsq_current_finish() will be called by * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is * brought up. */ if (ill->ill_replumb_mp == NULL || ill_up_ipifs(ill, q, ill->ill_replumb_mp) != EINPROGRESS) { ipsq_current_finish(ipsq); } } major_t IP_MAJ; #define IP "ip" #define UDP6DEV "/devices/pseudo/udp6@0:udp6" #define UDPDEV "/devices/pseudo/udp@0:udp" /* * Issue REMOVEIF ioctls to have the loopback interfaces * go away. Other interfaces are either I_LINKed or I_PLINKed; * the former going away when the user-level processes in the zone * are killed * and the latter are cleaned up by the stream head * str_stack_shutdown callback that undoes all I_PLINKs. */ void ip_loopback_cleanup(ip_stack_t *ipst) { int error; ldi_handle_t lh = NULL; ldi_ident_t li = NULL; int rval; cred_t *cr; struct strioctl iocb; struct lifreq lifreq; IP_MAJ = ddi_name_to_major(IP); #ifdef NS_DEBUG (void) printf("ip_loopback_cleanup() stackid %d\n", ipst->ips_netstack->netstack_stackid); #endif bzero(&lifreq, sizeof (lifreq)); (void) strcpy(lifreq.lifr_name, ipif_loopback_name); error = ldi_ident_from_major(IP_MAJ, &li); if (error) { #ifdef DEBUG printf("ip_loopback_cleanup: lyr ident get failed error %d\n", error); #endif return; } cr = zone_get_kcred(netstackid_to_zoneid( ipst->ips_netstack->netstack_stackid)); ASSERT(cr != NULL); error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); if (error) { #ifdef DEBUG printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", error); #endif goto out; } iocb.ic_cmd = SIOCLIFREMOVEIF; iocb.ic_timout = 15; iocb.ic_len = sizeof (lifreq); iocb.ic_dp = (char *)&lifreq; error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); /* LINTED - statement has no consequent */ if (error) { #ifdef NS_DEBUG printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " "UDP6 error %d\n", error); #endif } (void) ldi_close(lh, FREAD|FWRITE, cr); lh = NULL; error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); if (error) { #ifdef NS_DEBUG printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", error); #endif goto out; } iocb.ic_cmd = SIOCLIFREMOVEIF; iocb.ic_timout = 15; iocb.ic_len = sizeof (lifreq); iocb.ic_dp = (char *)&lifreq; error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); /* LINTED - statement has no consequent */ if (error) { #ifdef NS_DEBUG printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " "UDP error %d\n", error); #endif } (void) ldi_close(lh, FREAD|FWRITE, cr); lh = NULL; out: /* Close layered handles */ if (lh) (void) ldi_close(lh, FREAD|FWRITE, cr); if (li) ldi_ident_release(li); crfree(cr); } /* * This needs to be in-sync with nic_event_t definition */ static const char * ill_hook_event2str(nic_event_t event) { switch (event) { case NE_PLUMB: return ("PLUMB"); case NE_UNPLUMB: return ("UNPLUMB"); case NE_UP: return ("UP"); case NE_DOWN: return ("DOWN"); case NE_ADDRESS_CHANGE: return ("ADDRESS_CHANGE"); case NE_LIF_UP: return ("LIF_UP"); case NE_LIF_DOWN: return ("LIF_DOWN"); default: return ("UNKNOWN"); } } void ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, nic_event_data_t data, size_t datalen) { ip_stack_t *ipst = ill->ill_ipst; hook_nic_event_int_t *info; const char *str = NULL; /* create a new nic event info */ if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) goto fail; info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; info->hnei_event.hne_lif = lif; info->hnei_event.hne_event = event; info->hnei_event.hne_protocol = ill->ill_isv6 ? ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; info->hnei_event.hne_data = NULL; info->hnei_event.hne_datalen = 0; info->hnei_stackid = ipst->ips_netstack->netstack_stackid; if (data != NULL && datalen != 0) { info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); if (info->hnei_event.hne_data == NULL) goto fail; bcopy(data, info->hnei_event.hne_data, datalen); info->hnei_event.hne_datalen = datalen; } if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, DDI_NOSLEEP) == DDI_SUCCESS) return; fail: if (info != NULL) { if (info->hnei_event.hne_data != NULL) { kmem_free(info->hnei_event.hne_data, info->hnei_event.hne_datalen); } kmem_free(info, sizeof (hook_nic_event_t)); } str = ill_hook_event2str(event); ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " "information for %s (ENOMEM)\n", str, ill->ill_name)); } void ipif_up_notify(ipif_t *ipif) { ip_rts_ifmsg(ipif, RTSQ_DEFAULT); ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); sctp_update_ipif(ipif, SCTP_IPIF_UP); ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), NE_LIF_UP, NULL, 0); }