/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "zfs_deleg.h" extern struct modlfs zfs_modlfs; extern void zfs_init(void); extern void zfs_fini(void); ldi_ident_t zfs_li = NULL; dev_info_t *zfs_dip; typedef int zfs_ioc_func_t(zfs_cmd_t *); typedef int zfs_secpolicy_func_t(zfs_cmd_t *, cred_t *); typedef struct zfs_ioc_vec { zfs_ioc_func_t *zvec_func; zfs_secpolicy_func_t *zvec_secpolicy; enum { NO_NAME, POOL_NAME, DATASET_NAME } zvec_namecheck; boolean_t zvec_his_log; } zfs_ioc_vec_t; /* _NOTE(PRINTFLIKE(4)) - this is printf-like, but lint is too whiney */ void __dprintf(const char *file, const char *func, int line, const char *fmt, ...) { const char *newfile; char buf[256]; va_list adx; /* * Get rid of annoying "../common/" prefix to filename. */ newfile = strrchr(file, '/'); if (newfile != NULL) { newfile = newfile + 1; /* Get rid of leading / */ } else { newfile = file; } va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); /* * To get this data, use the zfs-dprintf probe as so: * dtrace -q -n 'zfs-dprintf \ * /stringof(arg0) == "dbuf.c"/ \ * {printf("%s: %s", stringof(arg1), stringof(arg3))}' * arg0 = file name * arg1 = function name * arg2 = line number * arg3 = message */ DTRACE_PROBE4(zfs__dprintf, char *, newfile, char *, func, int, line, char *, buf); } static void history_str_free(char *buf) { kmem_free(buf, HIS_MAX_RECORD_LEN); } static char * history_str_get(zfs_cmd_t *zc) { char *buf; if (zc->zc_history == NULL) return (NULL); buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP); if (copyinstr((void *)(uintptr_t)zc->zc_history, buf, HIS_MAX_RECORD_LEN, NULL) != 0) { history_str_free(buf); return (NULL); } buf[HIS_MAX_RECORD_LEN -1] = '\0'; return (buf); } static void zfs_log_history(zfs_cmd_t *zc) { spa_t *spa; char *buf; if ((buf = history_str_get(zc)) == NULL) return; if (spa_open(zc->zc_name, &spa, FTAG) == 0) { if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY) (void) spa_history_log(spa, buf, LOG_CMD_NORMAL); spa_close(spa, FTAG); } history_str_free(buf); } /* * Policy for top-level read operations (list pools). Requires no privileges, * and can be used in the local zone, as there is no associated dataset. */ /* ARGSUSED */ static int zfs_secpolicy_none(zfs_cmd_t *zc, cred_t *cr) { return (0); } /* * Policy for dataset read operations (list children, get statistics). Requires * no privileges, but must be visible in the local zone. */ /* ARGSUSED */ static int zfs_secpolicy_read(zfs_cmd_t *zc, cred_t *cr) { if (INGLOBALZONE(curproc) || zone_dataset_visible(zc->zc_name, NULL)) return (0); return (ENOENT); } static int zfs_dozonecheck(const char *dataset, cred_t *cr) { uint64_t zoned; int writable = 1; /* * The dataset must be visible by this zone -- check this first * so they don't see EPERM on something they shouldn't know about. */ if (!INGLOBALZONE(curproc) && !zone_dataset_visible(dataset, &writable)) return (ENOENT); if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL)) return (ENOENT); if (INGLOBALZONE(curproc)) { /* * If the fs is zoned, only root can access it from the * global zone. */ if (secpolicy_zfs(cr) && zoned) return (EPERM); } else { /* * If we are in a local zone, the 'zoned' property must be set. */ if (!zoned) return (EPERM); /* must be writable by this zone */ if (!writable) return (EPERM); } return (0); } int zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr) { int error; error = zfs_dozonecheck(name, cr); if (error == 0) { error = secpolicy_zfs(cr); if (error) error = dsl_deleg_access(name, perm, cr); } return (error); } static int zfs_secpolicy_setprop(const char *name, zfs_prop_t prop, cred_t *cr) { /* * Check permissions for special properties. */ switch (prop) { case ZFS_PROP_ZONED: /* * Disallow setting of 'zoned' from within a local zone. */ if (!INGLOBALZONE(curproc)) return (EPERM); break; case ZFS_PROP_QUOTA: if (!INGLOBALZONE(curproc)) { uint64_t zoned; char setpoint[MAXNAMELEN]; /* * Unprivileged users are allowed to modify the * quota on things *under* (ie. contained by) * the thing they own. */ if (dsl_prop_get_integer(name, "zoned", &zoned, setpoint)) return (EPERM); if (!zoned || strlen(name) <= strlen(setpoint)) return (EPERM); } break; } return (zfs_secpolicy_write_perms(name, zfs_prop_to_name(prop), cr)); } int zfs_secpolicy_fsacl(zfs_cmd_t *zc, cred_t *cr) { int error; error = zfs_dozonecheck(zc->zc_name, cr); if (error) return (error); /* * permission to set permissions will be evaluated later in * dsl_deleg_can_allow() */ return (0); } int zfs_secpolicy_rollback(zfs_cmd_t *zc, cred_t *cr) { int error; error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_ROLLBACK, cr); if (error == 0) error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr); return (error); } int zfs_secpolicy_send(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_SEND, cr)); } int zfs_secpolicy_share(zfs_cmd_t *zc, cred_t *cr) { if (!INGLOBALZONE(curproc)) return (EPERM); if (secpolicy_nfs(CRED()) == 0) { return (0); } else { vnode_t *vp; int error; if ((error = lookupname(zc->zc_value, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp)) != 0) return (error); /* Now make sure mntpnt and dataset are ZFS */ if (vp->v_vfsp->vfs_fstype != zfsfstype || (strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource), zc->zc_name) != 0)) { VN_RELE(vp); return (EPERM); } VN_RELE(vp); return (dsl_deleg_access(zc->zc_name, ZFS_DELEG_PERM_SHARE, cr)); } } static int zfs_get_parent(const char *datasetname, char *parent, int parentsize) { char *cp; /* * Remove the @bla or /bla from the end of the name to get the parent. */ (void) strncpy(parent, datasetname, parentsize); cp = strrchr(parent, '@'); if (cp != NULL) { cp[0] = '\0'; } else { cp = strrchr(parent, '/'); if (cp == NULL) return (ENOENT); cp[0] = '\0'; } return (0); } int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr)); } static int zfs_secpolicy_destroy(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_destroy_perms(zc->zc_name, cr)); } /* * Must have sys_config privilege to check the iscsi permission */ /* ARGSUSED */ static int zfs_secpolicy_iscsi(zfs_cmd_t *zc, cred_t *cr) { return (secpolicy_zfs(cr)); } int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) { char parentname[MAXNAMELEN]; int error; if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_RENAME, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); if ((error = zfs_get_parent(to, parentname, sizeof (parentname))) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (error); } static int zfs_secpolicy_rename(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr)); } static int zfs_secpolicy_promote(zfs_cmd_t *zc, cred_t *cr) { char parentname[MAXNAMELEN]; objset_t *clone; int error; error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_PROMOTE, cr); if (error) return (error); error = dmu_objset_open(zc->zc_name, DMU_OST_ANY, DS_MODE_STANDARD | DS_MODE_READONLY, &clone); if (error == 0) { dsl_dataset_t *pclone = NULL; dsl_dir_t *dd; dd = clone->os->os_dsl_dataset->ds_dir; rw_enter(&dd->dd_pool->dp_config_rwlock, RW_READER); error = dsl_dataset_open_obj(dd->dd_pool, dd->dd_phys->dd_clone_parent_obj, NULL, DS_MODE_NONE, FTAG, &pclone); rw_exit(&dd->dd_pool->dp_config_rwlock); if (error) { dmu_objset_close(clone); return (error); } error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr); dsl_dataset_name(pclone, parentname); dmu_objset_close(clone); dsl_dataset_close(pclone, DS_MODE_NONE, FTAG); if (error == 0) error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_PROMOTE, cr); } return (error); } static int zfs_secpolicy_receive(zfs_cmd_t *zc, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_RECEIVE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_CREATE, cr)); } int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_SNAPSHOT, cr)) != 0) return (error); error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_MOUNT, cr); return (error); } static int zfs_secpolicy_snapshot(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_snapshot_perms(zc->zc_name, cr)); } static int zfs_secpolicy_create(zfs_cmd_t *zc, cred_t *cr) { char parentname[MAXNAMELEN]; int error; if ((error = zfs_get_parent(zc->zc_name, parentname, sizeof (parentname))) != 0) return (error); if (zc->zc_value[0] != '\0') { if ((error = zfs_secpolicy_write_perms(zc->zc_value, ZFS_DELEG_PERM_CLONE, cr)) != 0) return (error); } if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr); return (error); } static int zfs_secpolicy_umount(zfs_cmd_t *zc, cred_t *cr) { int error; error = secpolicy_fs_unmount(cr, NULL); if (error) { error = dsl_deleg_access(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr); } return (error); } /* * Policy for pool operations - create/destroy pools, add vdevs, etc. Requires * SYS_CONFIG privilege, which is not available in a local zone. */ /* ARGSUSED */ static int zfs_secpolicy_config(zfs_cmd_t *zc, cred_t *cr) { if (secpolicy_sys_config(cr, B_FALSE) != 0) return (EPERM); return (0); } /* * Just like zfs_secpolicy_config, except that we will check for * mount permission on the dataset for permission to create/remove * the minor nodes. */ static int zfs_secpolicy_minor(zfs_cmd_t *zc, cred_t *cr) { if (secpolicy_sys_config(cr, B_FALSE) != 0) { return (dsl_deleg_access(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr)); } return (0); } /* * Policy for fault injection. Requires all privileges. */ /* ARGSUSED */ static int zfs_secpolicy_inject(zfs_cmd_t *zc, cred_t *cr) { return (secpolicy_zinject(cr)); } /* * Returns the nvlist as specified by the user in the zfs_cmd_t. */ static int get_nvlist(zfs_cmd_t *zc, nvlist_t **nvp) { char *packed; size_t size; int error; nvlist_t *config = NULL; /* * Read in and unpack the user-supplied nvlist. */ if ((size = zc->zc_nvlist_src_size) == 0) return (EINVAL); packed = kmem_alloc(size, KM_SLEEP); if ((error = xcopyin((void *)(uintptr_t)zc->zc_nvlist_src, packed, size)) != 0) { kmem_free(packed, size); return (error); } if ((error = nvlist_unpack(packed, size, &config, 0)) != 0) { kmem_free(packed, size); return (error); } kmem_free(packed, size); *nvp = config; return (0); } static int put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl) { char *packed = NULL; size_t size; int error; VERIFY(nvlist_size(nvl, &size, NV_ENCODE_NATIVE) == 0); if (size > zc->zc_nvlist_dst_size) { error = ENOMEM; } else { packed = kmem_alloc(size, KM_SLEEP); VERIFY(nvlist_pack(nvl, &packed, &size, NV_ENCODE_NATIVE, KM_SLEEP) == 0); error = xcopyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst, size); kmem_free(packed, size); } zc->zc_nvlist_dst_size = size; return (error); } static int zfs_ioc_pool_create(zfs_cmd_t *zc) { int error; nvlist_t *config; char *buf; if ((buf = history_str_get(zc)) == NULL) return (EINVAL); if ((error = get_nvlist(zc, &config)) != 0) { history_str_free(buf); return (error); } error = spa_create(zc->zc_name, config, zc->zc_value[0] == '\0' ? NULL : zc->zc_value, buf); nvlist_free(config); history_str_free(buf); return (error); } static int zfs_ioc_pool_destroy(zfs_cmd_t *zc) { int error; zfs_log_history(zc); error = spa_destroy(zc->zc_name); return (error); } static int zfs_ioc_pool_import(zfs_cmd_t *zc) { int error; nvlist_t *config; uint64_t guid; if ((error = get_nvlist(zc, &config)) != 0) return (error); if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || guid != zc->zc_guid) error = EINVAL; else error = spa_import(zc->zc_name, config, zc->zc_value[0] == '\0' ? NULL : zc->zc_value); nvlist_free(config); return (error); } static int zfs_ioc_pool_export(zfs_cmd_t *zc) { int error; zfs_log_history(zc); error = spa_export(zc->zc_name, NULL); return (error); } static int zfs_ioc_pool_configs(zfs_cmd_t *zc) { nvlist_t *configs; int error; if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL) return (EEXIST); error = put_nvlist(zc, configs); nvlist_free(configs); return (error); } static int zfs_ioc_pool_stats(zfs_cmd_t *zc) { nvlist_t *config; int error; int ret = 0; error = spa_get_stats(zc->zc_name, &config, zc->zc_value, sizeof (zc->zc_value)); if (config != NULL) { ret = put_nvlist(zc, config); nvlist_free(config); /* * The config may be present even if 'error' is non-zero. * In this case we return success, and preserve the real errno * in 'zc_cookie'. */ zc->zc_cookie = error; } else { ret = error; } return (ret); } /* * Try to import the given pool, returning pool stats as appropriate so that * user land knows which devices are available and overall pool health. */ static int zfs_ioc_pool_tryimport(zfs_cmd_t *zc) { nvlist_t *tryconfig, *config; int error; if ((error = get_nvlist(zc, &tryconfig)) != 0) return (error); config = spa_tryimport(tryconfig); nvlist_free(tryconfig); if (config == NULL) return (EINVAL); error = put_nvlist(zc, config); nvlist_free(config); return (error); } static int zfs_ioc_pool_scrub(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); mutex_enter(&spa_namespace_lock); error = spa_scrub(spa, zc->zc_cookie, B_FALSE); mutex_exit(&spa_namespace_lock); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_freeze(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { spa_freeze(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_pool_upgrade(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); spa_upgrade(spa); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_history(zfs_cmd_t *zc) { spa_t *spa; char *hist_buf; uint64_t size; int error; if ((size = zc->zc_history_len) == 0) return (EINVAL); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (ENOTSUP); } hist_buf = kmem_alloc(size, KM_SLEEP); if ((error = spa_history_get(spa, &zc->zc_history_offset, &zc->zc_history_len, hist_buf)) == 0) { error = xcopyout(hist_buf, (char *)(uintptr_t)zc->zc_history, zc->zc_history_len); } spa_close(spa, FTAG); kmem_free(hist_buf, size); return (error); } static int zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc) { int error; if (error = dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value)) return (error); return (0); } static int zfs_ioc_obj_to_path(zfs_cmd_t *zc) { objset_t *osp; int error; if ((error = dmu_objset_open(zc->zc_name, DMU_OST_ZFS, DS_MODE_NONE | DS_MODE_READONLY, &osp)) != 0) return (error); error = zfs_obj_to_path(osp, zc->zc_obj, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_close(osp); return (error); } static int zfs_ioc_vdev_add(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *config; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); /* * A root pool with concatenated devices is not supported. * Thus, can not add a device to a root pool with one device. */ if (spa->spa_root_vdev->vdev_children == 1 && spa->spa_bootfs != 0) { spa_close(spa, FTAG); return (EDOM); } if ((error = get_nvlist(zc, &config)) == 0) { error = spa_vdev_add(spa, config); nvlist_free(config); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_remove(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_set_state(zfs_cmd_t *zc) { spa_t *spa; int error; vdev_state_t newstate = VDEV_STATE_UNKNOWN; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); switch (zc->zc_cookie) { case VDEV_STATE_ONLINE: error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate); break; case VDEV_STATE_OFFLINE: error = vdev_offline(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_FAULTED: error = vdev_fault(spa, zc->zc_guid); break; case VDEV_STATE_DEGRADED: error = vdev_degrade(spa, zc->zc_guid); break; default: error = EINVAL; } zc->zc_cookie = newstate; spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_attach(zfs_cmd_t *zc) { spa_t *spa; int replacing = zc->zc_cookie; nvlist_t *config; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if ((error = get_nvlist(zc, &config)) == 0) { error = spa_vdev_attach(spa, zc->zc_guid, config, replacing); nvlist_free(config); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_detach(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_vdev_detach(spa, zc->zc_guid, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_setpath(zfs_cmd_t *zc) { spa_t *spa; char *path = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setpath(spa, guid, path); spa_close(spa, FTAG); return (error); } static int zfs_ioc_objset_stats(zfs_cmd_t *zc) { objset_t *os = NULL; int error; nvlist_t *nv; retry: error = dmu_objset_open(zc->zc_name, DMU_OST_ANY, DS_MODE_STANDARD | DS_MODE_READONLY, &os); if (error != 0) { /* * This is ugly: dmu_objset_open() can return EBUSY if * the objset is held exclusively. Fortunately this hold is * only for a short while, so we retry here. * This avoids user code having to handle EBUSY, * for example for a "zfs list". */ if (error == EBUSY) { delay(1); goto retry; } return (error); } dmu_objset_fast_stat(os, &zc->zc_objset_stats); if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_all(os, &nv)) == 0) { dmu_objset_stats(os, nv); /* * NB: {zpl,zvol}_get_stats() will read the objset contents, * which we aren't supposed to do with a * DS_MODE_STANDARD open, because it could be * inconsistent. So this is a bit of a workaround... */ if (!zc->zc_objset_stats.dds_inconsistent) { if (dmu_objset_type(os) == DMU_OST_ZVOL) VERIFY(zvol_get_stats(os, nv) == 0); else if (dmu_objset_type(os) == DMU_OST_ZFS) (void) zfs_get_stats(os, nv); } error = put_nvlist(zc, nv); nvlist_free(nv); } spa_altroot(dmu_objset_spa(os), zc->zc_value, sizeof (zc->zc_value)); dmu_objset_close(os); return (error); } static int zfs_ioc_dataset_list_next(zfs_cmd_t *zc) { objset_t *os; int error; char *p; retry: error = dmu_objset_open(zc->zc_name, DMU_OST_ANY, DS_MODE_STANDARD | DS_MODE_READONLY, &os); if (error != 0) { /* * This is ugly: dmu_objset_open() can return EBUSY if * the objset is held exclusively. Fortunately this hold is * only for a short while, so we retry here. * This avoids user code having to handle EBUSY, * for example for a "zfs list". */ if (error == EBUSY) { delay(1); goto retry; } if (error == ENOENT) error = ESRCH; return (error); } p = strrchr(zc->zc_name, '/'); if (p == NULL || p[1] != '\0') (void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name)); p = zc->zc_name + strlen(zc->zc_name); do { error = dmu_dir_list_next(os, sizeof (zc->zc_name) - (p - zc->zc_name), p, NULL, &zc->zc_cookie); if (error == ENOENT) error = ESRCH; } while (error == 0 && !INGLOBALZONE(curproc) && !zone_dataset_visible(zc->zc_name, NULL)); /* * If it's a hidden dataset (ie. with a '$' in its name), don't * try to get stats for it. Userland will skip over it. */ if (error == 0 && strchr(zc->zc_name, '$') == NULL) error = zfs_ioc_objset_stats(zc); /* fill in the stats */ dmu_objset_close(os); return (error); } static int zfs_ioc_snapshot_list_next(zfs_cmd_t *zc) { objset_t *os; int error; retry: error = dmu_objset_open(zc->zc_name, DMU_OST_ANY, DS_MODE_STANDARD | DS_MODE_READONLY, &os); if (error != 0) { /* * This is ugly: dmu_objset_open() can return EBUSY if * the objset is held exclusively. Fortunately this hold is * only for a short while, so we retry here. * This avoids user code having to handle EBUSY, * for example for a "zfs list". */ if (error == EBUSY) { delay(1); goto retry; } if (error == ENOENT) error = ESRCH; return (error); } /* * A dataset name of maximum length cannot have any snapshots, * so exit immediately. */ if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= MAXNAMELEN) { dmu_objset_close(os); return (ESRCH); } error = dmu_snapshot_list_next(os, sizeof (zc->zc_name) - strlen(zc->zc_name), zc->zc_name + strlen(zc->zc_name), NULL, &zc->zc_cookie); if (error == ENOENT) error = ESRCH; if (error == 0) error = zfs_ioc_objset_stats(zc); /* fill in the stats */ dmu_objset_close(os); return (error); } static int zfs_set_prop_nvlist(const char *name, nvlist_t *nvl) { nvpair_t *elem; int error; uint64_t intval; char *strval; /* * First validate permission to set all of the properties */ elem = NULL; while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) { const char *propname = nvpair_name(elem); zfs_prop_t prop = zfs_name_to_prop(propname); if (prop == ZFS_PROP_INVAL) { /* * If this is a user-defined property, it must be a * string, and there is no further validation to do. */ if (!zfs_prop_user(propname) || nvpair_type(elem) != DATA_TYPE_STRING) return (EINVAL); error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_USERPROP, CRED()); if (error) return (error); continue; } if ((error = zfs_secpolicy_setprop(name, prop, CRED())) != 0) return (error); /* * Check that this value is valid for this pool version */ switch (prop) { case ZFS_PROP_COMPRESSION: /* * If the user specified gzip compression, make sure * the SPA supports it. We ignore any errors here since * we'll catch them later. */ if (nvpair_type(elem) == DATA_TYPE_UINT64 && nvpair_value_uint64(elem, &intval) == 0 && intval >= ZIO_COMPRESS_GZIP_1 && intval <= ZIO_COMPRESS_GZIP_9) { spa_t *spa; if (spa_open(name, &spa, FTAG) == 0) { if (spa_version(spa) < SPA_VERSION_GZIP_COMPRESSION) { spa_close(spa, FTAG); return (ENOTSUP); } spa_close(spa, FTAG); } } break; case ZFS_PROP_COPIES: { spa_t *spa; if (spa_open(name, &spa, FTAG) == 0) { if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) { spa_close(spa, FTAG); return (ENOTSUP); } spa_close(spa, FTAG); } break; } } } elem = NULL; while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) { const char *propname = nvpair_name(elem); zfs_prop_t prop = zfs_name_to_prop(propname); if (prop == ZFS_PROP_INVAL) { VERIFY(nvpair_value_string(elem, &strval) == 0); error = dsl_prop_set(name, propname, 1, strlen(strval) + 1, strval); if (error == 0) continue; else return (error); } switch (prop) { case ZFS_PROP_QUOTA: if ((error = nvpair_value_uint64(elem, &intval)) != 0 || (error = dsl_dir_set_quota(name, intval)) != 0) return (error); break; case ZFS_PROP_RESERVATION: if ((error = nvpair_value_uint64(elem, &intval)) != 0 || (error = dsl_dir_set_reservation(name, intval)) != 0) return (error); break; case ZFS_PROP_VOLSIZE: if ((error = nvpair_value_uint64(elem, &intval)) != 0 || (error = zvol_set_volsize(name, ddi_driver_major(zfs_dip), intval)) != 0) return (error); break; case ZFS_PROP_VOLBLOCKSIZE: if ((error = nvpair_value_uint64(elem, &intval)) != 0 || (error = zvol_set_volblocksize(name, intval)) != 0) return (error); break; case ZFS_PROP_VERSION: if ((error = nvpair_value_uint64(elem, &intval)) != 0 || (error = zfs_set_version(name, intval)) != 0) return (error); break; default: if (nvpair_type(elem) == DATA_TYPE_STRING) { if (zfs_prop_get_type(prop) != PROP_TYPE_STRING) return (EINVAL); VERIFY(nvpair_value_string(elem, &strval) == 0); if ((error = dsl_prop_set(name, nvpair_name(elem), 1, strlen(strval) + 1, strval)) != 0) return (error); } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { const char *unused; VERIFY(nvpair_value_uint64(elem, &intval) == 0); switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: break; case PROP_TYPE_BOOLEAN: if (intval > 1) return (EINVAL); break; case PROP_TYPE_STRING: return (EINVAL); case PROP_TYPE_INDEX: if (zfs_prop_index_to_string(prop, intval, &unused) != 0) return (EINVAL); break; default: cmn_err(CE_PANIC, "unknown property type"); break; } if ((error = dsl_prop_set(name, propname, 8, 1, &intval)) != 0) return (error); } else { return (EINVAL); } break; } } return (0); } static int zfs_ioc_set_prop(zfs_cmd_t *zc) { nvlist_t *nvl; int error; /* * If zc_value is set, then this is an attempt to inherit a value. * Otherwise, zc_nvlist refers to a list of properties to set. */ if (zc->zc_value[0] != '\0') { zfs_prop_t prop = zfs_name_to_prop(zc->zc_value); if (prop == ZFS_PROP_INVAL) { if (!zfs_prop_user(zc->zc_value)) return (EINVAL); error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_USERPROP, CRED()); } else { if (!zfs_prop_inheritable(prop)) return (EINVAL); error = zfs_secpolicy_setprop(zc->zc_name, prop, CRED()); } if (error) return (error); return (dsl_prop_set(zc->zc_name, zc->zc_value, 0, 0, NULL)); } if ((error = get_nvlist(zc, &nvl)) != 0) return (error); error = zfs_set_prop_nvlist(zc->zc_name, nvl); nvlist_free(nvl); return (error); } static int zfs_ioc_pool_set_props(zfs_cmd_t *zc) { nvlist_t *nvl; int error, reset_bootfs = 0; uint64_t objnum; uint64_t intval; zpool_prop_t prop; nvpair_t *elem; char *propname, *strval; spa_t *spa; vdev_t *rvdev; char *vdev_type; objset_t *os; if ((error = get_nvlist(zc, &nvl)) != 0) return (error); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { nvlist_free(nvl); return (error); } if (spa_version(spa) < SPA_VERSION_BOOTFS) { nvlist_free(nvl); spa_close(spa, FTAG); return (ENOTSUP); } elem = NULL; while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) { propname = nvpair_name(elem); if ((prop = zpool_name_to_prop(propname)) == ZFS_PROP_INVAL) { nvlist_free(nvl); spa_close(spa, FTAG); return (EINVAL); } switch (prop) { case ZPOOL_PROP_DELEGATION: VERIFY(nvpair_value_uint64(elem, &intval) == 0); if (intval > 1) error = EINVAL; break; case ZPOOL_PROP_BOOTFS: /* * A bootable filesystem can not be on a RAIDZ pool * nor a striped pool with more than 1 device. */ rvdev = spa->spa_root_vdev; vdev_type = rvdev->vdev_child[0]->vdev_ops->vdev_op_type; if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || (strcmp(vdev_type, VDEV_TYPE_MIRROR) != 0 && rvdev->vdev_children > 1)) { error = ENOTSUP; break; } reset_bootfs = 1; VERIFY(nvpair_value_string(elem, &strval) == 0); if (strval == NULL || strval[0] == '\0') { objnum = zpool_prop_default_numeric( ZPOOL_PROP_BOOTFS); break; } if (error = dmu_objset_open(strval, DMU_OST_ZFS, DS_MODE_STANDARD | DS_MODE_READONLY, &os)) break; objnum = dmu_objset_id(os); dmu_objset_close(os); break; } if (error) break; } if (error == 0) { if (reset_bootfs) { VERIFY(nvlist_remove(nvl, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING) == 0); VERIFY(nvlist_add_uint64(nvl, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum) == 0); } error = spa_set_props(spa, nvl); } nvlist_free(nvl); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_props(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *nvp = NULL; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_get_props(spa, &nvp); if (error == 0 && zc->zc_nvlist_dst != NULL) error = put_nvlist(zc, nvp); else error = EFAULT; spa_close(spa, FTAG); if (nvp) nvlist_free(nvp); return (error); } static int zfs_ioc_iscsi_perm_check(zfs_cmd_t *zc) { nvlist_t *nvp; int error; uint32_t uid; uint32_t gid; uint32_t *groups; uint_t group_cnt; cred_t *usercred; if ((error = get_nvlist(zc, &nvp)) != 0) { return (error); } if ((error = nvlist_lookup_uint32(nvp, ZFS_DELEG_PERM_UID, &uid)) != 0) { nvlist_free(nvp); return (EPERM); } if ((error = nvlist_lookup_uint32(nvp, ZFS_DELEG_PERM_GID, &gid)) != 0) { nvlist_free(nvp); return (EPERM); } if ((error = nvlist_lookup_uint32_array(nvp, ZFS_DELEG_PERM_GROUPS, &groups, &group_cnt)) != 0) { nvlist_free(nvp); return (EPERM); } usercred = cralloc(); if ((crsetugid(usercred, uid, gid) != 0) || (crsetgroups(usercred, group_cnt, (gid_t *)groups) != 0)) { nvlist_free(nvp); crfree(usercred); return (EPERM); } nvlist_free(nvp); error = dsl_deleg_access(zc->zc_name, zfs_prop_to_name(ZFS_PROP_SHAREISCSI), usercred); crfree(usercred); return (error); } static int zfs_ioc_set_fsacl(zfs_cmd_t *zc) { int error; nvlist_t *fsaclnv = NULL; if ((error = get_nvlist(zc, &fsaclnv)) != 0) return (error); /* * Verify nvlist is constructed correctly */ if ((error = zfs_deleg_verify_nvlist(fsaclnv)) != 0) { nvlist_free(fsaclnv); return (EINVAL); } /* * If we don't have PRIV_SYS_MOUNT, then validate * that user is allowed to hand out each permission in * the nvlist(s) */ error = secpolicy_zfs(CRED()); if (error) { if (zc->zc_perm_action == B_FALSE) { error = dsl_deleg_can_allow(zc->zc_name, fsaclnv, CRED()); } else { error = dsl_deleg_can_unallow(zc->zc_name, fsaclnv, CRED()); } } if (error == 0) error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action); nvlist_free(fsaclnv); return (error); } static int zfs_ioc_get_fsacl(zfs_cmd_t *zc) { nvlist_t *nvp; int error; if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) { error = put_nvlist(zc, nvp); nvlist_free(nvp); } return (error); } static int zfs_ioc_create_minor(zfs_cmd_t *zc) { return (zvol_create_minor(zc->zc_name, ddi_driver_major(zfs_dip))); } static int zfs_ioc_remove_minor(zfs_cmd_t *zc) { return (zvol_remove_minor(zc->zc_name)); } /* * Search the vfs list for a specified resource. Returns a pointer to it * or NULL if no suitable entry is found. The caller of this routine * is responsible for releasing the returned vfs pointer. */ static vfs_t * zfs_get_vfs(const char *resource) { struct vfs *vfsp; struct vfs *vfs_found = NULL; vfs_list_read_lock(); vfsp = rootvfs; do { if (strcmp(refstr_value(vfsp->vfs_resource), resource) == 0) { VFS_HOLD(vfsp); vfs_found = vfsp; break; } vfsp = vfsp->vfs_next; } while (vfsp != rootvfs); vfs_list_unlock(); return (vfs_found); } /* ARGSUSED */ static void zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { nvlist_t *nvprops = arg; uint64_t version = ZPL_VERSION; (void) nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VERSION), &version); zfs_create_fs(os, cr, version, tx); } static int zfs_ioc_create(zfs_cmd_t *zc) { objset_t *clone; int error = 0; nvlist_t *nvprops = NULL; void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx); dmu_objset_type_t type = zc->zc_objset_type; switch (type) { case DMU_OST_ZFS: cbfunc = zfs_create_cb; break; case DMU_OST_ZVOL: cbfunc = zvol_create_cb; break; default: cbfunc = NULL; } if (strchr(zc->zc_name, '@')) return (EINVAL); if (zc->zc_nvlist_src != NULL && (error = get_nvlist(zc, &nvprops)) != 0) return (error); if (zc->zc_value[0] != '\0') { /* * We're creating a clone of an existing snapshot. */ zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0) { nvlist_free(nvprops); return (EINVAL); } error = dmu_objset_open(zc->zc_value, type, DS_MODE_STANDARD | DS_MODE_READONLY, &clone); if (error) { nvlist_free(nvprops); return (error); } error = dmu_objset_create(zc->zc_name, type, clone, NULL, NULL); dmu_objset_close(clone); } else { if (cbfunc == NULL) { nvlist_free(nvprops); return (EINVAL); } if (type == DMU_OST_ZVOL) { uint64_t volsize, volblocksize; if (nvprops == NULL || nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0) { nvlist_free(nvprops); return (EINVAL); } if ((error = nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize)) != 0 && error != ENOENT) { nvlist_free(nvprops); return (EINVAL); } if (error != 0) volblocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); if ((error = zvol_check_volblocksize( volblocksize)) != 0 || (error = zvol_check_volsize(volsize, volblocksize)) != 0) { nvlist_free(nvprops); return (error); } } else if (type == DMU_OST_ZFS) { uint64_t version; if (0 == nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VERSION), &version) && (version < ZPL_VERSION_INITIAL || version > ZPL_VERSION)) { nvlist_free(nvprops); return (EINVAL); } } error = dmu_objset_create(zc->zc_name, type, NULL, cbfunc, nvprops); } /* * It would be nice to do this atomically. */ if (error == 0) { if ((error = zfs_set_prop_nvlist(zc->zc_name, nvprops)) != 0) (void) dmu_objset_destroy(zc->zc_name); } nvlist_free(nvprops); return (error); } static int zfs_ioc_snapshot(zfs_cmd_t *zc) { if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); return (dmu_objset_snapshot(zc->zc_name, zc->zc_value, zc->zc_cookie)); } int zfs_unmount_snap(char *name, void *arg) { char *snapname = arg; char *cp; vfs_t *vfsp = NULL; /* * Snapshots (which are under .zfs control) must be unmounted * before they can be destroyed. */ if (snapname) { (void) strcat(name, "@"); (void) strcat(name, snapname); vfsp = zfs_get_vfs(name); cp = strchr(name, '@'); *cp = '\0'; } else if (strchr(name, '@')) { vfsp = zfs_get_vfs(name); } if (vfsp) { /* * Always force the unmount for snapshots. */ int flag = MS_FORCE; int err; if ((err = vn_vfswlock(vfsp->vfs_vnodecovered)) != 0) { VFS_RELE(vfsp); return (err); } VFS_RELE(vfsp); if ((err = dounmount(vfsp, flag, kcred)) != 0) return (err); } return (0); } static int zfs_ioc_destroy_snaps(zfs_cmd_t *zc) { int err; if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); err = dmu_objset_find(zc->zc_name, zfs_unmount_snap, zc->zc_value, DS_FIND_CHILDREN); if (err) return (err); return (dmu_snapshots_destroy(zc->zc_name, zc->zc_value)); } static int zfs_ioc_destroy(zfs_cmd_t *zc) { if (strchr(zc->zc_name, '@') && zc->zc_objset_type == DMU_OST_ZFS) { int err = zfs_unmount_snap(zc->zc_name, NULL); if (err) return (err); } return (dmu_objset_destroy(zc->zc_name)); } static int zfs_ioc_rollback(zfs_cmd_t *zc) { return (dmu_objset_rollback(zc->zc_name)); } static int zfs_ioc_rename(zfs_cmd_t *zc) { boolean_t recursive = zc->zc_cookie & 1; zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); /* * Unmount snapshot unless we're doing a recursive rename, * in which case the dataset code figures out which snapshots * to unmount. */ if (!recursive && strchr(zc->zc_name, '@') != NULL && zc->zc_objset_type == DMU_OST_ZFS) { int err = zfs_unmount_snap(zc->zc_name, NULL); if (err) return (err); } return (dmu_objset_rename(zc->zc_name, zc->zc_value, recursive)); } static int zfs_ioc_recvbackup(zfs_cmd_t *zc) { file_t *fp; int error, fd; offset_t new_off; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_value, '@') == NULL) return (EINVAL); fd = zc->zc_cookie; fp = getf(fd); if (fp == NULL) return (EBADF); error = dmu_recvbackup(zc->zc_value, &zc->zc_begin_record, &zc->zc_cookie, (boolean_t)zc->zc_guid, fp->f_vnode, fp->f_offset); new_off = fp->f_offset + zc->zc_cookie; if (VOP_SEEK(fp->f_vnode, fp->f_offset, &new_off) == 0) fp->f_offset = new_off; releasef(fd); return (error); } static int zfs_ioc_sendbackup(zfs_cmd_t *zc) { objset_t *fromsnap = NULL; objset_t *tosnap; file_t *fp; int error; error = dmu_objset_open(zc->zc_name, DMU_OST_ANY, DS_MODE_STANDARD | DS_MODE_READONLY, &tosnap); if (error) return (error); if (zc->zc_value[0] != '\0') { char buf[MAXPATHLEN]; char *cp; (void) strncpy(buf, zc->zc_name, sizeof (buf)); cp = strchr(buf, '@'); if (cp) *(cp+1) = 0; (void) strncat(buf, zc->zc_value, sizeof (buf)); error = dmu_objset_open(buf, DMU_OST_ANY, DS_MODE_STANDARD | DS_MODE_READONLY, &fromsnap); if (error) { dmu_objset_close(tosnap); return (error); } } fp = getf(zc->zc_cookie); if (fp == NULL) { dmu_objset_close(tosnap); if (fromsnap) dmu_objset_close(fromsnap); return (EBADF); } error = dmu_sendbackup(tosnap, fromsnap, fp->f_vnode); releasef(zc->zc_cookie); if (fromsnap) dmu_objset_close(fromsnap); dmu_objset_close(tosnap); return (error); } static int zfs_ioc_inject_fault(zfs_cmd_t *zc) { int id, error; error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id, &zc->zc_inject_record); if (error == 0) zc->zc_guid = (uint64_t)id; return (error); } static int zfs_ioc_clear_fault(zfs_cmd_t *zc) { return (zio_clear_fault((int)zc->zc_guid)); } static int zfs_ioc_inject_list_next(zfs_cmd_t *zc) { int id = (int)zc->zc_guid; int error; error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name), &zc->zc_inject_record); zc->zc_guid = id; return (error); } static int zfs_ioc_error_log(zfs_cmd_t *zc) { spa_t *spa; int error; size_t count = (size_t)zc->zc_nvlist_dst_size; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst, &count); if (error == 0) zc->zc_nvlist_dst_size = count; else zc->zc_nvlist_dst_size = spa_get_errlog_size(spa); spa_close(spa, FTAG); return (error); } static int zfs_ioc_clear(zfs_cmd_t *zc) { spa_t *spa; vdev_t *vd; uint64_t txg; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); txg = spa_vdev_enter(spa); if (zc->zc_guid == 0) { vd = NULL; } else if ((vd = spa_lookup_by_guid(spa, zc->zc_guid)) == NULL) { (void) spa_vdev_exit(spa, NULL, txg, ENODEV); spa_close(spa, FTAG); return (ENODEV); } vdev_clear(spa, vd); (void) spa_vdev_exit(spa, NULL, txg, 0); spa_close(spa, FTAG); return (0); } static int zfs_ioc_promote(zfs_cmd_t *zc) { char *cp; /* * We don't need to unmount *all* the origin fs's snapshots, but * it's easier. */ cp = strchr(zc->zc_value, '@'); if (cp) *cp = '\0'; (void) dmu_objset_find(zc->zc_value, zfs_unmount_snap, NULL, DS_FIND_SNAPSHOTS); return (dsl_dataset_promote(zc->zc_name)); } /* * We don't want to have a hard dependency * against some special symbols in sharefs * and nfs. Determine them if needed when * the first file system is shared. * Neither sharefs or nfs are unloadable modules. */ int (*zexport_fs)(void *arg); int (*zshare_fs)(enum sharefs_sys_op, share_t *, uint32_t); int zfs_share_inited; ddi_modhandle_t nfs_mod; ddi_modhandle_t sharefs_mod; kmutex_t zfs_share_lock; static int zfs_ioc_share(zfs_cmd_t *zc) { int error; int opcode; if (zfs_share_inited == 0) { mutex_enter(&zfs_share_lock); nfs_mod = ddi_modopen("fs/nfs", KRTLD_MODE_FIRST, &error); sharefs_mod = ddi_modopen("fs/sharefs", KRTLD_MODE_FIRST, &error); if (nfs_mod == NULL || sharefs_mod == NULL) { mutex_exit(&zfs_share_lock); return (ENOSYS); } if (zexport_fs == NULL && ((zexport_fs = (int (*)(void *)) ddi_modsym(nfs_mod, "nfs_export", &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (ENOSYS); } if (zshare_fs == NULL && ((zshare_fs = (int (*)(enum sharefs_sys_op, share_t *, uint32_t)) ddi_modsym(sharefs_mod, "sharefs_impl", &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (ENOSYS); } zfs_share_inited = 1; mutex_exit(&zfs_share_lock); } if (error = zexport_fs((void *)(uintptr_t)zc->zc_share.z_exportdata)) return (error); opcode = (zc->zc_share.z_sharetype == B_TRUE) ? SHAREFS_ADD : SHAREFS_REMOVE; error = zshare_fs(opcode, (void *)(uintptr_t)zc->zc_share.z_sharedata, zc->zc_share.z_sharemax); return (error); } /* * pool destroy and pool export don't log the history as part of zfsdev_ioctl, * but rather zfs_ioc_pool_create, and zfs_ioc_pool_export do the loggin * of those commands. */ static zfs_ioc_vec_t zfs_ioc_vec[] = { { zfs_ioc_pool_create, zfs_secpolicy_config, POOL_NAME, B_FALSE }, { zfs_ioc_pool_destroy, zfs_secpolicy_config, POOL_NAME, B_FALSE }, { zfs_ioc_pool_import, zfs_secpolicy_config, POOL_NAME, B_TRUE }, { zfs_ioc_pool_export, zfs_secpolicy_config, POOL_NAME, B_FALSE }, { zfs_ioc_pool_configs, zfs_secpolicy_none, NO_NAME, B_FALSE }, { zfs_ioc_pool_stats, zfs_secpolicy_read, POOL_NAME, B_FALSE }, { zfs_ioc_pool_tryimport, zfs_secpolicy_config, NO_NAME, B_FALSE }, { zfs_ioc_pool_scrub, zfs_secpolicy_config, POOL_NAME, B_TRUE }, { zfs_ioc_pool_freeze, zfs_secpolicy_config, NO_NAME, B_FALSE }, { zfs_ioc_pool_upgrade, zfs_secpolicy_config, POOL_NAME, B_TRUE }, { zfs_ioc_pool_get_history, zfs_secpolicy_config, POOL_NAME, B_FALSE }, { zfs_ioc_vdev_add, zfs_secpolicy_config, POOL_NAME, B_TRUE }, { zfs_ioc_vdev_remove, zfs_secpolicy_config, POOL_NAME, B_TRUE }, { zfs_ioc_vdev_set_state, zfs_secpolicy_config, POOL_NAME, B_TRUE }, { zfs_ioc_vdev_attach, zfs_secpolicy_config, POOL_NAME, B_TRUE }, { zfs_ioc_vdev_detach, zfs_secpolicy_config, POOL_NAME, B_TRUE }, { zfs_ioc_vdev_setpath, zfs_secpolicy_config, POOL_NAME, B_FALSE }, { zfs_ioc_objset_stats, zfs_secpolicy_read, DATASET_NAME, B_FALSE }, { zfs_ioc_dataset_list_next, zfs_secpolicy_read, DATASET_NAME, B_FALSE }, { zfs_ioc_snapshot_list_next, zfs_secpolicy_read, DATASET_NAME, B_FALSE }, { zfs_ioc_set_prop, zfs_secpolicy_none, DATASET_NAME, B_TRUE }, { zfs_ioc_create_minor, zfs_secpolicy_minor, DATASET_NAME, B_FALSE }, { zfs_ioc_remove_minor, zfs_secpolicy_minor, DATASET_NAME, B_FALSE }, { zfs_ioc_create, zfs_secpolicy_create, DATASET_NAME, B_TRUE }, { zfs_ioc_destroy, zfs_secpolicy_destroy, DATASET_NAME, B_TRUE }, { zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME, B_TRUE }, { zfs_ioc_rename, zfs_secpolicy_rename, DATASET_NAME, B_TRUE }, { zfs_ioc_recvbackup, zfs_secpolicy_receive, DATASET_NAME, B_TRUE }, { zfs_ioc_sendbackup, zfs_secpolicy_send, DATASET_NAME, B_TRUE }, { zfs_ioc_inject_fault, zfs_secpolicy_inject, NO_NAME, B_FALSE }, { zfs_ioc_clear_fault, zfs_secpolicy_inject, NO_NAME, B_FALSE }, { zfs_ioc_inject_list_next, zfs_secpolicy_inject, NO_NAME, B_FALSE }, { zfs_ioc_error_log, zfs_secpolicy_inject, POOL_NAME, B_FALSE }, { zfs_ioc_clear, zfs_secpolicy_config, POOL_NAME, B_TRUE }, { zfs_ioc_promote, zfs_secpolicy_promote, DATASET_NAME, B_TRUE }, { zfs_ioc_destroy_snaps, zfs_secpolicy_destroy, DATASET_NAME, B_TRUE }, { zfs_ioc_snapshot, zfs_secpolicy_snapshot, DATASET_NAME, B_TRUE }, { zfs_ioc_dsobj_to_dsname, zfs_secpolicy_config, POOL_NAME, B_FALSE }, { zfs_ioc_obj_to_path, zfs_secpolicy_config, NO_NAME, B_FALSE }, { zfs_ioc_pool_set_props, zfs_secpolicy_config, POOL_NAME, B_TRUE }, { zfs_ioc_pool_get_props, zfs_secpolicy_read, POOL_NAME, B_FALSE }, { zfs_ioc_set_fsacl, zfs_secpolicy_fsacl, DATASET_NAME, B_TRUE }, { zfs_ioc_get_fsacl, zfs_secpolicy_read, DATASET_NAME, B_FALSE }, { zfs_ioc_iscsi_perm_check, zfs_secpolicy_iscsi, DATASET_NAME, B_FALSE }, { zfs_ioc_share, zfs_secpolicy_share, DATASET_NAME, B_FALSE } }; static int zfsdev_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) { zfs_cmd_t *zc; uint_t vec; int error, rc; if (getminor(dev) != 0) return (zvol_ioctl(dev, cmd, arg, flag, cr, rvalp)); vec = cmd - ZFS_IOC; ASSERT3U(getmajor(dev), ==, ddi_driver_major(zfs_dip)); if (vec >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0])) return (EINVAL); zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); error = xcopyin((void *)arg, zc, sizeof (zfs_cmd_t)); if (error == 0) error = zfs_ioc_vec[vec].zvec_secpolicy(zc, cr); /* * Ensure that all pool/dataset names are valid before we pass down to * the lower layers. */ if (error == 0) { zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; switch (zfs_ioc_vec[vec].zvec_namecheck) { case POOL_NAME: if (pool_namecheck(zc->zc_name, NULL, NULL) != 0) error = EINVAL; break; case DATASET_NAME: if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0) error = EINVAL; break; case NO_NAME: break; } } if (error == 0) error = zfs_ioc_vec[vec].zvec_func(zc); rc = xcopyout(zc, (void *)arg, sizeof (zfs_cmd_t)); if (error == 0) { error = rc; if (zfs_ioc_vec[vec].zvec_his_log == B_TRUE) zfs_log_history(zc); } kmem_free(zc, sizeof (zfs_cmd_t)); return (error); } static int zfs_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { if (cmd != DDI_ATTACH) return (DDI_FAILURE); if (ddi_create_minor_node(dip, "zfs", S_IFCHR, 0, DDI_PSEUDO, 0) == DDI_FAILURE) return (DDI_FAILURE); zfs_dip = dip; ddi_report_dev(dip); return (DDI_SUCCESS); } static int zfs_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { if (spa_busy() || zfs_busy() || zvol_busy()) return (DDI_FAILURE); if (cmd != DDI_DETACH) return (DDI_FAILURE); zfs_dip = NULL; ddi_prop_remove_all(dip); ddi_remove_minor_node(dip, NULL); return (DDI_SUCCESS); } /*ARGSUSED*/ static int zfs_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { switch (infocmd) { case DDI_INFO_DEVT2DEVINFO: *result = zfs_dip; return (DDI_SUCCESS); case DDI_INFO_DEVT2INSTANCE: *result = (void *)0; return (DDI_SUCCESS); } return (DDI_FAILURE); } /* * OK, so this is a little weird. * * /dev/zfs is the control node, i.e. minor 0. * /dev/zvol/[r]dsk/pool/dataset are the zvols, minor > 0. * * /dev/zfs has basically nothing to do except serve up ioctls, * so most of the standard driver entry points are in zvol.c. */ static struct cb_ops zfs_cb_ops = { zvol_open, /* open */ zvol_close, /* close */ zvol_strategy, /* strategy */ nodev, /* print */ nodev, /* dump */ zvol_read, /* read */ zvol_write, /* write */ zfsdev_ioctl, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* poll */ ddi_prop_op, /* prop_op */ NULL, /* streamtab */ D_NEW | D_MP | D_64BIT, /* Driver compatibility flag */ CB_REV, /* version */ nodev, /* async read */ nodev, /* async write */ }; static struct dev_ops zfs_dev_ops = { DEVO_REV, /* version */ 0, /* refcnt */ zfs_info, /* info */ nulldev, /* identify */ nulldev, /* probe */ zfs_attach, /* attach */ zfs_detach, /* detach */ nodev, /* reset */ &zfs_cb_ops, /* driver operations */ NULL /* no bus operations */ }; static struct modldrv zfs_modldrv = { &mod_driverops, "ZFS storage pool version " SPA_VERSION_STRING, &zfs_dev_ops }; static struct modlinkage modlinkage = { MODREV_1, (void *)&zfs_modlfs, (void *)&zfs_modldrv, NULL }; uint_t zfs_fsyncer_key; int _init(void) { int error; spa_init(FREAD | FWRITE); zfs_init(); zvol_init(); if ((error = mod_install(&modlinkage)) != 0) { zvol_fini(); zfs_fini(); spa_fini(); return (error); } tsd_create(&zfs_fsyncer_key, NULL); error = ldi_ident_from_mod(&modlinkage, &zfs_li); ASSERT(error == 0); mutex_init(&zfs_share_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } int _fini(void) { int error; if (spa_busy() || zfs_busy() || zvol_busy() || zio_injection_enabled) return (EBUSY); if ((error = mod_remove(&modlinkage)) != 0) return (error); zvol_fini(); zfs_fini(); spa_fini(); if (zfs_share_inited) { (void) ddi_modclose(nfs_mod); (void) ddi_modclose(sharefs_mod); } tsd_destroy(&zfs_fsyncer_key); ldi_ident_release(zfs_li); zfs_li = NULL; mutex_destroy(&zfs_share_lock); return (error); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); }