/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Virtual device management. */ static vdev_ops_t *vdev_ops_table[] = { &vdev_root_ops, &vdev_raidz_ops, &vdev_mirror_ops, &vdev_replacing_ops, &vdev_spare_ops, &vdev_disk_ops, &vdev_file_ops, &vdev_missing_ops, NULL }; /* * Given a vdev type, return the appropriate ops vector. */ static vdev_ops_t * vdev_getops(const char *type) { vdev_ops_t *ops, **opspp; for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) if (strcmp(ops->vdev_op_type, type) == 0) break; return (ops); } /* * Default asize function: return the MAX of psize with the asize of * all children. This is what's used by anything other than RAID-Z. */ uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize) { uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); uint64_t csize; uint64_t c; for (c = 0; c < vd->vdev_children; c++) { csize = vdev_psize_to_asize(vd->vdev_child[c], psize); asize = MAX(asize, csize); } return (asize); } /* * Get the replaceable or attachable device size. * If the parent is a mirror or raidz, the replaceable size is the minimum * psize of all its children. For the rest, just return our own psize. * * e.g. * psize rsize * root - - * mirror/raidz - - * disk1 20g 20g * disk2 40g 20g * disk3 80g 80g */ uint64_t vdev_get_rsize(vdev_t *vd) { vdev_t *pvd, *cvd; uint64_t c, rsize; pvd = vd->vdev_parent; /* * If our parent is NULL or the root, just return our own psize. */ if (pvd == NULL || pvd->vdev_parent == NULL) return (vd->vdev_psize); rsize = 0; for (c = 0; c < pvd->vdev_children; c++) { cvd = pvd->vdev_child[c]; rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; } return (rsize); } vdev_t * vdev_lookup_top(spa_t *spa, uint64_t vdev) { vdev_t *rvd = spa->spa_root_vdev; if (vdev < rvd->vdev_children) return (rvd->vdev_child[vdev]); return (NULL); } vdev_t * vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) { int c; vdev_t *mvd; if (vd->vdev_guid == guid) return (vd); for (c = 0; c < vd->vdev_children; c++) if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != NULL) return (mvd); return (NULL); } void vdev_add_child(vdev_t *pvd, vdev_t *cvd) { size_t oldsize, newsize; uint64_t id = cvd->vdev_id; vdev_t **newchild; ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); ASSERT(cvd->vdev_parent == NULL); cvd->vdev_parent = pvd; if (pvd == NULL) return; ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); oldsize = pvd->vdev_children * sizeof (vdev_t *); pvd->vdev_children = MAX(pvd->vdev_children, id + 1); newsize = pvd->vdev_children * sizeof (vdev_t *); newchild = kmem_zalloc(newsize, KM_SLEEP); if (pvd->vdev_child != NULL) { bcopy(pvd->vdev_child, newchild, oldsize); kmem_free(pvd->vdev_child, oldsize); } pvd->vdev_child = newchild; pvd->vdev_child[id] = cvd; cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); /* * Walk up all ancestors to update guid sum. */ for (; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum += cvd->vdev_guid_sum; } void vdev_remove_child(vdev_t *pvd, vdev_t *cvd) { int c; uint_t id = cvd->vdev_id; ASSERT(cvd->vdev_parent == pvd); if (pvd == NULL) return; ASSERT(id < pvd->vdev_children); ASSERT(pvd->vdev_child[id] == cvd); pvd->vdev_child[id] = NULL; cvd->vdev_parent = NULL; for (c = 0; c < pvd->vdev_children; c++) if (pvd->vdev_child[c]) break; if (c == pvd->vdev_children) { kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); pvd->vdev_child = NULL; pvd->vdev_children = 0; } /* * Walk up all ancestors to update guid sum. */ for (; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum -= cvd->vdev_guid_sum; } /* * Remove any holes in the child array. */ void vdev_compact_children(vdev_t *pvd) { vdev_t **newchild, *cvd; int oldc = pvd->vdev_children; int newc, c; ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); for (c = newc = 0; c < oldc; c++) if (pvd->vdev_child[c]) newc++; newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); for (c = newc = 0; c < oldc; c++) { if ((cvd = pvd->vdev_child[c]) != NULL) { newchild[newc] = cvd; cvd->vdev_id = newc++; } } kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); pvd->vdev_child = newchild; pvd->vdev_children = newc; } /* * Allocate and minimally initialize a vdev_t. */ static vdev_t * vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) { vdev_t *vd; vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); if (spa->spa_root_vdev == NULL) { ASSERT(ops == &vdev_root_ops); spa->spa_root_vdev = vd; } if (guid == 0) { if (spa->spa_root_vdev == vd) { /* * The root vdev's guid will also be the pool guid, * which must be unique among all pools. */ while (guid == 0 || spa_guid_exists(guid, 0)) guid = spa_get_random(-1ULL); } else { /* * Any other vdev's guid must be unique within the pool. */ while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) guid = spa_get_random(-1ULL); } ASSERT(!spa_guid_exists(spa_guid(spa), guid)); } vd->vdev_spa = spa; vd->vdev_id = id; vd->vdev_guid = guid; vd->vdev_guid_sum = guid; vd->vdev_ops = ops; vd->vdev_state = VDEV_STATE_CLOSED; mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); txg_list_create(&vd->vdev_ms_list, offsetof(struct metaslab, ms_txg_node)); txg_list_create(&vd->vdev_dtl_list, offsetof(struct vdev, vdev_dtl_node)); vd->vdev_stat.vs_timestamp = gethrtime(); return (vd); } /* * Free a vdev_t that has been removed from service. */ static void vdev_free_common(vdev_t *vd) { spa_t *spa = vd->vdev_spa; if (vd->vdev_path) spa_strfree(vd->vdev_path); if (vd->vdev_devid) spa_strfree(vd->vdev_devid); if (vd->vdev_isspare) spa_spare_remove(vd->vdev_guid); txg_list_destroy(&vd->vdev_ms_list); txg_list_destroy(&vd->vdev_dtl_list); mutex_enter(&vd->vdev_dtl_lock); space_map_unload(&vd->vdev_dtl_map); space_map_destroy(&vd->vdev_dtl_map); space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); space_map_destroy(&vd->vdev_dtl_scrub); mutex_exit(&vd->vdev_dtl_lock); mutex_destroy(&vd->vdev_dtl_lock); if (vd == spa->spa_root_vdev) spa->spa_root_vdev = NULL; kmem_free(vd, sizeof (vdev_t)); } /* * Allocate a new vdev. The 'alloctype' is used to control whether we are * creating a new vdev or loading an existing one - the behavior is slightly * different for each case. */ int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype) { vdev_ops_t *ops; char *type; uint64_t guid = 0; vdev_t *vd; ASSERT(spa_config_held(spa, RW_WRITER)); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) return (EINVAL); if ((ops = vdev_getops(type)) == NULL) return (EINVAL); /* * If this is a load, get the vdev guid from the nvlist. * Otherwise, vdev_alloc_common() will generate one for us. */ if (alloctype == VDEV_ALLOC_LOAD) { uint64_t label_id; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || label_id != id) return (EINVAL); if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (EINVAL); } else if (alloctype == VDEV_ALLOC_SPARE) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (EINVAL); } /* * The first allocated vdev must be of type 'root'. */ if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) return (EINVAL); vd = vdev_alloc_common(spa, id, guid, ops); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) vd->vdev_path = spa_strdup(vd->vdev_path); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) vd->vdev_devid = spa_strdup(vd->vdev_devid); /* * Set the nparity propery for RAID-Z vdevs. */ if (ops == &vdev_raidz_ops) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &vd->vdev_nparity) == 0) { /* * Currently, we can only support 2 parity devices. */ if (vd->vdev_nparity > 2) return (EINVAL); /* * Older versions can only support 1 parity device. */ if (vd->vdev_nparity == 2 && spa_version(spa) < ZFS_VERSION_RAID6) return (ENOTSUP); } else { /* * We require the parity to be specified for SPAs that * support multiple parity levels. */ if (spa_version(spa) >= ZFS_VERSION_RAID6) return (EINVAL); /* * Otherwise, we default to 1 parity device for RAID-Z. */ vd->vdev_nparity = 1; } } else { vd->vdev_nparity = 0; } /* * Set the whole_disk property. If it's not specified, leave the value * as -1. */ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &vd->vdev_wholedisk) != 0) vd->vdev_wholedisk = -1ULL; /* * Look for the 'not present' flag. This will only be set if the device * was not present at the time of import. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, &vd->vdev_not_present); /* * Get the alignment requirement. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); /* * Look for the 'is_spare' flag. If this is the case, then we are a * repurposed hot spare. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, &vd->vdev_isspare); if (vd->vdev_isspare) spa_spare_add(vd->vdev_guid); /* * If we're a top-level vdev, try to load the allocation parameters. */ if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, &vd->vdev_ms_array); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, &vd->vdev_ms_shift); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, &vd->vdev_asize); } /* * If we're a leaf vdev, try to load the DTL object and offline state. */ if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, &vd->vdev_dtl.smo_object); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &vd->vdev_offline); } /* * Add ourselves to the parent's list of children. */ vdev_add_child(parent, vd); *vdp = vd; return (0); } void vdev_free(vdev_t *vd) { int c; /* * vdev_free() implies closing the vdev first. This is simpler than * trying to ensure complicated semantics for all callers. */ vdev_close(vd); ASSERT(!list_link_active(&vd->vdev_dirty_node)); /* * Free all children. */ for (c = 0; c < vd->vdev_children; c++) vdev_free(vd->vdev_child[c]); ASSERT(vd->vdev_child == NULL); ASSERT(vd->vdev_guid_sum == vd->vdev_guid); /* * Discard allocation state. */ if (vd == vd->vdev_top) vdev_metaslab_fini(vd); ASSERT3U(vd->vdev_stat.vs_space, ==, 0); ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); /* * Remove this vdev from its parent's child list. */ vdev_remove_child(vd->vdev_parent, vd); ASSERT(vd->vdev_parent == NULL); vdev_free_common(vd); } /* * Transfer top-level vdev state from svd to tvd. */ static void vdev_top_transfer(vdev_t *svd, vdev_t *tvd) { spa_t *spa = svd->vdev_spa; metaslab_t *msp; vdev_t *vd; int t; ASSERT(tvd == tvd->vdev_top); tvd->vdev_ms_array = svd->vdev_ms_array; tvd->vdev_ms_shift = svd->vdev_ms_shift; tvd->vdev_ms_count = svd->vdev_ms_count; svd->vdev_ms_array = 0; svd->vdev_ms_shift = 0; svd->vdev_ms_count = 0; tvd->vdev_mg = svd->vdev_mg; tvd->vdev_ms = svd->vdev_ms; svd->vdev_mg = NULL; svd->vdev_ms = NULL; if (tvd->vdev_mg != NULL) tvd->vdev_mg->mg_vd = tvd; tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; svd->vdev_stat.vs_alloc = 0; svd->vdev_stat.vs_space = 0; svd->vdev_stat.vs_dspace = 0; for (t = 0; t < TXG_SIZE; t++) { while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) (void) txg_list_add(&tvd->vdev_ms_list, msp, t); while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); } if (list_link_active(&svd->vdev_dirty_node)) { vdev_config_clean(svd); vdev_config_dirty(tvd); } tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted; svd->vdev_reopen_wanted = 0; tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; svd->vdev_deflate_ratio = 0; } static void vdev_top_update(vdev_t *tvd, vdev_t *vd) { int c; if (vd == NULL) return; vd->vdev_top = tvd; for (c = 0; c < vd->vdev_children; c++) vdev_top_update(tvd, vd->vdev_child[c]); } /* * Add a mirror/replacing vdev above an existing vdev. */ vdev_t * vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) { spa_t *spa = cvd->vdev_spa; vdev_t *pvd = cvd->vdev_parent; vdev_t *mvd; ASSERT(spa_config_held(spa, RW_WRITER)); mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); mvd->vdev_asize = cvd->vdev_asize; mvd->vdev_ashift = cvd->vdev_ashift; mvd->vdev_state = cvd->vdev_state; vdev_remove_child(pvd, cvd); vdev_add_child(pvd, mvd); cvd->vdev_id = mvd->vdev_children; vdev_add_child(mvd, cvd); vdev_top_update(cvd->vdev_top, cvd->vdev_top); if (mvd == mvd->vdev_top) vdev_top_transfer(cvd, mvd); return (mvd); } /* * Remove a 1-way mirror/replacing vdev from the tree. */ void vdev_remove_parent(vdev_t *cvd) { vdev_t *mvd = cvd->vdev_parent; vdev_t *pvd = mvd->vdev_parent; ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); ASSERT(mvd->vdev_children == 1); ASSERT(mvd->vdev_ops == &vdev_mirror_ops || mvd->vdev_ops == &vdev_replacing_ops || mvd->vdev_ops == &vdev_spare_ops); cvd->vdev_ashift = mvd->vdev_ashift; vdev_remove_child(mvd, cvd); vdev_remove_child(pvd, mvd); cvd->vdev_id = mvd->vdev_id; vdev_add_child(pvd, cvd); /* * If we created a new toplevel vdev, then we need to change the child's * vdev GUID to match the old toplevel vdev. Otherwise, we could have * detached an offline device, and when we go to import the pool we'll * think we have two toplevel vdevs, instead of a different version of * the same toplevel vdev. */ if (cvd->vdev_top == cvd) { pvd->vdev_guid_sum -= cvd->vdev_guid; cvd->vdev_guid_sum -= cvd->vdev_guid; cvd->vdev_guid = mvd->vdev_guid; cvd->vdev_guid_sum += mvd->vdev_guid; pvd->vdev_guid_sum += cvd->vdev_guid; } vdev_top_update(cvd->vdev_top, cvd->vdev_top); if (cvd == cvd->vdev_top) vdev_top_transfer(mvd, cvd); ASSERT(mvd->vdev_children == 0); vdev_free(mvd); } int vdev_metaslab_init(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; objset_t *mos = spa->spa_meta_objset; metaslab_class_t *mc = spa_metaslab_class_select(spa); uint64_t m; uint64_t oldc = vd->vdev_ms_count; uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; metaslab_t **mspp; int error; if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ return (0); dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); ASSERT(oldc <= newc); if (vd->vdev_mg == NULL) vd->vdev_mg = metaslab_group_create(mc, vd); mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); if (oldc != 0) { bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); } vd->vdev_ms = mspp; vd->vdev_ms_count = newc; for (m = oldc; m < newc; m++) { space_map_obj_t smo = { 0, 0, 0 }; if (txg == 0) { uint64_t object = 0; error = dmu_read(mos, vd->vdev_ms_array, m * sizeof (uint64_t), sizeof (uint64_t), &object); if (error) return (error); if (object != 0) { dmu_buf_t *db; error = dmu_bonus_hold(mos, object, FTAG, &db); if (error) return (error); ASSERT3U(db->db_size, ==, sizeof (smo)); bcopy(db->db_data, &smo, db->db_size); ASSERT3U(smo.smo_object, ==, object); dmu_buf_rele(db, FTAG); } } vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); } return (0); } void vdev_metaslab_fini(vdev_t *vd) { uint64_t m; uint64_t count = vd->vdev_ms_count; if (vd->vdev_ms != NULL) { for (m = 0; m < count; m++) if (vd->vdev_ms[m] != NULL) metaslab_fini(vd->vdev_ms[m]); kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); vd->vdev_ms = NULL; } } /* * Prepare a virtual device for access. */ int vdev_open(vdev_t *vd) { int error; vdev_knob_t *vk; int c; uint64_t osize = 0; uint64_t asize, psize; uint64_t ashift = 0; ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || vd->vdev_state == VDEV_STATE_CANT_OPEN || vd->vdev_state == VDEV_STATE_OFFLINE); if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) vd->vdev_fault_arg >>= 1; else vd->vdev_fault_mode = VDEV_FAULT_NONE; vd->vdev_stat.vs_aux = VDEV_AUX_NONE; for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) { uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset); *valp = vk->vk_default; *valp = MAX(*valp, vk->vk_min); *valp = MIN(*valp, vk->vk_max); } if (vd->vdev_ops->vdev_op_leaf) { vdev_cache_init(vd); vdev_queue_init(vd); vd->vdev_cache_active = B_TRUE; } if (vd->vdev_offline) { ASSERT(vd->vdev_children == 0); vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); return (ENXIO); } error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); if (zio_injection_enabled && error == 0) error = zio_handle_device_injection(vd, ENXIO); dprintf("%s = %d, osize %llu, state = %d\n", vdev_description(vd), error, osize, vd->vdev_state); if (error) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, vd->vdev_stat.vs_aux); return (error); } vd->vdev_state = VDEV_STATE_HEALTHY; for (c = 0; c < vd->vdev_children; c++) if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); break; } osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); if (vd->vdev_children == 0) { if (osize < SPA_MINDEVSIZE) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_TOO_SMALL); return (EOVERFLOW); } psize = osize; asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); } else { if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_TOO_SMALL); return (EOVERFLOW); } psize = 0; asize = osize; } vd->vdev_psize = psize; if (vd->vdev_asize == 0) { /* * This is the first-ever open, so use the computed values. * For testing purposes, a higher ashift can be requested. */ vd->vdev_asize = asize; vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); } else { /* * Make sure the alignment requirement hasn't increased. */ if (ashift > vd->vdev_top->vdev_ashift) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (EINVAL); } /* * Make sure the device hasn't shrunk. */ if (asize < vd->vdev_asize) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (EINVAL); } /* * If all children are healthy and the asize has increased, * then we've experienced dynamic LUN growth. */ if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize) { vd->vdev_asize = asize; } } /* * If this is a top-level vdev, compute the raidz-deflation * ratio. Note, we hard-code in 128k (1<<17) because it is the * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE * changes, this algorithm must never change, or we will * inconsistently account for existing bp's. */ if (vd->vdev_top == vd) { vd->vdev_deflate_ratio = (1<<17) / (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); } /* * This allows the ZFS DE to close cases appropriately. If a device * goes away and later returns, we want to close the associated case. * But it's not enough to simply post this only when a device goes from * CANT_OPEN -> HEALTHY. If we reboot the system and the device is * back, we also need to close the case (otherwise we will try to replay * it). So we have to post this notifier every time. Since this only * occurs during pool open or error recovery, this should not be an * issue. */ zfs_post_ok(vd->vdev_spa, vd); return (0); } /* * Called once the vdevs are all opened, this routine validates the label * contents. This needs to be done before vdev_load() so that we don't * inadvertently do repair I/Os to the wrong device, and so that vdev_reopen() * won't succeed if the device has been changed underneath. * * This function will only return failure if one of the vdevs indicates that it * has since been destroyed or exported. This is only possible if * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state * will be updated but the function will return 0. */ int vdev_validate(vdev_t *vd) { spa_t *spa = vd->vdev_spa; int c; nvlist_t *label; uint64_t guid; uint64_t state; for (c = 0; c < vd->vdev_children; c++) if (vdev_validate(vd->vdev_child[c]) != 0) return (-1); /* * If the device has already failed, or was marked offline, don't do * any further validation. Otherwise, label I/O will fail and we will * overwrite the previous state. */ if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) { if ((label = vdev_label_read_config(vd)) == NULL) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (0); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || guid != spa_guid(spa)) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (0); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || guid != vd->vdev_guid) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (0); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (0); } nvlist_free(label); if (spa->spa_load_state == SPA_LOAD_OPEN && state != POOL_STATE_ACTIVE) return (-1); } /* * If we were able to open and validate a vdev that was previously * marked permanently unavailable, clear that state now. */ if (vd->vdev_not_present) vd->vdev_not_present = 0; return (0); } /* * Close a virtual device. */ void vdev_close(vdev_t *vd) { vd->vdev_ops->vdev_op_close(vd); if (vd->vdev_cache_active) { vdev_cache_fini(vd); vdev_queue_fini(vd); vd->vdev_cache_active = B_FALSE; } /* * We record the previous state before we close it, so that if we are * doing a reopen(), we don't generate FMA ereports if we notice that * it's still faulted. */ vd->vdev_prevstate = vd->vdev_state; if (vd->vdev_offline) vd->vdev_state = VDEV_STATE_OFFLINE; else vd->vdev_state = VDEV_STATE_CLOSED; vd->vdev_stat.vs_aux = VDEV_AUX_NONE; } void vdev_reopen(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, RW_WRITER)); vdev_close(vd); (void) vdev_open(vd); /* * Reassess root vdev's health. */ vdev_propagate_state(spa->spa_root_vdev); } int vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) { int error; /* * Normally, partial opens (e.g. of a mirror) are allowed. * For a create, however, we want to fail the request if * there are any components we can't open. */ error = vdev_open(vd); if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { vdev_close(vd); return (error ? error : ENXIO); } /* * Recursively initialize all labels. */ if ((error = vdev_label_init(vd, txg, isreplacing)) != 0) { vdev_close(vd); return (error); } return (0); } /* * The is the latter half of vdev_create(). It is distinct because it * involves initiating transactions in order to do metaslab creation. * For creation, we want to try to create all vdevs at once and then undo it * if anything fails; this is much harder if we have pending transactions. */ void vdev_init(vdev_t *vd, uint64_t txg) { /* * Aim for roughly 200 metaslabs per vdev. */ vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); /* * Initialize the vdev's metaslabs. This can't fail because * there's nothing to read when creating all new metaslabs. */ VERIFY(vdev_metaslab_init(vd, txg) == 0); } void vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) { ASSERT(vd == vd->vdev_top); ASSERT(ISP2(flags)); if (flags & VDD_METASLAB) (void) txg_list_add(&vd->vdev_ms_list, arg, txg); if (flags & VDD_DTL) (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); } void vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) { mutex_enter(sm->sm_lock); if (!space_map_contains(sm, txg, size)) space_map_add(sm, txg, size); mutex_exit(sm->sm_lock); } int vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) { int dirty; /* * Quick test without the lock -- covers the common case that * there are no dirty time segments. */ if (sm->sm_space == 0) return (0); mutex_enter(sm->sm_lock); dirty = space_map_contains(sm, txg, size); mutex_exit(sm->sm_lock); return (dirty); } /* * Reassess DTLs after a config change or scrub completion. */ void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) { spa_t *spa = vd->vdev_spa; int c; ASSERT(spa_config_held(spa, RW_WRITER)); if (vd->vdev_children == 0) { mutex_enter(&vd->vdev_dtl_lock); /* * We're successfully scrubbed everything up to scrub_txg. * Therefore, excise all old DTLs up to that point, then * fold in the DTLs for everything we couldn't scrub. */ if (scrub_txg != 0) { space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); } if (scrub_done) space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); mutex_exit(&vd->vdev_dtl_lock); if (txg != 0) vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); return; } /* * Make sure the DTLs are always correct under the scrub lock. */ if (vd == spa->spa_root_vdev) mutex_enter(&spa->spa_scrub_lock); mutex_enter(&vd->vdev_dtl_lock); space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); mutex_exit(&vd->vdev_dtl_lock); for (c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); mutex_enter(&vd->vdev_dtl_lock); space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); mutex_exit(&vd->vdev_dtl_lock); } if (vd == spa->spa_root_vdev) mutex_exit(&spa->spa_scrub_lock); } static int vdev_dtl_load(vdev_t *vd) { spa_t *spa = vd->vdev_spa; space_map_obj_t *smo = &vd->vdev_dtl; objset_t *mos = spa->spa_meta_objset; dmu_buf_t *db; int error; ASSERT(vd->vdev_children == 0); if (smo->smo_object == 0) return (0); if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) return (error); ASSERT3U(db->db_size, ==, sizeof (*smo)); bcopy(db->db_data, smo, db->db_size); dmu_buf_rele(db, FTAG); mutex_enter(&vd->vdev_dtl_lock); error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); mutex_exit(&vd->vdev_dtl_lock); return (error); } void vdev_dtl_sync(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; space_map_obj_t *smo = &vd->vdev_dtl; space_map_t *sm = &vd->vdev_dtl_map; objset_t *mos = spa->spa_meta_objset; space_map_t smsync; kmutex_t smlock; dmu_buf_t *db; dmu_tx_t *tx; dprintf("%s in txg %llu pass %d\n", vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); if (vd->vdev_detached) { if (smo->smo_object != 0) { int err = dmu_object_free(mos, smo->smo_object, tx); ASSERT3U(err, ==, 0); smo->smo_object = 0; } dmu_tx_commit(tx); dprintf("detach %s committed in txg %llu\n", vdev_description(vd), txg); return; } if (smo->smo_object == 0) { ASSERT(smo->smo_objsize == 0); ASSERT(smo->smo_alloc == 0); smo->smo_object = dmu_object_alloc(mos, DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); ASSERT(smo->smo_object != 0); vdev_config_dirty(vd->vdev_top); } mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, &smlock); mutex_enter(&smlock); mutex_enter(&vd->vdev_dtl_lock); space_map_walk(sm, space_map_add, &smsync); mutex_exit(&vd->vdev_dtl_lock); space_map_truncate(smo, mos, tx); space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); space_map_destroy(&smsync); mutex_exit(&smlock); mutex_destroy(&smlock); VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); dmu_buf_will_dirty(db, tx); ASSERT3U(db->db_size, ==, sizeof (*smo)); bcopy(smo, db->db_data, db->db_size); dmu_buf_rele(db, FTAG); dmu_tx_commit(tx); } void vdev_load(vdev_t *vd) { int c; /* * Recursively load all children. */ for (c = 0; c < vd->vdev_children; c++) vdev_load(vd->vdev_child[c]); /* * If this is a top-level vdev, initialize its metaslabs. */ if (vd == vd->vdev_top && (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || vdev_metaslab_init(vd, 0) != 0)) vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); /* * If this is a leaf vdev, load its DTL. */ if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); } /* * This special case of vdev_spare() is used for hot spares. It's sole purpose * it to set the vdev state for the associated vdev. To do this, we make sure * that we can open the underlying device, then try to read the label, and make * sure that the label is sane and that it hasn't been repurposed to another * pool. */ int vdev_validate_spare(vdev_t *vd) { nvlist_t *label; uint64_t guid, version; uint64_t state; if ((label = vdev_label_read_config(vd)) == NULL) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); return (-1); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || version > ZFS_VERSION || nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || guid != vd->vdev_guid || nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (-1); } /* * We don't actually check the pool state here. If it's in fact in * use by another pool, we update this fact on the fly when requested. */ nvlist_free(label); return (0); } void vdev_sync_done(vdev_t *vd, uint64_t txg) { metaslab_t *msp; dprintf("%s txg %llu\n", vdev_description(vd), txg); while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) metaslab_sync_done(msp, txg); } void vdev_sync(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; vdev_t *lvd; metaslab_t *msp; dmu_tx_t *tx; dprintf("%s txg %llu pass %d\n", vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { ASSERT(vd == vd->vdev_top); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); ASSERT(vd->vdev_ms_array != 0); vdev_config_dirty(vd); dmu_tx_commit(tx); } while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { metaslab_sync(msp, txg); (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); } while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) vdev_dtl_sync(lvd, txg); (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); } uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize) { return (vd->vdev_ops->vdev_op_asize(vd, psize)); } void vdev_io_start(zio_t *zio) { zio->io_vd->vdev_ops->vdev_op_io_start(zio); } void vdev_io_done(zio_t *zio) { zio->io_vd->vdev_ops->vdev_op_io_done(zio); } const char * vdev_description(vdev_t *vd) { if (vd == NULL || vd->vdev_ops == NULL) return (""); if (vd->vdev_path != NULL) return (vd->vdev_path); if (vd->vdev_parent == NULL) return (spa_name(vd->vdev_spa)); return (vd->vdev_ops->vdev_op_type); } int vdev_online(spa_t *spa, uint64_t guid) { vdev_t *rvd, *vd; uint64_t txg; txg = spa_vdev_enter(spa); rvd = spa->spa_root_vdev; if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); dprintf("ONLINE: %s\n", vdev_description(vd)); vd->vdev_offline = B_FALSE; vd->vdev_tmpoffline = B_FALSE; vdev_reopen(vd->vdev_top); vdev_config_dirty(vd->vdev_top); (void) spa_vdev_exit(spa, NULL, txg, 0); VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); return (0); } int vdev_offline(spa_t *spa, uint64_t guid, int istmp) { vdev_t *rvd, *vd; uint64_t txg; txg = spa_vdev_enter(spa); rvd = spa->spa_root_vdev; if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); dprintf("OFFLINE: %s\n", vdev_description(vd)); /* * If the device isn't already offline, try to offline it. */ if (!vd->vdev_offline) { /* * If this device's top-level vdev has a non-empty DTL, * don't allow the device to be offlined. * * XXX -- make this more precise by allowing the offline * as long as the remaining devices don't have any DTL holes. */ if (vd->vdev_top->vdev_dtl_map.sm_space != 0) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); /* * Offline this device and reopen its top-level vdev. * If this action results in the top-level vdev becoming * unusable, undo it and fail the request. */ vd->vdev_offline = B_TRUE; vdev_reopen(vd->vdev_top); if (vdev_is_dead(vd->vdev_top)) { vd->vdev_offline = B_FALSE; vdev_reopen(vd->vdev_top); return (spa_vdev_exit(spa, NULL, txg, EBUSY)); } } vd->vdev_tmpoffline = istmp; vdev_config_dirty(vd->vdev_top); return (spa_vdev_exit(spa, NULL, txg, 0)); } /* * Clear the error counts associated with this vdev. Unlike vdev_online() and * vdev_offline(), we assume the spa config is locked. We also clear all * children. If 'vd' is NULL, then the user wants to clear all vdevs. */ void vdev_clear(spa_t *spa, vdev_t *vd) { int c; if (vd == NULL) vd = spa->spa_root_vdev; vd->vdev_stat.vs_read_errors = 0; vd->vdev_stat.vs_write_errors = 0; vd->vdev_stat.vs_checksum_errors = 0; for (c = 0; c < vd->vdev_children; c++) vdev_clear(spa, vd->vdev_child[c]); } int vdev_is_dead(vdev_t *vd) { return (vd->vdev_state <= VDEV_STATE_CANT_OPEN); } int vdev_error_inject(vdev_t *vd, zio_t *zio) { int error = 0; if (vd->vdev_fault_mode == VDEV_FAULT_NONE) return (0); if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) return (0); switch (vd->vdev_fault_mode) { case VDEV_FAULT_RANDOM: if (spa_get_random(vd->vdev_fault_arg) == 0) error = EIO; break; case VDEV_FAULT_COUNT: if ((int64_t)--vd->vdev_fault_arg <= 0) vd->vdev_fault_mode = VDEV_FAULT_NONE; error = EIO; break; } if (error != 0) { dprintf("returning %d for type %d on %s state %d offset %llx\n", error, zio->io_type, vdev_description(vd), vd->vdev_state, zio->io_offset); } return (error); } /* * Get statistics for the given vdev. */ void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) { vdev_t *rvd = vd->vdev_spa->spa_root_vdev; int c, t; mutex_enter(&vd->vdev_stat_lock); bcopy(&vd->vdev_stat, vs, sizeof (*vs)); vs->vs_timestamp = gethrtime() - vs->vs_timestamp; vs->vs_state = vd->vdev_state; vs->vs_rsize = vdev_get_rsize(vd); mutex_exit(&vd->vdev_stat_lock); /* * If we're getting stats on the root vdev, aggregate the I/O counts * over all top-level vdevs (i.e. the direct children of the root). */ if (vd == rvd) { for (c = 0; c < rvd->vdev_children; c++) { vdev_t *cvd = rvd->vdev_child[c]; vdev_stat_t *cvs = &cvd->vdev_stat; mutex_enter(&vd->vdev_stat_lock); for (t = 0; t < ZIO_TYPES; t++) { vs->vs_ops[t] += cvs->vs_ops[t]; vs->vs_bytes[t] += cvs->vs_bytes[t]; } vs->vs_read_errors += cvs->vs_read_errors; vs->vs_write_errors += cvs->vs_write_errors; vs->vs_checksum_errors += cvs->vs_checksum_errors; vs->vs_scrub_examined += cvs->vs_scrub_examined; vs->vs_scrub_errors += cvs->vs_scrub_errors; mutex_exit(&vd->vdev_stat_lock); } } } void vdev_stat_update(zio_t *zio) { vdev_t *vd = zio->io_vd; vdev_t *pvd; uint64_t txg = zio->io_txg; vdev_stat_t *vs = &vd->vdev_stat; zio_type_t type = zio->io_type; int flags = zio->io_flags; if (zio->io_error == 0) { if (!(flags & ZIO_FLAG_IO_BYPASS)) { mutex_enter(&vd->vdev_stat_lock); vs->vs_ops[type]++; vs->vs_bytes[type] += zio->io_size; mutex_exit(&vd->vdev_stat_lock); } if ((flags & ZIO_FLAG_IO_REPAIR) && zio->io_delegate_list == NULL) { mutex_enter(&vd->vdev_stat_lock); if (flags & ZIO_FLAG_SCRUB_THREAD) vs->vs_scrub_repaired += zio->io_size; else vs->vs_self_healed += zio->io_size; mutex_exit(&vd->vdev_stat_lock); } return; } if (flags & ZIO_FLAG_SPECULATIVE) return; if (!vdev_is_dead(vd)) { mutex_enter(&vd->vdev_stat_lock); if (type == ZIO_TYPE_READ) { if (zio->io_error == ECKSUM) vs->vs_checksum_errors++; else vs->vs_read_errors++; } if (type == ZIO_TYPE_WRITE) vs->vs_write_errors++; mutex_exit(&vd->vdev_stat_lock); } if (type == ZIO_TYPE_WRITE) { if (txg == 0 || vd->vdev_children != 0) return; if (flags & ZIO_FLAG_SCRUB_THREAD) { ASSERT(flags & ZIO_FLAG_IO_REPAIR); for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); } if (!(flags & ZIO_FLAG_IO_REPAIR)) { if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) return; vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); } } } void vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) { int c; vdev_stat_t *vs = &vd->vdev_stat; for (c = 0; c < vd->vdev_children; c++) vdev_scrub_stat_update(vd->vdev_child[c], type, complete); mutex_enter(&vd->vdev_stat_lock); if (type == POOL_SCRUB_NONE) { /* * Update completion and end time. Leave everything else alone * so we can report what happened during the previous scrub. */ vs->vs_scrub_complete = complete; vs->vs_scrub_end = gethrestime_sec(); } else { vs->vs_scrub_type = type; vs->vs_scrub_complete = 0; vs->vs_scrub_examined = 0; vs->vs_scrub_repaired = 0; vs->vs_scrub_errors = 0; vs->vs_scrub_start = gethrestime_sec(); vs->vs_scrub_end = 0; } mutex_exit(&vd->vdev_stat_lock); } /* * Update the in-core space usage stats for this vdev and the root vdev. */ void vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta) { ASSERT(vd == vd->vdev_top); int64_t dspace_delta = space_delta; do { if (vd->vdev_ms_count) { /* * If this is a top-level vdev, apply the * inverse of its psize-to-asize (ie. RAID-Z) * space-expansion factor. We must calculate * this here and not at the root vdev because * the root vdev's psize-to-asize is simply the * max of its childrens', thus not accurate * enough for us. */ ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; } mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_space += space_delta; vd->vdev_stat.vs_alloc += alloc_delta; vd->vdev_stat.vs_dspace += dspace_delta; mutex_exit(&vd->vdev_stat_lock); } while ((vd = vd->vdev_parent) != NULL); } /* * Various knobs to tune a vdev. */ static vdev_knob_t vdev_knob[] = { { "cache_size", "size of the read-ahead cache", 0, 1ULL << 30, 10ULL << 20, offsetof(struct vdev, vdev_cache.vc_size) }, { "cache_bshift", "log2 of cache blocksize", SPA_MINBLOCKSHIFT, SPA_MAXBLOCKSHIFT, 16, offsetof(struct vdev, vdev_cache.vc_bshift) }, { "cache_max", "largest block size to cache", 0, SPA_MAXBLOCKSIZE, 1ULL << 14, offsetof(struct vdev, vdev_cache.vc_max) }, { "min_pending", "minimum pending I/Os to the disk", 1, 10000, 2, offsetof(struct vdev, vdev_queue.vq_min_pending) }, { "max_pending", "maximum pending I/Os to the disk", 1, 10000, 35, offsetof(struct vdev, vdev_queue.vq_max_pending) }, { "scrub_limit", "maximum scrub/resilver I/O queue", 0, 10000, 70, offsetof(struct vdev, vdev_queue.vq_scrub_limit) }, { "agg_limit", "maximum size of aggregated I/Os", 0, SPA_MAXBLOCKSIZE, SPA_MAXBLOCKSIZE, offsetof(struct vdev, vdev_queue.vq_agg_limit) }, { "time_shift", "deadline = pri + (lbolt >> time_shift)", 0, 63, 8, offsetof(struct vdev, vdev_queue.vq_time_shift) }, { "ramp_rate", "exponential I/O issue ramp-up rate", 1, 10000, 2, offsetof(struct vdev, vdev_queue.vq_ramp_rate) }, }; vdev_knob_t * vdev_knob_next(vdev_knob_t *vk) { if (vk == NULL) return (vdev_knob); if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t)) return (NULL); return (vk); } /* * Mark a top-level vdev's config as dirty, placing it on the dirty list * so that it will be written out next time the vdev configuration is synced. * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. */ void vdev_config_dirty(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; int c; /* * The dirty list is protected by the config lock. The caller must * either hold the config lock as writer, or must be the sync thread * (which holds the lock as reader). There's only one sync thread, * so this is sufficient to ensure mutual exclusion. */ ASSERT(spa_config_held(spa, RW_WRITER) || dsl_pool_sync_context(spa_get_dsl(spa))); if (vd == rvd) { for (c = 0; c < rvd->vdev_children; c++) vdev_config_dirty(rvd->vdev_child[c]); } else { ASSERT(vd == vd->vdev_top); if (!list_link_active(&vd->vdev_dirty_node)) list_insert_head(&spa->spa_dirty_list, vd); } } void vdev_config_clean(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, RW_WRITER) || dsl_pool_sync_context(spa_get_dsl(spa))); ASSERT(list_link_active(&vd->vdev_dirty_node)); list_remove(&spa->spa_dirty_list, vd); } void vdev_propagate_state(vdev_t *vd) { vdev_t *rvd = vd->vdev_spa->spa_root_vdev; int degraded = 0, faulted = 0; int corrupted = 0; int c; vdev_t *child; for (c = 0; c < vd->vdev_children; c++) { child = vd->vdev_child[c]; if (child->vdev_state <= VDEV_STATE_CANT_OPEN) faulted++; else if (child->vdev_state == VDEV_STATE_DEGRADED) degraded++; if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) corrupted++; } vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); /* * Root special: if there is a toplevel vdev that cannot be * opened due to corrupted metadata, then propagate the root * vdev's aux state as 'corrupt' rather than 'insufficient * replicas'. */ if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN) vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); } /* * Set a vdev's state. If this is during an open, we don't update the parent * state, because we're in the process of opening children depth-first. * Otherwise, we propagate the change to the parent. * * If this routine places a device in a faulted state, an appropriate ereport is * generated. */ void vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) { uint64_t save_state; if (state == vd->vdev_state) { vd->vdev_stat.vs_aux = aux; return; } save_state = vd->vdev_state; vd->vdev_state = state; vd->vdev_stat.vs_aux = aux; if (state == VDEV_STATE_CANT_OPEN) { /* * If we fail to open a vdev during an import, we mark it as * "not available", which signifies that it was never there to * begin with. Failure to open such a device is not considered * an error. */ if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT && vd->vdev_ops->vdev_op_leaf) vd->vdev_not_present = 1; /* * Post the appropriate ereport. If the 'prevstate' field is * set to something other than VDEV_STATE_UNKNOWN, it indicates * that this is part of a vdev_reopen(). In this case, we don't * want to post the ereport if the device was already in the * CANT_OPEN state beforehand. */ if (vd->vdev_prevstate != state && !vd->vdev_not_present && vd != vd->vdev_spa->spa_root_vdev) { const char *class; switch (aux) { case VDEV_AUX_OPEN_FAILED: class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; break; case VDEV_AUX_CORRUPT_DATA: class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; break; case VDEV_AUX_NO_REPLICAS: class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; break; case VDEV_AUX_BAD_GUID_SUM: class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; break; case VDEV_AUX_TOO_SMALL: class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; break; case VDEV_AUX_BAD_LABEL: class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; break; default: class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; } zfs_ereport_post(class, vd->vdev_spa, vd, NULL, save_state, 0); } } if (isopen) return; if (vd->vdev_parent != NULL) vdev_propagate_state(vd->vdev_parent); }