/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * This file contains all the routines used when modifying on-disk SPA state. * This includes opening, importing, destroying, exporting a pool, and syncing a * pool. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static uint32_t spa_active_count; /* * ========================================================================== * SPA state manipulation (open/create/destroy/import/export) * ========================================================================== */ /* * Activate an uninitialized pool. */ static void spa_activate(spa_t *spa) { int t; ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); spa->spa_state = POOL_STATE_ACTIVE; spa->spa_normal_class = metaslab_class_create(); spa->spa_vdev_retry_taskq = taskq_create("spa_vdev_retry", 4, maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE); for (t = 0; t < ZIO_TYPES; t++) { spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue", 8, maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE); spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr", 8, maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE); } rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL); list_create(&spa->spa_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_dirty_node)); txg_list_create(&spa->spa_vdev_txg_list, offsetof(struct vdev, vdev_txg_node)); } /* * Opposite of spa_activate(). */ static void spa_deactivate(spa_t *spa) { int t; ASSERT(spa->spa_sync_on == B_FALSE); ASSERT(spa->spa_dsl_pool == NULL); ASSERT(spa->spa_root_vdev == NULL); ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); txg_list_destroy(&spa->spa_vdev_txg_list); list_destroy(&spa->spa_dirty_list); rw_destroy(&spa->spa_traverse_lock); for (t = 0; t < ZIO_TYPES; t++) { taskq_destroy(spa->spa_zio_issue_taskq[t]); taskq_destroy(spa->spa_zio_intr_taskq[t]); spa->spa_zio_issue_taskq[t] = NULL; spa->spa_zio_intr_taskq[t] = NULL; } taskq_destroy(spa->spa_vdev_retry_taskq); spa->spa_vdev_retry_taskq = NULL; metaslab_class_destroy(spa->spa_normal_class); spa->spa_normal_class = NULL; spa->spa_state = POOL_STATE_UNINITIALIZED; } /* * Verify a pool configuration, and construct the vdev tree appropriately. This * will create all the necessary vdevs in the appropriate layout, with each vdev * in the CLOSED state. This will prep the pool before open/creation/import. * All vdev validation is done by the vdev_alloc() routine. */ static vdev_t * spa_config_parse(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int atype) { nvlist_t **child; uint_t c, children; vdev_t *vd; if ((vd = vdev_alloc(spa, nv, parent, id, atype)) == NULL) return (NULL); if (vd->vdev_ops->vdev_op_leaf) return (vd); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) { vdev_free(vd); return (NULL); } for (c = 0; c < children; c++) { if (spa_config_parse(spa, child[c], vd, c, atype) == NULL) { vdev_free(vd); return (NULL); } } return (vd); } /* * Opposite of spa_load(). */ static void spa_unload(spa_t *spa) { /* * Stop syncing. */ if (spa->spa_sync_on) { txg_sync_stop(spa->spa_dsl_pool); spa->spa_sync_on = B_FALSE; } /* * Wait for any outstanding prefetch I/O to complete. */ spa_config_enter(spa, RW_WRITER); spa_config_exit(spa); /* * Close the dsl pool. */ if (spa->spa_dsl_pool) { dsl_pool_close(spa->spa_dsl_pool); spa->spa_dsl_pool = NULL; } /* * Close all vdevs. */ if (spa->spa_root_vdev) { vdev_free(spa->spa_root_vdev); spa->spa_root_vdev = NULL; } } /* * Load an existing storage pool, using the pool's builtin spa_config as a * source of configuration information. The 'readonly' flag will prevent us * from writing any updated state to disk, and can be use when testing a pool * for import. */ static int spa_load(spa_t *spa, nvlist_t *config, int readonly, int import, int mosconfig) { int error = 0; nvlist_t *nvroot = NULL; vdev_t *rvd; uberblock_t *ub = &spa->spa_uberblock; uint64_t pool_guid; zio_t *zio; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) return (EINVAL); (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &spa->spa_config_txg); if (import && spa_guid_exists(pool_guid, 0)) return (EEXIST); /* * Parse the configuration into a vdev tree. */ spa_config_enter(spa, RW_WRITER); rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_LOAD); spa_config_exit(spa); if (rvd == NULL) return (EINVAL); spa->spa_root_vdev = rvd; ASSERT(spa_guid(spa) == pool_guid); /* * Try to open all vdevs, loading each label in the process. */ if (vdev_open(rvd) != 0) return (ENXIO); /* * Find the best uberblock. */ bzero(ub, sizeof (uberblock_t)); zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); vdev_uberblock_load(zio, rvd, ub); error = zio_wait(zio); /* * If we weren't able to find a single valid uberblock, return failure. */ if (ub->ub_txg == 0) { dprintf("ub_txg is zero\n"); return (ENXIO); } /* * If the vdev guid sum doesn't match the uberblock, we have an * incomplete configuration. */ if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) { rvd->vdev_state = VDEV_STATE_CANT_OPEN; rvd->vdev_stat.vs_aux = VDEV_AUX_BAD_GUID_SUM; dprintf("vdev_guid_sum %llx != ub_guid_sum %llx\n", rvd->vdev_guid_sum, ub->ub_guid_sum); return (ENXIO); } /* * Initialize internal SPA structures. */ spa->spa_state = POOL_STATE_ACTIVE; spa->spa_ubsync = spa->spa_uberblock; spa->spa_first_txg = spa_last_synced_txg(spa) + 1; spa->spa_dsl_pool = dsl_pool_open(spa, spa->spa_first_txg); spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; VERIFY(zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, sizeof (uint64_t), 1, &spa->spa_config_object) == 0); if (!mosconfig) { dmu_buf_t *db; char *packed = NULL; size_t nvsize = 0; nvlist_t *newconfig = NULL; db = dmu_bonus_hold(spa->spa_meta_objset, spa->spa_config_object); dmu_buf_read(db); nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db); packed = kmem_alloc(nvsize, KM_SLEEP); error = dmu_read_canfail(spa->spa_meta_objset, spa->spa_config_object, 0, nvsize, packed); if (error == 0) error = nvlist_unpack(packed, nvsize, &newconfig, 0); kmem_free(packed, nvsize); if (error) return (ENXIO); spa_config_set(spa, newconfig); spa_unload(spa); spa_deactivate(spa); spa_activate(spa); return (spa_load(spa, newconfig, readonly, import, B_TRUE)); } VERIFY(zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) == 0); /* * Load the vdev state for all top level vdevs. */ if ((error = vdev_load(rvd, import)) != 0) return (error); /* * Propagate the leaf DTLs we just loaded all the way up the tree. */ spa_config_enter(spa, RW_WRITER); vdev_dtl_reassess(rvd, 0, 0, B_FALSE); spa_config_exit(spa); /* * Check the state of the root vdev. If it can't be opened, it * indicates one or more toplevel vdevs are faulted. */ if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) return (ENXIO); /* * Claim log blocks that haven't been committed yet, and update all * top-level vdevs to sync any config changes found in vdev_load(). * This must all happen in a single txg. */ if ((spa_mode & FWRITE) && !readonly) { dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), spa_first_txg(spa)); dmu_objset_find(spa->spa_name, zil_claim, tx, 0); vdev_config_dirty(rvd); dmu_tx_commit(tx); spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); /* * Wait for all claims to sync. */ txg_wait_synced(spa->spa_dsl_pool, 0); } return (0); } /* * Pool Open/Import * * The import case is identical to an open except that the configuration is sent * down from userland, instead of grabbed from the configuration cache. For the * case of an open, the pool configuration will exist in the * POOL_STATE_UNITIALIZED state. * * The stats information (gen/count/ustats) is used to gather vdev statistics at * the same time open the pool, without having to keep around the spa_t in some * ambiguous state. */ static int spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config) { spa_t *spa; int error; int loaded = B_FALSE; int locked = B_FALSE; *spapp = NULL; /* * As disgusting as this is, we need to support recursive calls to this * function because dsl_dir_open() is called during spa_load(), and ends * up calling spa_open() again. The real fix is to figure out how to * avoid dsl_dir_open() calling this in the first place. */ if (mutex_owner(&spa_namespace_lock) != curthread) { mutex_enter(&spa_namespace_lock); locked = B_TRUE; } if ((spa = spa_lookup(pool)) == NULL) { if (locked) mutex_exit(&spa_namespace_lock); return (ENOENT); } if (spa->spa_state == POOL_STATE_UNINITIALIZED) { spa_activate(spa); error = spa_load(spa, spa->spa_config, B_FALSE, B_FALSE, B_FALSE); if (error == EBADF) { /* * If vdev_load() returns EBADF, it indicates that one * of the vdevs indicates that the pool has been * exported or destroyed. If this is the case, the * config cache is out of sync and we should remove the * pool from the namespace. */ spa_unload(spa); spa_deactivate(spa); spa_remove(spa); spa_config_sync(); if (locked) mutex_exit(&spa_namespace_lock); return (ENOENT); } if (error) { /* * We can't open the pool, but we still have useful * information: the state of each vdev after the * attempted vdev_open(). Return this to the user. */ if (config != NULL && spa->spa_root_vdev != NULL) *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa_unload(spa); spa_deactivate(spa); if (locked) mutex_exit(&spa_namespace_lock); *spapp = NULL; return (error); } loaded = B_TRUE; } spa_open_ref(spa, tag); if (locked) mutex_exit(&spa_namespace_lock); *spapp = spa; if (config != NULL) { spa_config_enter(spa, RW_READER); *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa_config_exit(spa); } /* * If we just loaded the pool, resilver anything that's out of date. */ if (loaded && (spa_mode & FWRITE)) VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); return (0); } int spa_open(const char *name, spa_t **spapp, void *tag) { return (spa_open_common(name, spapp, tag, NULL)); } int spa_get_stats(const char *name, nvlist_t **config) { int error; spa_t *spa; *config = NULL; error = spa_open_common(name, &spa, FTAG, config); if (spa != NULL) spa_close(spa, FTAG); return (error); } /* * Pool Creation */ int spa_create(const char *pool, nvlist_t *nvroot, char *altroot) { spa_t *spa; dsl_pool_t *dp; dmu_tx_t *tx; int error; uint64_t txg = TXG_INITIAL; /* * If this pool already exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (EEXIST); } spa = spa_add(pool); /* * Allocate a new spa_t structure. */ spa_activate(spa); spa->spa_uberblock.ub_txg = txg - 1; spa->spa_ubsync = spa->spa_uberblock; error = spa_vdev_add(spa, nvroot); if (error) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } if (altroot != NULL) { spa->spa_root = spa_strdup(altroot); atomic_add_32(&spa_active_count, 1); } spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg); spa->spa_meta_objset = dp->dp_meta_objset; tx = dmu_tx_create_assigned(dp, txg); /* * Create the pool config object. */ spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); VERIFY(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, sizeof (uint64_t), 1, &spa->spa_config_object, tx) == 0); /* * Create the deferred-free bplist object. Turn off compression * because sync-to-convergence takes longer if the blocksize * keeps changing. */ spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset, 1 << 14, tx); dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj, ZIO_COMPRESS_OFF, tx); VERIFY(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) == 0); dmu_tx_commit(tx); spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); /* * We explicitly wait for the first transaction to complete so that our * bean counters are appropriately updated. */ txg_wait_synced(spa->spa_dsl_pool, txg); spa_config_sync(); mutex_exit(&spa_namespace_lock); return (0); } /* * Import the given pool into the system. We set up the necessary spa_t and * then call spa_load() to do the dirty work. */ int spa_import(const char *pool, nvlist_t *config, char *altroot) { spa_t *spa; int error; if (!(spa_mode & FWRITE)) return (EROFS); /* * If a pool with this name exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (EEXIST); } /* * Create an initialize the spa structure */ spa = spa_add(pool); spa_activate(spa); /* * Pass off the heavy lifting to spa_load(). We pass TRUE for mosconfig * so that we don't try to open the pool if the config is damaged. */ error = spa_load(spa, config, B_FALSE, B_TRUE, B_TRUE); if (error) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Set the alternate root, if there is one. */ if (altroot != NULL) { atomic_add_32(&spa_active_count, 1); spa->spa_root = spa_strdup(altroot); } /* * Initialize the config based on the in-core state. */ config = spa_config_generate(spa, NULL, spa_last_synced_txg(spa), 0); spa_config_set(spa, config); /* * Sync the configuration cache. */ spa_config_sync(); mutex_exit(&spa_namespace_lock); /* * Resilver anything that's out of date. */ if (spa_mode & FWRITE) VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); return (0); } /* * This (illegal) pool name is used when temporarily importing a spa_t in order * to get the vdev stats associated with the imported devices. */ #define TRYIMPORT_NAME "$import" nvlist_t * spa_tryimport(nvlist_t *tryconfig) { nvlist_t *config = NULL; char *poolname; spa_t *spa; uint64_t state; if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) return (NULL); if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) return (NULL); mutex_enter(&spa_namespace_lock); spa = spa_add(TRYIMPORT_NAME); ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); /* * Initialize the spa_t structure. */ spa_activate(spa); /* * Pass off the heavy lifting to spa_load(). We pass TRUE for mosconfig * so we don't try to open the pool if the config is damaged. */ (void) spa_load(spa, tryconfig, B_TRUE, B_TRUE, B_TRUE); /* * If 'tryconfig' was at least parsable, return the current config. */ if (spa->spa_root_vdev != NULL) { config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state) == 0); } spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (config); } /* * Pool export/destroy * * The act of destroying or exporting a pool is very simple. We make sure there * is no more pending I/O and any references to the pool are gone. Then, we * update the pool state and sync all the labels to disk, removing the * configuration from the cache afterwards. */ static int spa_export_common(char *pool, int new_state) { spa_t *spa; if (!(spa_mode & FWRITE)) return (EROFS); mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(pool)) == NULL) { mutex_exit(&spa_namespace_lock); return (ENOENT); } /* * The pool will be in core if it's openable, * in which case we can modify its state. */ if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { /* * Objsets may be open only because they're dirty, so we * have to force it to sync before checking spa_refcnt. */ spa_scrub_suspend(spa); txg_wait_synced(spa->spa_dsl_pool, 0); if (!spa_refcount_zero(spa)) { spa_scrub_resume(spa); mutex_exit(&spa_namespace_lock); return (EBUSY); } /* * Update the pool state. */ spa->spa_state = new_state; spa_scrub_resume(spa); VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0); if (spa->spa_root != NULL) atomic_add_32(&spa_active_count, -1); /* * We want this to be reflected on every label, * so mark them all dirty. spa_unload() will do the * final sync that pushes these changes out. */ vdev_config_dirty(spa->spa_root_vdev); } if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } spa_remove(spa); spa_config_sync(); mutex_exit(&spa_namespace_lock); return (0); } /* * Destroy a storage pool. */ int spa_destroy(char *pool) { return (spa_export_common(pool, POOL_STATE_DESTROYED)); } /* * Export a storage pool. */ int spa_export(char *pool) { return (spa_export_common(pool, POOL_STATE_EXPORTED)); } /* * ========================================================================== * Device manipulation * ========================================================================== */ /* * Add capacity to a storage pool. */ int spa_vdev_add(spa_t *spa, nvlist_t *nvroot) { uint64_t txg; int c, error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd; txg = spa_vdev_enter(spa); vd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD); if (vd == NULL) return (spa_vdev_exit(spa, vd, txg, EINVAL)); if (rvd == NULL) /* spa_create() */ spa->spa_root_vdev = rvd = vd; if ((error = vdev_create(vd, txg)) != 0) return (spa_vdev_exit(spa, vd, txg, error)); /* * Transfer each top-level vdev from the temporary root * to the spa's root and initialize its metaslabs. */ for (c = 0; c < vd->vdev_children; c++) { vdev_t *tvd = vd->vdev_child[c]; if (vd != rvd) { vdev_remove_child(vd, tvd); tvd->vdev_id = rvd->vdev_children; vdev_add_child(rvd, tvd); } vdev_init(tvd, txg); vdev_config_dirty(tvd); } /* * Update the config based on the new in-core state. */ spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0)); return (spa_vdev_exit(spa, vd, txg, 0)); } /* * Attach a device to a mirror. The arguments are the path to any device * in the mirror, and the nvroot for the new device. If the path specifies * a device that is not mirrored, we automatically insert the mirror vdev. * * If 'replacing' is specified, the new device is intended to replace the * existing device; in this case the two devices are made into their own * mirror using the 'replacing' vdev, which is functionally idendical to * the mirror vdev (it actually reuses all the same ops) but has a few * extra rules: you can't attach to it after it's been created, and upon * completion of resilvering, the first disk (the one being replaced) * is automatically detached. */ int spa_vdev_attach(spa_t *spa, const char *path, nvlist_t *nvroot, int replacing) { uint64_t txg, open_txg; int error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; vdev_ops_t *pvops = replacing ? &vdev_replacing_ops : &vdev_mirror_ops; txg = spa_vdev_enter(spa); oldvd = vdev_lookup_by_path(rvd, path); if (oldvd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); pvd = oldvd->vdev_parent; /* * The parent must be a mirror or the root, unless we're replacing; * in that case, the parent can be anything but another replacing vdev. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops && (!replacing || pvd->vdev_ops == &vdev_replacing_ops)) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); newrootvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD); if (newrootvd == NULL || newrootvd->vdev_children != 1) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); newvd = newrootvd->vdev_child[0]; if (!newvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); if ((error = vdev_create(newrootvd, txg)) != 0) return (spa_vdev_exit(spa, newrootvd, txg, error)); /* * Compare the new device size with the replaceable/attachable * device size. */ if (newvd->vdev_psize < vdev_get_rsize(oldvd)) return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); if (newvd->vdev_ashift != oldvd->vdev_ashift && oldvd->vdev_ashift != 0) return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); /* * If this is an in-place replacement, update oldvd's path and devid * to make it distinguishable from newvd, and unopenable from now on. */ if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { spa_strfree(oldvd->vdev_path); oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, KM_SLEEP); (void) sprintf(oldvd->vdev_path, "%s/%s", newvd->vdev_path, "old"); if (oldvd->vdev_devid != NULL) { spa_strfree(oldvd->vdev_devid); oldvd->vdev_devid = NULL; } } /* * If the parent is not a mirror, or if we're replacing, * insert the new mirror/replacing vdev above oldvd. */ if (pvd->vdev_ops != pvops) pvd = vdev_add_parent(oldvd, pvops); ASSERT(pvd->vdev_top->vdev_parent == rvd); ASSERT(pvd->vdev_ops == pvops); ASSERT(oldvd->vdev_parent == pvd); /* * Extract the new device from its root and add it to pvd. */ vdev_remove_child(newrootvd, newvd); newvd->vdev_id = pvd->vdev_children; vdev_add_child(pvd, newvd); tvd = newvd->vdev_top; ASSERT(pvd->vdev_top == tvd); ASSERT(tvd->vdev_parent == rvd); /* * Update the config based on the new in-core state. */ spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0)); vdev_config_dirty(tvd); /* * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate * upward when spa_vdev_exit() calls vdev_dtl_reassess(). */ open_txg = txg + TXG_CONCURRENT_STATES - 1; mutex_enter(&newvd->vdev_dtl_lock); space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL, open_txg - TXG_INITIAL + 1); mutex_exit(&newvd->vdev_dtl_lock); /* * Mark newvd's DTL dirty in this txg. */ vdev_dirty(tvd, VDD_DTL, txg); (void) txg_list_add(&tvd->vdev_dtl_list, newvd, txg); dprintf("attached %s, replacing=%d\n", path, replacing); (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); /* * Kick off a resilver to update newvd. */ VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); return (0); } /* * Detach a device from a mirror or replacing vdev. * If 'replace_done' is specified, only detach if the parent * is a replacing vdev. */ int spa_vdev_detach(spa_t *spa, const char *path, uint64_t guid, int replace_done) { uint64_t txg; int c, t, error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *pvd, *cvd, *tvd; txg = spa_vdev_enter(spa); vd = vdev_lookup_by_path(rvd, path); if (vd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (guid != 0 && vd->vdev_guid != guid) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); pvd = vd->vdev_parent; /* * If replace_done is specified, only remove this device if it's * the first child of a replacing vdev. */ if (replace_done && (vd->vdev_id != 0 || pvd->vdev_ops != &vdev_replacing_ops)) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); /* * Only mirror and replacing vdevs support detach. */ if (pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_mirror_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); /* * If there's only one replica, you can't detach it. */ if (pvd->vdev_children <= 1) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); /* * If all siblings have non-empty DTLs, this device may have the only * valid copy of the data, which means we cannot safely detach it. * * XXX -- as in the vdev_offline() case, we really want a more * precise DTL check. */ for (c = 0; c < pvd->vdev_children; c++) { uint64_t dirty; cvd = pvd->vdev_child[c]; if (cvd == vd) continue; if (vdev_is_dead(cvd)) continue; mutex_enter(&cvd->vdev_dtl_lock); dirty = cvd->vdev_dtl_map.sm_space | cvd->vdev_dtl_scrub.sm_space; mutex_exit(&cvd->vdev_dtl_lock); if (!dirty) break; } if (c == pvd->vdev_children) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); /* * Erase the disk labels so the disk can be used for other things. * This must be done after all other error cases are handled, * but before we disembowel vd (so we can still do I/O to it). * But if we can't do it, don't treat the error as fatal -- * it may be that the unwritability of the disk is the reason * it's being detached! */ error = vdev_label_init(vd, 0); if (error) dprintf("unable to erase labels on %s\n", vdev_description(vd)); /* * Remove vd from its parent and compact the parent's children. */ vdev_remove_child(pvd, vd); vdev_compact_children(pvd); /* * Remember one of the remaining children so we can get tvd below. */ cvd = pvd->vdev_child[0]; /* * If the parent mirror/replacing vdev only has one child, * the parent is no longer needed. Remove it from the tree. */ if (pvd->vdev_children == 1) vdev_remove_parent(cvd); /* * We don't set tvd until now because the parent we just removed * may have been the previous top-level vdev. */ tvd = cvd->vdev_top; ASSERT(tvd->vdev_parent == rvd); /* * Reopen this top-level vdev to reassess health after detach. */ vdev_reopen(tvd, NULL); /* * If the device we just detached was smaller than the others, * it may be possible to add metaslabs (i.e. grow the pool). */ vdev_metaslab_init(tvd, txg); /* * Update the config based on the new in-core state. */ spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0)); vdev_config_dirty(tvd); /* * Mark vd's DTL as dirty in this txg. * vdev_dtl_sync() will see that vd->vdev_detached is set * and free vd's DTL object in syncing context. * But first make sure we're not on any *other* txg's DTL list, * to prevent vd from being accessed after it's freed. */ vdev_dirty(tvd, VDD_DTL, txg); vd->vdev_detached = B_TRUE; for (t = 0; t < TXG_SIZE; t++) (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); (void) txg_list_add(&tvd->vdev_dtl_list, vd, txg); dprintf("detached %s\n", path); return (spa_vdev_exit(spa, vd, txg, 0)); } /* * If there are any replacing vdevs that have finished replacing, detach them. * We can't hold the config lock across detaches, so we lock the config, * build a list of candidates, unlock the config, and try each candidate. */ typedef struct vdev_detach_link { char *vdl_path; uint64_t vdl_guid; list_node_t vdl_node; } vdev_detach_link_t; static void spa_vdev_replace_done_make_list(list_t *l, vdev_t *vd) { int c; for (c = 0; c < vd->vdev_children; c++) spa_vdev_replace_done_make_list(l, vd->vdev_child[c]); if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { vdev_t *cvd0 = vd->vdev_child[0]; vdev_t *cvd1 = vd->vdev_child[1]; vdev_detach_link_t *vdl; int dirty1; mutex_enter(&cvd1->vdev_dtl_lock); dirty1 = cvd1->vdev_dtl_map.sm_space | cvd1->vdev_dtl_scrub.sm_space; mutex_exit(&cvd1->vdev_dtl_lock); if (!dirty1) { vdl = kmem_zalloc(sizeof (*vdl), KM_SLEEP); vdl->vdl_path = spa_strdup(cvd0->vdev_path); vdl->vdl_guid = cvd0->vdev_guid; list_insert_tail(l, vdl); } } } void spa_vdev_replace_done(spa_t *spa) { vdev_detach_link_t *vdl; list_t vdlist; list_create(&vdlist, sizeof (vdev_detach_link_t), offsetof(vdev_detach_link_t, vdl_node)); spa_config_enter(spa, RW_READER); spa_vdev_replace_done_make_list(&vdlist, spa->spa_root_vdev); spa_config_exit(spa); while ((vdl = list_head(&vdlist)) != NULL) { list_remove(&vdlist, vdl); (void) spa_vdev_detach(spa, vdl->vdl_path, vdl->vdl_guid, B_TRUE); spa_strfree(vdl->vdl_path); kmem_free(vdl, sizeof (*vdl)); } list_destroy(&vdlist); } /* * ========================================================================== * SPA Scrubbing * ========================================================================== */ static int spa_scrub_locked(spa_t *, pool_scrub_type_t, boolean_t); static void spa_scrub_io_done(zio_t *zio) { spa_t *spa = zio->io_spa; zio_buf_free(zio->io_data, zio->io_size); mutex_enter(&spa->spa_scrub_lock); if (zio->io_error) spa->spa_scrub_errors++; if (--spa->spa_scrub_inflight == 0) cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&spa->spa_scrub_lock); if (zio->io_error) { vdev_t *vd = zio->io_vd; mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_scrub_errors++; mutex_exit(&vd->vdev_stat_lock); } } static void spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags) { size_t size = BP_GET_LSIZE(bp); void *data = zio_buf_alloc(size); mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_inflight++; mutex_exit(&spa->spa_scrub_lock); zio_nowait(zio_read(NULL, spa, bp, data, size, spa_scrub_io_done, NULL, priority, flags)); } /* ARGSUSED */ static int spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a) { blkptr_t *bp = &bc->bc_blkptr; vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[0])); if (bc->bc_errno || vd == NULL) { /* * We can't scrub this block, but we can continue to scrub * the rest of the pool. Note the error and move along. */ mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_errors++; mutex_exit(&spa->spa_scrub_lock); if (vd != NULL) { mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_scrub_errors++; mutex_exit(&vd->vdev_stat_lock); } return (ERESTART); } ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg); /* * Keep track of how much data we've examined so that * zpool(1M) status can make useful progress reports. */ mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_scrub_examined += BP_GET_ASIZE(bp); mutex_exit(&vd->vdev_stat_lock); if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) { if (DVA_GET_GANG(&bp->blk_dva[0])) { /* * Gang members may be spread across multiple vdevs, * so the best we can do is look at the pool-wide DTL. * XXX -- it would be better to change our allocation * policy to ensure that this can't happen. */ vd = spa->spa_root_vdev; } if (vdev_dtl_contains(&vd->vdev_dtl_map, bp->blk_birth, 1)) { spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_RESILVER); } } else { spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_SCRUB); } return (0); } static void spa_scrub_thread(spa_t *spa) { callb_cpr_t cprinfo; traverse_handle_t *th = spa->spa_scrub_th; vdev_t *rvd = spa->spa_root_vdev; pool_scrub_type_t scrub_type = spa->spa_scrub_type; int error = 0; boolean_t complete; CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG); /* * If we're restarting due to a snapshot create/delete, * wait for that to complete. */ txg_wait_synced(spa_get_dsl(spa), 0); spa_config_enter(spa, RW_WRITER); vdev_reopen(rvd, NULL); /* purge all vdev caches */ vdev_config_dirty(rvd); /* rewrite all disk labels */ vdev_scrub_stat_update(rvd, scrub_type, B_FALSE); spa_config_exit(spa); mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_errors = 0; spa->spa_scrub_active = 1; while (!spa->spa_scrub_stop) { CALLB_CPR_SAFE_BEGIN(&cprinfo); while (spa->spa_scrub_suspend) { spa->spa_scrub_active = 0; cv_broadcast(&spa->spa_scrub_cv); cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); spa->spa_scrub_active = 1; } CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock); if (spa->spa_scrub_restart_txg != 0) break; mutex_exit(&spa->spa_scrub_lock); error = traverse_more(th); mutex_enter(&spa->spa_scrub_lock); if (error != EAGAIN) break; } while (spa->spa_scrub_inflight) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); if (spa->spa_scrub_restart_txg != 0) error = ERESTART; spa->spa_scrub_active = 0; cv_broadcast(&spa->spa_scrub_cv); /* * If the traverse completed, and there were no errors, * then the scrub was completely successful. */ complete = (error == 0 && spa->spa_scrub_errors == 0); dprintf("scrub to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n", spa->spa_scrub_maxtxg, complete ? "done" : "FAILED", error, spa->spa_scrub_errors, spa->spa_scrub_stop); mutex_exit(&spa->spa_scrub_lock); /* * If the scrub/resilver completed, update all DTLs to reflect this. * Whether it succeeded or not, vacate all temporary scrub DTLs. */ spa_config_enter(spa, RW_WRITER); vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1, complete ? spa->spa_scrub_maxtxg : 0, B_TRUE); spa_config_exit(spa); spa_vdev_replace_done(spa); spa_config_enter(spa, RW_READER); vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete); spa_config_exit(spa); mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_type = POOL_SCRUB_NONE; spa->spa_scrub_active = 0; spa->spa_scrub_thread = NULL; cv_broadcast(&spa->spa_scrub_cv); /* * If we were told to restart, our final act is to start a new scrub. */ if (error == ERESTART) VERIFY(spa_scrub_locked(spa, scrub_type, B_TRUE) == 0); CALLB_CPR_EXIT(&cprinfo); /* drops &spa->spa_scrub_lock */ thread_exit(); } void spa_scrub_suspend(spa_t *spa) { mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_suspend++; while (spa->spa_scrub_active) { cv_broadcast(&spa->spa_scrub_cv); cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); } while (spa->spa_scrub_inflight) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); mutex_exit(&spa->spa_scrub_lock); } void spa_scrub_resume(spa_t *spa) { mutex_enter(&spa->spa_scrub_lock); ASSERT(spa->spa_scrub_suspend != 0); if (--spa->spa_scrub_suspend == 0) cv_broadcast(&spa->spa_scrub_cv); mutex_exit(&spa->spa_scrub_lock); } void spa_scrub_restart(spa_t *spa, uint64_t txg) { /* * Something happened (e.g. snapshot create/delete) that means * we must restart any in-progress scrubs. The itinerary will * fix this properly. */ mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_restart_txg = txg; mutex_exit(&spa->spa_scrub_lock); } static int spa_scrub_locked(spa_t *spa, pool_scrub_type_t type, boolean_t force) { space_seg_t *ss; uint64_t mintxg, maxtxg; vdev_t *rvd = spa->spa_root_vdev; int advance = 0; if ((uint_t)type >= POOL_SCRUB_TYPES) return (ENOTSUP); /* * If there's a scrub or resilver already in progress, stop it. */ while (spa->spa_scrub_thread != NULL) { /* * Don't stop a resilver unless forced. */ if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) return (EBUSY); spa->spa_scrub_stop = 1; cv_broadcast(&spa->spa_scrub_cv); cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); } /* * Terminate the previous traverse. */ if (spa->spa_scrub_th != NULL) { traverse_fini(spa->spa_scrub_th); spa->spa_scrub_th = NULL; } spa->spa_scrub_stop = 0; spa->spa_scrub_type = type; spa->spa_scrub_restart_txg = 0; mintxg = TXG_INITIAL - 1; maxtxg = spa_last_synced_txg(spa) + 1; switch (type) { case POOL_SCRUB_NONE: break; case POOL_SCRUB_RESILVER: /* * Determine the resilvering boundaries. * * Note: (mintxg, maxtxg) is an open interval, * i.e. mintxg and maxtxg themselves are not included. * * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1 * so we don't claim to resilver a txg that's still changing. */ mutex_enter(&rvd->vdev_dtl_lock); ss = avl_first(&rvd->vdev_dtl_map.sm_root); mintxg = ss ? ss->ss_start - 1 : 0; ss = avl_last(&rvd->vdev_dtl_map.sm_root); maxtxg = ss ? ss->ss_end : 0; maxtxg = MIN(maxtxg, spa_last_synced_txg(spa) + 1); mutex_exit(&rvd->vdev_dtl_lock); advance = ADVANCE_PRE | ADVANCE_PRUNE; break; case POOL_SCRUB_EVERYTHING: /* * A scrub is like a resilver, but not pruned by DTL. */ advance = ADVANCE_PRE; break; } if (mintxg != 0 && maxtxg != 0 && type != POOL_SCRUB_NONE) { spa->spa_scrub_maxtxg = maxtxg; spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL, advance, ZIO_FLAG_CANFAIL); traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg); spa->spa_scrub_thread = thread_create(NULL, 0, spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri); } return (0); } int spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force) { int error; traverse_handle_t *th; mutex_enter(&spa->spa_scrub_lock); error = spa_scrub_locked(spa, type, force); th = spa->spa_scrub_th; mutex_exit(&spa->spa_scrub_lock); if (th == NULL && type != POOL_SCRUB_NONE) spa_vdev_replace_done(spa); return (error); } /* * ========================================================================== * SPA syncing routines * ========================================================================== */ static void spa_sync_deferred_frees(spa_t *spa, uint64_t txg) { bplist_t *bpl = &spa->spa_sync_bplist; dmu_tx_t *tx; blkptr_t blk; uint64_t itor = 0; zio_t *zio; int error; uint8_t c = 1; zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD); while (bplist_iterate(bpl, &itor, &blk) == 0) zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL)); error = zio_wait(zio); ASSERT3U(error, ==, 0); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); bplist_vacate(bpl, tx); /* * Pre-dirty the first block so we sync to convergence faster. * (Usually only the first block is needed.) */ dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx); dmu_tx_commit(tx); } static void spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) { nvlist_t *config; char *packed = NULL; size_t nvsize = 0; dmu_buf_t *db; if (list_is_empty(&spa->spa_dirty_list)) return; config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE); spa_config_set(spa, config); VERIFY(nvlist_size(config, &nvsize, NV_ENCODE_XDR) == 0); packed = kmem_alloc(nvsize, KM_SLEEP); VERIFY(nvlist_pack(config, &packed, &nvsize, NV_ENCODE_XDR, 0) == 0); dmu_write(spa->spa_meta_objset, spa->spa_config_object, 0, nvsize, packed, tx); kmem_free(packed, nvsize); db = dmu_bonus_hold(spa->spa_meta_objset, spa->spa_config_object); dmu_buf_will_dirty(db, tx); *(uint64_t *)db->db_data = nvsize; dmu_buf_rele(db); } /* * Sync the specified transaction group. New blocks may be dirtied as * part of the process, so we iterate until it converges. */ void spa_sync(spa_t *spa, uint64_t txg) { dsl_pool_t *dp = spa->spa_dsl_pool; objset_t *mos = spa->spa_meta_objset; bplist_t *bpl = &spa->spa_sync_bplist; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd; dmu_tx_t *tx; int dirty_vdevs; /* * Lock out configuration changes. */ spa_config_enter(spa, RW_READER); spa->spa_syncing_txg = txg; spa->spa_sync_pass = 0; bplist_open(bpl, mos, spa->spa_sync_bplist_obj); /* * If anything has changed in this txg, push the deferred frees * from the previous txg. If not, leave them alone so that we * don't generate work on an otherwise idle system. */ if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || !txg_list_empty(&dp->dp_dirty_dirs, txg)) spa_sync_deferred_frees(spa, txg); /* * Iterate to convergence. */ do { spa->spa_sync_pass++; tx = dmu_tx_create_assigned(dp, txg); spa_sync_config_object(spa, tx); dmu_tx_commit(tx); dsl_pool_sync(dp, txg); dirty_vdevs = 0; while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) { vdev_sync(vd, txg); dirty_vdevs++; } tx = dmu_tx_create_assigned(dp, txg); bplist_sync(bpl, tx); dmu_tx_commit(tx); } while (dirty_vdevs); bplist_close(bpl); dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass); /* * Rewrite the vdev configuration (which includes the uberblock) * to commit the transaction group. */ while (spa_sync_labels(spa, txg)) { dprintf("waiting for devices to heal\n"); delay(hz); vdev_reopen(rvd, NULL); } /* * Make a stable copy of the fully synced uberblock. * We use this as the root for pool traversals. */ spa->spa_traverse_wanted = 1; /* tells traverse_more() to stop */ spa_scrub_suspend(spa); /* stop scrubbing and finish I/Os */ rw_enter(&spa->spa_traverse_lock, RW_WRITER); spa->spa_traverse_wanted = 0; spa->spa_ubsync = spa->spa_uberblock; rw_exit(&spa->spa_traverse_lock); spa_scrub_resume(spa); /* resume scrub with new ubsync */ /* * Clean up the ZIL records for the synced txg. */ dsl_pool_zil_clean(dp); /* * Update usable space statistics. */ while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) vdev_sync_done(vd, txg); /* * It had better be the case that we didn't dirty anything * since spa_sync_labels(). */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); ASSERT(bpl->bpl_queue == NULL); spa_config_exit(spa); } /* * Sync all pools. We don't want to hold the namespace lock across these * operations, so we take a reference on the spa_t and drop the lock during the * sync. */ void spa_sync_allpools(void) { spa_t *spa = NULL; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (spa_state(spa) != POOL_STATE_ACTIVE) continue; spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); txg_wait_synced(spa_get_dsl(spa), 0); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); } mutex_exit(&spa_namespace_lock); } /* * ========================================================================== * Miscellaneous routines * ========================================================================== */ int spa_busy(void) { return (spa_active_count != 0); } /* * Remove all pools in the system. */ void spa_evict_all(void) { spa_t *spa; /* * Remove all cached state. All pools should be closed now, * so every spa in the AVL tree should be unreferenced. */ mutex_enter(&spa_namespace_lock); while ((spa = spa_next(NULL)) != NULL) { /* * Stop all scrub and resilver activity. spa_scrub() needs to * wait for the scrub thread, which may do a detach and sync the * configs, which needs spa_namespace_lock. Drop the lock while * maintaining a hold on the spa_t. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } spa_remove(spa); } mutex_exit(&spa_namespace_lock); }