/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int zfs_no_write_throttle = 0; int zfs_write_limit_shift = 3; /* 1/8th of physical memory */ int zfs_txg_synctime_ms = 1000; /* target millisecs to sync a txg */ uint64_t zfs_write_limit_min = 32 << 20; /* min write limit is 32MB */ uint64_t zfs_write_limit_max = 0; /* max data payload per txg */ uint64_t zfs_write_limit_inflated = 0; uint64_t zfs_write_limit_override = 0; kmutex_t zfs_write_limit_lock; static pgcnt_t old_physmem = 0; int dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) { uint64_t obj; int err; err = zap_lookup(dp->dp_meta_objset, dp->dp_root_dir->dd_phys->dd_child_dir_zapobj, name, sizeof (obj), 1, &obj); if (err) return (err); return (dsl_dir_open_obj(dp, obj, name, dp, ddp)); } static dsl_pool_t * dsl_pool_open_impl(spa_t *spa, uint64_t txg) { dsl_pool_t *dp; blkptr_t *bp = spa_get_rootblkptr(spa); dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); dp->dp_spa = spa; dp->dp_meta_rootbp = *bp; rw_init(&dp->dp_config_rwlock, NULL, RW_DEFAULT, NULL); dp->dp_write_limit = zfs_write_limit_min; txg_init(dp, txg); txg_list_create(&dp->dp_dirty_datasets, offsetof(dsl_dataset_t, ds_dirty_link)); txg_list_create(&dp->dp_dirty_dirs, offsetof(dsl_dir_t, dd_dirty_link)); txg_list_create(&dp->dp_sync_tasks, offsetof(dsl_sync_task_group_t, dstg_node)); list_create(&dp->dp_synced_datasets, sizeof (dsl_dataset_t), offsetof(dsl_dataset_t, ds_synced_link)); mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 1, 4, 0); return (dp); } int dsl_pool_open(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) { int err; dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); dsl_dir_t *dd; dsl_dataset_t *ds; uint64_t obj; rw_enter(&dp->dp_config_rwlock, RW_WRITER); err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, &dp->dp_meta_objset); if (err) goto out; err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &dp->dp_root_dir_obj); if (err) goto out; err = dsl_dir_open_obj(dp, dp->dp_root_dir_obj, NULL, dp, &dp->dp_root_dir); if (err) goto out; err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); if (err) goto out; if (spa_version(spa) >= SPA_VERSION_ORIGIN) { err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); if (err) goto out; err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj, FTAG, &ds); if (err == 0) { err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, dp, &dp->dp_origin_snap); dsl_dataset_rele(ds, FTAG); } dsl_dir_close(dd, dp); if (err) goto out; } if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, &dp->dp_free_dir); if (err) goto out; err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); if (err) goto out; VERIFY3U(0, ==, bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); } err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, &dp->dp_tmp_userrefs_obj); if (err == ENOENT) err = 0; if (err) goto out; err = dsl_scan_init(dp, txg); out: rw_exit(&dp->dp_config_rwlock); if (err) dsl_pool_close(dp); else *dpp = dp; return (err); } void dsl_pool_close(dsl_pool_t *dp) { /* drop our references from dsl_pool_open() */ /* * Since we held the origin_snap from "syncing" context (which * includes pool-opening context), it actually only got a "ref" * and not a hold, so just drop that here. */ if (dp->dp_origin_snap) dsl_dataset_drop_ref(dp->dp_origin_snap, dp); if (dp->dp_mos_dir) dsl_dir_close(dp->dp_mos_dir, dp); if (dp->dp_free_dir) dsl_dir_close(dp->dp_free_dir, dp); if (dp->dp_root_dir) dsl_dir_close(dp->dp_root_dir, dp); bpobj_close(&dp->dp_free_bpobj); /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ if (dp->dp_meta_objset) dmu_objset_evict(dp->dp_meta_objset); txg_list_destroy(&dp->dp_dirty_datasets); txg_list_destroy(&dp->dp_sync_tasks); txg_list_destroy(&dp->dp_dirty_dirs); list_destroy(&dp->dp_synced_datasets); arc_flush(dp->dp_spa); txg_fini(dp); dsl_scan_fini(dp); rw_destroy(&dp->dp_config_rwlock); mutex_destroy(&dp->dp_lock); taskq_destroy(dp->dp_vnrele_taskq); if (dp->dp_blkstats) kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); kmem_free(dp, sizeof (dsl_pool_t)); } dsl_pool_t * dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) { int err; dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); objset_t *os; dsl_dataset_t *ds; uint64_t obj; /* create and open the MOS (meta-objset) */ dp->dp_meta_objset = dmu_objset_create_impl(spa, NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); /* create the pool directory */ err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); ASSERT3U(err, ==, 0); /* Initialize scan structures */ VERIFY3U(0, ==, dsl_scan_init(dp, txg)); /* create and open the root dir */ dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); VERIFY(0 == dsl_dir_open_obj(dp, dp->dp_root_dir_obj, NULL, dp, &dp->dp_root_dir)); /* create and open the meta-objset dir */ (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); VERIFY(0 == dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir)); if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { /* create and open the free dir */ (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); VERIFY(0 == dsl_pool_open_special_dir(dp, FREE_DIR_NAME, &dp->dp_free_dir)); /* create and open the free_bplist */ obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx); VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); VERIFY3U(0, ==, bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); } if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) dsl_pool_create_origin(dp, tx); /* create the root dataset */ obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); /* create the root objset */ VERIFY(0 == dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); os = dmu_objset_create_impl(dp->dp_spa, ds, dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); #ifdef _KERNEL zfs_create_fs(os, kcred, zplprops, tx); #endif dsl_dataset_rele(ds, FTAG); dmu_tx_commit(tx); return (dp); } static int deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { dsl_deadlist_t *dl = arg; dsl_deadlist_insert(dl, bp, tx); return (0); } void dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) { zio_t *zio; dmu_tx_t *tx; dsl_dir_t *dd; dsl_dataset_t *ds; dsl_sync_task_group_t *dstg; objset_t *mos = dp->dp_meta_objset; hrtime_t start, write_time; uint64_t data_written; int err; /* * We need to copy dp_space_towrite() before doing * dsl_sync_task_group_sync(), because * dsl_dataset_snapshot_reserve_space() will increase * dp_space_towrite but not actually write anything. */ data_written = dp->dp_space_towrite[txg & TXG_MASK]; tx = dmu_tx_create_assigned(dp, txg); dp->dp_read_overhead = 0; start = gethrtime(); zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) { /* * We must not sync any non-MOS datasets twice, because * we may have taken a snapshot of them. However, we * may sync newly-created datasets on pass 2. */ ASSERT(!list_link_active(&ds->ds_synced_link)); list_insert_tail(&dp->dp_synced_datasets, ds); dsl_dataset_sync(ds, zio, tx); } DTRACE_PROBE(pool_sync__1setup); err = zio_wait(zio); write_time = gethrtime() - start; ASSERT(err == 0); DTRACE_PROBE(pool_sync__2rootzio); for (ds = list_head(&dp->dp_synced_datasets); ds; ds = list_next(&dp->dp_synced_datasets, ds)) dmu_objset_do_userquota_updates(ds->ds_objset, tx); /* * Sync the datasets again to push out the changes due to * userspace updates. This must be done before we process the * sync tasks, because that could cause a snapshot of a dataset * whose ds_bp will be rewritten when we do this 2nd sync. */ zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) { ASSERT(list_link_active(&ds->ds_synced_link)); dmu_buf_rele(ds->ds_dbuf, ds); dsl_dataset_sync(ds, zio, tx); } err = zio_wait(zio); /* * Move dead blocks from the pending deadlist to the on-disk * deadlist. */ for (ds = list_head(&dp->dp_synced_datasets); ds; ds = list_next(&dp->dp_synced_datasets, ds)) { bplist_iterate(&ds->ds_pending_deadlist, deadlist_enqueue_cb, &ds->ds_deadlist, tx); } while (dstg = txg_list_remove(&dp->dp_sync_tasks, txg)) { /* * No more sync tasks should have been added while we * were syncing. */ ASSERT(spa_sync_pass(dp->dp_spa) == 1); dsl_sync_task_group_sync(dstg, tx); } DTRACE_PROBE(pool_sync__3task); start = gethrtime(); while (dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) dsl_dir_sync(dd, tx); write_time += gethrtime() - start; start = gethrtime(); if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); dmu_objset_sync(mos, zio, tx); err = zio_wait(zio); ASSERT(err == 0); dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); } write_time += gethrtime() - start; DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time, hrtime_t, dp->dp_read_overhead); write_time -= dp->dp_read_overhead; dmu_tx_commit(tx); dp->dp_space_towrite[txg & TXG_MASK] = 0; ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0); /* * If the write limit max has not been explicitly set, set it * to a fraction of available physical memory (default 1/8th). * Note that we must inflate the limit because the spa * inflates write sizes to account for data replication. * Check this each sync phase to catch changing memory size. */ if (physmem != old_physmem && zfs_write_limit_shift) { mutex_enter(&zfs_write_limit_lock); old_physmem = physmem; zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; zfs_write_limit_inflated = MAX(zfs_write_limit_min, spa_get_asize(dp->dp_spa, zfs_write_limit_max)); mutex_exit(&zfs_write_limit_lock); } /* * Attempt to keep the sync time consistent by adjusting the * amount of write traffic allowed into each transaction group. * Weight the throughput calculation towards the current value: * thru = 3/4 old_thru + 1/4 new_thru * * Note: write_time is in nanosecs, so write_time/MICROSEC * yields millisecs */ ASSERT(zfs_write_limit_min > 0); if (data_written > zfs_write_limit_min / 8 && write_time > MICROSEC) { uint64_t throughput = data_written / (write_time / MICROSEC); if (dp->dp_throughput) dp->dp_throughput = throughput / 4 + 3 * dp->dp_throughput / 4; else dp->dp_throughput = throughput; dp->dp_write_limit = MIN(zfs_write_limit_inflated, MAX(zfs_write_limit_min, dp->dp_throughput * zfs_txg_synctime_ms)); } } void dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) { dsl_dataset_t *ds; objset_t *os; while (ds = list_head(&dp->dp_synced_datasets)) { list_remove(&dp->dp_synced_datasets, ds); os = ds->ds_objset; zil_clean(os->os_zil); ASSERT(!dmu_objset_is_dirty(os, txg)); dmu_buf_rele(ds->ds_dbuf, ds); } ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); } /* * TRUE if the current thread is the tx_sync_thread or if we * are being called from SPA context during pool initialization. */ int dsl_pool_sync_context(dsl_pool_t *dp) { return (curthread == dp->dp_tx.tx_sync_thread || spa_get_dsl(dp->dp_spa) == NULL); } uint64_t dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) { uint64_t space, resv; /* * Reserve about 1.6% (1/64), or at least 32MB, for allocation * efficiency. * XXX The intent log is not accounted for, so it must fit * within this slop. * * If we're trying to assess whether it's OK to do a free, * cut the reservation in half to allow forward progress * (e.g. make it possible to rm(1) files from a full pool). */ space = spa_get_dspace(dp->dp_spa); resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1); if (netfree) resv >>= 1; return (space - resv); } int dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx) { uint64_t reserved = 0; uint64_t write_limit = (zfs_write_limit_override ? zfs_write_limit_override : dp->dp_write_limit); if (zfs_no_write_throttle) { atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space); return (0); } /* * Check to see if we have exceeded the maximum allowed IO for * this transaction group. We can do this without locks since * a little slop here is ok. Note that we do the reserved check * with only half the requested reserve: this is because the * reserve requests are worst-case, and we really don't want to * throttle based off of worst-case estimates. */ if (write_limit > 0) { reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK] + dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2; if (reserved && reserved > write_limit) return (ERESTART); } atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space); /* * If this transaction group is over 7/8ths capacity, delay * the caller 1 clock tick. This will slow down the "fill" * rate until the sync process can catch up with us. */ if (reserved && reserved > (write_limit - (write_limit >> 3))) txg_delay(dp, tx->tx_txg, 1); return (0); } void dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) { ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space); atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space); } void dsl_pool_memory_pressure(dsl_pool_t *dp) { uint64_t space_inuse = 0; int i; if (dp->dp_write_limit == zfs_write_limit_min) return; for (i = 0; i < TXG_SIZE; i++) { space_inuse += dp->dp_space_towrite[i]; space_inuse += dp->dp_tempreserved[i]; } dp->dp_write_limit = MAX(zfs_write_limit_min, MIN(dp->dp_write_limit, space_inuse / 4)); } void dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) { if (space > 0) { mutex_enter(&dp->dp_lock); dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space; mutex_exit(&dp->dp_lock); } } /* ARGSUSED */ static int upgrade_clones_cb(spa_t *spa, uint64_t dsobj, const char *dsname, void *arg) { dmu_tx_t *tx = arg; dsl_dataset_t *ds, *prev = NULL; int err; dsl_pool_t *dp = spa_get_dsl(spa); err = dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds); if (err) return (err); while (ds->ds_phys->ds_prev_snap_obj != 0) { err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, FTAG, &prev); if (err) { dsl_dataset_rele(ds, FTAG); return (err); } if (prev->ds_phys->ds_next_snap_obj != ds->ds_object) break; dsl_dataset_rele(ds, FTAG); ds = prev; prev = NULL; } if (prev == NULL) { prev = dp->dp_origin_snap; /* * The $ORIGIN can't have any data, or the accounting * will be wrong. */ ASSERT(prev->ds_phys->ds_bp.blk_birth == 0); /* The origin doesn't get attached to itself */ if (ds->ds_object == prev->ds_object) { dsl_dataset_rele(ds, FTAG); return (0); } dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_prev_snap_obj = prev->ds_object; ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg; dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object; dmu_buf_will_dirty(prev->ds_dbuf, tx); prev->ds_phys->ds_num_children++; if (ds->ds_phys->ds_next_snap_obj == 0) { ASSERT(ds->ds_prev == NULL); VERIFY(0 == dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev)); } } ASSERT(ds->ds_dir->dd_phys->dd_origin_obj == prev->ds_object); ASSERT(ds->ds_phys->ds_prev_snap_obj == prev->ds_object); if (prev->ds_phys->ds_next_clones_obj == 0) { dmu_buf_will_dirty(prev->ds_dbuf, tx); prev->ds_phys->ds_next_clones_obj = zap_create(dp->dp_meta_objset, DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); } VERIFY(0 == zap_add_int(dp->dp_meta_objset, prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx)); dsl_dataset_rele(ds, FTAG); if (prev != dp->dp_origin_snap) dsl_dataset_rele(prev, FTAG); return (0); } void dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) { ASSERT(dmu_tx_is_syncing(tx)); ASSERT(dp->dp_origin_snap != NULL); VERIFY3U(0, ==, dmu_objset_find_spa(dp->dp_spa, NULL, upgrade_clones_cb, tx, DS_FIND_CHILDREN)); } /* ARGSUSED */ static int upgrade_dir_clones_cb(spa_t *spa, uint64_t dsobj, const char *dsname, void *arg) { dmu_tx_t *tx = arg; dsl_dataset_t *ds; dsl_pool_t *dp = spa_get_dsl(spa); objset_t *mos = dp->dp_meta_objset; VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); if (ds->ds_dir->dd_phys->dd_origin_obj) { dsl_dataset_t *origin; VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin)); if (origin->ds_dir->dd_phys->dd_clones == 0) { dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); origin->ds_dir->dd_phys->dd_clones = zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx); } VERIFY3U(0, ==, zap_add_int(dp->dp_meta_objset, origin->ds_dir->dd_phys->dd_clones, dsobj, tx)); dsl_dataset_rele(origin, FTAG); } dsl_dataset_rele(ds, FTAG); return (0); } void dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) { ASSERT(dmu_tx_is_syncing(tx)); uint64_t obj; (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); VERIFY(0 == dsl_pool_open_special_dir(dp, FREE_DIR_NAME, &dp->dp_free_dir)); /* * We can't use bpobj_alloc(), because spa_version() still * returns the old version, and we need a new-version bpobj with * subobj support. So call dmu_object_alloc() directly. */ obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); VERIFY3U(0, ==, zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); VERIFY3U(0, ==, bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); VERIFY3U(0, ==, dmu_objset_find_spa(dp->dp_spa, NULL, upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN)); } void dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) { uint64_t dsobj; dsl_dataset_t *ds; ASSERT(dmu_tx_is_syncing(tx)); ASSERT(dp->dp_origin_snap == NULL); /* create the origin dir, ds, & snap-ds */ rw_enter(&dp->dp_config_rwlock, RW_WRITER); dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, NULL, 0, kcred, tx); VERIFY(0 == dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); dsl_dataset_snapshot_sync(ds, ORIGIN_DIR_NAME, tx); VERIFY(0 == dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, dp, &dp->dp_origin_snap)); dsl_dataset_rele(ds, FTAG); rw_exit(&dp->dp_config_rwlock); } taskq_t * dsl_pool_vnrele_taskq(dsl_pool_t *dp) { return (dp->dp_vnrele_taskq); } /* * Walk through the pool-wide zap object of temporary snapshot user holds * and release them. */ void dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) { zap_attribute_t za; zap_cursor_t zc; objset_t *mos = dp->dp_meta_objset; uint64_t zapobj = dp->dp_tmp_userrefs_obj; if (zapobj == 0) return; ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); for (zap_cursor_init(&zc, mos, zapobj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { char *htag; uint64_t dsobj; htag = strchr(za.za_name, '-'); *htag = '\0'; ++htag; dsobj = strtonum(za.za_name, NULL); (void) dsl_dataset_user_release_tmp(dp, dsobj, htag); } zap_cursor_fini(&zc); } /* * Create the pool-wide zap object for storing temporary snapshot holds. */ void dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) { objset_t *mos = dp->dp_meta_objset; ASSERT(dp->dp_tmp_userrefs_obj == 0); ASSERT(dmu_tx_is_syncing(tx)); dp->dp_tmp_userrefs_obj = zap_create(mos, DMU_OT_USERREFS, DMU_OT_NONE, 0, tx); VERIFY(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, &dp->dp_tmp_userrefs_obj, tx) == 0); } static int dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, const char *tag, uint64_t *now, dmu_tx_t *tx, boolean_t holding) { objset_t *mos = dp->dp_meta_objset; uint64_t zapobj = dp->dp_tmp_userrefs_obj; char *name; int error; ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); ASSERT(dmu_tx_is_syncing(tx)); /* * If the pool was created prior to SPA_VERSION_USERREFS, the * zap object for temporary holds might not exist yet. */ if (zapobj == 0) { if (holding) { dsl_pool_user_hold_create_obj(dp, tx); zapobj = dp->dp_tmp_userrefs_obj; } else { return (ENOENT); } } name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); if (holding) error = zap_add(mos, zapobj, name, 8, 1, now, tx); else error = zap_remove(mos, zapobj, name, tx); strfree(name); return (error); } /* * Add a temporary hold for the given dataset object and tag. */ int dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, uint64_t *now, dmu_tx_t *tx) { return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); } /* * Release a temporary hold for the given dataset object and tag. */ int dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, dmu_tx_t *tx) { return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, tx, B_FALSE)); }