/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include /* for dsl_dataset_block_freeable() */ #include /* for dsl_dir_tempreserve_*() */ #include #include /* for fzap_default_block_shift */ #include #include typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, uint64_t arg1, uint64_t arg2); dmu_tx_t * dmu_tx_create_dd(dsl_dir_t *dd) { dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); tx->tx_dir = dd; if (dd) tx->tx_pool = dd->dd_pool; list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), offsetof(dmu_tx_hold_t, txh_node)); #ifdef ZFS_DEBUG refcount_create(&tx->tx_space_written); refcount_create(&tx->tx_space_freed); #endif return (tx); } dmu_tx_t * dmu_tx_create(objset_t *os) { dmu_tx_t *tx = dmu_tx_create_dd(os->os->os_dsl_dataset->ds_dir); tx->tx_objset = os; tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os->os_dsl_dataset); return (tx); } dmu_tx_t * dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) { dmu_tx_t *tx = dmu_tx_create_dd(NULL); ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); tx->tx_pool = dp; tx->tx_txg = txg; tx->tx_anyobj = TRUE; return (tx); } int dmu_tx_is_syncing(dmu_tx_t *tx) { return (tx->tx_anyobj); } int dmu_tx_private_ok(dmu_tx_t *tx) { return (tx->tx_anyobj); } static dmu_tx_hold_t * dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) { dmu_tx_hold_t *txh; dnode_t *dn = NULL; int err; if (object != DMU_NEW_OBJECT) { err = dnode_hold(os->os, object, tx, &dn); if (err) { tx->tx_err = err; return (NULL); } if (err == 0 && tx->tx_txg != 0) { mutex_enter(&dn->dn_mtx); /* * dn->dn_assigned_txg == tx->tx_txg doesn't pose a * problem, but there's no way for it to happen (for * now, at least). */ ASSERT(dn->dn_assigned_txg == 0); dn->dn_assigned_txg = tx->tx_txg; (void) refcount_add(&dn->dn_tx_holds, tx); mutex_exit(&dn->dn_mtx); } } txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); txh->txh_tx = tx; txh->txh_dnode = dn; #ifdef ZFS_DEBUG txh->txh_type = type; txh->txh_arg1 = arg1; txh->txh_arg2 = arg2; #endif list_insert_tail(&tx->tx_holds, txh); return (txh); } void dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object) { /* * If we're syncing, they can manipulate any object anyhow, and * the hold on the dnode_t can cause problems. */ if (!dmu_tx_is_syncing(tx)) { (void) dmu_tx_hold_object_impl(tx, os, object, THT_NEWOBJECT, 0, 0); } } static int dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) { int err; dmu_buf_impl_t *db; rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold_level(dn, level, blkid, FTAG); rw_exit(&dn->dn_struct_rwlock); if (db == NULL) return (EIO); err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH); dbuf_rele(db, FTAG); return (err); } /* ARGSUSED */ static void dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) { dnode_t *dn = txh->txh_dnode; uint64_t start, end, i; int min_bs, max_bs, min_ibs, max_ibs, epbs, bits; int err = 0; if (len == 0) return; min_bs = SPA_MINBLOCKSHIFT; max_bs = SPA_MAXBLOCKSHIFT; min_ibs = DN_MIN_INDBLKSHIFT; max_ibs = DN_MAX_INDBLKSHIFT; /* * For i/o error checking, read the first and last level-0 * blocks (if they are not aligned), and all the level-1 blocks. */ if (dn) { if (dn->dn_maxblkid == 0) { err = dmu_tx_check_ioerr(NULL, dn, 0, 0); if (err) goto out; } else { zio_t *zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); /* first level-0 block */ start = off >> dn->dn_datablkshift; if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) { err = dmu_tx_check_ioerr(zio, dn, 0, start); if (err) goto out; } /* last level-0 block */ end = (off+len-1) >> dn->dn_datablkshift; if (end != start && P2PHASE(off+len, dn->dn_datablksz)) { err = dmu_tx_check_ioerr(zio, dn, 0, end); if (err) goto out; } /* level-1 blocks */ if (dn->dn_nlevels > 1) { start >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT; end >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (i = start+1; i < end; i++) { err = dmu_tx_check_ioerr(zio, dn, 1, i); if (err) goto out; } } err = zio_wait(zio); if (err) goto out; } } /* * If there's more than one block, the blocksize can't change, * so we can make a more precise estimate. Alternatively, * if the dnode's ibs is larger than max_ibs, always use that. * This ensures that if we reduce DN_MAX_INDBLKSHIFT, * the code will still work correctly on existing pools. */ if (dn && (dn->dn_maxblkid != 0 || dn->dn_indblkshift > max_ibs)) { min_ibs = max_ibs = dn->dn_indblkshift; if (dn->dn_datablkshift != 0) min_bs = max_bs = dn->dn_datablkshift; } /* * 'end' is the last thing we will access, not one past. * This way we won't overflow when accessing the last byte. */ start = P2ALIGN(off, 1ULL << max_bs); end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1; txh->txh_space_towrite += end - start + 1; start >>= min_bs; end >>= min_bs; epbs = min_ibs - SPA_BLKPTRSHIFT; /* * The object contains at most 2^(64 - min_bs) blocks, * and each indirect level maps 2^epbs. */ for (bits = 64 - min_bs; bits >= 0; bits -= epbs) { start >>= epbs; end >>= epbs; /* * If we increase the number of levels of indirection, * we'll need new blkid=0 indirect blocks. If start == 0, * we're already accounting for that blocks; and if end == 0, * we can't increase the number of levels beyond that. */ if (start != 0 && end != 0) txh->txh_space_towrite += 1ULL << max_ibs; txh->txh_space_towrite += (end - start + 1) << max_ibs; } ASSERT(txh->txh_space_towrite < 2 * DMU_MAX_ACCESS); out: if (err) txh->txh_tx->tx_err = err; } static void dmu_tx_count_dnode(dmu_tx_hold_t *txh) { dnode_t *dn = txh->txh_dnode; dnode_t *mdn = txh->txh_tx->tx_objset->os->os_meta_dnode; uint64_t space = mdn->dn_datablksz + ((mdn->dn_nlevels-1) << mdn->dn_indblkshift); if (dn && dn->dn_dbuf->db_blkptr && dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, dn->dn_dbuf->db_blkptr->blk_birth)) { txh->txh_space_tooverwrite += space; } else { txh->txh_space_towrite += space; if (dn && dn->dn_dbuf->db_blkptr) txh->txh_space_tounref += space; } } void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg == 0); ASSERT(len < DMU_MAX_ACCESS); ASSERT(len == 0 || UINT64_MAX - off >= len - 1); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_WRITE, off, len); if (txh == NULL) return; dmu_tx_count_write(txh, off, len); dmu_tx_count_dnode(txh); } static void dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) { uint64_t blkid, nblks, lastblk; uint64_t space = 0, unref = 0, skipped = 0; dnode_t *dn = txh->txh_dnode; dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; spa_t *spa = txh->txh_tx->tx_pool->dp_spa; int epbs; if (dn->dn_nlevels == 0) return; /* * The struct_rwlock protects us against dn_nlevels * changing, in case (against all odds) we manage to dirty & * sync out the changes after we check for being dirty. * Also, dbuf_hold_level() wants us to have the struct_rwlock. */ rw_enter(&dn->dn_struct_rwlock, RW_READER); epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; if (dn->dn_maxblkid == 0) { if (off == 0 && len >= dn->dn_datablksz) { blkid = 0; nblks = 1; } else { rw_exit(&dn->dn_struct_rwlock); return; } } else { blkid = off >> dn->dn_datablkshift; nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift; if (blkid >= dn->dn_maxblkid) { rw_exit(&dn->dn_struct_rwlock); return; } if (blkid + nblks > dn->dn_maxblkid) nblks = dn->dn_maxblkid - blkid; } if (dn->dn_nlevels == 1) { int i; for (i = 0; i < nblks; i++) { blkptr_t *bp = dn->dn_phys->dn_blkptr; ASSERT3U(blkid + i, <, dn->dn_nblkptr); bp += blkid + i; if (dsl_dataset_block_freeable(ds, bp->blk_birth)) { dprintf_bp(bp, "can free old%s", ""); space += bp_get_dasize(spa, bp); } unref += BP_GET_ASIZE(bp); } nblks = 0; } /* * Add in memory requirements of higher-level indirects. * This assumes a worst-possible scenario for dn_nlevels. */ { uint64_t blkcnt = 1 + ((nblks >> epbs) >> epbs); int level = (dn->dn_nlevels > 1) ? 2 : 1; while (level++ < DN_MAX_LEVELS) { txh->txh_memory_tohold += blkcnt << dn->dn_indblkshift; blkcnt = 1 + (blkcnt >> epbs); } ASSERT(blkcnt <= dn->dn_nblkptr); } lastblk = blkid + nblks - 1; while (nblks) { dmu_buf_impl_t *dbuf; uint64_t ibyte, new_blkid; int epb = 1 << epbs; int err, i, blkoff, tochk; blkptr_t *bp; ibyte = blkid << dn->dn_datablkshift; err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0); new_blkid = ibyte >> dn->dn_datablkshift; if (err == ESRCH) { skipped += (lastblk >> epbs) - (blkid >> epbs) + 1; break; } if (err) { txh->txh_tx->tx_err = err; break; } if (new_blkid > lastblk) { skipped += (lastblk >> epbs) - (blkid >> epbs) + 1; break; } if (new_blkid > blkid) { ASSERT((new_blkid >> epbs) > (blkid >> epbs)); skipped += (new_blkid >> epbs) - (blkid >> epbs) - 1; nblks -= new_blkid - blkid; blkid = new_blkid; } blkoff = P2PHASE(blkid, epb); tochk = MIN(epb - blkoff, nblks); dbuf = dbuf_hold_level(dn, 1, blkid >> epbs, FTAG); txh->txh_memory_tohold += dbuf->db.db_size; if (txh->txh_memory_tohold > DMU_MAX_ACCESS) { txh->txh_tx->tx_err = E2BIG; dbuf_rele(dbuf, FTAG); break; } err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL); if (err != 0) { txh->txh_tx->tx_err = err; dbuf_rele(dbuf, FTAG); break; } bp = dbuf->db.db_data; bp += blkoff; for (i = 0; i < tochk; i++) { if (dsl_dataset_block_freeable(ds, bp[i].blk_birth)) { dprintf_bp(&bp[i], "can free old%s", ""); space += bp_get_dasize(spa, &bp[i]); } unref += BP_GET_ASIZE(bp); } dbuf_rele(dbuf, FTAG); blkid += tochk; nblks -= tochk; } rw_exit(&dn->dn_struct_rwlock); /* account for new level 1 indirect blocks that might show up */ if (skipped > 0) { txh->txh_fudge += skipped << dn->dn_indblkshift; skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs); txh->txh_memory_tohold += skipped << dn->dn_indblkshift; } txh->txh_space_tofree += space; txh->txh_space_tounref += unref; } void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) { dmu_tx_hold_t *txh; dnode_t *dn; uint64_t start, end, i; int err, shift; zio_t *zio; ASSERT(tx->tx_txg == 0); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_FREE, off, len); if (txh == NULL) return; dn = txh->txh_dnode; /* first block */ if (off != 0) dmu_tx_count_write(txh, off, 1); /* last block */ if (len != DMU_OBJECT_END) dmu_tx_count_write(txh, off+len, 1); if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz) return; if (len == DMU_OBJECT_END) len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off; /* * For i/o error checking, read the first and last level-0 * blocks, and all the level-1 blocks. The above count_write's * have already taken care of the level-0 blocks. */ if (dn->dn_nlevels > 1) { shift = dn->dn_datablkshift + dn->dn_indblkshift - SPA_BLKPTRSHIFT; start = off >> shift; end = dn->dn_datablkshift ? ((off+len) >> shift) : 0; zio = zio_root(tx->tx_pool->dp_spa, NULL, NULL, ZIO_FLAG_CANFAIL); for (i = start; i <= end; i++) { uint64_t ibyte = i << shift; err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0); i = ibyte >> shift; if (err == ESRCH) break; if (err) { tx->tx_err = err; return; } err = dmu_tx_check_ioerr(zio, dn, 1, i); if (err) { tx->tx_err = err; return; } } err = zio_wait(zio); if (err) { tx->tx_err = err; return; } } dmu_tx_count_dnode(txh); dmu_tx_count_free(txh, off, len); } void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, char *name) { dmu_tx_hold_t *txh; dnode_t *dn; uint64_t nblocks; int epbs, err; ASSERT(tx->tx_txg == 0); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_ZAP, add, (uintptr_t)name); if (txh == NULL) return; dn = txh->txh_dnode; dmu_tx_count_dnode(txh); if (dn == NULL) { /* * We will be able to fit a new object's entries into one leaf * block. So there will be at most 2 blocks total, * including the header block. */ dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift); return; } ASSERT3P(dmu_ot[dn->dn_type].ot_byteswap, ==, zap_byteswap); if (dn->dn_maxblkid == 0 && !add) { /* * If there is only one block (i.e. this is a micro-zap) * and we are not adding anything, the accounting is simple. */ err = dmu_tx_check_ioerr(NULL, dn, 0, 0); if (err) { tx->tx_err = err; return; } /* * Use max block size here, since we don't know how much * the size will change between now and the dbuf dirty call. */ if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, dn->dn_phys->dn_blkptr[0].blk_birth)) { txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE; } else { txh->txh_space_towrite += SPA_MAXBLOCKSIZE; txh->txh_space_tounref += BP_GET_ASIZE(dn->dn_phys->dn_blkptr); } return; } if (dn->dn_maxblkid > 0 && name) { /* * access the name in this fat-zap so that we'll check * for i/o errors to the leaf blocks, etc. */ err = zap_lookup(&dn->dn_objset->os, dn->dn_object, name, 8, 0, NULL); if (err == EIO) { tx->tx_err = err; return; } } /* * 3 blocks overwritten: target leaf, ptrtbl block, header block * 3 new blocks written if adding: new split leaf, 2 grown ptrtbl blocks */ dmu_tx_count_write(txh, dn->dn_maxblkid * dn->dn_datablksz, (3 + add ? 3 : 0) << dn->dn_datablkshift); /* * If the modified blocks are scattered to the four winds, * we'll have to modify an indirect twig for each. */ epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs) txh->txh_space_towrite += 3 << dn->dn_indblkshift; } void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg == 0); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_BONUS, 0, 0); if (txh) dmu_tx_count_dnode(txh); } void dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg == 0); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, THT_SPACE, space, 0); txh->txh_space_towrite += space; } int dmu_tx_holds(dmu_tx_t *tx, uint64_t object) { dmu_tx_hold_t *txh; int holds = 0; /* * By asserting that the tx is assigned, we're counting the * number of dn_tx_holds, which is the same as the number of * dn_holds. Otherwise, we'd be counting dn_holds, but * dn_tx_holds could be 0. */ ASSERT(tx->tx_txg != 0); /* if (tx->tx_anyobj == TRUE) */ /* return (0); */ for (txh = list_head(&tx->tx_holds); txh; txh = list_next(&tx->tx_holds, txh)) { if (txh->txh_dnode && txh->txh_dnode->dn_object == object) holds++; } return (holds); } #ifdef ZFS_DEBUG void dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) { dmu_tx_hold_t *txh; int match_object = FALSE, match_offset = FALSE; dnode_t *dn = db->db_dnode; ASSERT(tx->tx_txg != 0); ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset->os); ASSERT3U(dn->dn_object, ==, db->db.db_object); if (tx->tx_anyobj) return; /* XXX No checking on the meta dnode for now */ if (db->db.db_object == DMU_META_DNODE_OBJECT) return; for (txh = list_head(&tx->tx_holds); txh; txh = list_next(&tx->tx_holds, txh)) { ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg); if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT) match_object = TRUE; if (txh->txh_dnode == NULL || txh->txh_dnode == dn) { int datablkshift = dn->dn_datablkshift ? dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; int shift = datablkshift + epbs * db->db_level; uint64_t beginblk = shift >= 64 ? 0 : (txh->txh_arg1 >> shift); uint64_t endblk = shift >= 64 ? 0 : ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift); uint64_t blkid = db->db_blkid; /* XXX txh_arg2 better not be zero... */ dprintf("found txh type %x beginblk=%llx endblk=%llx\n", txh->txh_type, beginblk, endblk); switch (txh->txh_type) { case THT_WRITE: if (blkid >= beginblk && blkid <= endblk) match_offset = TRUE; /* * We will let this hold work for the bonus * buffer so that we don't need to hold it * when creating a new object. */ if (blkid == DB_BONUS_BLKID) match_offset = TRUE; /* * They might have to increase nlevels, * thus dirtying the new TLIBs. Or the * might have to change the block size, * thus dirying the new lvl=0 blk=0. */ if (blkid == 0) match_offset = TRUE; break; case THT_FREE: /* * We will dirty all the level 1 blocks in * the free range and perhaps the first and * last level 0 block. */ if (blkid >= beginblk && (blkid <= endblk || txh->txh_arg2 == DMU_OBJECT_END)) match_offset = TRUE; break; case THT_BONUS: if (blkid == DB_BONUS_BLKID) match_offset = TRUE; break; case THT_ZAP: match_offset = TRUE; break; case THT_NEWOBJECT: match_object = TRUE; break; default: ASSERT(!"bad txh_type"); } } if (match_object && match_offset) return; } panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", (u_longlong_t)db->db.db_object, db->db_level, (u_longlong_t)db->db_blkid); } #endif static int dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how) { dmu_tx_hold_t *txh; spa_t *spa = tx->tx_pool->dp_spa; uint64_t memory, asize, fsize, usize; uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge; ASSERT3U(tx->tx_txg, ==, 0); if (tx->tx_err) return (tx->tx_err); if (spa_state(spa) == POOL_STATE_IO_FAILURE) { /* * If the user has indicated a blocking failure mode * then return ERESTART which will block in dmu_tx_wait(). * Otherwise, return EIO so that an error can get * propagated back to the VOP calls. * * Note that we always honor the txg_how flag regardless * of the failuremode setting. */ if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE && txg_how != TXG_WAIT) return (EIO); return (ERESTART); } tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); tx->tx_needassign_txh = NULL; /* * NB: No error returns are allowed after txg_hold_open, but * before processing the dnode holds, due to the * dmu_tx_unassign() logic. */ towrite = tofree = tooverwrite = tounref = tohold = fudge = 0; for (txh = list_head(&tx->tx_holds); txh; txh = list_next(&tx->tx_holds, txh)) { dnode_t *dn = txh->txh_dnode; if (dn != NULL) { mutex_enter(&dn->dn_mtx); if (dn->dn_assigned_txg == tx->tx_txg - 1) { mutex_exit(&dn->dn_mtx); tx->tx_needassign_txh = txh; return (ERESTART); } if (dn->dn_assigned_txg == 0) dn->dn_assigned_txg = tx->tx_txg; ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); (void) refcount_add(&dn->dn_tx_holds, tx); mutex_exit(&dn->dn_mtx); } towrite += txh->txh_space_towrite; tofree += txh->txh_space_tofree; tooverwrite += txh->txh_space_tooverwrite; tounref += txh->txh_space_tounref; tohold += txh->txh_memory_tohold; fudge += txh->txh_fudge; } /* * NB: This check must be after we've held the dnodes, so that * the dmu_tx_unassign() logic will work properly */ if (txg_how >= TXG_INITIAL && txg_how != tx->tx_txg) return (ERESTART); /* * If a snapshot has been taken since we made our estimates, * assume that we won't be able to free or overwrite anything. */ if (tx->tx_objset && dsl_dataset_prev_snap_txg(tx->tx_objset->os->os_dsl_dataset) > tx->tx_lastsnap_txg) { towrite += tooverwrite; tooverwrite = tofree = 0; } /* needed allocation: worst-case estimate of write space */ asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite); /* freed space estimate: worst-case overwrite + free estimate */ fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree; /* convert unrefd space to worst-case estimate */ usize = spa_get_asize(tx->tx_pool->dp_spa, tounref); /* calculate memory footprint estimate */ memory = towrite + tooverwrite + tohold; #ifdef ZFS_DEBUG /* * Add in 'tohold' to account for our dirty holds on this memory * XXX - the "fudge" factor is to account for skipped blocks that * we missed because dnode_next_offset() misses in-core-only blocks. */ tx->tx_space_towrite = asize + spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge); tx->tx_space_tofree = tofree; tx->tx_space_tooverwrite = tooverwrite; tx->tx_space_tounref = tounref; #endif if (tx->tx_dir && asize != 0) { int err = dsl_dir_tempreserve_space(tx->tx_dir, memory, asize, fsize, usize, &tx->tx_tempreserve_cookie, tx); if (err) return (err); } return (0); } static void dmu_tx_unassign(dmu_tx_t *tx) { dmu_tx_hold_t *txh; if (tx->tx_txg == 0) return; txg_rele_to_quiesce(&tx->tx_txgh); for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh; txh = list_next(&tx->tx_holds, txh)) { dnode_t *dn = txh->txh_dnode; if (dn == NULL) continue; mutex_enter(&dn->dn_mtx); ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { dn->dn_assigned_txg = 0; cv_broadcast(&dn->dn_notxholds); } mutex_exit(&dn->dn_mtx); } txg_rele_to_sync(&tx->tx_txgh); tx->tx_lasttried_txg = tx->tx_txg; tx->tx_txg = 0; } /* * Assign tx to a transaction group. txg_how can be one of: * * (1) TXG_WAIT. If the current open txg is full, waits until there's * a new one. This should be used when you're not holding locks. * If will only fail if we're truly out of space (or over quota). * * (2) TXG_NOWAIT. If we can't assign into the current open txg without * blocking, returns immediately with ERESTART. This should be used * whenever you're holding locks. On an ERESTART error, the caller * should drop locks, do a dmu_tx_wait(tx), and try again. * * (3) A specific txg. Use this if you need to ensure that multiple * transactions all sync in the same txg. Like TXG_NOWAIT, it * returns ERESTART if it can't assign you into the requested txg. */ int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how) { int err; ASSERT(tx->tx_txg == 0); ASSERT(txg_how != 0); ASSERT(!dsl_pool_sync_context(tx->tx_pool)); while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) { dmu_tx_unassign(tx); if (err != ERESTART || txg_how != TXG_WAIT) return (err); dmu_tx_wait(tx); } txg_rele_to_quiesce(&tx->tx_txgh); return (0); } void dmu_tx_wait(dmu_tx_t *tx) { spa_t *spa = tx->tx_pool->dp_spa; ASSERT(tx->tx_txg == 0); /* * It's possible that the pool has become active after this thread * has tried to obtain a tx. If that's the case then his * tx_lasttried_txg would not have been assigned. */ if (spa_state(spa) == POOL_STATE_IO_FAILURE || tx->tx_lasttried_txg == 0) { txg_wait_synced(tx->tx_pool, spa_last_synced_txg(spa) + 1); } else if (tx->tx_needassign_txh) { dnode_t *dn = tx->tx_needassign_txh->txh_dnode; mutex_enter(&dn->dn_mtx); while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1) cv_wait(&dn->dn_notxholds, &dn->dn_mtx); mutex_exit(&dn->dn_mtx); tx->tx_needassign_txh = NULL; } else { txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1); } } void dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta) { #ifdef ZFS_DEBUG if (tx->tx_dir == NULL || delta == 0) return; if (delta > 0) { ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=, tx->tx_space_towrite); (void) refcount_add_many(&tx->tx_space_written, delta, NULL); } else { (void) refcount_add_many(&tx->tx_space_freed, -delta, NULL); } #endif } void dmu_tx_commit(dmu_tx_t *tx) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg != 0); while (txh = list_head(&tx->tx_holds)) { dnode_t *dn = txh->txh_dnode; list_remove(&tx->tx_holds, txh); kmem_free(txh, sizeof (dmu_tx_hold_t)); if (dn == NULL) continue; mutex_enter(&dn->dn_mtx); ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { dn->dn_assigned_txg = 0; cv_broadcast(&dn->dn_notxholds); } mutex_exit(&dn->dn_mtx); dnode_rele(dn, tx); } if (tx->tx_tempreserve_cookie) dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); if (tx->tx_anyobj == FALSE) txg_rele_to_sync(&tx->tx_txgh); list_destroy(&tx->tx_holds); #ifdef ZFS_DEBUG dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n", tx->tx_space_towrite, refcount_count(&tx->tx_space_written), tx->tx_space_tofree, refcount_count(&tx->tx_space_freed)); refcount_destroy_many(&tx->tx_space_written, refcount_count(&tx->tx_space_written)); refcount_destroy_many(&tx->tx_space_freed, refcount_count(&tx->tx_space_freed)); #endif kmem_free(tx, sizeof (dmu_tx_t)); } void dmu_tx_abort(dmu_tx_t *tx) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg == 0); while (txh = list_head(&tx->tx_holds)) { dnode_t *dn = txh->txh_dnode; list_remove(&tx->tx_holds, txh); kmem_free(txh, sizeof (dmu_tx_hold_t)); if (dn != NULL) dnode_rele(dn, tx); } list_destroy(&tx->tx_holds); #ifdef ZFS_DEBUG refcount_destroy_many(&tx->tx_space_written, refcount_count(&tx->tx_space_written)); refcount_destroy_many(&tx->tx_space_freed, refcount_count(&tx->tx_space_freed)); #endif kmem_free(tx, sizeof (dmu_tx_t)); } uint64_t dmu_tx_get_txg(dmu_tx_t *tx) { ASSERT(tx->tx_txg != 0); return (tx->tx_txg); }