/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * AES provider for the Kernel Cryptographic Framework (KCF) */ #include #include #include #include #include #include #include #include #include #include #include extern struct mod_ops mod_cryptoops; /* * Module linkage information for the kernel. */ static struct modlcrypto modlcrypto = { &mod_cryptoops, "AES Kernel SW Provider %I%" }; static struct modlinkage modlinkage = { MODREV_1, (void *)&modlcrypto, NULL }; /* * CSPI information (entry points, provider info, etc.) */ typedef enum aes_mech_type { AES_ECB_MECH_INFO_TYPE, /* SUN_CKM_AES_ECB */ AES_CBC_MECH_INFO_TYPE, /* SUN_CKM_AES_CBC */ AES_CBC_PAD_MECH_INFO_TYPE, /* SUN_CKM_AES_CBC_PAD */ AES_CTR_MECH_INFO_TYPE /* SUN_CKM_AES_CTR */ } aes_mech_type_t; /* * The following definitions are to keep EXPORT_SRC happy. */ #ifndef AES_MIN_KEY_LEN #define AES_MIN_KEY_LEN 0 #endif #ifndef AES_MAX_KEY_LEN #define AES_MAX_KEY_LEN 0 #endif /* * Mechanism info structure passed to KCF during registration. */ static crypto_mech_info_t aes_mech_info_tab[] = { /* AES_ECB */ {SUN_CKM_AES_ECB, AES_ECB_MECH_INFO_TYPE, CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC | CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC, AES_MIN_KEY_LEN, AES_MAX_KEY_LEN, CRYPTO_KEYSIZE_UNIT_IN_BYTES}, /* AES_CBC */ {SUN_CKM_AES_CBC, AES_CBC_MECH_INFO_TYPE, CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC | CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC, AES_MIN_KEY_LEN, AES_MAX_KEY_LEN, CRYPTO_KEYSIZE_UNIT_IN_BYTES}, /* AES_CTR */ {SUN_CKM_AES_CTR, AES_CTR_MECH_INFO_TYPE, CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC | CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC, AES_MIN_KEY_LEN, AES_MAX_KEY_LEN, CRYPTO_KEYSIZE_UNIT_IN_BYTES} }; #define AES_VALID_MECH(mech) \ (((mech)->cm_type == AES_ECB_MECH_INFO_TYPE || \ (mech)->cm_type == AES_CBC_MECH_INFO_TYPE || \ (mech)->cm_type == AES_CTR_MECH_INFO_TYPE) ? 1 : 0) /* operations are in-place if the output buffer is NULL */ #define AES_ARG_INPLACE(input, output) \ if ((output) == NULL) \ (output) = (input); static void aes_provider_status(crypto_provider_handle_t, uint_t *); static crypto_control_ops_t aes_control_ops = { aes_provider_status }; static int aes_common_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t); static int aes_common_init_ctx(aes_ctx_t *, crypto_spi_ctx_template_t *, crypto_mechanism_t *, crypto_key_t *, int); static int aes_encrypt_final(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int aes_decrypt_final(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int aes_encrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *, crypto_req_handle_t); static int aes_encrypt_update(crypto_ctx_t *, crypto_data_t *, crypto_data_t *, crypto_req_handle_t); static int aes_encrypt_atomic(crypto_provider_handle_t, crypto_session_id_t, crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t); static int aes_decrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *, crypto_req_handle_t); static int aes_decrypt_update(crypto_ctx_t *, crypto_data_t *, crypto_data_t *, crypto_req_handle_t); static int aes_decrypt_atomic(crypto_provider_handle_t, crypto_session_id_t, crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t); static crypto_cipher_ops_t aes_cipher_ops = { aes_common_init, aes_encrypt, aes_encrypt_update, aes_encrypt_final, aes_encrypt_atomic, aes_common_init, aes_decrypt, aes_decrypt_update, aes_decrypt_final, aes_decrypt_atomic }; static int aes_create_ctx_template(crypto_provider_handle_t, crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t *, size_t *, crypto_req_handle_t); static int aes_free_context(crypto_ctx_t *); static crypto_ctx_ops_t aes_ctx_ops = { aes_create_ctx_template, aes_free_context }; static crypto_ops_t aes_crypto_ops = { &aes_control_ops, NULL, &aes_cipher_ops, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &aes_ctx_ops }; static crypto_provider_info_t aes_prov_info = { CRYPTO_SPI_VERSION_1, "AES Software Provider", CRYPTO_SW_PROVIDER, {&modlinkage}, NULL, &aes_crypto_ops, sizeof (aes_mech_info_tab)/sizeof (crypto_mech_info_t), aes_mech_info_tab }; static crypto_kcf_provider_handle_t aes_prov_handle = NULL; int _init(void) { int ret; /* * Register with KCF. If the registration fails, return error. */ if ((ret = crypto_register_provider(&aes_prov_info, &aes_prov_handle)) != CRYPTO_SUCCESS) { cmn_err(CE_WARN, "%s _init: crypto_register_provider()" "failed (0x%x)", CRYPTO_PROVIDER_NAME, ret); return (EACCES); } if ((ret = mod_install(&modlinkage)) != 0) { int rv; ASSERT(aes_prov_handle != NULL); /* We should not return if the unregister returns busy. */ while ((rv = crypto_unregister_provider(aes_prov_handle)) == CRYPTO_BUSY) { cmn_err(CE_WARN, "%s _init: crypto_unregister_provider() " "failed (0x%x). Retrying.", CRYPTO_PROVIDER_NAME, rv); /* wait 10 seconds and try again. */ delay(10 * drv_usectohz(1000000)); } } return (ret); } int _fini(void) { int ret; /* * Unregister from KCF if previous registration succeeded. */ if (aes_prov_handle != NULL) { if ((ret = crypto_unregister_provider(aes_prov_handle)) != CRYPTO_SUCCESS) { cmn_err(CE_WARN, "%s _fini: crypto_unregister_provider() " "failed (0x%x)", CRYPTO_PROVIDER_NAME, ret); return (EBUSY); } aes_prov_handle = NULL; } return (mod_remove(&modlinkage)); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } /* EXPORT DELETE START */ /* * Initialize key schedules for AES */ static int init_keysched(crypto_key_t *key, void *newbie) { /* * Only keys by value are supported by this module. */ switch (key->ck_format) { case CRYPTO_KEY_RAW: if (key->ck_length < AES_MINBITS || key->ck_length > AES_MAXBITS) { return (CRYPTO_KEY_SIZE_RANGE); } /* key length must be either 128, 192, or 256 */ if ((key->ck_length & 63) != 0) return (CRYPTO_KEY_SIZE_RANGE); break; default: return (CRYPTO_KEY_TYPE_INCONSISTENT); } aes_init_keysched(key->ck_data, key->ck_length, newbie); return (CRYPTO_SUCCESS); } /* EXPORT DELETE END */ /* * KCF software provider control entry points. */ /* ARGSUSED */ static void aes_provider_status(crypto_provider_handle_t provider, uint_t *status) { *status = CRYPTO_PROVIDER_READY; } /* * KCF software provider encrypt entry points. */ static int aes_common_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_spi_ctx_template_t template, crypto_req_handle_t req) { /* EXPORT DELETE START */ aes_ctx_t *aes_ctx; int rv; int kmflag; /* * Only keys by value are supported by this module. */ if (key->ck_format != CRYPTO_KEY_RAW) { return (CRYPTO_KEY_TYPE_INCONSISTENT); } if (!AES_VALID_MECH(mechanism)) return (CRYPTO_MECHANISM_INVALID); if (mechanism->cm_param != NULL) { if (mechanism->cm_type == AES_CTR_MECH_INFO_TYPE) { if (mechanism->cm_param_len != sizeof (CK_AES_CTR_PARAMS)) return (CRYPTO_MECHANISM_PARAM_INVALID); } else { if (mechanism->cm_param_len != AES_BLOCK_LEN) return (CRYPTO_MECHANISM_PARAM_INVALID); } } /* * Allocate an AES context. */ kmflag = crypto_kmflag(req); if ((aes_ctx = kmem_zalloc(sizeof (aes_ctx_t), kmflag)) == NULL) return (CRYPTO_HOST_MEMORY); rv = aes_common_init_ctx(aes_ctx, template, mechanism, key, kmflag); if (rv != CRYPTO_SUCCESS) { kmem_free(aes_ctx, sizeof (aes_ctx_t)); return (rv); } ctx->cc_provider_private = aes_ctx; /* EXPORT DELETE END */ return (CRYPTO_SUCCESS); } /* * Helper AES encrypt update function for iov input data. */ static int aes_cipher_update_iov(aes_ctx_t *aes_ctx, crypto_data_t *input, crypto_data_t *output, int (*cipher)(aes_ctx_t *, caddr_t, size_t, crypto_data_t *)) { int rv; /* EXPORT DELETE START */ if (input->cd_miscdata != NULL) { if (IS_P2ALIGNED(input->cd_miscdata, sizeof (uint64_t))) { /* LINTED: pointer alignment */ aes_ctx->ac_iv[0] = *(uint64_t *)input->cd_miscdata; /* LINTED: pointer alignment */ aes_ctx->ac_iv[1] = *(uint64_t *)&input->cd_miscdata[8]; } else { uint8_t *miscdata8 = (uint8_t *)&input->cd_miscdata[0]; uint8_t *iv8 = (uint8_t *)&aes_ctx->ac_iv[0]; AES_COPY_BLOCK(miscdata8, iv8); } } if (input->cd_raw.iov_len < input->cd_length) return (CRYPTO_ARGUMENTS_BAD); rv = (cipher)(aes_ctx, input->cd_raw.iov_base + input->cd_offset, input->cd_length, (input == output) ? NULL : output); /* EXPORT DELETE END */ return (rv); } /* * Helper AES encrypt update function for uio input data. */ static int aes_cipher_update_uio(aes_ctx_t *aes_ctx, crypto_data_t *input, crypto_data_t *output, int (*cipher)(aes_ctx_t *, caddr_t, size_t, crypto_data_t *)) { /* EXPORT DELETE START */ uio_t *uiop = input->cd_uio; off_t offset = input->cd_offset; size_t length = input->cd_length; uint_t vec_idx; size_t cur_len; if (input->cd_miscdata != NULL) { if (IS_P2ALIGNED(input->cd_miscdata, sizeof (uint64_t))) { /* LINTED: pointer alignment */ aes_ctx->ac_iv[0] = *(uint64_t *)input->cd_miscdata; /* LINTED: pointer alignment */ aes_ctx->ac_iv[1] = *(uint64_t *)&input->cd_miscdata[8]; } else { uint8_t *miscdata8 = (uint8_t *)&input->cd_miscdata[0]; uint8_t *iv8 = (uint8_t *)&aes_ctx->ac_iv[0]; AES_COPY_BLOCK(miscdata8, iv8); } } if (input->cd_uio->uio_segflg != UIO_SYSSPACE) { return (CRYPTO_ARGUMENTS_BAD); } /* * Jump to the first iovec containing data to be * processed. */ for (vec_idx = 0; vec_idx < uiop->uio_iovcnt && offset >= uiop->uio_iov[vec_idx].iov_len; offset -= uiop->uio_iov[vec_idx++].iov_len); if (vec_idx == uiop->uio_iovcnt) { /* * The caller specified an offset that is larger than the * total size of the buffers it provided. */ return (CRYPTO_DATA_LEN_RANGE); } /* * Now process the iovecs. */ while (vec_idx < uiop->uio_iovcnt && length > 0) { cur_len = MIN(uiop->uio_iov[vec_idx].iov_len - offset, length); (cipher)(aes_ctx, uiop->uio_iov[vec_idx].iov_base + offset, cur_len, (input == output) ? NULL : output); length -= cur_len; vec_idx++; offset = 0; } if (vec_idx == uiop->uio_iovcnt && length > 0) { /* * The end of the specified iovec's was reached but * the length requested could not be processed, i.e. * The caller requested to digest more data than it provided. */ return (CRYPTO_DATA_LEN_RANGE); } /* EXPORT DELETE END */ return (CRYPTO_SUCCESS); } /* * Helper AES encrypt update function for mblk input data. */ static int aes_cipher_update_mp(aes_ctx_t *aes_ctx, crypto_data_t *input, crypto_data_t *output, int (*cipher)(aes_ctx_t *, caddr_t, size_t, crypto_data_t *)) { /* EXPORT DELETE START */ off_t offset = input->cd_offset; size_t length = input->cd_length; mblk_t *mp; size_t cur_len; if (input->cd_miscdata != NULL) { if (IS_P2ALIGNED(input->cd_miscdata, sizeof (uint64_t))) { /* LINTED: pointer alignment */ aes_ctx->ac_iv[0] = *(uint64_t *)input->cd_miscdata; /* LINTED: pointer alignment */ aes_ctx->ac_iv[1] = *(uint64_t *)&input->cd_miscdata[8]; } else { uint8_t *miscdata8 = (uint8_t *)&input->cd_miscdata[0]; uint8_t *iv8 = (uint8_t *)&aes_ctx->ac_iv[0]; AES_COPY_BLOCK(miscdata8, iv8); } } /* * Jump to the first mblk_t containing data to be processed. */ for (mp = input->cd_mp; mp != NULL && offset >= MBLKL(mp); offset -= MBLKL(mp), mp = mp->b_cont); if (mp == NULL) { /* * The caller specified an offset that is larger than the * total size of the buffers it provided. */ return (CRYPTO_DATA_LEN_RANGE); } /* * Now do the processing on the mblk chain. */ while (mp != NULL && length > 0) { cur_len = MIN(MBLKL(mp) - offset, length); (cipher)(aes_ctx, (char *)(mp->b_rptr + offset), cur_len, (input == output) ? NULL : output); length -= cur_len; offset = 0; mp = mp->b_cont; } if (mp == NULL && length > 0) { /* * The end of the mblk was reached but the length requested * could not be processed, i.e. The caller requested * to digest more data than it provided. */ return (CRYPTO_DATA_LEN_RANGE); } /* EXPORT DELETE END */ return (CRYPTO_SUCCESS); } /* ARGSUSED */ static int aes_encrypt(crypto_ctx_t *ctx, crypto_data_t *plaintext, crypto_data_t *ciphertext, crypto_req_handle_t req) { int ret = CRYPTO_FAILED; /* EXPORT DELETE START */ aes_ctx_t *aes_ctx; ASSERT(ctx->cc_provider_private != NULL); aes_ctx = ctx->cc_provider_private; /* * For block ciphers, plaintext must be a multiple of AES block size. * This test is only valid for ciphers whose blocksize is a power of 2. */ if (((aes_ctx->ac_flags & AES_CTR_MODE) == 0) && (plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0) return (CRYPTO_DATA_LEN_RANGE); AES_ARG_INPLACE(plaintext, ciphertext); /* * We need to just return the length needed to store the output. * We should not destroy the context for the following case. */ if (ciphertext->cd_length < plaintext->cd_length) { ciphertext->cd_length = plaintext->cd_length; return (CRYPTO_BUFFER_TOO_SMALL); } /* * Do an update on the specified input data. */ ret = aes_encrypt_update(ctx, plaintext, ciphertext, req); ASSERT(aes_ctx->ac_remainder_len == 0); (void) aes_free_context(ctx); /* EXPORT DELETE END */ /* LINTED */ return (ret); } /* ARGSUSED */ static int aes_decrypt(crypto_ctx_t *ctx, crypto_data_t *ciphertext, crypto_data_t *plaintext, crypto_req_handle_t req) { int ret = CRYPTO_FAILED; /* EXPORT DELETE START */ aes_ctx_t *aes_ctx; ASSERT(ctx->cc_provider_private != NULL); aes_ctx = ctx->cc_provider_private; /* * For block ciphers, ciphertext must be a multiple of AES block size. * This test is only valid for ciphers whose blocksize is a power of 2. */ if (((aes_ctx->ac_flags & AES_CTR_MODE) == 0) && (ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0) return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE); AES_ARG_INPLACE(ciphertext, plaintext); /* * We need to just return the length needed to store the output. * We should not destroy the context for the following case. */ if (plaintext->cd_length < ciphertext->cd_length) { plaintext->cd_length = ciphertext->cd_length; return (CRYPTO_BUFFER_TOO_SMALL); } /* * Do an update on the specified input data. */ ret = aes_decrypt_update(ctx, ciphertext, plaintext, req); ASSERT(aes_ctx->ac_remainder_len == 0); (void) aes_free_context(ctx); /* EXPORT DELETE END */ /* LINTED */ return (ret); } /* ARGSUSED */ static int aes_encrypt_update(crypto_ctx_t *ctx, crypto_data_t *plaintext, crypto_data_t *ciphertext, crypto_req_handle_t req) { off_t saved_offset; size_t saved_length, out_len; int ret = CRYPTO_SUCCESS; aes_ctx_t *aes_ctx; ASSERT(ctx->cc_provider_private != NULL); AES_ARG_INPLACE(plaintext, ciphertext); /* compute number of bytes that will hold the ciphertext */ out_len = ((aes_ctx_t *)ctx->cc_provider_private)->ac_remainder_len; out_len += plaintext->cd_length; out_len &= ~(AES_BLOCK_LEN - 1); /* return length needed to store the output */ if (ciphertext->cd_length < out_len) { ciphertext->cd_length = out_len; return (CRYPTO_BUFFER_TOO_SMALL); } saved_offset = ciphertext->cd_offset; saved_length = ciphertext->cd_length; /* * Do the AES update on the specified input data. */ switch (plaintext->cd_format) { case CRYPTO_DATA_RAW: ret = aes_cipher_update_iov(ctx->cc_provider_private, plaintext, ciphertext, aes_encrypt_contiguous_blocks); break; case CRYPTO_DATA_UIO: ret = aes_cipher_update_uio(ctx->cc_provider_private, plaintext, ciphertext, aes_encrypt_contiguous_blocks); break; case CRYPTO_DATA_MBLK: ret = aes_cipher_update_mp(ctx->cc_provider_private, plaintext, ciphertext, aes_encrypt_contiguous_blocks); break; default: ret = CRYPTO_ARGUMENTS_BAD; } /* * Since AES counter mode is a stream cipher, we call * aes_counter_final() to pick up any remaining bytes. * It is an internal function that does not destroy * the context like *normal* final routines. */ aes_ctx = ctx->cc_provider_private; if ((aes_ctx->ac_flags & AES_CTR_MODE) && (aes_ctx->ac_remainder_len > 0)) { ret = aes_counter_final(aes_ctx, ciphertext); } if (ret == CRYPTO_SUCCESS) { if (plaintext != ciphertext) ciphertext->cd_length = ciphertext->cd_offset - saved_offset; } else { ciphertext->cd_length = saved_length; } ciphertext->cd_offset = saved_offset; return (ret); } /* ARGSUSED */ static int aes_decrypt_update(crypto_ctx_t *ctx, crypto_data_t *ciphertext, crypto_data_t *plaintext, crypto_req_handle_t req) { off_t saved_offset; size_t saved_length, out_len; int ret = CRYPTO_SUCCESS; aes_ctx_t *aes_ctx; ASSERT(ctx->cc_provider_private != NULL); AES_ARG_INPLACE(ciphertext, plaintext); /* compute number of bytes that will hold the plaintext */ out_len = ((aes_ctx_t *)ctx->cc_provider_private)->ac_remainder_len; out_len += ciphertext->cd_length; out_len &= ~(AES_BLOCK_LEN - 1); /* return length needed to store the output */ if (plaintext->cd_length < out_len) { plaintext->cd_length = out_len; return (CRYPTO_BUFFER_TOO_SMALL); } saved_offset = plaintext->cd_offset; saved_length = plaintext->cd_length; /* * Do the AES update on the specified input data. */ switch (ciphertext->cd_format) { case CRYPTO_DATA_RAW: ret = aes_cipher_update_iov(ctx->cc_provider_private, ciphertext, plaintext, aes_decrypt_contiguous_blocks); break; case CRYPTO_DATA_UIO: ret = aes_cipher_update_uio(ctx->cc_provider_private, ciphertext, plaintext, aes_decrypt_contiguous_blocks); break; case CRYPTO_DATA_MBLK: ret = aes_cipher_update_mp(ctx->cc_provider_private, ciphertext, plaintext, aes_decrypt_contiguous_blocks); break; default: ret = CRYPTO_ARGUMENTS_BAD; } /* * Since AES counter mode is a stream cipher, we call * aes_counter_final() to pick up any remaining bytes. * It is an internal function that does not destroy * the context like *normal* final routines. */ aes_ctx = ctx->cc_provider_private; if ((aes_ctx->ac_flags & AES_CTR_MODE) && (aes_ctx->ac_remainder_len > 0)) { ret = aes_counter_final(aes_ctx, plaintext); } if (ret == CRYPTO_SUCCESS) { if (ciphertext != plaintext) plaintext->cd_length = plaintext->cd_offset - saved_offset; } else { plaintext->cd_length = saved_length; } plaintext->cd_offset = saved_offset; return (ret); } /* ARGSUSED */ static int aes_encrypt_final(crypto_ctx_t *ctx, crypto_data_t *data, crypto_req_handle_t req) { /* EXPORT DELETE START */ aes_ctx_t *aes_ctx; int ret; ASSERT(ctx->cc_provider_private != NULL); aes_ctx = ctx->cc_provider_private; if (data->cd_format != CRYPTO_DATA_RAW && data->cd_format != CRYPTO_DATA_UIO && data->cd_format != CRYPTO_DATA_MBLK) { return (CRYPTO_ARGUMENTS_BAD); } /* * There must be no unprocessed plaintext. * This happens if the length of the last data is * not a multiple of the AES block length. */ if (aes_ctx->ac_remainder_len > 0) { if ((aes_ctx->ac_flags & AES_CTR_MODE) == 0) return (CRYPTO_DATA_LEN_RANGE); else { ret = aes_counter_final(aes_ctx, data); if (ret != CRYPTO_SUCCESS) return (ret); } } if ((aes_ctx->ac_flags & AES_CTR_MODE) == 0) data->cd_length = 0; (void) aes_free_context(ctx); /* EXPORT DELETE END */ return (CRYPTO_SUCCESS); } /* ARGSUSED */ static int aes_decrypt_final(crypto_ctx_t *ctx, crypto_data_t *data, crypto_req_handle_t req) { /* EXPORT DELETE START */ aes_ctx_t *aes_ctx; int ret; ASSERT(ctx->cc_provider_private != NULL); aes_ctx = ctx->cc_provider_private; if (data->cd_format != CRYPTO_DATA_RAW && data->cd_format != CRYPTO_DATA_UIO && data->cd_format != CRYPTO_DATA_MBLK) { return (CRYPTO_ARGUMENTS_BAD); } /* * There must be no unprocessed ciphertext. * This happens if the length of the last ciphertext is * not a multiple of the AES block length. */ if (aes_ctx->ac_remainder_len > 0) { if ((aes_ctx->ac_flags & AES_CTR_MODE) == 0) return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE); else { ret = aes_counter_final(aes_ctx, data); if (ret != CRYPTO_SUCCESS) return (ret); } } if ((aes_ctx->ac_flags & AES_CTR_MODE) == 0) data->cd_length = 0; (void) aes_free_context(ctx); /* EXPORT DELETE END */ return (CRYPTO_SUCCESS); } /* ARGSUSED */ static int aes_encrypt_atomic(crypto_provider_handle_t provider, crypto_session_id_t session_id, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_data_t *plaintext, crypto_data_t *ciphertext, crypto_spi_ctx_template_t template, crypto_req_handle_t req) { aes_ctx_t aes_ctx; /* on the stack */ off_t saved_offset; size_t saved_length; int ret; AES_ARG_INPLACE(plaintext, ciphertext); if (mechanism->cm_type != AES_CTR_MECH_INFO_TYPE) { /* * Plaintext must be a multiple of AES block size. * This test only works for non-padded mechanisms * when blocksize is 2^N. */ if ((plaintext->cd_length & (AES_BLOCK_LEN - 1)) != 0) return (CRYPTO_DATA_LEN_RANGE); } /* return length needed to store the output */ if (ciphertext->cd_length < plaintext->cd_length) { ciphertext->cd_length = plaintext->cd_length; return (CRYPTO_BUFFER_TOO_SMALL); } if (!AES_VALID_MECH(mechanism)) return (CRYPTO_MECHANISM_INVALID); if (mechanism->cm_param != NULL) { if (mechanism->cm_type == AES_CTR_MECH_INFO_TYPE) { if (mechanism->cm_param_len != sizeof (CK_AES_CTR_PARAMS)) return (CRYPTO_MECHANISM_PARAM_INVALID); } else { if (mechanism->cm_param_len != AES_BLOCK_LEN) return (CRYPTO_MECHANISM_PARAM_INVALID); } } bzero(&aes_ctx, sizeof (aes_ctx_t)); ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key, crypto_kmflag(req)); if (ret != CRYPTO_SUCCESS) return (ret); saved_offset = ciphertext->cd_offset; saved_length = ciphertext->cd_length; /* * Do an update on the specified input data. */ switch (plaintext->cd_format) { case CRYPTO_DATA_RAW: ret = aes_cipher_update_iov(&aes_ctx, plaintext, ciphertext, aes_encrypt_contiguous_blocks); break; case CRYPTO_DATA_UIO: ret = aes_cipher_update_uio(&aes_ctx, plaintext, ciphertext, aes_encrypt_contiguous_blocks); break; case CRYPTO_DATA_MBLK: ret = aes_cipher_update_mp(&aes_ctx, plaintext, ciphertext, aes_encrypt_contiguous_blocks); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret == CRYPTO_SUCCESS) { if (mechanism->cm_type != AES_CTR_MECH_INFO_TYPE) { ASSERT(aes_ctx.ac_remainder_len == 0); if (plaintext != ciphertext) ciphertext->cd_length = ciphertext->cd_offset - saved_offset; } else { if (aes_ctx.ac_remainder_len > 0) { ret = aes_counter_final(&aes_ctx, ciphertext); if (ret != CRYPTO_SUCCESS) goto out; } if (plaintext != ciphertext) ciphertext->cd_length = ciphertext->cd_offset - saved_offset; } } else { ciphertext->cd_length = saved_length; } ciphertext->cd_offset = saved_offset; out: if (aes_ctx.ac_flags & AES_PROVIDER_OWNS_KEY_SCHEDULE) { bzero(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len); kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len); } return (ret); } /* ARGSUSED */ static int aes_decrypt_atomic(crypto_provider_handle_t provider, crypto_session_id_t session_id, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_data_t *ciphertext, crypto_data_t *plaintext, crypto_spi_ctx_template_t template, crypto_req_handle_t req) { aes_ctx_t aes_ctx; /* on the stack */ off_t saved_offset; size_t saved_length; int ret; AES_ARG_INPLACE(ciphertext, plaintext); if (mechanism->cm_type != AES_CTR_MECH_INFO_TYPE) { /* * Ciphertext must be a multiple of AES block size. * This test only works for non-padded mechanisms * when blocksize is 2^N. */ if ((ciphertext->cd_length & (AES_BLOCK_LEN - 1)) != 0) return (CRYPTO_DATA_LEN_RANGE); } /* return length needed to store the output */ if (plaintext->cd_length < ciphertext->cd_length) { plaintext->cd_length = ciphertext->cd_length; return (CRYPTO_BUFFER_TOO_SMALL); } if (!AES_VALID_MECH(mechanism)) return (CRYPTO_MECHANISM_INVALID); if (mechanism->cm_param != NULL) { if (mechanism->cm_type == AES_CTR_MECH_INFO_TYPE) { if (mechanism->cm_param_len != sizeof (CK_AES_CTR_PARAMS)) return (CRYPTO_MECHANISM_PARAM_INVALID); } else { if (mechanism->cm_param_len != AES_BLOCK_LEN) return (CRYPTO_MECHANISM_PARAM_INVALID); } } bzero(&aes_ctx, sizeof (aes_ctx_t)); ret = aes_common_init_ctx(&aes_ctx, template, mechanism, key, crypto_kmflag(req)); if (ret != CRYPTO_SUCCESS) return (ret); saved_offset = plaintext->cd_offset; saved_length = plaintext->cd_length; /* * Do an update on the specified input data. */ switch (ciphertext->cd_format) { case CRYPTO_DATA_RAW: ret = aes_cipher_update_iov(&aes_ctx, ciphertext, plaintext, aes_decrypt_contiguous_blocks); break; case CRYPTO_DATA_UIO: ret = aes_cipher_update_uio(&aes_ctx, ciphertext, plaintext, aes_decrypt_contiguous_blocks); break; case CRYPTO_DATA_MBLK: ret = aes_cipher_update_mp(&aes_ctx, ciphertext, plaintext, aes_decrypt_contiguous_blocks); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret == CRYPTO_SUCCESS) { if (mechanism->cm_type != AES_CTR_MECH_INFO_TYPE) { ASSERT(aes_ctx.ac_remainder_len == 0); if (ciphertext != plaintext) plaintext->cd_length = plaintext->cd_offset - saved_offset; } else { if (aes_ctx.ac_remainder_len > 0) { ret = aes_counter_final(&aes_ctx, plaintext); if (ret != CRYPTO_SUCCESS) goto out; } if (ciphertext != plaintext) plaintext->cd_length = plaintext->cd_offset - saved_offset; } } else { plaintext->cd_length = saved_length; } plaintext->cd_offset = saved_offset; out: if (aes_ctx.ac_flags & AES_PROVIDER_OWNS_KEY_SCHEDULE) { bzero(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len); kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len); } return (ret); } /* * KCF software provider context template entry points. */ /* ARGSUSED */ static int aes_create_ctx_template(crypto_provider_handle_t provider, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_spi_ctx_template_t *tmpl, size_t *tmpl_size, crypto_req_handle_t req) { /* EXPORT DELETE START */ void *keysched; size_t size; int rv; if (!AES_VALID_MECH(mechanism)) return (CRYPTO_MECHANISM_INVALID); if ((keysched = aes_alloc_keysched(&size, crypto_kmflag(req))) == NULL) { return (CRYPTO_HOST_MEMORY); } /* * Initialize key schedule. Key length information is stored * in the key. */ if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) { bzero(keysched, size); kmem_free(keysched, size); return (rv); } *tmpl = keysched; *tmpl_size = size; /* EXPORT DELETE END */ return (CRYPTO_SUCCESS); } /* ARGSUSED */ static int aes_free_context(crypto_ctx_t *ctx) { /* EXPORT DELETE START */ aes_ctx_t *aes_ctx = ctx->cc_provider_private; if (aes_ctx != NULL) { if (aes_ctx->ac_flags & AES_PROVIDER_OWNS_KEY_SCHEDULE) { ASSERT(aes_ctx->ac_keysched_len != 0); bzero(aes_ctx->ac_keysched, aes_ctx->ac_keysched_len); kmem_free(aes_ctx->ac_keysched, aes_ctx->ac_keysched_len); } kmem_free(aes_ctx, sizeof (aes_ctx_t)); ctx->cc_provider_private = NULL; } /* EXPORT DELETE END */ return (CRYPTO_SUCCESS); } /* ARGSUSED */ static int aes_common_init_ctx(aes_ctx_t *aes_ctx, crypto_spi_ctx_template_t *template, crypto_mechanism_t *mechanism, crypto_key_t *key, int kmflag) { int rv = CRYPTO_SUCCESS; /* EXPORT DELETE START */ void *keysched; size_t size; aes_ctx->ac_flags = 0; if (mechanism->cm_type == AES_CBC_MECH_INFO_TYPE) { /* * Copy 128-bit IV into context. * * If cm_param == NULL then the IV comes from the * cd_miscdata field in the crypto_data structure. */ if (mechanism->cm_param != NULL) { ASSERT(mechanism->cm_param_len == AES_BLOCK_LEN); if (IS_P2ALIGNED(mechanism->cm_param, sizeof (uint64_t))) { uint64_t *param64; param64 = (uint64_t *)mechanism->cm_param; aes_ctx->ac_iv[0] = *param64++; aes_ctx->ac_iv[1] = *param64; } else { uint8_t *iv8; uint8_t *p8; iv8 = (uint8_t *)&aes_ctx->ac_iv; p8 = (uint8_t *)&mechanism->cm_param[0]; iv8[0] = p8[0]; iv8[1] = p8[1]; iv8[2] = p8[2]; iv8[3] = p8[3]; iv8[4] = p8[4]; iv8[5] = p8[5]; iv8[6] = p8[6]; iv8[7] = p8[7]; iv8[8] = p8[8]; iv8[9] = p8[9]; iv8[10] = p8[10]; iv8[11] = p8[11]; iv8[12] = p8[12]; iv8[13] = p8[13]; iv8[14] = p8[14]; iv8[15] = p8[15]; } } aes_ctx->ac_lastp = (uint8_t *)&aes_ctx->ac_iv[0]; aes_ctx->ac_flags |= AES_CBC_MODE; } else if (mechanism->cm_type == AES_CTR_MECH_INFO_TYPE) { if (mechanism->cm_param != NULL) { CK_AES_CTR_PARAMS *pp; uint64_t mask = 0; ulong_t count; uint8_t *iv8; uint8_t *p8; pp = (CK_AES_CTR_PARAMS *)mechanism->cm_param; iv8 = (uint8_t *)&aes_ctx->ac_iv; p8 = (uint8_t *)&pp->cb[0]; /* XXX what to do about miscdata */ count = pp->ulCounterBits; if (count == 0 || count > 64) { return (CRYPTO_MECHANISM_PARAM_INVALID); } while (count-- > 0) mask |= (1ULL << count); aes_ctx->ac_counter_mask = mask; iv8[0] = p8[0]; iv8[1] = p8[1]; iv8[2] = p8[2]; iv8[3] = p8[3]; iv8[4] = p8[4]; iv8[5] = p8[5]; iv8[6] = p8[6]; iv8[7] = p8[7]; iv8[8] = p8[8]; iv8[9] = p8[9]; iv8[10] = p8[10]; iv8[11] = p8[11]; iv8[12] = p8[12]; iv8[13] = p8[13]; iv8[14] = p8[14]; iv8[15] = p8[15]; } else { return (CRYPTO_MECHANISM_PARAM_INVALID); } aes_ctx->ac_lastp = (uint8_t *)&aes_ctx->ac_iv[0]; aes_ctx->ac_flags |= AES_CTR_MODE; } else { aes_ctx->ac_flags |= AES_ECB_MODE; } if (template == NULL) { if ((keysched = aes_alloc_keysched(&size, kmflag)) == NULL) return (CRYPTO_HOST_MEMORY); /* * Initialize key schedule. * Key length is stored in the key. */ if ((rv = init_keysched(key, keysched)) != CRYPTO_SUCCESS) kmem_free(keysched, size); aes_ctx->ac_flags |= AES_PROVIDER_OWNS_KEY_SCHEDULE; aes_ctx->ac_keysched_len = size; } else { keysched = template; } aes_ctx->ac_keysched = keysched; /* EXPORT DELETE END */ return (rv); }