/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "libzfs_impl.h" #include "zfs_deleg.h" static int userquota_propname_decode(const char *propname, boolean_t zoned, zfs_userquota_prop_t *typep, char *domain, int domainlen, uint64_t *ridp); /* * Given a single type (not a mask of types), return the type in a human * readable form. */ const char * zfs_type_to_name(zfs_type_t type) { switch (type) { case ZFS_TYPE_FILESYSTEM: return (dgettext(TEXT_DOMAIN, "filesystem")); case ZFS_TYPE_SNAPSHOT: return (dgettext(TEXT_DOMAIN, "snapshot")); case ZFS_TYPE_VOLUME: return (dgettext(TEXT_DOMAIN, "volume")); } return (NULL); } /* * Given a path and mask of ZFS types, return a string describing this dataset. * This is used when we fail to open a dataset and we cannot get an exact type. * We guess what the type would have been based on the path and the mask of * acceptable types. */ static const char * path_to_str(const char *path, int types) { /* * When given a single type, always report the exact type. */ if (types == ZFS_TYPE_SNAPSHOT) return (dgettext(TEXT_DOMAIN, "snapshot")); if (types == ZFS_TYPE_FILESYSTEM) return (dgettext(TEXT_DOMAIN, "filesystem")); if (types == ZFS_TYPE_VOLUME) return (dgettext(TEXT_DOMAIN, "volume")); /* * The user is requesting more than one type of dataset. If this is the * case, consult the path itself. If we're looking for a snapshot, and * a '@' is found, then report it as "snapshot". Otherwise, remove the * snapshot attribute and try again. */ if (types & ZFS_TYPE_SNAPSHOT) { if (strchr(path, '@') != NULL) return (dgettext(TEXT_DOMAIN, "snapshot")); return (path_to_str(path, types & ~ZFS_TYPE_SNAPSHOT)); } /* * The user has requested either filesystems or volumes. * We have no way of knowing a priori what type this would be, so always * report it as "filesystem" or "volume", our two primitive types. */ if (types & ZFS_TYPE_FILESYSTEM) return (dgettext(TEXT_DOMAIN, "filesystem")); assert(types & ZFS_TYPE_VOLUME); return (dgettext(TEXT_DOMAIN, "volume")); } /* * Validate a ZFS path. This is used even before trying to open the dataset, to * provide a more meaningful error message. We call zfs_error_aux() to * explain exactly why the name was not valid. */ static int zfs_validate_name(libzfs_handle_t *hdl, const char *path, int type, boolean_t modifying) { namecheck_err_t why; char what; if (dataset_namecheck(path, &why, &what) != 0) { if (hdl != NULL) { switch (why) { case NAME_ERR_TOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is too long")); break; case NAME_ERR_LEADING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "leading slash in name")); break; case NAME_ERR_EMPTY_COMPONENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "empty component in name")); break; case NAME_ERR_TRAILING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "trailing slash in name")); break; case NAME_ERR_INVALCHAR: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid character " "'%c' in name"), what); break; case NAME_ERR_MULTIPLE_AT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "multiple '@' delimiters in name")); break; case NAME_ERR_NOLETTER: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool doesn't begin with a letter")); break; case NAME_ERR_RESERVED: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is reserved")); break; case NAME_ERR_DISKLIKE: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "reserved disk name")); break; } } return (0); } if (!(type & ZFS_TYPE_SNAPSHOT) && strchr(path, '@') != NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshot delimiter '@' in filesystem name")); return (0); } if (type == ZFS_TYPE_SNAPSHOT && strchr(path, '@') == NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing '@' delimiter in snapshot name")); return (0); } if (modifying && strchr(path, '%') != NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid character %c in name"), '%'); return (0); } return (-1); } int zfs_name_valid(const char *name, zfs_type_t type) { if (type == ZFS_TYPE_POOL) return (zpool_name_valid(NULL, B_FALSE, name)); return (zfs_validate_name(NULL, name, type, B_FALSE)); } /* * This function takes the raw DSL properties, and filters out the user-defined * properties into a separate nvlist. */ static nvlist_t * process_user_props(zfs_handle_t *zhp, nvlist_t *props) { libzfs_handle_t *hdl = zhp->zfs_hdl; nvpair_t *elem; nvlist_t *propval; nvlist_t *nvl; if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { if (!zfs_prop_user(nvpair_name(elem))) continue; verify(nvpair_value_nvlist(elem, &propval) == 0); if (nvlist_add_nvlist(nvl, nvpair_name(elem), propval) != 0) { nvlist_free(nvl); (void) no_memory(hdl); return (NULL); } } return (nvl); } static zpool_handle_t * zpool_add_handle(zfs_handle_t *zhp, const char *pool_name) { libzfs_handle_t *hdl = zhp->zfs_hdl; zpool_handle_t *zph; if ((zph = zpool_open_canfail(hdl, pool_name)) != NULL) { if (hdl->libzfs_pool_handles != NULL) zph->zpool_next = hdl->libzfs_pool_handles; hdl->libzfs_pool_handles = zph; } return (zph); } static zpool_handle_t * zpool_find_handle(zfs_handle_t *zhp, const char *pool_name, int len) { libzfs_handle_t *hdl = zhp->zfs_hdl; zpool_handle_t *zph = hdl->libzfs_pool_handles; while ((zph != NULL) && (strncmp(pool_name, zpool_get_name(zph), len) != 0)) zph = zph->zpool_next; return (zph); } /* * Returns a handle to the pool that contains the provided dataset. * If a handle to that pool already exists then that handle is returned. * Otherwise, a new handle is created and added to the list of handles. */ static zpool_handle_t * zpool_handle(zfs_handle_t *zhp) { char *pool_name; int len; zpool_handle_t *zph; len = strcspn(zhp->zfs_name, "/@") + 1; pool_name = zfs_alloc(zhp->zfs_hdl, len); (void) strlcpy(pool_name, zhp->zfs_name, len); zph = zpool_find_handle(zhp, pool_name, len); if (zph == NULL) zph = zpool_add_handle(zhp, pool_name); free(pool_name); return (zph); } void zpool_free_handles(libzfs_handle_t *hdl) { zpool_handle_t *next, *zph = hdl->libzfs_pool_handles; while (zph != NULL) { next = zph->zpool_next; zpool_close(zph); zph = next; } hdl->libzfs_pool_handles = NULL; } /* * Utility function to gather stats (objset and zpl) for the given object. */ static int get_stats_ioctl(zfs_handle_t *zhp, zfs_cmd_t *zc) { libzfs_handle_t *hdl = zhp->zfs_hdl; (void) strlcpy(zc->zc_name, zhp->zfs_name, sizeof (zc->zc_name)); while (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, zc) != 0) { if (errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, zc) != 0) { return (-1); } } else { return (-1); } } return (0); } /* * Utility function to get the received properties of the given object. */ static int get_recvd_props_ioctl(zfs_handle_t *zhp) { libzfs_handle_t *hdl = zhp->zfs_hdl; nvlist_t *recvdprops; zfs_cmd_t zc = { 0 }; int err; if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0) return (-1); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); while (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_RECVD_PROPS, &zc) != 0) { if (errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { return (-1); } } else { zcmd_free_nvlists(&zc); return (-1); } } err = zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &recvdprops); zcmd_free_nvlists(&zc); if (err != 0) return (-1); nvlist_free(zhp->zfs_recvd_props); zhp->zfs_recvd_props = recvdprops; return (0); } static int put_stats_zhdl(zfs_handle_t *zhp, zfs_cmd_t *zc) { nvlist_t *allprops, *userprops; zhp->zfs_dmustats = zc->zc_objset_stats; /* structure assignment */ if (zcmd_read_dst_nvlist(zhp->zfs_hdl, zc, &allprops) != 0) { return (-1); } /* * XXX Why do we store the user props separately, in addition to * storing them in zfs_props? */ if ((userprops = process_user_props(zhp, allprops)) == NULL) { nvlist_free(allprops); return (-1); } nvlist_free(zhp->zfs_props); nvlist_free(zhp->zfs_user_props); zhp->zfs_props = allprops; zhp->zfs_user_props = userprops; return (0); } static int get_stats(zfs_handle_t *zhp) { int rc = 0; zfs_cmd_t zc = { 0 }; if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); if (get_stats_ioctl(zhp, &zc) != 0) rc = -1; else if (put_stats_zhdl(zhp, &zc) != 0) rc = -1; zcmd_free_nvlists(&zc); return (rc); } /* * Refresh the properties currently stored in the handle. */ void zfs_refresh_properties(zfs_handle_t *zhp) { (void) get_stats(zhp); } /* * Makes a handle from the given dataset name. Used by zfs_open() and * zfs_iter_* to create child handles on the fly. */ static int make_dataset_handle_common(zfs_handle_t *zhp, zfs_cmd_t *zc) { if (put_stats_zhdl(zhp, zc) != 0) return (-1); /* * We've managed to open the dataset and gather statistics. Determine * the high-level type. */ if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL) zhp->zfs_head_type = ZFS_TYPE_VOLUME; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS) zhp->zfs_head_type = ZFS_TYPE_FILESYSTEM; else abort(); if (zhp->zfs_dmustats.dds_is_snapshot) zhp->zfs_type = ZFS_TYPE_SNAPSHOT; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL) zhp->zfs_type = ZFS_TYPE_VOLUME; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS) zhp->zfs_type = ZFS_TYPE_FILESYSTEM; else abort(); /* we should never see any other types */ if ((zhp->zpool_hdl = zpool_handle(zhp)) == NULL) return (-1); return (0); } zfs_handle_t * make_dataset_handle(libzfs_handle_t *hdl, const char *path) { zfs_cmd_t zc = { 0 }; zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1); if (zhp == NULL) return (NULL); zhp->zfs_hdl = hdl; (void) strlcpy(zhp->zfs_name, path, sizeof (zhp->zfs_name)); if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0) { free(zhp); return (NULL); } if (get_stats_ioctl(zhp, &zc) == -1) { zcmd_free_nvlists(&zc); free(zhp); return (NULL); } if (make_dataset_handle_common(zhp, &zc) == -1) { free(zhp); zhp = NULL; } zcmd_free_nvlists(&zc); return (zhp); } static zfs_handle_t * make_dataset_handle_zc(libzfs_handle_t *hdl, zfs_cmd_t *zc) { zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1); if (zhp == NULL) return (NULL); zhp->zfs_hdl = hdl; (void) strlcpy(zhp->zfs_name, zc->zc_name, sizeof (zhp->zfs_name)); if (make_dataset_handle_common(zhp, zc) == -1) { free(zhp); return (NULL); } return (zhp); } /* * Opens the given snapshot, filesystem, or volume. The 'types' * argument is a mask of acceptable types. The function will print an * appropriate error message and return NULL if it can't be opened. */ zfs_handle_t * zfs_open(libzfs_handle_t *hdl, const char *path, int types) { zfs_handle_t *zhp; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot open '%s'"), path); /* * Validate the name before we even try to open it. */ if (!zfs_validate_name(hdl, path, ZFS_TYPE_DATASET, B_FALSE)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid dataset name")); (void) zfs_error(hdl, EZFS_INVALIDNAME, errbuf); return (NULL); } /* * Try to get stats for the dataset, which will tell us if it exists. */ errno = 0; if ((zhp = make_dataset_handle(hdl, path)) == NULL) { (void) zfs_standard_error(hdl, errno, errbuf); return (NULL); } if (!(types & zhp->zfs_type)) { (void) zfs_error(hdl, EZFS_BADTYPE, errbuf); zfs_close(zhp); return (NULL); } return (zhp); } /* * Release a ZFS handle. Nothing to do but free the associated memory. */ void zfs_close(zfs_handle_t *zhp) { if (zhp->zfs_mntopts) free(zhp->zfs_mntopts); nvlist_free(zhp->zfs_props); nvlist_free(zhp->zfs_user_props); nvlist_free(zhp->zfs_recvd_props); free(zhp); } typedef struct mnttab_node { struct mnttab mtn_mt; avl_node_t mtn_node; } mnttab_node_t; static int libzfs_mnttab_cache_compare(const void *arg1, const void *arg2) { const mnttab_node_t *mtn1 = arg1; const mnttab_node_t *mtn2 = arg2; int rv; rv = strcmp(mtn1->mtn_mt.mnt_special, mtn2->mtn_mt.mnt_special); if (rv == 0) return (0); return (rv > 0 ? 1 : -1); } void libzfs_mnttab_init(libzfs_handle_t *hdl) { assert(avl_numnodes(&hdl->libzfs_mnttab_cache) == 0); avl_create(&hdl->libzfs_mnttab_cache, libzfs_mnttab_cache_compare, sizeof (mnttab_node_t), offsetof(mnttab_node_t, mtn_node)); } void libzfs_mnttab_update(libzfs_handle_t *hdl) { struct mnttab entry; rewind(hdl->libzfs_mnttab); while (getmntent(hdl->libzfs_mnttab, &entry) == 0) { mnttab_node_t *mtn; if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) continue; mtn = zfs_alloc(hdl, sizeof (mnttab_node_t)); mtn->mtn_mt.mnt_special = zfs_strdup(hdl, entry.mnt_special); mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, entry.mnt_mountp); mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, entry.mnt_fstype); mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, entry.mnt_mntopts); avl_add(&hdl->libzfs_mnttab_cache, mtn); } } void libzfs_mnttab_fini(libzfs_handle_t *hdl) { void *cookie = NULL; mnttab_node_t *mtn; while (mtn = avl_destroy_nodes(&hdl->libzfs_mnttab_cache, &cookie)) { free(mtn->mtn_mt.mnt_special); free(mtn->mtn_mt.mnt_mountp); free(mtn->mtn_mt.mnt_fstype); free(mtn->mtn_mt.mnt_mntopts); free(mtn); } avl_destroy(&hdl->libzfs_mnttab_cache); } void libzfs_mnttab_cache(libzfs_handle_t *hdl, boolean_t enable) { hdl->libzfs_mnttab_enable = enable; } int libzfs_mnttab_find(libzfs_handle_t *hdl, const char *fsname, struct mnttab *entry) { mnttab_node_t find; mnttab_node_t *mtn; if (!hdl->libzfs_mnttab_enable) { struct mnttab srch = { 0 }; if (avl_numnodes(&hdl->libzfs_mnttab_cache)) libzfs_mnttab_fini(hdl); rewind(hdl->libzfs_mnttab); srch.mnt_special = (char *)fsname; srch.mnt_fstype = MNTTYPE_ZFS; if (getmntany(hdl->libzfs_mnttab, entry, &srch) == 0) return (0); else return (ENOENT); } if (avl_numnodes(&hdl->libzfs_mnttab_cache) == 0) libzfs_mnttab_update(hdl); find.mtn_mt.mnt_special = (char *)fsname; mtn = avl_find(&hdl->libzfs_mnttab_cache, &find, NULL); if (mtn) { *entry = mtn->mtn_mt; return (0); } return (ENOENT); } void libzfs_mnttab_add(libzfs_handle_t *hdl, const char *special, const char *mountp, const char *mntopts) { mnttab_node_t *mtn; if (avl_numnodes(&hdl->libzfs_mnttab_cache) == 0) return; mtn = zfs_alloc(hdl, sizeof (mnttab_node_t)); mtn->mtn_mt.mnt_special = zfs_strdup(hdl, special); mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, mountp); mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, MNTTYPE_ZFS); mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, mntopts); avl_add(&hdl->libzfs_mnttab_cache, mtn); } void libzfs_mnttab_remove(libzfs_handle_t *hdl, const char *fsname) { mnttab_node_t find; mnttab_node_t *ret; find.mtn_mt.mnt_special = (char *)fsname; if (ret = avl_find(&hdl->libzfs_mnttab_cache, (void *)&find, NULL)) { avl_remove(&hdl->libzfs_mnttab_cache, ret); free(ret->mtn_mt.mnt_special); free(ret->mtn_mt.mnt_mountp); free(ret->mtn_mt.mnt_fstype); free(ret->mtn_mt.mnt_mntopts); free(ret); } } int zfs_spa_version(zfs_handle_t *zhp, int *spa_version) { zpool_handle_t *zpool_handle = zhp->zpool_hdl; if (zpool_handle == NULL) return (-1); *spa_version = zpool_get_prop_int(zpool_handle, ZPOOL_PROP_VERSION, NULL); return (0); } /* * The choice of reservation property depends on the SPA version. */ static int zfs_which_resv_prop(zfs_handle_t *zhp, zfs_prop_t *resv_prop) { int spa_version; if (zfs_spa_version(zhp, &spa_version) < 0) return (-1); if (spa_version >= SPA_VERSION_REFRESERVATION) *resv_prop = ZFS_PROP_REFRESERVATION; else *resv_prop = ZFS_PROP_RESERVATION; return (0); } /* * Given an nvlist of properties to set, validates that they are correct, and * parses any numeric properties (index, boolean, etc) if they are specified as * strings. */ nvlist_t * zfs_valid_proplist(libzfs_handle_t *hdl, zfs_type_t type, nvlist_t *nvl, uint64_t zoned, zfs_handle_t *zhp, const char *errbuf) { nvpair_t *elem; uint64_t intval; char *strval; zfs_prop_t prop; nvlist_t *ret; int chosen_normal = -1; int chosen_utf = -1; if (nvlist_alloc(&ret, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } /* * Make sure this property is valid and applies to this type. */ elem = NULL; while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) { const char *propname = nvpair_name(elem); prop = zfs_name_to_prop(propname); if (prop == ZPROP_INVAL && zfs_prop_user(propname)) { /* * This is a user property: make sure it's a * string, and that it's less than ZAP_MAXNAMELEN. */ if (nvpair_type(elem) != DATA_TYPE_STRING) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a string"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (strlen(nvpair_name(elem)) >= ZAP_MAXNAMELEN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property name '%s' is too long"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } (void) nvpair_value_string(elem, &strval); if (nvlist_add_string(ret, propname, strval) != 0) { (void) no_memory(hdl); goto error; } continue; } /* * Currently, only user properties can be modified on * snapshots. */ if (type == ZFS_TYPE_SNAPSHOT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "this property can not be modified for snapshots")); (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf); goto error; } if (prop == ZPROP_INVAL && zfs_prop_userquota(propname)) { zfs_userquota_prop_t uqtype; char newpropname[128]; char domain[128]; uint64_t rid; uint64_t valary[3]; if (userquota_propname_decode(propname, zoned, &uqtype, domain, sizeof (domain), &rid) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' has an invalid user/group name"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (uqtype != ZFS_PROP_USERQUOTA && uqtype != ZFS_PROP_GROUPQUOTA) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is readonly"), propname); (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf); goto error; } if (nvpair_type(elem) == DATA_TYPE_STRING) { (void) nvpair_value_string(elem, &strval); if (strcmp(strval, "none") == 0) { intval = 0; } else if (zfs_nicestrtonum(hdl, strval, &intval) != 0) { (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { (void) nvpair_value_uint64(elem, &intval); if (intval == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "use 'none' to disable " "userquota/groupquota")); goto error; } } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a number"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } /* * Encode the prop name as * userquota@-domain, to make it easy * for the kernel to decode. */ (void) snprintf(newpropname, sizeof (newpropname), "%s%llx-%s", zfs_userquota_prop_prefixes[uqtype], (longlong_t)rid, domain); valary[0] = uqtype; valary[1] = rid; valary[2] = intval; if (nvlist_add_uint64_array(ret, newpropname, valary, 3) != 0) { (void) no_memory(hdl); goto error; } continue; } if (prop == ZPROP_INVAL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property '%s'"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (!zfs_prop_valid_for_type(prop, type)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' does not " "apply to datasets of this type"), propname); (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf); goto error; } if (zfs_prop_readonly(prop) && (!zfs_prop_setonce(prop) || zhp != NULL)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is readonly"), propname); (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf); goto error; } if (zprop_parse_value(hdl, elem, prop, type, ret, &strval, &intval, errbuf) != 0) goto error; /* * Perform some additional checks for specific properties. */ switch (prop) { case ZFS_PROP_VERSION: { int version; if (zhp == NULL) break; version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); if (intval < version) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Can not downgrade; already at version %u"), version); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; } case ZFS_PROP_RECORDSIZE: case ZFS_PROP_VOLBLOCKSIZE: /* must be power of two within SPA_{MIN,MAX}BLOCKSIZE */ if (intval < SPA_MINBLOCKSIZE || intval > SPA_MAXBLOCKSIZE || !ISP2(intval)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be power of 2 from %u " "to %uk"), propname, (uint_t)SPA_MINBLOCKSIZE, (uint_t)SPA_MAXBLOCKSIZE >> 10); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZFS_PROP_MLSLABEL: { /* * Verify the mlslabel string and convert to * internal hex label string. */ m_label_t *new_sl; char *hex = NULL; /* internal label string */ /* Default value is already OK. */ if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0) break; /* Verify the label can be converted to binary form */ if (((new_sl = m_label_alloc(MAC_LABEL)) == NULL) || (str_to_label(strval, &new_sl, MAC_LABEL, L_NO_CORRECTION, NULL) == -1)) { goto badlabel; } /* Now translate to hex internal label string */ if (label_to_str(new_sl, &hex, M_INTERNAL, DEF_NAMES) != 0) { if (hex) free(hex); goto badlabel; } m_label_free(new_sl); /* If string is already in internal form, we're done. */ if (strcmp(strval, hex) == 0) { free(hex); break; } /* Replace the label string with the internal form. */ (void) nvlist_remove(ret, zfs_prop_to_name(prop), DATA_TYPE_STRING); verify(nvlist_add_string(ret, zfs_prop_to_name(prop), hex) == 0); free(hex); break; badlabel: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid mlslabel '%s'"), strval); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); m_label_free(new_sl); /* OK if null */ goto error; } case ZFS_PROP_MOUNTPOINT: { namecheck_err_t why; if (strcmp(strval, ZFS_MOUNTPOINT_NONE) == 0 || strcmp(strval, ZFS_MOUNTPOINT_LEGACY) == 0) break; if (mountpoint_namecheck(strval, &why)) { switch (why) { case NAME_ERR_LEADING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be an absolute path, " "'none', or 'legacy'"), propname); break; case NAME_ERR_TOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "component of '%s' is too long"), propname); break; } (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } } /*FALLTHRU*/ case ZFS_PROP_SHARESMB: case ZFS_PROP_SHARENFS: /* * For the mountpoint and sharenfs or sharesmb * properties, check if it can be set in a * global/non-global zone based on * the zoned property value: * * global zone non-global zone * -------------------------------------------------- * zoned=on mountpoint (no) mountpoint (yes) * sharenfs (no) sharenfs (no) * sharesmb (no) sharesmb (no) * * zoned=off mountpoint (yes) N/A * sharenfs (yes) * sharesmb (yes) */ if (zoned) { if (getzoneid() == GLOBAL_ZONEID) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set on " "dataset in a non-global zone"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } else if (prop == ZFS_PROP_SHARENFS || prop == ZFS_PROP_SHARESMB) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set in " "a non-global zone"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } } else if (getzoneid() != GLOBAL_ZONEID) { /* * If zoned property is 'off', this must be in * a global zone. If not, something is wrong. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set while dataset " "'zoned' property is set"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } /* * At this point, it is legitimate to set the * property. Now we want to make sure that the * property value is valid if it is sharenfs. */ if ((prop == ZFS_PROP_SHARENFS || prop == ZFS_PROP_SHARESMB) && strcmp(strval, "on") != 0 && strcmp(strval, "off") != 0) { zfs_share_proto_t proto; if (prop == ZFS_PROP_SHARESMB) proto = PROTO_SMB; else proto = PROTO_NFS; /* * Must be an valid sharing protocol * option string so init the libshare * in order to enable the parser and * then parse the options. We use the * control API since we don't care about * the current configuration and don't * want the overhead of loading it * until we actually do something. */ if (zfs_init_libshare(hdl, SA_INIT_CONTROL_API) != SA_OK) { /* * An error occurred so we can't do * anything */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set: problem " "in share initialization"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (zfs_parse_options(strval, proto) != SA_OK) { /* * There was an error in parsing so * deal with it by issuing an error * message and leaving after * uninitializing the the libshare * interface. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set to invalid " "options"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); zfs_uninit_libshare(hdl); goto error; } zfs_uninit_libshare(hdl); } break; case ZFS_PROP_UTF8ONLY: chosen_utf = (int)intval; break; case ZFS_PROP_NORMALIZE: chosen_normal = (int)intval; break; } /* * For changes to existing volumes, we have some additional * checks to enforce. */ if (type == ZFS_TYPE_VOLUME && zhp != NULL) { uint64_t volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); uint64_t blocksize = zfs_prop_get_int(zhp, ZFS_PROP_VOLBLOCKSIZE); char buf[64]; switch (prop) { case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: if (intval > volsize) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is greater than current " "volume size"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZFS_PROP_VOLSIZE: if (intval % blocksize != 0) { zfs_nicenum(blocksize, buf, sizeof (buf)); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a multiple of " "volume block size (%s)"), propname, buf); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (intval == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be zero"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; } } } /* * If normalization was chosen, but no UTF8 choice was made, * enforce rejection of non-UTF8 names. * * If normalization was chosen, but rejecting non-UTF8 names * was explicitly not chosen, it is an error. */ if (chosen_normal > 0 && chosen_utf < 0) { if (nvlist_add_uint64(ret, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), 1) != 0) { (void) no_memory(hdl); goto error; } } else if (chosen_normal > 0 && chosen_utf == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be set 'on' if normalization chosen"), zfs_prop_to_name(ZFS_PROP_UTF8ONLY)); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } /* * If this is an existing volume, and someone is setting the volsize, * make sure that it matches the reservation, or add it if necessary. */ if (zhp != NULL && type == ZFS_TYPE_VOLUME && nvlist_lookup_uint64(ret, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &intval) == 0) { uint64_t old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); uint64_t old_reservation; uint64_t new_reservation; zfs_prop_t resv_prop; if (zfs_which_resv_prop(zhp, &resv_prop) < 0) goto error; old_reservation = zfs_prop_get_int(zhp, resv_prop); if (old_volsize == old_reservation && nvlist_lookup_uint64(ret, zfs_prop_to_name(resv_prop), &new_reservation) != 0) { if (nvlist_add_uint64(ret, zfs_prop_to_name(resv_prop), intval) != 0) { (void) no_memory(hdl); goto error; } } } return (ret); error: nvlist_free(ret); return (NULL); } void zfs_setprop_error(libzfs_handle_t *hdl, zfs_prop_t prop, int err, char *errbuf) { switch (err) { case ENOSPC: /* * For quotas and reservations, ENOSPC indicates * something different; setting a quota or reservation * doesn't use any disk space. */ switch (prop) { case ZFS_PROP_QUOTA: case ZFS_PROP_REFQUOTA: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "size is less than current used or " "reserved space")); (void) zfs_error(hdl, EZFS_PROPSPACE, errbuf); break; case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "size is greater than available space")); (void) zfs_error(hdl, EZFS_PROPSPACE, errbuf); break; default: (void) zfs_standard_error(hdl, err, errbuf); break; } break; case EBUSY: (void) zfs_standard_error(hdl, EBUSY, errbuf); break; case EROFS: (void) zfs_error(hdl, EZFS_DSREADONLY, errbuf); break; case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool and or dataset must be upgraded to set this " "property or value")); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); break; case ERANGE: if (prop == ZFS_PROP_COMPRESSION) { (void) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property setting is not allowed on " "bootable datasets")); (void) zfs_error(hdl, EZFS_NOTSUP, errbuf); } else { (void) zfs_standard_error(hdl, err, errbuf); } break; case EINVAL: if (prop == ZPROP_INVAL) { (void) zfs_error(hdl, EZFS_BADPROP, errbuf); } else { (void) zfs_standard_error(hdl, err, errbuf); } break; case EOVERFLOW: /* * This platform can't address a volume this big. */ #ifdef _ILP32 if (prop == ZFS_PROP_VOLSIZE) { (void) zfs_error(hdl, EZFS_VOLTOOBIG, errbuf); break; } #endif /* FALLTHROUGH */ default: (void) zfs_standard_error(hdl, err, errbuf); } } /* * Given a property name and value, set the property for the given dataset. */ int zfs_prop_set(zfs_handle_t *zhp, const char *propname, const char *propval) { zfs_cmd_t zc = { 0 }; int ret = -1; prop_changelist_t *cl = NULL; char errbuf[1024]; libzfs_handle_t *hdl = zhp->zfs_hdl; nvlist_t *nvl = NULL, *realprops; zfs_prop_t prop; boolean_t do_prefix; uint64_t idx; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot set property for '%s'"), zhp->zfs_name); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0 || nvlist_add_string(nvl, propname, propval) != 0) { (void) no_memory(hdl); goto error; } if ((realprops = zfs_valid_proplist(hdl, zhp->zfs_type, nvl, zfs_prop_get_int(zhp, ZFS_PROP_ZONED), zhp, errbuf)) == NULL) goto error; nvlist_free(nvl); nvl = realprops; prop = zfs_name_to_prop(propname); if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL) goto error; if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); ret = zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } /* * If the dataset's canmount property is being set to noauto, * then we want to prevent unmounting & remounting it. */ do_prefix = !((prop == ZFS_PROP_CANMOUNT) && (zprop_string_to_index(prop, propval, &idx, ZFS_TYPE_DATASET) == 0) && (idx == ZFS_CANMOUNT_NOAUTO)); if (do_prefix && (ret = changelist_prefix(cl)) != 0) goto error; /* * Execute the corresponding ioctl() to set this property. */ (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zcmd_write_src_nvlist(hdl, &zc, nvl) != 0) goto error; ret = zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc); if (ret != 0) { zfs_setprop_error(hdl, prop, errno, errbuf); } else { if (do_prefix) ret = changelist_postfix(cl); /* * Refresh the statistics so the new property value * is reflected. */ if (ret == 0) (void) get_stats(zhp); } error: nvlist_free(nvl); zcmd_free_nvlists(&zc); if (cl) changelist_free(cl); return (ret); } /* * Given a property, inherit the value from the parent dataset, or if received * is TRUE, revert to the received value, if any. */ int zfs_prop_inherit(zfs_handle_t *zhp, const char *propname, boolean_t received) { zfs_cmd_t zc = { 0 }; int ret; prop_changelist_t *cl; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; zfs_prop_t prop; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot inherit %s for '%s'"), propname, zhp->zfs_name); zc.zc_cookie = received; if ((prop = zfs_name_to_prop(propname)) == ZPROP_INVAL) { /* * For user properties, the amount of work we have to do is very * small, so just do it here. */ if (!zfs_prop_user(propname)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value)); if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc) != 0) return (zfs_standard_error(hdl, errno, errbuf)); return (0); } /* * Verify that this property is inheritable. */ if (zfs_prop_readonly(prop)) return (zfs_error(hdl, EZFS_PROPREADONLY, errbuf)); if (!zfs_prop_inheritable(prop) && !received) return (zfs_error(hdl, EZFS_PROPNONINHERIT, errbuf)); /* * Check to see if the value applies to this type */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) return (zfs_error(hdl, EZFS_PROPTYPE, errbuf)); /* * Normalize the name, to get rid of shorthand abbrevations. */ propname = zfs_prop_to_name(prop); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value)); if (prop == ZFS_PROP_MOUNTPOINT && getzoneid() == GLOBAL_ZONEID && zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset is used in a non-global zone")); return (zfs_error(hdl, EZFS_ZONED, errbuf)); } /* * Determine datasets which will be affected by this change, if any. */ if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL) return (-1); if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); ret = zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc)) != 0) { return (zfs_standard_error(hdl, errno, errbuf)); } else { if ((ret = changelist_postfix(cl)) != 0) goto error; /* * Refresh the statistics so the new property is reflected. */ (void) get_stats(zhp); } error: changelist_free(cl); return (ret); } /* * True DSL properties are stored in an nvlist. The following two functions * extract them appropriately. */ static uint64_t getprop_uint64(zfs_handle_t *zhp, zfs_prop_t prop, char **source) { nvlist_t *nv; uint64_t value; *source = NULL; if (nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_uint64(nv, ZPROP_VALUE, &value) == 0); (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source); } else { verify(!zhp->zfs_props_table || zhp->zfs_props_table[prop] == B_TRUE); value = zfs_prop_default_numeric(prop); *source = ""; } return (value); } static char * getprop_string(zfs_handle_t *zhp, zfs_prop_t prop, char **source) { nvlist_t *nv; char *value; *source = NULL; if (nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_string(nv, ZPROP_VALUE, &value) == 0); (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source); } else { verify(!zhp->zfs_props_table || zhp->zfs_props_table[prop] == B_TRUE); if ((value = (char *)zfs_prop_default_string(prop)) == NULL) value = ""; *source = ""; } return (value); } static boolean_t zfs_is_recvd_props_mode(zfs_handle_t *zhp) { return (zhp->zfs_props == zhp->zfs_recvd_props); } static void zfs_set_recvd_props_mode(zfs_handle_t *zhp, uint64_t *cookie) { *cookie = (uint64_t)(uintptr_t)zhp->zfs_props; zhp->zfs_props = zhp->zfs_recvd_props; } static void zfs_unset_recvd_props_mode(zfs_handle_t *zhp, uint64_t *cookie) { zhp->zfs_props = (nvlist_t *)(uintptr_t)*cookie; *cookie = 0; } /* * Internal function for getting a numeric property. Both zfs_prop_get() and * zfs_prop_get_int() are built using this interface. * * Certain properties can be overridden using 'mount -o'. In this case, scan * the contents of the /etc/mnttab entry, searching for the appropriate options. * If they differ from the on-disk values, report the current values and mark * the source "temporary". */ static int get_numeric_property(zfs_handle_t *zhp, zfs_prop_t prop, zprop_source_t *src, char **source, uint64_t *val) { zfs_cmd_t zc = { 0 }; nvlist_t *zplprops = NULL; struct mnttab mnt; char *mntopt_on = NULL; char *mntopt_off = NULL; boolean_t received = zfs_is_recvd_props_mode(zhp); *source = NULL; switch (prop) { case ZFS_PROP_ATIME: mntopt_on = MNTOPT_ATIME; mntopt_off = MNTOPT_NOATIME; break; case ZFS_PROP_DEVICES: mntopt_on = MNTOPT_DEVICES; mntopt_off = MNTOPT_NODEVICES; break; case ZFS_PROP_EXEC: mntopt_on = MNTOPT_EXEC; mntopt_off = MNTOPT_NOEXEC; break; case ZFS_PROP_READONLY: mntopt_on = MNTOPT_RO; mntopt_off = MNTOPT_RW; break; case ZFS_PROP_SETUID: mntopt_on = MNTOPT_SETUID; mntopt_off = MNTOPT_NOSETUID; break; case ZFS_PROP_XATTR: mntopt_on = MNTOPT_XATTR; mntopt_off = MNTOPT_NOXATTR; break; case ZFS_PROP_NBMAND: mntopt_on = MNTOPT_NBMAND; mntopt_off = MNTOPT_NONBMAND; break; } /* * Because looking up the mount options is potentially expensive * (iterating over all of /etc/mnttab), we defer its calculation until * we're looking up a property which requires its presence. */ if (!zhp->zfs_mntcheck && (mntopt_on != NULL || prop == ZFS_PROP_MOUNTED)) { libzfs_handle_t *hdl = zhp->zfs_hdl; struct mnttab entry; if (libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0) { zhp->zfs_mntopts = zfs_strdup(hdl, entry.mnt_mntopts); if (zhp->zfs_mntopts == NULL) return (-1); } zhp->zfs_mntcheck = B_TRUE; } if (zhp->zfs_mntopts == NULL) mnt.mnt_mntopts = ""; else mnt.mnt_mntopts = zhp->zfs_mntopts; switch (prop) { case ZFS_PROP_ATIME: case ZFS_PROP_DEVICES: case ZFS_PROP_EXEC: case ZFS_PROP_READONLY: case ZFS_PROP_SETUID: case ZFS_PROP_XATTR: case ZFS_PROP_NBMAND: *val = getprop_uint64(zhp, prop, source); if (received) break; if (hasmntopt(&mnt, mntopt_on) && !*val) { *val = B_TRUE; if (src) *src = ZPROP_SRC_TEMPORARY; } else if (hasmntopt(&mnt, mntopt_off) && *val) { *val = B_FALSE; if (src) *src = ZPROP_SRC_TEMPORARY; } break; case ZFS_PROP_CANMOUNT: case ZFS_PROP_VOLSIZE: case ZFS_PROP_QUOTA: case ZFS_PROP_REFQUOTA: case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: *val = getprop_uint64(zhp, prop, source); if (*source == NULL) { /* not default, must be local */ *source = zhp->zfs_name; } break; case ZFS_PROP_MOUNTED: *val = (zhp->zfs_mntopts != NULL); break; case ZFS_PROP_NUMCLONES: *val = zhp->zfs_dmustats.dds_num_clones; break; case ZFS_PROP_VERSION: case ZFS_PROP_NORMALIZE: case ZFS_PROP_UTF8ONLY: case ZFS_PROP_CASE: if (!zfs_prop_valid_for_type(prop, zhp->zfs_head_type) || zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_OBJSET_ZPLPROPS, &zc)) { zcmd_free_nvlists(&zc); return (-1); } if (zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &zplprops) != 0 || nvlist_lookup_uint64(zplprops, zfs_prop_to_name(prop), val) != 0) { zcmd_free_nvlists(&zc); return (-1); } if (zplprops) nvlist_free(zplprops); zcmd_free_nvlists(&zc); break; default: switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: case PROP_TYPE_INDEX: *val = getprop_uint64(zhp, prop, source); /* * If we tried to use a default value for a * readonly property, it means that it was not * present. */ if (zfs_prop_readonly(prop) && *source != NULL && (*source)[0] == '\0') { *source = NULL; } break; case PROP_TYPE_STRING: default: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "cannot get non-numeric property")); return (zfs_error(zhp->zfs_hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN, "internal error"))); } } return (0); } /* * Calculate the source type, given the raw source string. */ static void get_source(zfs_handle_t *zhp, zprop_source_t *srctype, char *source, char *statbuf, size_t statlen) { if (statbuf == NULL || *srctype == ZPROP_SRC_TEMPORARY) return; if (source == NULL) { *srctype = ZPROP_SRC_NONE; } else if (source[0] == '\0') { *srctype = ZPROP_SRC_DEFAULT; } else if (strstr(source, ZPROP_SOURCE_VAL_RECVD) != NULL) { *srctype = ZPROP_SRC_RECEIVED; } else { if (strcmp(source, zhp->zfs_name) == 0) { *srctype = ZPROP_SRC_LOCAL; } else { (void) strlcpy(statbuf, source, statlen); *srctype = ZPROP_SRC_INHERITED; } } } int zfs_prop_get_recvd(zfs_handle_t *zhp, const char *propname, char *propbuf, size_t proplen, boolean_t literal) { zfs_prop_t prop; int err = 0; if (zhp->zfs_recvd_props == NULL) if (get_recvd_props_ioctl(zhp) != 0) return (-1); prop = zfs_name_to_prop(propname); if (prop != ZPROP_INVAL) { uint64_t cookie; if (!nvlist_exists(zhp->zfs_recvd_props, propname)) return (-1); zfs_set_recvd_props_mode(zhp, &cookie); err = zfs_prop_get(zhp, prop, propbuf, proplen, NULL, NULL, 0, literal); zfs_unset_recvd_props_mode(zhp, &cookie); } else if (zfs_prop_userquota(propname)) { return (-1); } else { nvlist_t *propval; char *recvdval; if (nvlist_lookup_nvlist(zhp->zfs_recvd_props, propname, &propval) != 0) return (-1); verify(nvlist_lookup_string(propval, ZPROP_VALUE, &recvdval) == 0); (void) strlcpy(propbuf, recvdval, proplen); } return (err == 0 ? 0 : -1); } /* * Retrieve a property from the given object. If 'literal' is specified, then * numbers are left as exact values. Otherwise, numbers are converted to a * human-readable form. * * Returns 0 on success, or -1 on error. */ int zfs_prop_get(zfs_handle_t *zhp, zfs_prop_t prop, char *propbuf, size_t proplen, zprop_source_t *src, char *statbuf, size_t statlen, boolean_t literal) { char *source = NULL; uint64_t val; char *str; const char *strval; boolean_t received = zfs_is_recvd_props_mode(zhp); /* * Check to see if this property applies to our object */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) return (-1); if (received && zfs_prop_readonly(prop)) return (-1); if (src) *src = ZPROP_SRC_NONE; switch (prop) { case ZFS_PROP_CREATION: /* * 'creation' is a time_t stored in the statistics. We convert * this into a string unless 'literal' is specified. */ { val = getprop_uint64(zhp, prop, &source); time_t time = (time_t)val; struct tm t; if (literal || localtime_r(&time, &t) == NULL || strftime(propbuf, proplen, "%a %b %e %k:%M %Y", &t) == 0) (void) snprintf(propbuf, proplen, "%llu", val); } break; case ZFS_PROP_MOUNTPOINT: /* * Getting the precise mountpoint can be tricky. * * - for 'none' or 'legacy', return those values. * - for inherited mountpoints, we want to take everything * after our ancestor and append it to the inherited value. * * If the pool has an alternate root, we want to prepend that * root to any values we return. */ str = getprop_string(zhp, prop, &source); if (str[0] == '/') { char buf[MAXPATHLEN]; char *root = buf; const char *relpath; /* * If we inherit the mountpoint, even from a dataset * with a received value, the source will be the path of * the dataset we inherit from. If source is * ZPROP_SOURCE_VAL_RECVD, the received value is not * inherited. */ if (strcmp(source, ZPROP_SOURCE_VAL_RECVD) == 0) { relpath = ""; } else { relpath = zhp->zfs_name + strlen(source); if (relpath[0] == '/') relpath++; } if ((zpool_get_prop(zhp->zpool_hdl, ZPOOL_PROP_ALTROOT, buf, MAXPATHLEN, NULL)) || (strcmp(root, "-") == 0)) root[0] = '\0'; /* * Special case an alternate root of '/'. This will * avoid having multiple leading slashes in the * mountpoint path. */ if (strcmp(root, "/") == 0) root++; /* * If the mountpoint is '/' then skip over this * if we are obtaining either an alternate root or * an inherited mountpoint. */ if (str[1] == '\0' && (root[0] != '\0' || relpath[0] != '\0')) str++; if (relpath[0] == '\0') (void) snprintf(propbuf, proplen, "%s%s", root, str); else (void) snprintf(propbuf, proplen, "%s%s%s%s", root, str, relpath[0] == '@' ? "" : "/", relpath); } else { /* 'legacy' or 'none' */ (void) strlcpy(propbuf, str, proplen); } break; case ZFS_PROP_ORIGIN: (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); /* * If there is no parent at all, return failure to indicate that * it doesn't apply to this dataset. */ if (propbuf[0] == '\0') return (-1); break; case ZFS_PROP_QUOTA: case ZFS_PROP_REFQUOTA: case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); /* * If quota or reservation is 0, we translate this into 'none' * (unless literal is set), and indicate that it's the default * value. Otherwise, we print the number nicely and indicate * that its set locally. */ if (val == 0) { if (literal) (void) strlcpy(propbuf, "0", proplen); else (void) strlcpy(propbuf, "none", proplen); } else { if (literal) (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val); else zfs_nicenum(val, propbuf, proplen); } break; case ZFS_PROP_COMPRESSRATIO: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); (void) snprintf(propbuf, proplen, "%llu.%02llux", (u_longlong_t)(val / 100), (u_longlong_t)(val % 100)); break; case ZFS_PROP_TYPE: switch (zhp->zfs_type) { case ZFS_TYPE_FILESYSTEM: str = "filesystem"; break; case ZFS_TYPE_VOLUME: str = "volume"; break; case ZFS_TYPE_SNAPSHOT: str = "snapshot"; break; default: abort(); } (void) snprintf(propbuf, proplen, "%s", str); break; case ZFS_PROP_MOUNTED: /* * The 'mounted' property is a pseudo-property that described * whether the filesystem is currently mounted. Even though * it's a boolean value, the typical values of "on" and "off" * don't make sense, so we translate to "yes" and "no". */ if (get_numeric_property(zhp, ZFS_PROP_MOUNTED, src, &source, &val) != 0) return (-1); if (val) (void) strlcpy(propbuf, "yes", proplen); else (void) strlcpy(propbuf, "no", proplen); break; case ZFS_PROP_NAME: /* * The 'name' property is a pseudo-property derived from the * dataset name. It is presented as a real property to simplify * consumers. */ (void) strlcpy(propbuf, zhp->zfs_name, proplen); break; case ZFS_PROP_MLSLABEL: { m_label_t *new_sl = NULL; char *ascii = NULL; /* human readable label */ (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); if (literal || (strcasecmp(propbuf, ZFS_MLSLABEL_DEFAULT) == 0)) break; /* * Try to translate the internal hex string to * human-readable output. If there are any * problems just use the hex string. */ if (str_to_label(propbuf, &new_sl, MAC_LABEL, L_NO_CORRECTION, NULL) == -1) { m_label_free(new_sl); break; } if (label_to_str(new_sl, &ascii, M_LABEL, DEF_NAMES) != 0) { if (ascii) free(ascii); m_label_free(new_sl); break; } m_label_free(new_sl); (void) strlcpy(propbuf, ascii, proplen); free(ascii); } break; default: switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); if (literal) (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val); else zfs_nicenum(val, propbuf, proplen); break; case PROP_TYPE_STRING: (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); break; case PROP_TYPE_INDEX: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); if (zfs_prop_index_to_string(prop, val, &strval) != 0) return (-1); (void) strlcpy(propbuf, strval, proplen); break; default: abort(); } } get_source(zhp, src, source, statbuf, statlen); return (0); } /* * Utility function to get the given numeric property. Does no validation that * the given property is the appropriate type; should only be used with * hard-coded property types. */ uint64_t zfs_prop_get_int(zfs_handle_t *zhp, zfs_prop_t prop) { char *source; uint64_t val; (void) get_numeric_property(zhp, prop, NULL, &source, &val); return (val); } int zfs_prop_set_int(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t val) { char buf[64]; (void) snprintf(buf, sizeof (buf), "%llu", (longlong_t)val); return (zfs_prop_set(zhp, zfs_prop_to_name(prop), buf)); } /* * Similar to zfs_prop_get(), but returns the value as an integer. */ int zfs_prop_get_numeric(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t *value, zprop_source_t *src, char *statbuf, size_t statlen) { char *source; /* * Check to see if this property applies to our object */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) { return (zfs_error_fmt(zhp->zfs_hdl, EZFS_PROPTYPE, dgettext(TEXT_DOMAIN, "cannot get property '%s'"), zfs_prop_to_name(prop))); } if (src) *src = ZPROP_SRC_NONE; if (get_numeric_property(zhp, prop, src, &source, value) != 0) return (-1); get_source(zhp, src, source, statbuf, statlen); return (0); } static int idmap_id_to_numeric_domain_rid(uid_t id, boolean_t isuser, char **domainp, idmap_rid_t *ridp) { idmap_handle_t *idmap_hdl = NULL; idmap_get_handle_t *get_hdl = NULL; idmap_stat status; int err = EINVAL; if (idmap_init(&idmap_hdl) != IDMAP_SUCCESS) goto out; if (idmap_get_create(idmap_hdl, &get_hdl) != IDMAP_SUCCESS) goto out; if (isuser) { err = idmap_get_sidbyuid(get_hdl, id, IDMAP_REQ_FLG_USE_CACHE, domainp, ridp, &status); } else { err = idmap_get_sidbygid(get_hdl, id, IDMAP_REQ_FLG_USE_CACHE, domainp, ridp, &status); } if (err == IDMAP_SUCCESS && idmap_get_mappings(get_hdl) == IDMAP_SUCCESS && status == IDMAP_SUCCESS) err = 0; else err = EINVAL; out: if (get_hdl) idmap_get_destroy(get_hdl); if (idmap_hdl) (void) idmap_fini(idmap_hdl); return (err); } /* * convert the propname into parameters needed by kernel * Eg: userquota@ahrens -> ZFS_PROP_USERQUOTA, "", 126829 * Eg: userused@matt@domain -> ZFS_PROP_USERUSED, "S-1-123-456", 789 */ static int userquota_propname_decode(const char *propname, boolean_t zoned, zfs_userquota_prop_t *typep, char *domain, int domainlen, uint64_t *ridp) { zfs_userquota_prop_t type; char *cp, *end; char *numericsid = NULL; boolean_t isuser; domain[0] = '\0'; /* Figure out the property type ({user|group}{quota|space}) */ for (type = 0; type < ZFS_NUM_USERQUOTA_PROPS; type++) { if (strncmp(propname, zfs_userquota_prop_prefixes[type], strlen(zfs_userquota_prop_prefixes[type])) == 0) break; } if (type == ZFS_NUM_USERQUOTA_PROPS) return (EINVAL); *typep = type; isuser = (type == ZFS_PROP_USERQUOTA || type == ZFS_PROP_USERUSED); cp = strchr(propname, '@') + 1; if (strchr(cp, '@')) { /* * It's a SID name (eg "user@domain") that needs to be * turned into S-1-domainID-RID. */ directory_error_t e; if (zoned && getzoneid() == GLOBAL_ZONEID) return (ENOENT); if (isuser) { e = directory_sid_from_user_name(NULL, cp, &numericsid); } else { e = directory_sid_from_group_name(NULL, cp, &numericsid); } if (e != NULL) { directory_error_free(e); return (ENOENT); } if (numericsid == NULL) return (ENOENT); cp = numericsid; /* will be further decoded below */ } if (strncmp(cp, "S-1-", 4) == 0) { /* It's a numeric SID (eg "S-1-234-567-89") */ (void) strlcpy(domain, cp, domainlen); cp = strrchr(domain, '-'); *cp = '\0'; cp++; errno = 0; *ridp = strtoull(cp, &end, 10); if (numericsid) { free(numericsid); numericsid = NULL; } if (errno != 0 || *end != '\0') return (EINVAL); } else if (!isdigit(*cp)) { /* * It's a user/group name (eg "user") that needs to be * turned into a uid/gid */ if (zoned && getzoneid() == GLOBAL_ZONEID) return (ENOENT); if (isuser) { struct passwd *pw; pw = getpwnam(cp); if (pw == NULL) return (ENOENT); *ridp = pw->pw_uid; } else { struct group *gr; gr = getgrnam(cp); if (gr == NULL) return (ENOENT); *ridp = gr->gr_gid; } } else { /* It's a user/group ID (eg "12345"). */ uid_t id = strtoul(cp, &end, 10); idmap_rid_t rid; char *mapdomain; if (*end != '\0') return (EINVAL); if (id > MAXUID) { /* It's an ephemeral ID. */ if (idmap_id_to_numeric_domain_rid(id, isuser, &mapdomain, &rid) != 0) return (ENOENT); (void) strlcpy(domain, mapdomain, domainlen); *ridp = rid; } else { *ridp = id; } } ASSERT3P(numericsid, ==, NULL); return (0); } static int zfs_prop_get_userquota_common(zfs_handle_t *zhp, const char *propname, uint64_t *propvalue, zfs_userquota_prop_t *typep) { int err; zfs_cmd_t zc = { 0 }; (void) strncpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); err = userquota_propname_decode(propname, zfs_prop_get_int(zhp, ZFS_PROP_ZONED), typep, zc.zc_value, sizeof (zc.zc_value), &zc.zc_guid); zc.zc_objset_type = *typep; if (err) return (err); err = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_USERSPACE_ONE, &zc); if (err) return (err); *propvalue = zc.zc_cookie; return (0); } int zfs_prop_get_userquota_int(zfs_handle_t *zhp, const char *propname, uint64_t *propvalue) { zfs_userquota_prop_t type; return (zfs_prop_get_userquota_common(zhp, propname, propvalue, &type)); } int zfs_prop_get_userquota(zfs_handle_t *zhp, const char *propname, char *propbuf, int proplen, boolean_t literal) { int err; uint64_t propvalue; zfs_userquota_prop_t type; err = zfs_prop_get_userquota_common(zhp, propname, &propvalue, &type); if (err) return (err); if (literal) { (void) snprintf(propbuf, proplen, "%llu", propvalue); } else if (propvalue == 0 && (type == ZFS_PROP_USERQUOTA || type == ZFS_PROP_GROUPQUOTA)) { (void) strlcpy(propbuf, "none", proplen); } else { zfs_nicenum(propvalue, propbuf, proplen); } return (0); } /* * Returns the name of the given zfs handle. */ const char * zfs_get_name(const zfs_handle_t *zhp) { return (zhp->zfs_name); } /* * Returns the type of the given zfs handle. */ zfs_type_t zfs_get_type(const zfs_handle_t *zhp) { return (zhp->zfs_type); } static int zfs_do_list_ioctl(zfs_handle_t *zhp, int arg, zfs_cmd_t *zc) { int rc; uint64_t orig_cookie; orig_cookie = zc->zc_cookie; top: (void) strlcpy(zc->zc_name, zhp->zfs_name, sizeof (zc->zc_name)); rc = ioctl(zhp->zfs_hdl->libzfs_fd, arg, zc); if (rc == -1) { switch (errno) { case ENOMEM: /* expand nvlist memory and try again */ if (zcmd_expand_dst_nvlist(zhp->zfs_hdl, zc) != 0) { zcmd_free_nvlists(zc); return (-1); } zc->zc_cookie = orig_cookie; goto top; /* * An errno value of ESRCH indicates normal completion. * If ENOENT is returned, then the underlying dataset * has been removed since we obtained the handle. */ case ESRCH: case ENOENT: rc = 1; break; default: rc = zfs_standard_error(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot iterate filesystems")); break; } } return (rc); } /* * Iterate over all child filesystems */ int zfs_iter_filesystems(zfs_handle_t *zhp, zfs_iter_f func, void *data) { zfs_cmd_t zc = { 0 }; zfs_handle_t *nzhp; int ret; if (zhp->zfs_type != ZFS_TYPE_FILESYSTEM) return (0); if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); while ((ret = zfs_do_list_ioctl(zhp, ZFS_IOC_DATASET_LIST_NEXT, &zc)) == 0) { /* * Silently ignore errors, as the only plausible explanation is * that the pool has since been removed. */ if ((nzhp = make_dataset_handle_zc(zhp->zfs_hdl, &zc)) == NULL) { continue; } if ((ret = func(nzhp, data)) != 0) { zcmd_free_nvlists(&zc); return (ret); } } zcmd_free_nvlists(&zc); return ((ret < 0) ? ret : 0); } /* * Iterate over all snapshots */ int zfs_iter_snapshots(zfs_handle_t *zhp, zfs_iter_f func, void *data) { zfs_cmd_t zc = { 0 }; zfs_handle_t *nzhp; int ret; if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) return (0); if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); while ((ret = zfs_do_list_ioctl(zhp, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc)) == 0) { if ((nzhp = make_dataset_handle_zc(zhp->zfs_hdl, &zc)) == NULL) { continue; } if ((ret = func(nzhp, data)) != 0) { zcmd_free_nvlists(&zc); return (ret); } } zcmd_free_nvlists(&zc); return ((ret < 0) ? ret : 0); } /* * Iterate over all children, snapshots and filesystems */ int zfs_iter_children(zfs_handle_t *zhp, zfs_iter_f func, void *data) { int ret; if ((ret = zfs_iter_filesystems(zhp, func, data)) != 0) return (ret); return (zfs_iter_snapshots(zhp, func, data)); } /* * Is one dataset name a child dataset of another? * * Needs to handle these cases: * Dataset 1 "a/foo" "a/foo" "a/foo" "a/foo" * Dataset 2 "a/fo" "a/foobar" "a/bar/baz" "a/foo/bar" * Descendant? No. No. No. Yes. */ static boolean_t is_descendant(const char *ds1, const char *ds2) { size_t d1len = strlen(ds1); /* ds2 can't be a descendant if it's smaller */ if (strlen(ds2) < d1len) return (B_FALSE); /* otherwise, compare strings and verify that there's a '/' char */ return (ds2[d1len] == '/' && (strncmp(ds1, ds2, d1len) == 0)); } /* * Given a complete name, return just the portion that refers to the parent. * Can return NULL if this is a pool. */ static int parent_name(const char *path, char *buf, size_t buflen) { char *loc; if ((loc = strrchr(path, '/')) == NULL) return (-1); (void) strncpy(buf, path, MIN(buflen, loc - path)); buf[loc - path] = '\0'; return (0); } /* * If accept_ancestor is false, then check to make sure that the given path has * a parent, and that it exists. If accept_ancestor is true, then find the * closest existing ancestor for the given path. In prefixlen return the * length of already existing prefix of the given path. We also fetch the * 'zoned' property, which is used to validate property settings when creating * new datasets. */ static int check_parents(libzfs_handle_t *hdl, const char *path, uint64_t *zoned, boolean_t accept_ancestor, int *prefixlen) { zfs_cmd_t zc = { 0 }; char parent[ZFS_MAXNAMELEN]; char *slash; zfs_handle_t *zhp; char errbuf[1024]; uint64_t is_zoned; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), path); /* get parent, and check to see if this is just a pool */ if (parent_name(path, parent, sizeof (parent)) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing dataset name")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } /* check to see if the pool exists */ if ((slash = strchr(parent, '/')) == NULL) slash = parent + strlen(parent); (void) strncpy(zc.zc_name, parent, slash - parent); zc.zc_name[slash - parent] = '\0'; if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0 && errno == ENOENT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such pool '%s'"), zc.zc_name); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } /* check to see if the parent dataset exists */ while ((zhp = make_dataset_handle(hdl, parent)) == NULL) { if (errno == ENOENT && accept_ancestor) { /* * Go deeper to find an ancestor, give up on top level. */ if (parent_name(parent, parent, sizeof (parent)) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such pool '%s'"), zc.zc_name); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } } else if (errno == ENOENT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent does not exist")); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } else return (zfs_standard_error(hdl, errno, errbuf)); } is_zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED); if (zoned != NULL) *zoned = is_zoned; /* we are in a non-global zone, but parent is in the global zone */ if (getzoneid() != GLOBAL_ZONEID && !is_zoned) { (void) zfs_standard_error(hdl, EPERM, errbuf); zfs_close(zhp); return (-1); } /* make sure parent is a filesystem */ if (zfs_get_type(zhp) != ZFS_TYPE_FILESYSTEM) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent is not a filesystem")); (void) zfs_error(hdl, EZFS_BADTYPE, errbuf); zfs_close(zhp); return (-1); } zfs_close(zhp); if (prefixlen != NULL) *prefixlen = strlen(parent); return (0); } /* * Finds whether the dataset of the given type(s) exists. */ boolean_t zfs_dataset_exists(libzfs_handle_t *hdl, const char *path, zfs_type_t types) { zfs_handle_t *zhp; if (!zfs_validate_name(hdl, path, types, B_FALSE)) return (B_FALSE); /* * Try to get stats for the dataset, which will tell us if it exists. */ if ((zhp = make_dataset_handle(hdl, path)) != NULL) { int ds_type = zhp->zfs_type; zfs_close(zhp); if (types & ds_type) return (B_TRUE); } return (B_FALSE); } /* * Given a path to 'target', create all the ancestors between * the prefixlen portion of the path, and the target itself. * Fail if the initial prefixlen-ancestor does not already exist. */ int create_parents(libzfs_handle_t *hdl, char *target, int prefixlen) { zfs_handle_t *h; char *cp; const char *opname; /* make sure prefix exists */ cp = target + prefixlen; if (*cp != '/') { assert(strchr(cp, '/') == NULL); h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM); } else { *cp = '\0'; h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM); *cp = '/'; } if (h == NULL) return (-1); zfs_close(h); /* * Attempt to create, mount, and share any ancestor filesystems, * up to the prefixlen-long one. */ for (cp = target + prefixlen + 1; cp = strchr(cp, '/'); *cp = '/', cp++) { char *logstr; *cp = '\0'; h = make_dataset_handle(hdl, target); if (h) { /* it already exists, nothing to do here */ zfs_close(h); continue; } logstr = hdl->libzfs_log_str; hdl->libzfs_log_str = NULL; if (zfs_create(hdl, target, ZFS_TYPE_FILESYSTEM, NULL) != 0) { hdl->libzfs_log_str = logstr; opname = dgettext(TEXT_DOMAIN, "create"); goto ancestorerr; } hdl->libzfs_log_str = logstr; h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM); if (h == NULL) { opname = dgettext(TEXT_DOMAIN, "open"); goto ancestorerr; } if (zfs_mount(h, NULL, 0) != 0) { opname = dgettext(TEXT_DOMAIN, "mount"); goto ancestorerr; } if (zfs_share(h) != 0) { opname = dgettext(TEXT_DOMAIN, "share"); goto ancestorerr; } zfs_close(h); } return (0); ancestorerr: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "failed to %s ancestor '%s'"), opname, target); return (-1); } /* * Creates non-existing ancestors of the given path. */ int zfs_create_ancestors(libzfs_handle_t *hdl, const char *path) { int prefix; char *path_copy; int rc; if (check_parents(hdl, path, NULL, B_TRUE, &prefix) != 0) return (-1); if ((path_copy = strdup(path)) != NULL) { rc = create_parents(hdl, path_copy, prefix); free(path_copy); } if (path_copy == NULL || rc != 0) return (-1); return (0); } /* * Create a new filesystem or volume. */ int zfs_create(libzfs_handle_t *hdl, const char *path, zfs_type_t type, nvlist_t *props) { zfs_cmd_t zc = { 0 }; int ret; uint64_t size = 0; uint64_t blocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); char errbuf[1024]; uint64_t zoned; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), path); /* validate the path, taking care to note the extended error message */ if (!zfs_validate_name(hdl, path, type, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* validate parents exist */ if (check_parents(hdl, path, &zoned, B_FALSE, NULL) != 0) return (-1); /* * The failure modes when creating a dataset of a different type over * one that already exists is a little strange. In particular, if you * try to create a dataset on top of an existing dataset, the ioctl() * will return ENOENT, not EEXIST. To prevent this from happening, we * first try to see if the dataset exists. */ (void) strlcpy(zc.zc_name, path, sizeof (zc.zc_name)); if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_DATASET)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset already exists")); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } if (type == ZFS_TYPE_VOLUME) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; if (props && (props = zfs_valid_proplist(hdl, type, props, zoned, NULL, errbuf)) == 0) return (-1); if (type == ZFS_TYPE_VOLUME) { /* * If we are creating a volume, the size and block size must * satisfy a few restraints. First, the blocksize must be a * valid block size between SPA_{MIN,MAX}BLOCKSIZE. Second, the * volsize must be a multiple of the block size, and cannot be * zero. */ if (props == NULL || nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &size) != 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing volume size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } if ((ret = nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &blocksize)) != 0) { if (ret == ENOENT) { blocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); } else { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing volume block size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } } if (size == 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume size cannot be zero")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } if (size % blocksize != 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume size must be a multiple of volume block " "size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } } if (props && zcmd_write_src_nvlist(hdl, &zc, props) != 0) return (-1); nvlist_free(props); /* create the dataset */ ret = zfs_ioctl(hdl, ZFS_IOC_CREATE, &zc); zcmd_free_nvlists(&zc); /* check for failure */ if (ret != 0) { char parent[ZFS_MAXNAMELEN]; (void) parent_name(path, parent, sizeof (parent)); switch (errno) { case ENOENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such parent '%s'"), parent); return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EINVAL: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent '%s' is not a filesystem"), parent); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); case EDOM: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume block size must be power of 2 from " "%u to %uk"), (uint_t)SPA_MINBLOCKSIZE, (uint_t)SPA_MAXBLOCKSIZE >> 10); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to set this " "property or value")); return (zfs_error(hdl, EZFS_BADVERSION, errbuf)); #ifdef _ILP32 case EOVERFLOW: /* * This platform can't address a volume this big. */ if (type == ZFS_TYPE_VOLUME) return (zfs_error(hdl, EZFS_VOLTOOBIG, errbuf)); #endif /* FALLTHROUGH */ default: return (zfs_standard_error(hdl, errno, errbuf)); } } return (0); } /* * Destroys the given dataset. The caller must make sure that the filesystem * isn't mounted, and that there are no active dependents. */ int zfs_destroy(zfs_handle_t *zhp, boolean_t defer) { zfs_cmd_t zc = { 0 }; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (ZFS_IS_VOLUME(zhp)) { zc.zc_objset_type = DMU_OST_ZVOL; } else { zc.zc_objset_type = DMU_OST_ZFS; } zc.zc_defer_destroy = defer; if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_DESTROY, &zc) != 0) { return (zfs_standard_error_fmt(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot destroy '%s'"), zhp->zfs_name)); } remove_mountpoint(zhp); return (0); } struct destroydata { char *snapname; boolean_t gotone; boolean_t closezhp; }; static int zfs_check_snap_cb(zfs_handle_t *zhp, void *arg) { struct destroydata *dd = arg; zfs_handle_t *szhp; char name[ZFS_MAXNAMELEN]; boolean_t closezhp = dd->closezhp; int rv = 0; (void) strlcpy(name, zhp->zfs_name, sizeof (name)); (void) strlcat(name, "@", sizeof (name)); (void) strlcat(name, dd->snapname, sizeof (name)); szhp = make_dataset_handle(zhp->zfs_hdl, name); if (szhp) { dd->gotone = B_TRUE; zfs_close(szhp); } dd->closezhp = B_TRUE; if (!dd->gotone) rv = zfs_iter_filesystems(zhp, zfs_check_snap_cb, arg); if (closezhp) zfs_close(zhp); return (rv); } /* * Destroys all snapshots with the given name in zhp & descendants. */ int zfs_destroy_snaps(zfs_handle_t *zhp, char *snapname, boolean_t defer) { zfs_cmd_t zc = { 0 }; int ret; struct destroydata dd = { 0 }; dd.snapname = snapname; (void) zfs_check_snap_cb(zhp, &dd); if (!dd.gotone) { return (zfs_standard_error_fmt(zhp->zfs_hdl, ENOENT, dgettext(TEXT_DOMAIN, "cannot destroy '%s@%s'"), zhp->zfs_name, snapname)); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value)); zc.zc_defer_destroy = defer; ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_DESTROY_SNAPS, &zc); if (ret != 0) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot destroy '%s@%s'"), zc.zc_name, snapname); switch (errno) { case EEXIST: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "snapshot is cloned")); return (zfs_error(zhp->zfs_hdl, EZFS_EXISTS, errbuf)); default: return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } } return (0); } /* * Clones the given dataset. The target must be of the same type as the source. */ int zfs_clone(zfs_handle_t *zhp, const char *target, nvlist_t *props) { zfs_cmd_t zc = { 0 }; char parent[ZFS_MAXNAMELEN]; int ret; char errbuf[1024]; libzfs_handle_t *hdl = zhp->zfs_hdl; zfs_type_t type; uint64_t zoned; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), target); /* validate the target name */ if (!zfs_validate_name(hdl, target, ZFS_TYPE_FILESYSTEM, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* validate parents exist */ if (check_parents(hdl, target, &zoned, B_FALSE, NULL) != 0) return (-1); (void) parent_name(target, parent, sizeof (parent)); /* do the clone */ if (ZFS_IS_VOLUME(zhp)) { zc.zc_objset_type = DMU_OST_ZVOL; type = ZFS_TYPE_VOLUME; } else { zc.zc_objset_type = DMU_OST_ZFS; type = ZFS_TYPE_FILESYSTEM; } if (props) { if ((props = zfs_valid_proplist(hdl, type, props, zoned, zhp, errbuf)) == NULL) return (-1); if (zcmd_write_src_nvlist(hdl, &zc, props) != 0) { nvlist_free(props); return (-1); } nvlist_free(props); } (void) strlcpy(zc.zc_name, target, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, zhp->zfs_name, sizeof (zc.zc_value)); ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_CREATE, &zc); zcmd_free_nvlists(&zc); if (ret != 0) { switch (errno) { case ENOENT: /* * The parent doesn't exist. We should have caught this * above, but there may a race condition that has since * destroyed the parent. * * At this point, we don't know whether it's the source * that doesn't exist anymore, or whether the target * dataset doesn't exist. */ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "no such parent '%s'"), parent); return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf)); case EXDEV: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "source and target pools differ")); return (zfs_error(zhp->zfs_hdl, EZFS_CROSSTARGET, errbuf)); default: return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } } return (ret); } /* * Promotes the given clone fs to be the clone parent. */ int zfs_promote(zfs_handle_t *zhp) { libzfs_handle_t *hdl = zhp->zfs_hdl; zfs_cmd_t zc = { 0 }; char parent[MAXPATHLEN]; int ret; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot promote '%s'"), zhp->zfs_name); if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshots can not be promoted")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } (void) strlcpy(parent, zhp->zfs_dmustats.dds_origin, sizeof (parent)); if (parent[0] == '\0') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not a cloned filesystem")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } (void) strlcpy(zc.zc_value, zhp->zfs_dmustats.dds_origin, sizeof (zc.zc_value)); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); ret = zfs_ioctl(hdl, ZFS_IOC_PROMOTE, &zc); if (ret != 0) { int save_errno = errno; switch (save_errno) { case EEXIST: /* There is a conflicting snapshot name. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "conflicting snapshot '%s' from parent '%s'"), zc.zc_string, parent); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); default: return (zfs_standard_error(hdl, save_errno, errbuf)); } } return (ret); } /* * Takes a snapshot of the given dataset. */ int zfs_snapshot(libzfs_handle_t *hdl, const char *path, boolean_t recursive, nvlist_t *props) { const char *delim; char parent[ZFS_MAXNAMELEN]; zfs_handle_t *zhp; zfs_cmd_t zc = { 0 }; int ret; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot snapshot '%s'"), path); /* validate the target name */ if (!zfs_validate_name(hdl, path, ZFS_TYPE_SNAPSHOT, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); if (props) { if ((props = zfs_valid_proplist(hdl, ZFS_TYPE_SNAPSHOT, props, B_FALSE, NULL, errbuf)) == NULL) return (-1); if (zcmd_write_src_nvlist(hdl, &zc, props) != 0) { nvlist_free(props); return (-1); } nvlist_free(props); } /* make sure the parent exists and is of the appropriate type */ delim = strchr(path, '@'); (void) strncpy(parent, path, delim - path); parent[delim - path] = '\0'; if ((zhp = zfs_open(hdl, parent, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) == NULL) { zcmd_free_nvlists(&zc); return (-1); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, delim+1, sizeof (zc.zc_value)); if (ZFS_IS_VOLUME(zhp)) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; zc.zc_cookie = recursive; ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SNAPSHOT, &zc); zcmd_free_nvlists(&zc); /* * if it was recursive, the one that actually failed will be in * zc.zc_name. */ if (ret != 0) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create snapshot '%s@%s'"), zc.zc_name, zc.zc_value); (void) zfs_standard_error(hdl, errno, errbuf); } zfs_close(zhp); return (ret); } /* * Destroy any more recent snapshots. We invoke this callback on any dependents * of the snapshot first. If the 'cb_dependent' member is non-zero, then this * is a dependent and we should just destroy it without checking the transaction * group. */ typedef struct rollback_data { const char *cb_target; /* the snapshot */ uint64_t cb_create; /* creation time reference */ boolean_t cb_error; boolean_t cb_dependent; boolean_t cb_force; } rollback_data_t; static int rollback_destroy(zfs_handle_t *zhp, void *data) { rollback_data_t *cbp = data; if (!cbp->cb_dependent) { if (strcmp(zhp->zfs_name, cbp->cb_target) != 0 && zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT && zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > cbp->cb_create) { char *logstr; cbp->cb_dependent = B_TRUE; cbp->cb_error |= zfs_iter_dependents(zhp, B_FALSE, rollback_destroy, cbp); cbp->cb_dependent = B_FALSE; logstr = zhp->zfs_hdl->libzfs_log_str; zhp->zfs_hdl->libzfs_log_str = NULL; cbp->cb_error |= zfs_destroy(zhp, B_FALSE); zhp->zfs_hdl->libzfs_log_str = logstr; } } else { /* We must destroy this clone; first unmount it */ prop_changelist_t *clp; clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, cbp->cb_force ? MS_FORCE: 0); if (clp == NULL || changelist_prefix(clp) != 0) { cbp->cb_error = B_TRUE; zfs_close(zhp); return (0); } if (zfs_destroy(zhp, B_FALSE) != 0) cbp->cb_error = B_TRUE; else changelist_remove(clp, zhp->zfs_name); (void) changelist_postfix(clp); changelist_free(clp); } zfs_close(zhp); return (0); } /* * Given a dataset, rollback to a specific snapshot, discarding any * data changes since then and making it the active dataset. * * Any snapshots more recent than the target are destroyed, along with * their dependents. */ int zfs_rollback(zfs_handle_t *zhp, zfs_handle_t *snap, boolean_t force) { rollback_data_t cb = { 0 }; int err; zfs_cmd_t zc = { 0 }; boolean_t restore_resv = 0; uint64_t old_volsize, new_volsize; zfs_prop_t resv_prop; assert(zhp->zfs_type == ZFS_TYPE_FILESYSTEM || zhp->zfs_type == ZFS_TYPE_VOLUME); /* * Destroy all recent snapshots and its dependends. */ cb.cb_force = force; cb.cb_target = snap->zfs_name; cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG); (void) zfs_iter_children(zhp, rollback_destroy, &cb); if (cb.cb_error) return (-1); /* * Now that we have verified that the snapshot is the latest, * rollback to the given snapshot. */ if (zhp->zfs_type == ZFS_TYPE_VOLUME) { if (zfs_which_resv_prop(zhp, &resv_prop) < 0) return (-1); old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); restore_resv = (old_volsize == zfs_prop_get_int(zhp, resv_prop)); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (ZFS_IS_VOLUME(zhp)) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; /* * We rely on zfs_iter_children() to verify that there are no * newer snapshots for the given dataset. Therefore, we can * simply pass the name on to the ioctl() call. There is still * an unlikely race condition where the user has taken a * snapshot since we verified that this was the most recent. * */ if ((err = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_ROLLBACK, &zc)) != 0) { (void) zfs_standard_error_fmt(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot rollback '%s'"), zhp->zfs_name); return (err); } /* * For volumes, if the pre-rollback volsize matched the pre- * rollback reservation and the volsize has changed then set * the reservation property to the post-rollback volsize. * Make a new handle since the rollback closed the dataset. */ if ((zhp->zfs_type == ZFS_TYPE_VOLUME) && (zhp = make_dataset_handle(zhp->zfs_hdl, zhp->zfs_name))) { if (restore_resv) { new_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); if (old_volsize != new_volsize) err = zfs_prop_set_int(zhp, resv_prop, new_volsize); } zfs_close(zhp); } return (err); } /* * Iterate over all dependents for a given dataset. This includes both * hierarchical dependents (children) and data dependents (snapshots and * clones). The bulk of the processing occurs in get_dependents() in * libzfs_graph.c. */ int zfs_iter_dependents(zfs_handle_t *zhp, boolean_t allowrecursion, zfs_iter_f func, void *data) { char **dependents; size_t count; int i; zfs_handle_t *child; int ret = 0; if (get_dependents(zhp->zfs_hdl, allowrecursion, zhp->zfs_name, &dependents, &count) != 0) return (-1); for (i = 0; i < count; i++) { if ((child = make_dataset_handle(zhp->zfs_hdl, dependents[i])) == NULL) continue; if ((ret = func(child, data)) != 0) break; } for (i = 0; i < count; i++) free(dependents[i]); free(dependents); return (ret); } /* * Renames the given dataset. */ int zfs_rename(zfs_handle_t *zhp, const char *target, boolean_t recursive) { int ret; zfs_cmd_t zc = { 0 }; char *delim; prop_changelist_t *cl = NULL; zfs_handle_t *zhrp = NULL; char *parentname = NULL; char parent[ZFS_MAXNAMELEN]; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; /* if we have the same exact name, just return success */ if (strcmp(zhp->zfs_name, target) == 0) return (0); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename to '%s'"), target); /* * Make sure the target name is valid */ if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) { if ((strchr(target, '@') == NULL) || *target == '@') { /* * Snapshot target name is abbreviated, * reconstruct full dataset name */ (void) strlcpy(parent, zhp->zfs_name, sizeof (parent)); delim = strchr(parent, '@'); if (strchr(target, '@') == NULL) *(++delim) = '\0'; else *delim = '\0'; (void) strlcat(parent, target, sizeof (parent)); target = parent; } else { /* * Make sure we're renaming within the same dataset. */ delim = strchr(target, '@'); if (strncmp(zhp->zfs_name, target, delim - target) != 0 || zhp->zfs_name[delim - target] != '@') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshots must be part of same " "dataset")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); } } if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } else { if (recursive) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "recursive rename must be a snapshot")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* validate parents */ if (check_parents(hdl, target, NULL, B_FALSE, NULL) != 0) return (-1); /* make sure we're in the same pool */ verify((delim = strchr(target, '/')) != NULL); if (strncmp(zhp->zfs_name, target, delim - target) != 0 || zhp->zfs_name[delim - target] != '/') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "datasets must be within same pool")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); } /* new name cannot be a child of the current dataset name */ if (is_descendant(zhp->zfs_name, target)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "New dataset name cannot be a descendant of " "current dataset name")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } } (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename '%s'"), zhp->zfs_name); if (getzoneid() == GLOBAL_ZONEID && zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset is used in a non-global zone")); return (zfs_error(hdl, EZFS_ZONED, errbuf)); } if (recursive) { parentname = zfs_strdup(zhp->zfs_hdl, zhp->zfs_name); if (parentname == NULL) { ret = -1; goto error; } delim = strchr(parentname, '@'); *delim = '\0'; zhrp = zfs_open(zhp->zfs_hdl, parentname, ZFS_TYPE_DATASET); if (zhrp == NULL) { ret = -1; goto error; } } else { if ((cl = changelist_gather(zhp, ZFS_PROP_NAME, 0, 0)) == NULL) return (-1); if (changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; } if (ZFS_IS_VOLUME(zhp)) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, target, sizeof (zc.zc_value)); zc.zc_cookie = recursive; if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_RENAME, &zc)) != 0) { /* * if it was recursive, the one that actually failed will * be in zc.zc_name */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename '%s'"), zc.zc_name); if (recursive && errno == EEXIST) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "a child dataset already has a snapshot " "with the new name")); (void) zfs_error(hdl, EZFS_EXISTS, errbuf); } else { (void) zfs_standard_error(zhp->zfs_hdl, errno, errbuf); } /* * On failure, we still want to remount any filesystems that * were previously mounted, so we don't alter the system state. */ if (!recursive) (void) changelist_postfix(cl); } else { if (!recursive) { changelist_rename(cl, zfs_get_name(zhp), target); ret = changelist_postfix(cl); } } error: if (parentname) { free(parentname); } if (zhrp) { zfs_close(zhrp); } if (cl) { changelist_free(cl); } return (ret); } nvlist_t * zfs_get_user_props(zfs_handle_t *zhp) { return (zhp->zfs_user_props); } nvlist_t * zfs_get_recvd_props(zfs_handle_t *zhp) { if (zhp->zfs_recvd_props == NULL) if (get_recvd_props_ioctl(zhp) != 0) return (NULL); return (zhp->zfs_recvd_props); } /* * This function is used by 'zfs list' to determine the exact set of columns to * display, and their maximum widths. This does two main things: * * - If this is a list of all properties, then expand the list to include * all native properties, and set a flag so that for each dataset we look * for new unique user properties and add them to the list. * * - For non fixed-width properties, keep track of the maximum width seen * so that we can size the column appropriately. If the user has * requested received property values, we also need to compute the width * of the RECEIVED column. */ int zfs_expand_proplist(zfs_handle_t *zhp, zprop_list_t **plp, boolean_t received) { libzfs_handle_t *hdl = zhp->zfs_hdl; zprop_list_t *entry; zprop_list_t **last, **start; nvlist_t *userprops, *propval; nvpair_t *elem; char *strval; char buf[ZFS_MAXPROPLEN]; if (zprop_expand_list(hdl, plp, ZFS_TYPE_DATASET) != 0) return (-1); userprops = zfs_get_user_props(zhp); entry = *plp; if (entry->pl_all && nvlist_next_nvpair(userprops, NULL) != NULL) { /* * Go through and add any user properties as necessary. We * start by incrementing our list pointer to the first * non-native property. */ start = plp; while (*start != NULL) { if ((*start)->pl_prop == ZPROP_INVAL) break; start = &(*start)->pl_next; } elem = NULL; while ((elem = nvlist_next_nvpair(userprops, elem)) != NULL) { /* * See if we've already found this property in our list. */ for (last = start; *last != NULL; last = &(*last)->pl_next) { if (strcmp((*last)->pl_user_prop, nvpair_name(elem)) == 0) break; } if (*last == NULL) { if ((entry = zfs_alloc(hdl, sizeof (zprop_list_t))) == NULL || ((entry->pl_user_prop = zfs_strdup(hdl, nvpair_name(elem)))) == NULL) { free(entry); return (-1); } entry->pl_prop = ZPROP_INVAL; entry->pl_width = strlen(nvpair_name(elem)); entry->pl_all = B_TRUE; *last = entry; } } } /* * Now go through and check the width of any non-fixed columns */ for (entry = *plp; entry != NULL; entry = entry->pl_next) { if (entry->pl_fixed) continue; if (entry->pl_prop != ZPROP_INVAL) { if (zfs_prop_get(zhp, entry->pl_prop, buf, sizeof (buf), NULL, NULL, 0, B_FALSE) == 0) { if (strlen(buf) > entry->pl_width) entry->pl_width = strlen(buf); } if (received && zfs_prop_get_recvd(zhp, zfs_prop_to_name(entry->pl_prop), buf, sizeof (buf), B_FALSE) == 0) if (strlen(buf) > entry->pl_recvd_width) entry->pl_recvd_width = strlen(buf); } else { if (nvlist_lookup_nvlist(userprops, entry->pl_user_prop, &propval) == 0) { verify(nvlist_lookup_string(propval, ZPROP_VALUE, &strval) == 0); if (strlen(strval) > entry->pl_width) entry->pl_width = strlen(strval); } if (received && zfs_prop_get_recvd(zhp, entry->pl_user_prop, buf, sizeof (buf), B_FALSE) == 0) if (strlen(buf) > entry->pl_recvd_width) entry->pl_recvd_width = strlen(buf); } } return (0); } int zfs_deleg_share_nfs(libzfs_handle_t *hdl, char *dataset, char *path, char *resource, void *export, void *sharetab, int sharemax, zfs_share_op_t operation) { zfs_cmd_t zc = { 0 }; int error; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, path, sizeof (zc.zc_value)); if (resource) (void) strlcpy(zc.zc_string, resource, sizeof (zc.zc_string)); zc.zc_share.z_sharedata = (uint64_t)(uintptr_t)sharetab; zc.zc_share.z_exportdata = (uint64_t)(uintptr_t)export; zc.zc_share.z_sharetype = operation; zc.zc_share.z_sharemax = sharemax; error = ioctl(hdl->libzfs_fd, ZFS_IOC_SHARE, &zc); return (error); } void zfs_prune_proplist(zfs_handle_t *zhp, uint8_t *props) { nvpair_t *curr; /* * Keep a reference to the props-table against which we prune the * properties. */ zhp->zfs_props_table = props; curr = nvlist_next_nvpair(zhp->zfs_props, NULL); while (curr) { zfs_prop_t zfs_prop = zfs_name_to_prop(nvpair_name(curr)); nvpair_t *next = nvlist_next_nvpair(zhp->zfs_props, curr); /* * User properties will result in ZPROP_INVAL, and since we * only know how to prune standard ZFS properties, we always * leave these in the list. This can also happen if we * encounter an unknown DSL property (when running older * software, for example). */ if (zfs_prop != ZPROP_INVAL && props[zfs_prop] == B_FALSE) (void) nvlist_remove(zhp->zfs_props, nvpair_name(curr), nvpair_type(curr)); curr = next; } } static int zfs_smb_acl_mgmt(libzfs_handle_t *hdl, char *dataset, char *path, zfs_smb_acl_op_t cmd, char *resource1, char *resource2) { zfs_cmd_t zc = { 0 }; nvlist_t *nvlist = NULL; int error; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, path, sizeof (zc.zc_value)); zc.zc_cookie = (uint64_t)cmd; if (cmd == ZFS_SMB_ACL_RENAME) { if (nvlist_alloc(&nvlist, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } } switch (cmd) { case ZFS_SMB_ACL_ADD: case ZFS_SMB_ACL_REMOVE: (void) strlcpy(zc.zc_string, resource1, sizeof (zc.zc_string)); break; case ZFS_SMB_ACL_RENAME: if (nvlist_add_string(nvlist, ZFS_SMB_ACL_SRC, resource1) != 0) { (void) no_memory(hdl); return (-1); } if (nvlist_add_string(nvlist, ZFS_SMB_ACL_TARGET, resource2) != 0) { (void) no_memory(hdl); return (-1); } if (zcmd_write_src_nvlist(hdl, &zc, nvlist) != 0) { nvlist_free(nvlist); return (-1); } break; case ZFS_SMB_ACL_PURGE: break; default: return (-1); } error = ioctl(hdl->libzfs_fd, ZFS_IOC_SMB_ACL, &zc); if (nvlist) nvlist_free(nvlist); return (error); } int zfs_smb_acl_add(libzfs_handle_t *hdl, char *dataset, char *path, char *resource) { return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_ADD, resource, NULL)); } int zfs_smb_acl_remove(libzfs_handle_t *hdl, char *dataset, char *path, char *resource) { return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_REMOVE, resource, NULL)); } int zfs_smb_acl_purge(libzfs_handle_t *hdl, char *dataset, char *path) { return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_PURGE, NULL, NULL)); } int zfs_smb_acl_rename(libzfs_handle_t *hdl, char *dataset, char *path, char *oldname, char *newname) { return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_RENAME, oldname, newname)); } int zfs_userspace(zfs_handle_t *zhp, zfs_userquota_prop_t type, zfs_userspace_cb_t func, void *arg) { zfs_cmd_t zc = { 0 }; int error; zfs_useracct_t buf[100]; (void) strncpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); zc.zc_objset_type = type; zc.zc_nvlist_dst = (uintptr_t)buf; /* CONSTCOND */ while (1) { zfs_useracct_t *zua = buf; zc.zc_nvlist_dst_size = sizeof (buf); error = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_USERSPACE_MANY, &zc); if (error || zc.zc_nvlist_dst_size == 0) break; while (zc.zc_nvlist_dst_size > 0) { error = func(arg, zua->zu_domain, zua->zu_rid, zua->zu_space); if (error != 0) return (error); zua++; zc.zc_nvlist_dst_size -= sizeof (zfs_useracct_t); } } return (error); } int zfs_hold(zfs_handle_t *zhp, const char *snapname, const char *tag, boolean_t recursive, boolean_t temphold, boolean_t enoent_ok) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zfs_hdl; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value)); if (strlcpy(zc.zc_string, tag, sizeof (zc.zc_string)) >= sizeof (zc.zc_string)) return (zfs_error(hdl, EZFS_TAGTOOLONG, tag)); zc.zc_cookie = recursive; zc.zc_temphold = temphold; if (zfs_ioctl(hdl, ZFS_IOC_HOLD, &zc) != 0) { char errbuf[ZFS_MAXNAMELEN+32]; /* * if it was recursive, the one that actually failed will be in * zc.zc_name. */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot hold '%s@%s'"), zc.zc_name, snapname); switch (errno) { case E2BIG: /* * Temporary tags wind up having the ds object id * prepended. So even if we passed the length check * above, it's still possible for the tag to wind * up being slightly too long. */ return (zfs_error(hdl, EZFS_TAGTOOLONG, errbuf)); case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded")); return (zfs_error(hdl, EZFS_BADVERSION, errbuf)); case EINVAL: return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); case EEXIST: return (zfs_error(hdl, EZFS_REFTAG_HOLD, errbuf)); case ENOENT: if (enoent_ok) return (0); /* FALLTHROUGH */ default: return (zfs_standard_error_fmt(hdl, errno, errbuf)); } } return (0); } struct hold_range_arg { zfs_handle_t *origin; const char *fromsnap; const char *tosnap; char lastsnapheld[ZFS_MAXNAMELEN]; const char *tag; boolean_t temphold; boolean_t seento; boolean_t seenfrom; boolean_t holding; boolean_t recursive; snapfilter_cb_t *filter_cb; void *filter_cb_arg; }; static int zfs_hold_range_one(zfs_handle_t *zhp, void *arg) { struct hold_range_arg *hra = arg; const char *thissnap; int error; thissnap = strchr(zfs_get_name(zhp), '@') + 1; if (hra->fromsnap && !hra->seenfrom && strcmp(hra->fromsnap, thissnap) == 0) hra->seenfrom = B_TRUE; /* snap is older or newer than the desired range, ignore it */ if (hra->seento || !hra->seenfrom) { zfs_close(zhp); return (0); } if (!hra->seento && strcmp(hra->tosnap, thissnap) == 0) hra->seento = B_TRUE; if (hra->filter_cb != NULL && hra->filter_cb(zhp, hra->filter_cb_arg) == B_FALSE) { zfs_close(zhp); return (0); } if (hra->holding) { /* We could be racing with destroy, so ignore ENOENT. */ error = zfs_hold(hra->origin, thissnap, hra->tag, hra->recursive, hra->temphold, B_TRUE); if (error == 0) { (void) strlcpy(hra->lastsnapheld, zfs_get_name(zhp), sizeof (hra->lastsnapheld)); } } else { error = zfs_release(hra->origin, thissnap, hra->tag, hra->recursive); } zfs_close(zhp); return (error); } /* * Add a user hold on the set of snapshots starting with fromsnap up to * and including tosnap. If we're unable to to acquire a particular hold, * undo any holds up to that point. */ int zfs_hold_range(zfs_handle_t *zhp, const char *fromsnap, const char *tosnap, const char *tag, boolean_t recursive, boolean_t temphold, snapfilter_cb_t filter_cb, void *cbarg) { struct hold_range_arg arg = { 0 }; int error; arg.origin = zhp; arg.fromsnap = fromsnap; arg.tosnap = tosnap; arg.tag = tag; arg.temphold = temphold; arg.holding = B_TRUE; arg.recursive = recursive; arg.seenfrom = (fromsnap == NULL); arg.filter_cb = filter_cb; arg.filter_cb_arg = cbarg; error = zfs_iter_snapshots_sorted(zhp, zfs_hold_range_one, &arg); /* * Make sure we either hold the entire range or none. */ if (error && arg.lastsnapheld[0] != '\0') { (void) zfs_release_range(zhp, fromsnap, (const char *)arg.lastsnapheld, tag, recursive); } return (error); } int zfs_release(zfs_handle_t *zhp, const char *snapname, const char *tag, boolean_t recursive) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zfs_hdl; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value)); if (strlcpy(zc.zc_string, tag, sizeof (zc.zc_string)) >= sizeof (zc.zc_string)) return (zfs_error(hdl, EZFS_TAGTOOLONG, tag)); zc.zc_cookie = recursive; if (zfs_ioctl(hdl, ZFS_IOC_RELEASE, &zc) != 0) { char errbuf[ZFS_MAXNAMELEN+32]; /* * if it was recursive, the one that actually failed will be in * zc.zc_name. */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot release '%s' from '%s@%s'"), tag, zc.zc_name, snapname); switch (errno) { case ESRCH: return (zfs_error(hdl, EZFS_REFTAG_RELE, errbuf)); case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded")); return (zfs_error(hdl, EZFS_BADVERSION, errbuf)); case EINVAL: return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); default: return (zfs_standard_error_fmt(hdl, errno, errbuf)); } } return (0); } /* * Release a user hold from the set of snapshots starting with fromsnap * up to and including tosnap. */ int zfs_release_range(zfs_handle_t *zhp, const char *fromsnap, const char *tosnap, const char *tag, boolean_t recursive) { struct hold_range_arg arg = { 0 }; arg.origin = zhp; arg.fromsnap = fromsnap; arg.tosnap = tosnap; arg.tag = tag; arg.recursive = recursive; arg.seenfrom = (fromsnap == NULL); return (zfs_iter_snapshots_sorted(zhp, zfs_hold_range_one, &arg)); } uint64_t zvol_volsize_to_reservation(uint64_t volsize, nvlist_t *props) { uint64_t numdb; uint64_t nblocks, volblocksize; int ncopies; char *strval; if (nvlist_lookup_string(props, zfs_prop_to_name(ZFS_PROP_COPIES), &strval) == 0) ncopies = atoi(strval); else ncopies = 1; if (nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) volblocksize = ZVOL_DEFAULT_BLOCKSIZE; nblocks = volsize/volblocksize; /* start with metadnode L0-L6 */ numdb = 7; /* calculate number of indirects */ while (nblocks > 1) { nblocks += DNODES_PER_LEVEL - 1; nblocks /= DNODES_PER_LEVEL; numdb += nblocks; } numdb *= MIN(SPA_DVAS_PER_BP, ncopies + 1); volsize *= ncopies; /* * this is exactly DN_MAX_INDBLKSHIFT when metadata isn't * compressed, but in practice they compress down to about * 1100 bytes */ numdb *= 1ULL << DN_MAX_INDBLKSHIFT; volsize += numdb; return (volsize); }