/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include "libm_synonyms.h" #include "libm_inlines.h" #ifdef _LITTLE_ENDIAN #define HI(x) *(1+(int*)x) #define LO(x) *(unsigned*)x #else #define HI(x) *(int*)x #define LO(x) *(1+(unsigned*)x) #endif #ifdef __RESTRICT #define restrict _Restrict #else #define restrict #endif /* double rsqrt(double x) * * Method : * 1. Special cases: * for x = NaN => QNaN; * for x = +Inf => 0; * for x is negative, -Inf => QNaN + invalid; * for x = +0 => +Inf + divide-by-zero; * for x = -0 => -Inf + divide-by-zero. * 2. Computes reciprocal square root from: * x = m * 2**n * Where: * m = [0.5, 2), * n = ((exponent + 1) & ~1). * Then: * rsqrt(x) = 1/sqrt( m * 2**n ) = (2 ** (-n/2)) * (1/sqrt(m)) * 2. Computes 1/sqrt(m) from: * 1/sqrt(m) = (1/sqrt(m0)) * (1/sqrt(1 + (1/m0)*dm)) * Where: * m = m0 + dm, * m0 = 0.5 * (1 + k/64) for m = [0.5, 0.5+127/256), k = [0, 63]; * m0 = 1.0 * (0 + k/64) for m = [0.5+127/256, 1.0+127/128), k = [64, 127]; * m0 = 2.0 for m = [1.0+127/128, 2.0), k = 128. * Then: * 1/sqrt(m0) is looked up in a table, * 1/m0 is computed as (1/sqrt(m0)) * (1/sqrt(m0)). * 1/sqrt(1 + (1/m0)*dm) is computed using approximation: * 1/sqrt(1 + z) = (((((a6 * z + a5) * z + a4) * z + a3) * * z + a2) * z + a1) * z + a0 * where z = [-1/128, 1/128]. * * Accuracy: * The maximum relative error for the approximating * polynomial is 2**(-56.26). * Maximum error observed: less than 0.563 ulp after 1.500.000.000 * results. */ #define sqrt __sqrt extern double sqrt (double); extern const double __vlibm_TBL_rsqrt[]; static void __vrsqrt_n(int n, double * restrict px, int stridex, double * restrict py, int stridey); #pragma no_inline(__vrsqrt_n) #define RETURN(ret) \ { \ *py = (ret); \ py += stridey; \ if (n_n == 0) \ { \ spx = px; spy = py; \ hx = HI(px); \ continue; \ } \ n--; \ break; \ } static const double DONE = 1.0, K1 = -5.00000000000005209867e-01, K2 = 3.75000000000004884257e-01, K3 = -3.12499999317136886551e-01, K4 = 2.73437499359815081532e-01, K5 = -2.46116125605037803130e-01, K6 = 2.25606914648617522896e-01; void __vrsqrt(int n, double * restrict px, int stridex, double * restrict py, int stridey) { double *spx, *spy; int ax, lx, hx, n_n; double res; while (n > 1) { n_n = 0; spx = px; spy = py; hx = HI(px); for (; n > 1 ; n--) { px += stridex; if (hx >= 0x7ff00000) /* X = NaN or Inf */ { res = *(px - stridex); RETURN (DONE / res) } py += stridey; if (hx < 0x00100000) /* X = denormal, zero or negative */ { py -= stridey; ax = hx & 0x7fffffff; lx = LO((px - stridex)); res = *(px - stridex); if ((ax | lx) == 0) /* |X| = zero */ { RETURN (DONE / res) } else if (hx >= 0) /* X = denormal */ { double res_c0, dsqrt_exp0; int ind0, sqrt_exp0; double xx0, dexp_hi0, dexp_lo0; int hx0, resh0, res_ch0; res = *(long long*)&res; hx0 = HI(&res); sqrt_exp0 = (0x817 - (hx0 >> 21)) << 20; ind0 = (((hx0 >> 10) & 0x7f8) + 8) & -16; resh0 = (hx0 & 0x001fffff) | 0x3fe00000; res_ch0 = (resh0 + 0x00002000) & 0x7fffc000; HI(&res) = resh0; HI(&res_c0) = res_ch0; LO(&res_c0) = 0; dexp_hi0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[0]; dexp_lo0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[1]; xx0 = dexp_hi0 * dexp_hi0; xx0 = (res - res_c0) * xx0; res = (((((K6 * xx0 + K5) * xx0 + K4) * xx0 + K3) * xx0 + K2) * xx0 + K1) * xx0; res = dexp_hi0 * res + dexp_lo0 + dexp_hi0; HI(&dsqrt_exp0) = sqrt_exp0; LO(&dsqrt_exp0) = 0; res *= dsqrt_exp0; RETURN (res) } else /* X = negative */ { RETURN (sqrt(res)) } } n_n++; hx = HI(px); } if (n_n > 0) __vrsqrt_n(n_n, spx, stridex, spy, stridey); } if (n > 0) { hx = HI(px); if (hx >= 0x7ff00000) /* X = NaN or Inf */ { res = *px; *py = DONE / res; } else if (hx < 0x00100000) /* X = denormal, zero or negative */ { ax = hx & 0x7fffffff; lx = LO(px); res = *px; if ((ax | lx) == 0) /* |X| = zero */ { *py = DONE / res; } else if (hx >= 0) /* X = denormal */ { double res_c0, dsqrt_exp0; int ind0, sqrt_exp0; double xx0, dexp_hi0, dexp_lo0; int hx0, resh0, res_ch0; res = *(long long*)&res; hx0 = HI(&res); sqrt_exp0 = (0x817 - (hx0 >> 21)) << 20; ind0 = (((hx0 >> 10) & 0x7f8) + 8) & -16; resh0 = (hx0 & 0x001fffff) | 0x3fe00000; res_ch0 = (resh0 + 0x00002000) & 0x7fffc000; HI(&res) = resh0; HI(&res_c0) = res_ch0; LO(&res_c0) = 0; dexp_hi0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[0]; dexp_lo0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[1]; xx0 = dexp_hi0 * dexp_hi0; xx0 = (res - res_c0) * xx0; res = (((((K6 * xx0 + K5) * xx0 + K4) * xx0 + K3) * xx0 + K2) * xx0 + K1) * xx0; res = dexp_hi0 * res + dexp_lo0 + dexp_hi0; HI(&dsqrt_exp0) = sqrt_exp0; LO(&dsqrt_exp0) = 0; res *= dsqrt_exp0; *py = res; } else /* X = negative */ { *py = sqrt(res); } } else { double res_c0, dsqrt_exp0; int ind0, sqrt_exp0; double xx0, dexp_hi0, dexp_lo0; int resh0, res_ch0; sqrt_exp0 = (0x5fe - (hx >> 21)) << 20; ind0 = (((hx >> 10) & 0x7f8) + 8) & -16; resh0 = (hx & 0x001fffff) | 0x3fe00000; res_ch0 = (resh0 + 0x00002000) & 0x7fffc000; HI(&res) = resh0; LO(&res) = LO(px); HI(&res_c0) = res_ch0; LO(&res_c0) = 0; dexp_hi0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[0]; dexp_lo0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[1]; xx0 = dexp_hi0 * dexp_hi0; xx0 = (res - res_c0) * xx0; res = (((((K6 * xx0 + K5) * xx0 + K4) * xx0 + K3) * xx0 + K2) * xx0 + K1) * xx0; res = dexp_hi0 * res + dexp_lo0 + dexp_hi0; HI(&dsqrt_exp0) = sqrt_exp0; LO(&dsqrt_exp0) = 0; res *= dsqrt_exp0; *py = res; } } } static void __vrsqrt_n(int n, double * restrict px, int stridex, double * restrict py, int stridey) { double res0, res_c0, dsqrt_exp0; double res1, res_c1, dsqrt_exp1; double res2, res_c2, dsqrt_exp2; int ind0, sqrt_exp0; int ind1, sqrt_exp1; int ind2, sqrt_exp2; double xx0, dexp_hi0, dexp_lo0; double xx1, dexp_hi1, dexp_lo1; double xx2, dexp_hi2, dexp_lo2; int hx0, resh0, res_ch0; int hx1, resh1, res_ch1; int hx2, resh2, res_ch2; LO(&dsqrt_exp0) = 0; LO(&dsqrt_exp1) = 0; LO(&dsqrt_exp2) = 0; LO(&res_c0) = 0; LO(&res_c1) = 0; LO(&res_c2) = 0; for(; n > 2 ; n -= 3) { hx0 = HI(px); LO(&res0) = LO(px); px += stridex; hx1 = HI(px); LO(&res1) = LO(px); px += stridex; hx2 = HI(px); LO(&res2) = LO(px); px += stridex; sqrt_exp0 = (0x5fe - (hx0 >> 21)) << 20; sqrt_exp1 = (0x5fe - (hx1 >> 21)) << 20; sqrt_exp2 = (0x5fe - (hx2 >> 21)) << 20; ind0 = (((hx0 >> 10) & 0x7f8) + 8) & -16; ind1 = (((hx1 >> 10) & 0x7f8) + 8) & -16; ind2 = (((hx2 >> 10) & 0x7f8) + 8) & -16; resh0 = (hx0 & 0x001fffff) | 0x3fe00000; resh1 = (hx1 & 0x001fffff) | 0x3fe00000; resh2 = (hx2 & 0x001fffff) | 0x3fe00000; res_ch0 = (resh0 + 0x00002000) & 0x7fffc000; res_ch1 = (resh1 + 0x00002000) & 0x7fffc000; res_ch2 = (resh2 + 0x00002000) & 0x7fffc000; HI(&res0) = resh0; HI(&res1) = resh1; HI(&res2) = resh2; HI(&res_c0) = res_ch0; HI(&res_c1) = res_ch1; HI(&res_c2) = res_ch2; dexp_hi0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[0]; dexp_hi1 = ((double*)((char*)__vlibm_TBL_rsqrt + ind1))[0]; dexp_hi2 = ((double*)((char*)__vlibm_TBL_rsqrt + ind2))[0]; dexp_lo0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[1]; dexp_lo1 = ((double*)((char*)__vlibm_TBL_rsqrt + ind1))[1]; dexp_lo2 = ((double*)((char*)__vlibm_TBL_rsqrt + ind2))[1]; xx0 = dexp_hi0 * dexp_hi0; xx1 = dexp_hi1 * dexp_hi1; xx2 = dexp_hi2 * dexp_hi2; xx0 = (res0 - res_c0) * xx0; xx1 = (res1 - res_c1) * xx1; xx2 = (res2 - res_c2) * xx2; res0 = (((((K6 * xx0 + K5) * xx0 + K4) * xx0 + K3) * xx0 + K2) * xx0 + K1) * xx0; res1 = (((((K6 * xx1 + K5) * xx1 + K4) * xx1 + K3) * xx1 + K2) * xx1 + K1) * xx1; res2 = (((((K6 * xx2 + K5) * xx2 + K4) * xx2 + K3) * xx2 + K2) * xx2 + K1) * xx2; res0 = dexp_hi0 * res0 + dexp_lo0 + dexp_hi0; res1 = dexp_hi1 * res1 + dexp_lo1 + dexp_hi1; res2 = dexp_hi2 * res2 + dexp_lo2 + dexp_hi2; HI(&dsqrt_exp0) = sqrt_exp0; HI(&dsqrt_exp1) = sqrt_exp1; HI(&dsqrt_exp2) = sqrt_exp2; res0 *= dsqrt_exp0; res1 *= dsqrt_exp1; res2 *= dsqrt_exp2; *py = res0; py += stridey; *py = res1; py += stridey; *py = res2; py += stridey; } for(; n > 0 ; n--) { hx0 = HI(px); sqrt_exp0 = (0x5fe - (hx0 >> 21)) << 20; ind0 = (((hx0 >> 10) & 0x7f8) + 8) & -16; resh0 = (hx0 & 0x001fffff) | 0x3fe00000; res_ch0 = (resh0 + 0x00002000) & 0x7fffc000; HI(&res0) = resh0; LO(&res0) = LO(px); HI(&res_c0) = res_ch0; LO(&res_c0) = 0; px += stridex; dexp_hi0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[0]; dexp_lo0 = ((double*)((char*)__vlibm_TBL_rsqrt + ind0))[1]; xx0 = dexp_hi0 * dexp_hi0; xx0 = (res0 - res_c0) * xx0; res0 = (((((K6 * xx0 + K5) * xx0 + K4) * xx0 + K3) * xx0 + K2) * xx0 + K1) * xx0; res0 = dexp_hi0 * res0 + dexp_lo0 + dexp_hi0; HI(&dsqrt_exp0) = sqrt_exp0; LO(&dsqrt_exp0) = 0; res0 *= dsqrt_exp0; *py = res0; py += stridey; } }