/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak sqrtl = __sqrtl #include "libm.h" #include "longdouble.h" extern int __swapTE(int); extern int __swapEX(int); extern enum fp_direction_type __swapRD(enum fp_direction_type); /* * in struct longdouble, msw consists of * unsigned short sgn:1; * unsigned short exp:15; * unsigned short frac1:16; */ #ifdef __LITTLE_ENDIAN /* array indices used to access words within a double */ #define HIWORD 1 #define LOWORD 0 /* structure used to access words within a quad */ union longdouble { struct { unsigned int frac4; unsigned int frac3; unsigned int frac2; unsigned int msw; } l; long double d; }; /* default NaN returned for sqrt(neg) */ static const union longdouble qnan = { 0xffffffff, 0xffffffff, 0xffffffff, 0x7fffffff }; /* signalling NaN used to raise invalid */ static const union { unsigned u[2]; double d; } snan = { 0, 0x7ff00001 }; #else /* array indices used to access words within a double */ #define HIWORD 0 #define LOWORD 1 /* structure used to access words within a quad */ union longdouble { struct { unsigned int msw; unsigned int frac2; unsigned int frac3; unsigned int frac4; } l; long double d; }; /* default NaN returned for sqrt(neg) */ static const union longdouble qnan = { 0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff }; /* signalling NaN used to raise invalid */ static const union { unsigned u[2]; double d; } snan = { 0x7ff00001, 0 }; #endif /* __LITTLE_ENDIAN */ static const double zero = 0.0, half = 0.5, one = 1.0, huge = 1.0e300, tiny = 1.0e-300, two36 = 6.87194767360000000000e+10, two30 = 1.07374182400000000000e+09, two6 = 6.40000000000000000000e+01, two4 = 1.60000000000000000000e+01, twom18 = 3.81469726562500000000e-06, twom28 = 3.72529029846191406250e-09, twom42 = 2.27373675443232059479e-13, twom60 = 8.67361737988403547206e-19, twom62 = 2.16840434497100886801e-19, twom66 = 1.35525271560688054251e-20, twom90 = 8.07793566946316088742e-28, twom113 = 9.62964972193617926528e-35, twom124 = 4.70197740328915003187e-38; /* * Extract the exponent and normalized significand (represented as * an array of five doubles) from a finite, nonzero quad. */ static int __q_unpack(const union longdouble *x, double *s) { union { double d; unsigned int l[2]; } u; double b; unsigned int lx, w[3]; int ex; /* get the normalized significand and exponent */ ex = (int) ((x->l.msw & 0x7fffffff) >> 16); lx = x->l.msw & 0xffff; if (ex) { lx |= 0x10000; w[0] = x->l.frac2; w[1] = x->l.frac3; w[2] = x->l.frac4; } else { if (lx | (x->l.frac2 & 0xfffe0000)) { w[0] = x->l.frac2; w[1] = x->l.frac3; w[2] = x->l.frac4; ex = 1; } else if (x->l.frac2 | (x->l.frac3 & 0xfffe0000)) { lx = x->l.frac2; w[0] = x->l.frac3; w[1] = x->l.frac4; w[2] = 0; ex = -31; } else if (x->l.frac3 | (x->l.frac4 & 0xfffe0000)) { lx = x->l.frac3; w[0] = x->l.frac4; w[1] = w[2] = 0; ex = -63; } else { lx = x->l.frac4; w[0] = w[1] = w[2] = 0; ex = -95; } while ((lx & 0x10000) == 0) { lx = (lx << 1) | (w[0] >> 31); w[0] = (w[0] << 1) | (w[1] >> 31); w[1] = (w[1] << 1) | (w[2] >> 31); w[2] <<= 1; ex--; } } /* extract the significand into five doubles */ u.l[HIWORD] = 0x42300000; u.l[LOWORD] = 0; b = u.d; u.l[LOWORD] = lx; s[0] = u.d - b; u.l[HIWORD] = 0x40300000; u.l[LOWORD] = 0; b = u.d; u.l[LOWORD] = w[0] & 0xffffff00; s[1] = u.d - b; u.l[HIWORD] = 0x3e300000; u.l[LOWORD] = 0; b = u.d; u.l[HIWORD] |= w[0] & 0xff; u.l[LOWORD] = w[1] & 0xffff0000; s[2] = u.d - b; u.l[HIWORD] = 0x3c300000; u.l[LOWORD] = 0; b = u.d; u.l[HIWORD] |= w[1] & 0xffff; u.l[LOWORD] = w[2] & 0xff000000; s[3] = u.d - b; u.l[HIWORD] = 0x3c300000; u.l[LOWORD] = 0; b = u.d; u.l[LOWORD] = w[2] & 0xffffff; s[4] = u.d - b; return ex - 0x3fff; } /* * Pack an exponent and array of three doubles representing a finite, * nonzero number into a quad. Assume the sign is already there and * the rounding mode has been fudged accordingly. */ static void __q_pack(const double *z, int exp, enum fp_direction_type rm, union longdouble *x, int *inexact) { union { double d; unsigned int l[2]; } u; double s[3], t, t2; unsigned int msw, frac2, frac3, frac4; /* bias exponent and strip off integer bit */ exp += 0x3fff; s[0] = z[0] - one; s[1] = z[1]; s[2] = z[2]; /* * chop the significand to obtain the fraction; * use round-to-minus-infinity to ensure chopping */ (void) __swapRD(fp_negative); /* extract the first eighty bits of fraction */ t = s[1] + s[2]; u.d = two36 + (s[0] + t); msw = u.l[LOWORD]; s[0] -= (u.d - two36); u.d = two4 + (s[0] + t); frac2 = u.l[LOWORD]; s[0] -= (u.d - two4); u.d = twom28 + (s[0] + t); frac3 = u.l[LOWORD]; s[0] -= (u.d - twom28); /* condense the remaining fraction; errors here won't matter */ t = s[0] + s[1]; s[1] = ((s[0] - t) + s[1]) + s[2]; s[0] = t; /* get the last word of fraction */ u.d = twom60 + (s[0] + s[1]); frac4 = u.l[LOWORD]; s[0] -= (u.d - twom60); /* * keep track of what's left for rounding; note that * t2 will be non-negative due to rounding mode */ t = s[0] + s[1]; t2 = (s[0] - t) + s[1]; if (t != zero) { *inexact = 1; /* decide whether to round the fraction up */ if (rm == fp_positive || (rm == fp_nearest && (t > twom113 || (t == twom113 && (t2 != zero || frac4 & 1))))) { /* round up and renormalize if necessary */ if (++frac4 == 0) if (++frac3 == 0) if (++frac2 == 0) if (++msw == 0x10000) { msw = 0; exp++; } } } /* assemble the result */ x->l.msw |= msw | (exp << 16); x->l.frac2 = frac2; x->l.frac3 = frac3; x->l.frac4 = frac4; } /* * Compute the square root of x and place the TP result in s. */ static void __q_tp_sqrt(const double *x, double *s) { double c, rr, r[3], tt[3], t[5]; /* approximate the divisor for the Newton iteration */ c = sqrt((x[0] + x[1]) + x[2]); rr = half / c; /* compute the first five "digits" of the square root */ t[0] = (c + two30) - two30; tt[0] = t[0] + t[0]; r[0] = ((x[0] - t[0] * t[0]) + x[1]) + x[2]; t[1] = (rr * (r[0] + x[3]) + two6) - two6; tt[1] = t[1] + t[1]; r[0] -= tt[0] * t[1]; r[1] = x[3] - t[1] * t[1]; c = (r[1] + twom18) - twom18; r[0] += c; r[1] = (r[1] - c) + x[4]; t[2] = (rr * (r[0] + r[1]) + twom18) - twom18; tt[2] = t[2] + t[2]; r[0] -= tt[0] * t[2]; r[1] -= tt[1] * t[2]; c = (r[1] + twom42) - twom42; r[0] += c; r[1] = (r[1] - c) - t[2] * t[2]; t[3] = (rr * (r[0] + r[1]) + twom42) - twom42; r[0] = ((r[0] - tt[0] * t[3]) + r[1]) - tt[1] * t[3]; r[1] = -tt[2] * t[3]; c = (r[1] + twom90) - twom90; r[0] += c; r[1] = (r[1] - c) - t[3] * t[3]; t[4] = (rr * (r[0] + r[1]) + twom66) - twom66; /* here we just need to get the sign of the remainder */ c = (((((r[0] - tt[0] * t[4]) - tt[1] * t[4]) + r[1]) - tt[2] * t[4]) - (t[3] + t[3]) * t[4]) - t[4] * t[4]; /* reduce to three doubles */ t[0] += t[1]; t[1] = t[2] + t[3]; t[2] = t[4]; /* if the third term might lie on a rounding boundary, perturb it */ if (c != zero && t[2] == (twom62 + t[2]) - twom62) { if (c < zero) t[2] -= twom124; else t[2] += twom124; } /* condense the square root */ c = t[1] + t[2]; t[2] += (t[1] - c); t[1] = c; c = t[0] + t[1]; s[1] = t[1] + (t[0] - c); s[0] = c; if (s[1] == zero) { c = s[0] + t[2]; s[1] = t[2] + (s[0] - c); s[0] = c; s[2] = zero; } else { c = s[1] + t[2]; s[2] = t[2] + (s[1] - c); s[1] = c; } } long double sqrtl(long double ldx) { union longdouble x; volatile double t; double xx[5], zz[3]; enum fp_direction_type rm; int ex, inexact, exc, traps; /* clear cexc */ t = zero; t -= zero; /* check for zero operand */ x.d = ldx; if (!((x.l.msw & 0x7fffffff) | x.l.frac2 | x.l.frac3 | x.l.frac4)) return ldx; /* handle nan and inf cases */ if ((x.l.msw & 0x7fffffff) >= 0x7fff0000) { if ((x.l.msw & 0xffff) | x.l.frac2 | x.l.frac3 | x.l.frac4) { if (!(x.l.msw & 0x8000)) { /* snan, signal invalid */ t += snan.d; } x.l.msw |= 0x8000; return x.d; } if (x.l.msw & 0x80000000) { /* sqrt(-inf), signal invalid */ t = -one; t = sqrt(t); return qnan.d; } /* sqrt(inf), return inf */ return x.d; } /* handle negative numbers */ if (x.l.msw & 0x80000000) { t = -one; t = sqrt(t); return qnan.d; } /* now x is finite, positive */ traps = __swapTE(0); exc = __swapEX(0); rm = __swapRD(fp_nearest); ex = __q_unpack(&x, xx); if (ex & 1) { /* make exponent even */ xx[0] += xx[0]; xx[1] += xx[1]; xx[2] += xx[2]; xx[3] += xx[3]; xx[4] += xx[4]; ex--; } __q_tp_sqrt(xx, zz); /* put everything together */ x.l.msw = 0; inexact = 0; __q_pack(zz, ex >> 1, rm, &x, &inexact); (void) __swapRD(rm); (void) __swapEX(exc); (void) __swapTE(traps); if (inexact) { t = huge; t += tiny; } return x.d; }