/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak sincos = __sincos /* INDENT OFF */ /* * sincos(x,s,c) * Accurate Table look-up algorithm by K.C. Ng, 2000. * * 1. Reduce x to x>0 by cos(-x)=cos(x), sin(-x)=-sin(x). * 2. For 0<= x < 8, let i = (64*x chopped)-10. Let d = x - a[i], where * a[i] is a double that is close to (i+10.5)/64 (and hence |d|< 10.5/64) * and such that sin(a[i]) and cos(a[i]) is close to a double (with error * less than 2**-8 ulp). Then * * cos(x) = cos(a[i]+d) = cos(a[i])cos(d) - sin(a[i])*sin(d) * = TBL_cos_a[i]*(1+QQ1*d^2+QQ2*d^4) - * TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5) * = TBL_cos_a[i] + (TBL_cos_a[i]*d^2*(QQ1+QQ2*d^2) - * TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5)) * * sin(x) = sin(a[i]+d) = sin(a[i])cos(d) + cos(a[i])*sin(d) * = TBL_sin_a[i]*(1+QQ1*d^2+QQ2*d^4) + * TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5) * = TBL_sin_a[i] + (TBL_sin_a[i]*d^2*(QQ1+QQ2*d^2) + * TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5)) * * Note: for x close to n*pi/2, special treatment is need for either * sin or cos: * i in [81, 100] ( pi/2 +-10.5/64 => tiny cos(x) = sin(pi/2-x) * i in [181,200] ( pi +-10.5/64 => tiny sin(x) = sin(pi-x) * i in [282,301] ( 3pi/2+-10.5/64 => tiny cos(x) = sin(x-3pi/2) * i in [382,401] ( 2pi +-10.5/64 => tiny sin(x) = sin(x-2pi) * i in [483,502] ( 5pi/2+-10.5/64 => tiny cos(x) = sin(5pi/2-x) * * 3. For x >= 8.0, use kernel function __rem_pio2 to perform argument * reduction and call __k_sincos_ to compute sin and cos. * * kernel function: * __rem_pio2 ... argument reduction routine * __k_sincos_ ... sine and cosine function on [-pi/4,pi/4] * * Method. * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4]. * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in * [-pi/2 , +pi/2], and let n = k mod 4. * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C S/C * 1 C -S -C/S * 2 -S -C S/C * 3 -C S -C/S * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded (less than 1 ulp) */ #include "libm.h" static const double sc[] = { /* ONE = */ 1.0, /* NONE = */ -1.0, /* * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008 */ /* PP1 = */ -0.166666666666316558867252052378889521480627858683055567, /* PP2 = */ .008333315652997472323564894248466758248475374977974017927, /* * |(sin(x) - (x+p1*x^3+...+p4*x^9)| * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125 * | x | */ /* P1 = */ -1.666666666666629669805215138920301589656e-0001, /* P2 = */ 8.333333332390951295683993455280336376663e-0003, /* P3 = */ -1.984126237997976692791551778230098403960e-0004, /* P4 = */ 2.753403624854277237649987622848330351110e-0006, /* * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d) */ /* QQ1 = */ -0.4999999999975492381842911981948418542742729, /* QQ2 = */ 0.041666542904352059294545209158357640398771740, /* Q1 = */ -0.5, /* Q2 = */ 4.166666666500350703680945520860748617445e-0002, /* Q3 = */ -1.388888596436972210694266290577848696006e-0003, /* Q4 = */ 2.478563078858589473679519517892953492192e-0005, /* PIO2_H = */ 1.570796326794896557999, /* PIO2_L = */ 6.123233995736765886130e-17, /* PIO2_L0 = */ 6.123233995727922165564e-17, /* PIO2_L1 = */ 8.843720566135701120255e-29, /* PI_H = */ 3.1415926535897931159979634685, /* PI_L = */ 1.22464679914735317722606593227425e-16, /* PI_L0 = */ 1.22464679914558443311283879205095e-16, /* PI_L1 = */ 1.768744113227140223300005233735517376e-28, /* PI3O2_H = */ 4.712388980384689673997, /* PI3O2_L = */ 1.836970198721029765839e-16, /* PI3O2_L0 = */ 1.836970198720396133587e-16, /* PI3O2_L1 = */ 6.336322524749201142226e-29, /* PI2_H = */ 6.2831853071795862319959269370, /* PI2_L = */ 2.44929359829470635445213186454850e-16, /* PI2_L0 = */ 2.44929359829116886622567758410190e-16, /* PI2_L1 = */ 3.537488226454280446600010467471034752e-28, /* PI5O2_H = */ 7.853981633974482789995, /* PI5O2_L = */ 3.061616997868382943065e-16, /* PI5O2_L0 = */ 3.061616997861941598865e-16, /* PI5O2_L1 = */ 6.441344200433640781982e-28, }; /* INDENT ON */ #define ONE sc[0] #define PP1 sc[2] #define PP2 sc[3] #define P1 sc[4] #define P2 sc[5] #define P3 sc[6] #define P4 sc[7] #define QQ1 sc[8] #define QQ2 sc[9] #define Q1 sc[10] #define Q2 sc[11] #define Q3 sc[12] #define Q4 sc[13] #define PIO2_H sc[14] #define PIO2_L sc[15] #define PIO2_L0 sc[16] #define PIO2_L1 sc[17] #define PI_H sc[18] #define PI_L sc[19] #define PI_L0 sc[20] #define PI_L1 sc[21] #define PI3O2_H sc[22] #define PI3O2_L sc[23] #define PI3O2_L0 sc[24] #define PI3O2_L1 sc[25] #define PI2_H sc[26] #define PI2_L sc[27] #define PI2_L0 sc[28] #define PI2_L1 sc[29] #define PI5O2_H sc[30] #define PI5O2_L sc[31] #define PI5O2_L0 sc[32] #define PI5O2_L1 sc[33] #define PoS(x, z) ((x * z) * (PP1 + z * PP2)) #define PoL(x, z) ((x * z) * ((P1 + z * P2) + (z * z) * (P3 + z * P4))) extern const double _TBL_sincos[], _TBL_sincosx[]; void sincos(double x, double *s, double *c) { double z, y[2], w, t, v, p, q; int i, j, n, hx, ix, lx; hx = ((int *)&x)[HIWORD]; lx = ((int *)&x)[LOWORD]; ix = hx & ~0x80000000; if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */ if (ix < 0x3e400000) { /* |x| < 2**-27 */ if ((int)x == 0) *c = ONE; *s = x; } else { z = x * x; if (ix < 0x3f800000) { /* |x| < 0.008 */ q = z * (QQ1 + z * QQ2); p = PoS(x, z); } else { q = z * ((Q1 + z * Q2) + (z * z) * (Q3 + z * Q4)); p = PoL(x, z); } *c = ONE + q; *s = x + p; } return; } n = ix >> 20; i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n); j = i - 10; if (n < 0x402) { /* |x| < 8 */ x = fabs(x); v = x - _TBL_sincosx[j]; t = v * v; w = _TBL_sincos[(j<<1)]; z = _TBL_sincos[(j<<1)+1]; p = v + PoS(v, t); q = t * (QQ1 + t * QQ2); if ((((j - 81) ^ (j - 101)) | ((j - 282) ^ (j - 302)) | ((j - 483) ^ (j - 503)) | ((j - 181) ^ (j - 201)) | ((j - 382) ^ (j - 402))) < 0) { if (j <= 101) { /* near pi/2, cos(x) = sin(pi/2-x) */ t = w * q + z * p; *s = (hx >= 0)? w + t : -w - t; p = PIO2_H - x; i = ix - 0x3ff921fb; x = p + PIO2_L; if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 0) { /* very close to pi/2 */ x = p + PIO2_L0; *c = x + PIO2_L1; } else { z = x * x; if (((ix - 0x3ff92000) >> 12) == 0) { /* |pi/2-x|<2**-8 */ w = PIO2_L + PoS(x, z); } else { w = PIO2_L + PoL(x, z); } *c = p + w; } } else if (j <= 201) { /* near pi, sin(x) = sin(pi-x) */ *c = z - (w * p - z * q); p = PI_H - x; i = ix - 0x400921fb; x = p + PI_L; if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 0) { /* very close to pi */ x = p + PI_L0; *s = (hx >= 0)? x + PI_L1 : -(x + PI_L1); } else { z = x * x; if (((ix - 0x40092000) >> 11) == 0) { /* |pi-x|<2**-8 */ w = PI_L + PoS(x, z); } else { w = PI_L + PoL(x, z); } *s = (hx >= 0)? p + w : -p - w; } } else if (j <= 302) { /* near 3/2pi, cos(x)=sin(x-3/2pi) */ t = w * q + z * p; *s = (hx >= 0)? w + t : -w - t; p = x - PI3O2_H; i = ix - 0x4012D97C; x = p - PI3O2_L; if ((i | ((lx - 0x7f332100) & 0xffffff00)) == 0) { /* very close to 3/2pi */ x = p - PI3O2_L0; *c = x - PI3O2_L1; } else { z = x * x; if (((ix - 0x4012D800) >> 9) == 0) { /* |3/2pi-x|<2**-8 */ w = PoS(x, z) - PI3O2_L; } else { w = PoL(x, z) - PI3O2_L; } *c = p + w; } } else if (j <= 402) { /* near 2pi, sin(x)=sin(x-2pi) */ *c = z - (w * p - z * q); p = x - PI2_H; i = ix - 0x401921fb; x = p - PI2_L; if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 0) { /* very close to 2pi */ x = p - PI2_L0; *s = (hx >= 0)? x - PI2_L1 : -(x - PI2_L1); } else { z = x * x; if (((ix - 0x40192000) >> 10) == 0) { /* |x-2pi|<2**-8 */ w = PoS(x, z) - PI2_L; } else { w = PoL(x, z) - PI2_L; } *s = (hx >= 0)? p + w : -p - w; } } else { /* near 5pi/2, cos(x) = sin(5pi/2-x) */ t = w * q + z * p; *s = (hx >= 0)? w + t : -w - t; p = PI5O2_H - x; i = ix - 0x401F6A7A; x = p + PI5O2_L; if ((i | ((lx - 0x29553800) & 0xffffff00)) == 0) { /* very close to pi/2 */ x = p + PI5O2_L0; *c = x + PI5O2_L1; } else { z = x * x; if (((ix - 0x401F6A7A) >> 7) == 0) { /* |5pi/2-x|<2**-8 */ w = PI5O2_L + PoS(x, z); } else { w = PI5O2_L + PoL(x, z); } *c = p + w; } } } else { *c = z - (w * p - z * q); t = w * q + z * p; *s = (hx >= 0)? w + t : -w - t; } return; } if (ix >= 0x7ff00000) { *s = *c = x / x; return; } /* argument reduction needed */ n = __rem_pio2(x, y); switch (n & 3) { case 0: *s = __k_sincos(y[0], y[1], c); break; case 1: *c = -__k_sincos(y[0], y[1], s); break; case 2: *s = -__k_sincos(y[0], y[1], c); *c = -*c; break; default: *c = __k_sincos(y[0], y[1], s); *s = -*s; } }