/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * floating point Bessel's function of the first and second kinds * of order zero: j1(x),y1(x); * * Special cases: * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. */ #pragma weak j1 = __j1 #pragma weak y1 = __y1 #include "libm.h" #include "libm_synonyms.h" #include "libm_protos.h" #include #include #define GENERIC double static const GENERIC zero = 0.0, small = 1.0e-5, tiny = 1.0e-20, one = 1.0, invsqrtpi = 5.641895835477562869480794515607725858441e-0001, tpi = 0.636619772367581343075535053490057448; static GENERIC pone(GENERIC), qone(GENERIC); static const GENERIC r0[4] = { -6.250000000000002203053200981413218949548e-0002, 1.600998455640072901321605101981501263762e-0003, -1.963888815948313758552511884390162864930e-0005, 8.263917341093549759781339713418201620998e-0008, }; static const GENERIC s0[7] = { 1.0e0, 1.605069137643004242395356851797873766927e-0002, 1.149454623251299996428500249509098499383e-0004, 3.849701673735260970379681807910852327825e-0007, }; static const GENERIC r1[12] = { 4.999999999999999995517408894340485471724e-0001, -6.003825028120475684835384519945468075423e-0002, 2.301719899263321828388344461995355419832e-0003, -4.208494869238892934859525221654040304068e-0005, 4.377745135188837783031540029700282443388e-0007, -2.854106755678624335145364226735677754179e-0009, 1.234002865443952024332943901323798413689e-0011, -3.645498437039791058951273508838177134310e-0014, 7.404320596071797459925377103787837414422e-0017, -1.009457448277522275262808398517024439084e-0019, 8.520158355824819796968771418801019930585e-0023, -3.458159926081163274483854614601091361424e-0026, }; static const GENERIC s1[5] = { 1.0e0, 4.923499437590484879081138588998986303306e-0003, 1.054389489212184156499666953501976688452e-0005, 1.180768373106166527048240364872043816050e-0008, 5.942665743476099355323245707680648588540e-0012, }; GENERIC j1(GENERIC x) { GENERIC z, d, s, c, ss, cc, r; int i, sgn; if (!finite(x)) return (one/x); sgn = signbit(x); x = fabs(x); if (x > 8.00) { s = sin(x); c = cos(x); /* * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x0)-q1(x)*sin(x0)) * where x0 = x-3pi/4 * Better formula: * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) * = 1/sqrt(2) * (sin(x) - cos(x)) * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) * = -1/sqrt(2) * (cos(x) + sin(x)) * To avoid cancellation, use * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) * to compute the worse one. */ if (x > 8.9e307) { /* x+x may overflow */ ss = -s-c; cc = s-c; } else if (signbit(s) != signbit(c)) { cc = s - c; ss = cos(x+x)/cc; } else { ss = -s-c; cc = cos(x+x)/ss; } /* * j1(x) = 1/sqrt(pi*x) * (P(1,x)*cc - Q(1,x)*ss) * y1(x) = 1/sqrt(pi*x) * (P(1,x)*ss + Q(1,x)*cc) */ if (x > 1.0e40) d = (invsqrtpi*cc)/sqrt(x); else d = invsqrtpi*(pone(x)*cc-qone(x)*ss)/sqrt(x); if (x > X_TLOSS) { if (sgn != 0) { d = -d; x = -x; } return (_SVID_libm_err(x, d, 36)); } else if (sgn == 0) return (d); else return (-d); } if (x <= small) { if (x <= tiny) d = 0.5*x; else d = x*(0.5-x*x*0.125); if (sgn == 0) return (d); else return (-d); } z = x*x; if (x < 1.28) { r = r0[3]; s = s0[3]; for (i = 2; i >= 0; i--) { r = r*z + r0[i]; s = s*z + s0[i]; } d = x*0.5+x*(z*(r/s)); } else { r = r1[11]; for (i = 10; i >= 0; i--) r = r*z + r1[i]; s = s1[0]+z*(s1[1]+z*(s1[2]+z*(s1[3]+z*s1[4]))); d = x*(r/s); } if (sgn == 0) return (d); else return (-d); } static const GENERIC u0[4] = { -1.960570906462389461018983259589655961560e-0001, 4.931824118350661953459180060007970291139e-0002, -1.626975871565393656845930125424683008677e-0003, 1.359657517926394132692884168082224258360e-0005, }; static const GENERIC v0[5] = { 1.0e0, 2.565807214838390835108224713630901653793e-0002, 3.374175208978404268650522752520906231508e-0004, 2.840368571306070719539936935220728843177e-0006, 1.396387402048998277638900944415752207592e-0008, }; static const GENERIC u1[12] = { -1.960570906462389473336339614647555351626e-0001, 5.336268030335074494231369159933012844735e-0002, -2.684137504382748094149184541866332033280e-0003, 5.737671618979185736981543498580051903060e-0005, -6.642696350686335339171171785557663224892e-0007, 4.692417922568160354012347591960362101664e-0009, -2.161728635907789319335231338621412258355e-0011, 6.727353419738316107197644431844194668702e-0014, -1.427502986803861372125234355906790573422e-0016, 2.020392498726806769468143219616642940371e-0019, -1.761371948595104156753045457888272716340e-0022, 7.352828391941157905175042420249225115816e-0026, }; static const GENERIC v1[5] = { 1.0e0, 5.029187436727947764916247076102283399442e-0003, 1.102693095808242775074856548927801750627e-0005, 1.268035774543174837829534603830227216291e-0008, 6.579416271766610825192542295821308730206e-0012, }; GENERIC y1(GENERIC x) { GENERIC z, d, s, c, ss, cc, u, v; int i; if (isnan(x)) return (x*x); /* + -> * for Cheetah */ if (x <= zero) { if (x == zero) /* return -one/zero; */ return (_SVID_libm_err(x, x, 10)); else /* return zero/zero; */ return (_SVID_libm_err(x, x, 11)); } if (x > 8.0) { if (!finite(x)) return (zero); s = sin(x); c = cos(x); /* * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x0)-q1(x)*sin(x0)) * where x0 = x-3pi/4 * Better formula: * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) * = 1/sqrt(2) * (sin(x) - cos(x)) * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) * = -1/sqrt(2) * (cos(x) + sin(x)) * To avoid cancellation, use * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) * to compute the worse one. */ if (x > 8.9e307) { /* x+x may overflow */ ss = -s-c; cc = s-c; } else if (signbit(s) != signbit(c)) { cc = s - c; ss = cos(x+x)/cc; } else { ss = -s-c; cc = cos(x+x)/ss; } /* * j1(x) = 1/sqrt(pi*x) * (P(1,x)*cc - Q(1,x)*ss) * y1(x) = 1/sqrt(pi*x) * (P(1,x)*ss + Q(1,x)*cc) */ if (x > 1.0e91) d = (invsqrtpi*ss)/sqrt(x); else d = invsqrtpi*(pone(x)*ss+qone(x)*cc)/sqrt(x); if (x > X_TLOSS) return (_SVID_libm_err(x, d, 37)); else return (d); } if (x <= tiny) { return (-tpi/x); } z = x*x; if (x < 1.28) { u = u0[3]; v = v0[3]+z*v0[4]; for (i = 2; i >= 0; i--) { u = u*z + u0[i]; v = v*z + v0[i]; } } else { for (u = u1[11], i = 10; i >= 0; i--) u = u*z+u1[i]; v = v1[0]+z*(v1[1]+z*(v1[2]+z*(v1[3]+z*v1[4]))); } return (x*(u/v) + tpi*(j1(x)*log(x)-one/x)); } static const GENERIC pr0[6] = { -.4435757816794127857114720794e7, -.9942246505077641195658377899e7, -.6603373248364939109255245434e7, -.1523529351181137383255105722e7, -.1098240554345934672737413139e6, -.1611616644324610116477412898e4, }; static const GENERIC ps0[6] = { -.4435757816794127856828016962e7, -.9934124389934585658967556309e7, -.6585339479723087072826915069e7, -.1511809506634160881644546358e7, -.1072638599110382011903063867e6, -.1455009440190496182453565068e4, }; static const GENERIC huge = 1.0e10; static GENERIC pone(GENERIC x) { GENERIC s, r, t, z; int i; /* assume x > 8 */ if (x > huge) return (one); t = 8.0/x; z = t*t; r = pr0[5]; s = ps0[5]+z; for (i = 4; i >= 0; i--) { r = z*r + pr0[i]; s = z*s + ps0[i]; } return (r/s); } static const GENERIC qr0[6] = { 0.3322091340985722351859704442e5, 0.8514516067533570196555001171e5, 0.6617883658127083517939992166e5, 0.1849426287322386679652009819e5, 0.1706375429020768002061283546e4, 0.3526513384663603218592175580e2, }; static const GENERIC qs0[6] = { 0.7087128194102874357377502472e6, 0.1819458042243997298924553839e7, 0.1419460669603720892855755253e7, 0.4002944358226697511708610813e6, 0.3789022974577220264142952256e5, 0.8638367769604990967475517183e3, }; static GENERIC qone(GENERIC x) { GENERIC s, r, t, z; int i; if (x > huge) return (0.375/x); t = 8.0/x; z = t*t; /* assume x > 8 */ r = qr0[5]; s = qs0[5]+z; for (i = 4; i >= 0; i--) { r = z*r + qr0[i]; s = z*s + qs0[i]; } return (t*(r/s)); }