/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, Joyent Inc. All rights reserved. * Copyright (c) 2012 by Delphix. All rights reserved. */ /* * DTrace D Language Compiler * * The code in this source file implements the main engine for the D language * compiler. The driver routine for the compiler is dt_compile(), below. The * compiler operates on either stdio FILEs or in-memory strings as its input * and can produce either dtrace_prog_t structures from a D program or a single * dtrace_difo_t structure from a D expression. Multiple entry points are * provided as wrappers around dt_compile() for the various input/output pairs. * The compiler itself is implemented across the following source files: * * dt_lex.l - lex scanner * dt_grammar.y - yacc grammar * dt_parser.c - parse tree creation and semantic checking * dt_decl.c - declaration stack processing * dt_xlator.c - D translator lookup and creation * dt_ident.c - identifier and symbol table routines * dt_pragma.c - #pragma processing and D pragmas * dt_printf.c - D printf() and printa() argument checking and processing * dt_cc.c - compiler driver and dtrace_prog_t construction * dt_cg.c - DIF code generator * dt_as.c - DIF assembler * dt_dof.c - dtrace_prog_t -> DOF conversion * * Several other source files provide collections of utility routines used by * these major files. The compiler itself is implemented in multiple passes: * * (1) The input program is scanned and parsed by dt_lex.l and dt_grammar.y * and parse tree nodes are constructed using the routines in dt_parser.c. * This node construction pass is described further in dt_parser.c. * * (2) The parse tree is "cooked" by assigning each clause a context (see the * routine dt_setcontext(), below) based on its probe description and then * recursively descending the tree performing semantic checking. The cook * routines are also implemented in dt_parser.c and described there. * * (3) For actions that are DIF expression statements, the DIF code generator * and assembler are invoked to create a finished DIFO for the statement. * * (4) The dtrace_prog_t data structures for the program clauses and actions * are built, containing pointers to any DIFOs created in step (3). * * (5) The caller invokes a routine in dt_dof.c to convert the finished program * into DOF format for use in anonymous tracing or enabling in the kernel. * * In the implementation, steps 2-4 are intertwined in that they are performed * in order for each clause as part of a loop that executes over the clauses. * * The D compiler currently implements nearly no optimization. The compiler * implements integer constant folding as part of pass (1), and a set of very * simple peephole optimizations as part of pass (3). As with any C compiler, * a large number of optimizations are possible on both the intermediate data * structures and the generated DIF code. These possibilities should be * investigated in the context of whether they will have any substantive effect * on the overall DTrace probe effect before they are undertaken. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const dtrace_diftype_t dt_void_rtype = { DIF_TYPE_CTF, CTF_K_INTEGER, 0, 0, 0 }; static const dtrace_diftype_t dt_int_rtype = { DIF_TYPE_CTF, CTF_K_INTEGER, 0, 0, sizeof (uint64_t) }; static void *dt_compile(dtrace_hdl_t *, int, dtrace_probespec_t, void *, uint_t, int, char *const[], FILE *, const char *); /*ARGSUSED*/ static int dt_idreset(dt_idhash_t *dhp, dt_ident_t *idp, void *ignored) { idp->di_flags &= ~(DT_IDFLG_REF | DT_IDFLG_MOD | DT_IDFLG_DIFR | DT_IDFLG_DIFW); return (0); } /*ARGSUSED*/ static int dt_idpragma(dt_idhash_t *dhp, dt_ident_t *idp, void *ignored) { yylineno = idp->di_lineno; xyerror(D_PRAGMA_UNUSED, "unused #pragma %s\n", (char *)idp->di_iarg); return (0); } static dtrace_stmtdesc_t * dt_stmt_create(dtrace_hdl_t *dtp, dtrace_ecbdesc_t *edp, dtrace_attribute_t descattr, dtrace_attribute_t stmtattr) { dtrace_stmtdesc_t *sdp = dtrace_stmt_create(dtp, edp); if (sdp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); assert(yypcb->pcb_stmt == NULL); yypcb->pcb_stmt = sdp; sdp->dtsd_descattr = descattr; sdp->dtsd_stmtattr = stmtattr; return (sdp); } static dtrace_actdesc_t * dt_stmt_action(dtrace_hdl_t *dtp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *new; if ((new = dtrace_stmt_action(dtp, sdp)) == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); return (new); } /* * Utility function to determine if a given action description is destructive. * The dtdo_destructive bit is set for us by the DIF assembler (see dt_as.c). */ static int dt_action_destructive(const dtrace_actdesc_t *ap) { return (DTRACEACT_ISDESTRUCTIVE(ap->dtad_kind) || (ap->dtad_kind == DTRACEACT_DIFEXPR && ap->dtad_difo->dtdo_destructive)); } static void dt_stmt_append(dtrace_stmtdesc_t *sdp, const dt_node_t *dnp) { dtrace_ecbdesc_t *edp = sdp->dtsd_ecbdesc; dtrace_actdesc_t *ap, *tap; int commit = 0; int speculate = 0; int datarec = 0; /* * Make sure that the new statement jibes with the rest of the ECB. */ for (ap = edp->dted_action; ap != NULL; ap = ap->dtad_next) { if (ap->dtad_kind == DTRACEACT_COMMIT) { if (commit) { dnerror(dnp, D_COMM_COMM, "commit( ) may " "not follow commit( )\n"); } if (datarec) { dnerror(dnp, D_COMM_DREC, "commit( ) may " "not follow data-recording action(s)\n"); } for (tap = ap; tap != NULL; tap = tap->dtad_next) { if (!DTRACEACT_ISAGG(tap->dtad_kind)) continue; dnerror(dnp, D_AGG_COMM, "aggregating actions " "may not follow commit( )\n"); } commit = 1; continue; } if (ap->dtad_kind == DTRACEACT_SPECULATE) { if (speculate) { dnerror(dnp, D_SPEC_SPEC, "speculate( ) may " "not follow speculate( )\n"); } if (commit) { dnerror(dnp, D_SPEC_COMM, "speculate( ) may " "not follow commit( )\n"); } if (datarec) { dnerror(dnp, D_SPEC_DREC, "speculate( ) may " "not follow data-recording action(s)\n"); } speculate = 1; continue; } if (DTRACEACT_ISAGG(ap->dtad_kind)) { if (speculate) { dnerror(dnp, D_AGG_SPEC, "aggregating actions " "may not follow speculate( )\n"); } datarec = 1; continue; } if (speculate) { if (dt_action_destructive(ap)) { dnerror(dnp, D_ACT_SPEC, "destructive actions " "may not follow speculate( )\n"); } if (ap->dtad_kind == DTRACEACT_EXIT) { dnerror(dnp, D_EXIT_SPEC, "exit( ) may not " "follow speculate( )\n"); } } /* * Exclude all non data-recording actions. */ if (dt_action_destructive(ap) || ap->dtad_kind == DTRACEACT_DISCARD) continue; if (ap->dtad_kind == DTRACEACT_DIFEXPR && ap->dtad_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_CTF && ap->dtad_difo->dtdo_rtype.dtdt_size == 0) continue; if (commit) { dnerror(dnp, D_DREC_COMM, "data-recording actions " "may not follow commit( )\n"); } if (!speculate) datarec = 1; } if (dtrace_stmt_add(yypcb->pcb_hdl, yypcb->pcb_prog, sdp) != 0) longjmp(yypcb->pcb_jmpbuf, dtrace_errno(yypcb->pcb_hdl)); if (yypcb->pcb_stmt == sdp) yypcb->pcb_stmt = NULL; } /* * For the first element of an aggregation tuple or for printa(), we create a * simple DIF program that simply returns the immediate value that is the ID * of the aggregation itself. This could be optimized in the future by * creating a new in-kernel dtad_kind that just returns an integer. */ static void dt_action_difconst(dtrace_actdesc_t *ap, uint_t id, dtrace_actkind_t kind) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dtrace_difo_t *dp = dt_zalloc(dtp, sizeof (dtrace_difo_t)); if (dp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); dp->dtdo_buf = dt_alloc(dtp, sizeof (dif_instr_t) * 2); dp->dtdo_inttab = dt_alloc(dtp, sizeof (uint64_t)); if (dp->dtdo_buf == NULL || dp->dtdo_inttab == NULL) { dt_difo_free(dtp, dp); longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); } dp->dtdo_buf[0] = DIF_INSTR_SETX(0, 1); /* setx DIF_INTEGER[0], %r1 */ dp->dtdo_buf[1] = DIF_INSTR_RET(1); /* ret %r1 */ dp->dtdo_len = 2; dp->dtdo_inttab[0] = id; dp->dtdo_intlen = 1; dp->dtdo_rtype = dt_int_rtype; ap->dtad_difo = dp; ap->dtad_kind = kind; } static void dt_action_clear(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dt_ident_t *aid; dtrace_actdesc_t *ap; dt_node_t *anp; char n[DT_TYPE_NAMELEN]; int argc = 0; for (anp = dnp->dn_args; anp != NULL; anp = anp->dn_list) argc++; /* count up arguments for error messages below */ if (argc != 1) { dnerror(dnp, D_CLEAR_PROTO, "%s( ) prototype mismatch: %d args passed, 1 expected\n", dnp->dn_ident->di_name, argc); } anp = dnp->dn_args; assert(anp != NULL); if (anp->dn_kind != DT_NODE_AGG) { dnerror(dnp, D_CLEAR_AGGARG, "%s( ) argument #1 is incompatible with prototype:\n" "\tprototype: aggregation\n\t argument: %s\n", dnp->dn_ident->di_name, dt_node_type_name(anp, n, sizeof (n))); } aid = anp->dn_ident; if (aid->di_gen == dtp->dt_gen && !(aid->di_flags & DT_IDFLG_MOD)) { dnerror(dnp, D_CLEAR_AGGBAD, "undefined aggregation: @%s\n", aid->di_name); } ap = dt_stmt_action(dtp, sdp); dt_action_difconst(ap, anp->dn_ident->di_id, DTRACEACT_LIBACT); ap->dtad_arg = DT_ACT_CLEAR; } static void dt_action_normalize(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dt_ident_t *aid; dtrace_actdesc_t *ap; dt_node_t *anp, *normal; int denormal = (strcmp(dnp->dn_ident->di_name, "denormalize") == 0); char n[DT_TYPE_NAMELEN]; int argc = 0; for (anp = dnp->dn_args; anp != NULL; anp = anp->dn_list) argc++; /* count up arguments for error messages below */ if ((denormal && argc != 1) || (!denormal && argc != 2)) { dnerror(dnp, D_NORMALIZE_PROTO, "%s( ) prototype mismatch: %d args passed, %d expected\n", dnp->dn_ident->di_name, argc, denormal ? 1 : 2); } anp = dnp->dn_args; assert(anp != NULL); if (anp->dn_kind != DT_NODE_AGG) { dnerror(dnp, D_NORMALIZE_AGGARG, "%s( ) argument #1 is incompatible with prototype:\n" "\tprototype: aggregation\n\t argument: %s\n", dnp->dn_ident->di_name, dt_node_type_name(anp, n, sizeof (n))); } if ((normal = anp->dn_list) != NULL && !dt_node_is_scalar(normal)) { dnerror(dnp, D_NORMALIZE_SCALAR, "%s( ) argument #2 must be of scalar type\n", dnp->dn_ident->di_name); } aid = anp->dn_ident; if (aid->di_gen == dtp->dt_gen && !(aid->di_flags & DT_IDFLG_MOD)) { dnerror(dnp, D_NORMALIZE_AGGBAD, "undefined aggregation: @%s\n", aid->di_name); } ap = dt_stmt_action(dtp, sdp); dt_action_difconst(ap, anp->dn_ident->di_id, DTRACEACT_LIBACT); if (denormal) { ap->dtad_arg = DT_ACT_DENORMALIZE; return; } ap->dtad_arg = DT_ACT_NORMALIZE; assert(normal != NULL); ap = dt_stmt_action(dtp, sdp); dt_cg(yypcb, normal); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = DTRACEACT_LIBACT; ap->dtad_arg = DT_ACT_NORMALIZE; } static void dt_action_trunc(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dt_ident_t *aid; dtrace_actdesc_t *ap; dt_node_t *anp, *trunc; char n[DT_TYPE_NAMELEN]; int argc = 0; for (anp = dnp->dn_args; anp != NULL; anp = anp->dn_list) argc++; /* count up arguments for error messages below */ if (argc > 2 || argc < 1) { dnerror(dnp, D_TRUNC_PROTO, "%s( ) prototype mismatch: %d args passed, %s expected\n", dnp->dn_ident->di_name, argc, argc < 1 ? "at least 1" : "no more than 2"); } anp = dnp->dn_args; assert(anp != NULL); trunc = anp->dn_list; if (anp->dn_kind != DT_NODE_AGG) { dnerror(dnp, D_TRUNC_AGGARG, "%s( ) argument #1 is incompatible with prototype:\n" "\tprototype: aggregation\n\t argument: %s\n", dnp->dn_ident->di_name, dt_node_type_name(anp, n, sizeof (n))); } if (argc == 2) { assert(trunc != NULL); if (!dt_node_is_scalar(trunc)) { dnerror(dnp, D_TRUNC_SCALAR, "%s( ) argument #2 must be of scalar type\n", dnp->dn_ident->di_name); } } aid = anp->dn_ident; if (aid->di_gen == dtp->dt_gen && !(aid->di_flags & DT_IDFLG_MOD)) { dnerror(dnp, D_TRUNC_AGGBAD, "undefined aggregation: @%s\n", aid->di_name); } ap = dt_stmt_action(dtp, sdp); dt_action_difconst(ap, anp->dn_ident->di_id, DTRACEACT_LIBACT); ap->dtad_arg = DT_ACT_TRUNC; ap = dt_stmt_action(dtp, sdp); if (argc == 1) { dt_action_difconst(ap, 0, DTRACEACT_LIBACT); } else { assert(trunc != NULL); dt_cg(yypcb, trunc); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = DTRACEACT_LIBACT; } ap->dtad_arg = DT_ACT_TRUNC; } static void dt_action_printa(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dt_ident_t *aid, *fid; dtrace_actdesc_t *ap; const char *format; dt_node_t *anp, *proto = NULL; char n[DT_TYPE_NAMELEN]; int argc = 0, argr = 0; for (anp = dnp->dn_args; anp != NULL; anp = anp->dn_list) argc++; /* count up arguments for error messages below */ switch (dnp->dn_args->dn_kind) { case DT_NODE_STRING: format = dnp->dn_args->dn_string; anp = dnp->dn_args->dn_list; argr = 2; break; case DT_NODE_AGG: format = NULL; anp = dnp->dn_args; argr = 1; break; default: format = NULL; anp = dnp->dn_args; argr = 1; } if (argc < argr) { dnerror(dnp, D_PRINTA_PROTO, "%s( ) prototype mismatch: %d args passed, %d expected\n", dnp->dn_ident->di_name, argc, argr); } assert(anp != NULL); while (anp != NULL) { if (anp->dn_kind != DT_NODE_AGG) { dnerror(dnp, D_PRINTA_AGGARG, "%s( ) argument #%d is incompatible with " "prototype:\n\tprototype: aggregation\n" "\t argument: %s\n", dnp->dn_ident->di_name, argr, dt_node_type_name(anp, n, sizeof (n))); } aid = anp->dn_ident; fid = aid->di_iarg; if (aid->di_gen == dtp->dt_gen && !(aid->di_flags & DT_IDFLG_MOD)) { dnerror(dnp, D_PRINTA_AGGBAD, "undefined aggregation: @%s\n", aid->di_name); } /* * If we have multiple aggregations, we must be sure that * their key signatures match. */ if (proto != NULL) { dt_printa_validate(proto, anp); } else { proto = anp; } if (format != NULL) { yylineno = dnp->dn_line; sdp->dtsd_fmtdata = dt_printf_create(yypcb->pcb_hdl, format); dt_printf_validate(sdp->dtsd_fmtdata, DT_PRINTF_AGGREGATION, dnp->dn_ident, 1, fid->di_id, ((dt_idsig_t *)aid->di_data)->dis_args); format = NULL; } ap = dt_stmt_action(dtp, sdp); dt_action_difconst(ap, anp->dn_ident->di_id, DTRACEACT_PRINTA); anp = anp->dn_list; argr++; } } static void dt_action_printflike(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp, dtrace_actkind_t kind) { dt_node_t *anp, *arg1; dtrace_actdesc_t *ap = NULL; char n[DT_TYPE_NAMELEN], *str; assert(DTRACEACT_ISPRINTFLIKE(kind)); if (dnp->dn_args->dn_kind != DT_NODE_STRING) { dnerror(dnp, D_PRINTF_ARG_FMT, "%s( ) argument #1 is incompatible with prototype:\n" "\tprototype: string constant\n\t argument: %s\n", dnp->dn_ident->di_name, dt_node_type_name(dnp->dn_args, n, sizeof (n))); } arg1 = dnp->dn_args->dn_list; yylineno = dnp->dn_line; str = dnp->dn_args->dn_string; /* * If this is an freopen(), we use an empty string to denote that * stdout should be restored. For other printf()-like actions, an * empty format string is illegal: an empty format string would * result in malformed DOF, and the compiler thus flags an empty * format string as a compile-time error. To avoid propagating the * freopen() special case throughout the system, we simply transpose * an empty string into a sentinel string (DT_FREOPEN_RESTORE) that * denotes that stdout should be restored. */ if (kind == DTRACEACT_FREOPEN) { if (strcmp(str, DT_FREOPEN_RESTORE) == 0) { /* * Our sentinel is always an invalid argument to * freopen(), but if it's been manually specified, we * must fail now instead of when the freopen() is * actually evaluated. */ dnerror(dnp, D_FREOPEN_INVALID, "%s( ) argument #1 cannot be \"%s\"\n", dnp->dn_ident->di_name, DT_FREOPEN_RESTORE); } if (str[0] == '\0') str = DT_FREOPEN_RESTORE; } sdp->dtsd_fmtdata = dt_printf_create(dtp, str); dt_printf_validate(sdp->dtsd_fmtdata, DT_PRINTF_EXACTLEN, dnp->dn_ident, 1, DTRACEACT_AGGREGATION, arg1); if (arg1 == NULL) { dif_instr_t *dbuf; dtrace_difo_t *dp; if ((dbuf = dt_alloc(dtp, sizeof (dif_instr_t))) == NULL || (dp = dt_zalloc(dtp, sizeof (dtrace_difo_t))) == NULL) { dt_free(dtp, dbuf); longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); } dbuf[0] = DIF_INSTR_RET(DIF_REG_R0); /* ret %r0 */ dp->dtdo_buf = dbuf; dp->dtdo_len = 1; dp->dtdo_rtype = dt_int_rtype; ap = dt_stmt_action(dtp, sdp); ap->dtad_difo = dp; ap->dtad_kind = kind; return; } for (anp = arg1; anp != NULL; anp = anp->dn_list) { ap = dt_stmt_action(dtp, sdp); dt_cg(yypcb, anp); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = kind; } } static void dt_action_trace(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); boolean_t istrace = (dnp->dn_ident->di_id == DT_ACT_TRACE); const char *act = istrace ? "trace" : "print"; if (dt_node_is_void(dnp->dn_args)) { dnerror(dnp->dn_args, istrace ? D_TRACE_VOID : D_PRINT_VOID, "%s( ) may not be applied to a void expression\n", act); } if (dt_node_resolve(dnp->dn_args, DT_IDENT_XLPTR) != NULL) { dnerror(dnp->dn_args, istrace ? D_TRACE_DYN : D_PRINT_DYN, "%s( ) may not be applied to a translated pointer\n", act); } dt_cg(yypcb, dnp->dn_args); /* * The print() action behaves identically to trace(), except that it * stores the CTF type of the argument (if present) within the DOF for * the DIFEXPR action. To do this, we set the 'dtsd_strdata' to point * to the fully-qualified CTF type ID for the result of the DIF * action. We use the ID instead of the name to handles complex types * like arrays and function pointers that can't be resolved by * ctf_type_lookup(). This is later processed by dtrace_dof_create() * and turned into a reference into the string table so that we can * get the type information when we process the data after the fact. */ if (dnp->dn_ident->di_id == DT_ACT_PRINT) { dt_node_t *dret; size_t n; dt_module_t *dmp; dret = yypcb->pcb_dret; dmp = dt_module_lookup_by_ctf(dtp, dret->dn_ctfp); n = snprintf(NULL, 0, "%s`%d", dmp->dm_name, dret->dn_type) + 1; sdp->dtsd_strdata = dt_alloc(dtp, n); if (sdp->dtsd_strdata == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); (void) snprintf(sdp->dtsd_strdata, n, "%s`%d", dmp->dm_name, dret->dn_type); } ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = DTRACEACT_DIFEXPR; } static void dt_action_tracemem(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); dt_node_t *addr = dnp->dn_args; dt_node_t *max = dnp->dn_args->dn_list; dt_node_t *size; char n[DT_TYPE_NAMELEN]; if (dt_node_is_integer(addr) == 0 && dt_node_is_pointer(addr) == 0) { dnerror(addr, D_TRACEMEM_ADDR, "tracemem( ) argument #1 is incompatible with " "prototype:\n\tprototype: pointer or integer\n" "\t argument: %s\n", dt_node_type_name(addr, n, sizeof (n))); } if (dt_node_is_posconst(max) == 0) { dnerror(max, D_TRACEMEM_SIZE, "tracemem( ) argument #2 must " "be a non-zero positive integral constant expression\n"); } if ((size = max->dn_list) != NULL) { if (size->dn_list != NULL) { dnerror(size, D_TRACEMEM_ARGS, "tracemem ( ) prototype " "mismatch: expected at most 3 args\n"); } if (!dt_node_is_scalar(size)) { dnerror(size, D_TRACEMEM_DYNSIZE, "tracemem ( ) " "dynamic size (argument #3) must be of " "scalar type\n"); } dt_cg(yypcb, size); ap->dtad_difo = dt_as(yypcb); ap->dtad_difo->dtdo_rtype = dt_int_rtype; ap->dtad_kind = DTRACEACT_TRACEMEM_DYNSIZE; ap = dt_stmt_action(dtp, sdp); } dt_cg(yypcb, addr); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = DTRACEACT_TRACEMEM; ap->dtad_difo->dtdo_rtype.dtdt_flags |= DIF_TF_BYREF; ap->dtad_difo->dtdo_rtype.dtdt_size = max->dn_value; } static void dt_action_stack_args(dtrace_hdl_t *dtp, dtrace_actdesc_t *ap, dt_node_t *arg0) { ap->dtad_kind = DTRACEACT_STACK; if (dtp->dt_options[DTRACEOPT_STACKFRAMES] != DTRACEOPT_UNSET) { ap->dtad_arg = dtp->dt_options[DTRACEOPT_STACKFRAMES]; } else { ap->dtad_arg = 0; } if (arg0 != NULL) { if (arg0->dn_list != NULL) { dnerror(arg0, D_STACK_PROTO, "stack( ) prototype " "mismatch: too many arguments\n"); } if (dt_node_is_posconst(arg0) == 0) { dnerror(arg0, D_STACK_SIZE, "stack( ) size must be a " "non-zero positive integral constant expression\n"); } ap->dtad_arg = arg0->dn_value; } } static void dt_action_stack(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); dt_action_stack_args(dtp, ap, dnp->dn_args); } static void dt_action_ustack_args(dtrace_hdl_t *dtp, dtrace_actdesc_t *ap, dt_node_t *dnp) { uint32_t nframes = 0; uint32_t strsize = 0; /* default string table size */ dt_node_t *arg0 = dnp->dn_args; dt_node_t *arg1 = arg0 != NULL ? arg0->dn_list : NULL; assert(dnp->dn_ident->di_id == DT_ACT_JSTACK || dnp->dn_ident->di_id == DT_ACT_USTACK); if (dnp->dn_ident->di_id == DT_ACT_JSTACK) { if (dtp->dt_options[DTRACEOPT_JSTACKFRAMES] != DTRACEOPT_UNSET) nframes = dtp->dt_options[DTRACEOPT_JSTACKFRAMES]; if (dtp->dt_options[DTRACEOPT_JSTACKSTRSIZE] != DTRACEOPT_UNSET) strsize = dtp->dt_options[DTRACEOPT_JSTACKSTRSIZE]; ap->dtad_kind = DTRACEACT_JSTACK; } else { assert(dnp->dn_ident->di_id == DT_ACT_USTACK); if (dtp->dt_options[DTRACEOPT_USTACKFRAMES] != DTRACEOPT_UNSET) nframes = dtp->dt_options[DTRACEOPT_USTACKFRAMES]; ap->dtad_kind = DTRACEACT_USTACK; } if (arg0 != NULL) { if (!dt_node_is_posconst(arg0)) { dnerror(arg0, D_USTACK_FRAMES, "ustack( ) argument #1 " "must be a non-zero positive integer constant\n"); } nframes = (uint32_t)arg0->dn_value; } if (arg1 != NULL) { if (arg1->dn_kind != DT_NODE_INT || ((arg1->dn_flags & DT_NF_SIGNED) && (int64_t)arg1->dn_value < 0)) { dnerror(arg1, D_USTACK_STRSIZE, "ustack( ) argument #2 " "must be a positive integer constant\n"); } if (arg1->dn_list != NULL) { dnerror(arg1, D_USTACK_PROTO, "ustack( ) prototype " "mismatch: too many arguments\n"); } strsize = (uint32_t)arg1->dn_value; } ap->dtad_arg = DTRACE_USTACK_ARG(nframes, strsize); } static void dt_action_ustack(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); dt_action_ustack_args(dtp, ap, dnp); } static void dt_action_setopt(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap; dt_node_t *arg0, *arg1; /* * The prototype guarantees that we are called with either one or * two arguments, and that any arguments that are present are strings. */ arg0 = dnp->dn_args; arg1 = arg0->dn_list; ap = dt_stmt_action(dtp, sdp); dt_cg(yypcb, arg0); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = DTRACEACT_LIBACT; ap->dtad_arg = DT_ACT_SETOPT; ap = dt_stmt_action(dtp, sdp); if (arg1 == NULL) { dt_action_difconst(ap, 0, DTRACEACT_LIBACT); } else { dt_cg(yypcb, arg1); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = DTRACEACT_LIBACT; } ap->dtad_arg = DT_ACT_SETOPT; } /*ARGSUSED*/ static void dt_action_symmod_args(dtrace_hdl_t *dtp, dtrace_actdesc_t *ap, dt_node_t *dnp, dtrace_actkind_t kind) { assert(kind == DTRACEACT_SYM || kind == DTRACEACT_MOD || kind == DTRACEACT_USYM || kind == DTRACEACT_UMOD || kind == DTRACEACT_UADDR); dt_cg(yypcb, dnp); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = kind; ap->dtad_difo->dtdo_rtype.dtdt_size = sizeof (uint64_t); } static void dt_action_symmod(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp, dtrace_actkind_t kind) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); dt_action_symmod_args(dtp, ap, dnp->dn_args, kind); } /*ARGSUSED*/ static void dt_action_ftruncate(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); /* * Library actions need a DIFO that serves as an argument. As * ftruncate() doesn't take an argument, we generate the constant 0 * in a DIFO; this constant will be ignored when the ftruncate() is * processed. */ dt_action_difconst(ap, 0, DTRACEACT_LIBACT); ap->dtad_arg = DT_ACT_FTRUNCATE; } /*ARGSUSED*/ static void dt_action_stop(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); ap->dtad_kind = DTRACEACT_STOP; ap->dtad_arg = 0; } /*ARGSUSED*/ static void dt_action_breakpoint(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); ap->dtad_kind = DTRACEACT_BREAKPOINT; ap->dtad_arg = 0; } /*ARGSUSED*/ static void dt_action_panic(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); ap->dtad_kind = DTRACEACT_PANIC; ap->dtad_arg = 0; } static void dt_action_chill(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); dt_cg(yypcb, dnp->dn_args); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = DTRACEACT_CHILL; } static void dt_action_raise(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); dt_cg(yypcb, dnp->dn_args); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = DTRACEACT_RAISE; } static void dt_action_exit(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); dt_cg(yypcb, dnp->dn_args); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = DTRACEACT_EXIT; ap->dtad_difo->dtdo_rtype.dtdt_size = sizeof (int); } static void dt_action_speculate(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); dt_cg(yypcb, dnp->dn_args); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = DTRACEACT_SPECULATE; } static void dt_action_commit(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); dt_cg(yypcb, dnp->dn_args); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = DTRACEACT_COMMIT; } static void dt_action_discard(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); dt_cg(yypcb, dnp->dn_args); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = DTRACEACT_DISCARD; } static void dt_compile_fun(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { switch (dnp->dn_expr->dn_ident->di_id) { case DT_ACT_BREAKPOINT: dt_action_breakpoint(dtp, dnp->dn_expr, sdp); break; case DT_ACT_CHILL: dt_action_chill(dtp, dnp->dn_expr, sdp); break; case DT_ACT_CLEAR: dt_action_clear(dtp, dnp->dn_expr, sdp); break; case DT_ACT_COMMIT: dt_action_commit(dtp, dnp->dn_expr, sdp); break; case DT_ACT_DENORMALIZE: dt_action_normalize(dtp, dnp->dn_expr, sdp); break; case DT_ACT_DISCARD: dt_action_discard(dtp, dnp->dn_expr, sdp); break; case DT_ACT_EXIT: dt_action_exit(dtp, dnp->dn_expr, sdp); break; case DT_ACT_FREOPEN: dt_action_printflike(dtp, dnp->dn_expr, sdp, DTRACEACT_FREOPEN); break; case DT_ACT_FTRUNCATE: dt_action_ftruncate(dtp, dnp->dn_expr, sdp); break; case DT_ACT_MOD: dt_action_symmod(dtp, dnp->dn_expr, sdp, DTRACEACT_MOD); break; case DT_ACT_NORMALIZE: dt_action_normalize(dtp, dnp->dn_expr, sdp); break; case DT_ACT_PANIC: dt_action_panic(dtp, dnp->dn_expr, sdp); break; case DT_ACT_PRINT: dt_action_trace(dtp, dnp->dn_expr, sdp); break; case DT_ACT_PRINTA: dt_action_printa(dtp, dnp->dn_expr, sdp); break; case DT_ACT_PRINTF: dt_action_printflike(dtp, dnp->dn_expr, sdp, DTRACEACT_PRINTF); break; case DT_ACT_RAISE: dt_action_raise(dtp, dnp->dn_expr, sdp); break; case DT_ACT_SETOPT: dt_action_setopt(dtp, dnp->dn_expr, sdp); break; case DT_ACT_SPECULATE: dt_action_speculate(dtp, dnp->dn_expr, sdp); break; case DT_ACT_STACK: dt_action_stack(dtp, dnp->dn_expr, sdp); break; case DT_ACT_STOP: dt_action_stop(dtp, dnp->dn_expr, sdp); break; case DT_ACT_SYM: dt_action_symmod(dtp, dnp->dn_expr, sdp, DTRACEACT_SYM); break; case DT_ACT_SYSTEM: dt_action_printflike(dtp, dnp->dn_expr, sdp, DTRACEACT_SYSTEM); break; case DT_ACT_TRACE: dt_action_trace(dtp, dnp->dn_expr, sdp); break; case DT_ACT_TRACEMEM: dt_action_tracemem(dtp, dnp->dn_expr, sdp); break; case DT_ACT_TRUNC: dt_action_trunc(dtp, dnp->dn_expr, sdp); break; case DT_ACT_UADDR: dt_action_symmod(dtp, dnp->dn_expr, sdp, DTRACEACT_UADDR); break; case DT_ACT_UMOD: dt_action_symmod(dtp, dnp->dn_expr, sdp, DTRACEACT_UMOD); break; case DT_ACT_USYM: dt_action_symmod(dtp, dnp->dn_expr, sdp, DTRACEACT_USYM); break; case DT_ACT_USTACK: case DT_ACT_JSTACK: dt_action_ustack(dtp, dnp->dn_expr, sdp); break; default: dnerror(dnp->dn_expr, D_UNKNOWN, "tracing function %s( ) is " "not yet supported\n", dnp->dn_expr->dn_ident->di_name); } } static void dt_compile_exp(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dtrace_actdesc_t *ap = dt_stmt_action(dtp, sdp); dt_cg(yypcb, dnp->dn_expr); ap->dtad_difo = dt_as(yypcb); ap->dtad_difo->dtdo_rtype = dt_void_rtype; ap->dtad_kind = DTRACEACT_DIFEXPR; } static void dt_compile_agg(dtrace_hdl_t *dtp, dt_node_t *dnp, dtrace_stmtdesc_t *sdp) { dt_ident_t *aid, *fid; dt_node_t *anp, *incr = NULL; dtrace_actdesc_t *ap; uint_t n = 1, argmax; uint64_t arg = 0; /* * If the aggregation has no aggregating function applied to it, then * this statement has no effect. Flag this as a programming error. */ if (dnp->dn_aggfun == NULL) { dnerror(dnp, D_AGG_NULL, "expression has null effect: @%s\n", dnp->dn_ident->di_name); } aid = dnp->dn_ident; fid = dnp->dn_aggfun->dn_ident; if (dnp->dn_aggfun->dn_args != NULL && dt_node_is_scalar(dnp->dn_aggfun->dn_args) == 0) { dnerror(dnp->dn_aggfun, D_AGG_SCALAR, "%s( ) argument #1 must " "be of scalar type\n", fid->di_name); } /* * The ID of the aggregation itself is implicitly recorded as the first * member of each aggregation tuple so we can distinguish them later. */ ap = dt_stmt_action(dtp, sdp); dt_action_difconst(ap, aid->di_id, DTRACEACT_DIFEXPR); for (anp = dnp->dn_aggtup; anp != NULL; anp = anp->dn_list) { ap = dt_stmt_action(dtp, sdp); n++; if (anp->dn_kind == DT_NODE_FUNC) { if (anp->dn_ident->di_id == DT_ACT_STACK) { dt_action_stack_args(dtp, ap, anp->dn_args); continue; } if (anp->dn_ident->di_id == DT_ACT_USTACK || anp->dn_ident->di_id == DT_ACT_JSTACK) { dt_action_ustack_args(dtp, ap, anp); continue; } switch (anp->dn_ident->di_id) { case DT_ACT_UADDR: dt_action_symmod_args(dtp, ap, anp->dn_args, DTRACEACT_UADDR); continue; case DT_ACT_USYM: dt_action_symmod_args(dtp, ap, anp->dn_args, DTRACEACT_USYM); continue; case DT_ACT_UMOD: dt_action_symmod_args(dtp, ap, anp->dn_args, DTRACEACT_UMOD); continue; case DT_ACT_SYM: dt_action_symmod_args(dtp, ap, anp->dn_args, DTRACEACT_SYM); continue; case DT_ACT_MOD: dt_action_symmod_args(dtp, ap, anp->dn_args, DTRACEACT_MOD); continue; default: break; } } dt_cg(yypcb, anp); ap->dtad_difo = dt_as(yypcb); ap->dtad_kind = DTRACEACT_DIFEXPR; } if (fid->di_id == DTRACEAGG_LQUANTIZE) { /* * For linear quantization, we have between two and four * arguments in addition to the expression: * * arg1 => Base value * arg2 => Limit value * arg3 => Quantization level step size (defaults to 1) * arg4 => Quantization increment value (defaults to 1) */ dt_node_t *arg1 = dnp->dn_aggfun->dn_args->dn_list; dt_node_t *arg2 = arg1->dn_list; dt_node_t *arg3 = arg2->dn_list; dt_idsig_t *isp; uint64_t nlevels, step = 1, oarg; int64_t baseval, limitval; if (arg1->dn_kind != DT_NODE_INT) { dnerror(arg1, D_LQUANT_BASETYPE, "lquantize( ) " "argument #1 must be an integer constant\n"); } baseval = (int64_t)arg1->dn_value; if (baseval < INT32_MIN || baseval > INT32_MAX) { dnerror(arg1, D_LQUANT_BASEVAL, "lquantize( ) " "argument #1 must be a 32-bit quantity\n"); } if (arg2->dn_kind != DT_NODE_INT) { dnerror(arg2, D_LQUANT_LIMTYPE, "lquantize( ) " "argument #2 must be an integer constant\n"); } limitval = (int64_t)arg2->dn_value; if (limitval < INT32_MIN || limitval > INT32_MAX) { dnerror(arg2, D_LQUANT_LIMVAL, "lquantize( ) " "argument #2 must be a 32-bit quantity\n"); } if (limitval < baseval) { dnerror(dnp, D_LQUANT_MISMATCH, "lquantize( ) base (argument #1) must be less " "than limit (argument #2)\n"); } if (arg3 != NULL) { if (!dt_node_is_posconst(arg3)) { dnerror(arg3, D_LQUANT_STEPTYPE, "lquantize( ) " "argument #3 must be a non-zero positive " "integer constant\n"); } if ((step = arg3->dn_value) > UINT16_MAX) { dnerror(arg3, D_LQUANT_STEPVAL, "lquantize( ) " "argument #3 must be a 16-bit quantity\n"); } } nlevels = (limitval - baseval) / step; if (nlevels == 0) { dnerror(dnp, D_LQUANT_STEPLARGE, "lquantize( ) step (argument #3) too large: must " "have at least one quantization level\n"); } if (nlevels > UINT16_MAX) { dnerror(dnp, D_LQUANT_STEPSMALL, "lquantize( ) step " "(argument #3) too small: number of quantization " "levels must be a 16-bit quantity\n"); } arg = (step << DTRACE_LQUANTIZE_STEPSHIFT) | (nlevels << DTRACE_LQUANTIZE_LEVELSHIFT) | ((baseval << DTRACE_LQUANTIZE_BASESHIFT) & DTRACE_LQUANTIZE_BASEMASK); assert(arg != 0); isp = (dt_idsig_t *)aid->di_data; if (isp->dis_auxinfo == 0) { /* * This is the first time we've seen an lquantize() * for this aggregation; we'll store our argument * as the auxiliary signature information. */ isp->dis_auxinfo = arg; } else if ((oarg = isp->dis_auxinfo) != arg) { /* * If we have seen this lquantize() before and the * argument doesn't match the original argument, pick * the original argument apart to concisely report the * mismatch. */ int obaseval = DTRACE_LQUANTIZE_BASE(oarg); int onlevels = DTRACE_LQUANTIZE_LEVELS(oarg); int ostep = DTRACE_LQUANTIZE_STEP(oarg); if (obaseval != baseval) { dnerror(dnp, D_LQUANT_MATCHBASE, "lquantize( ) " "base (argument #1) doesn't match previous " "declaration: expected %d, found %d\n", obaseval, (int)baseval); } if (onlevels * ostep != nlevels * step) { dnerror(dnp, D_LQUANT_MATCHLIM, "lquantize( ) " "limit (argument #2) doesn't match previous" " declaration: expected %d, found %d\n", obaseval + onlevels * ostep, (int)baseval + (int)nlevels * (int)step); } if (ostep != step) { dnerror(dnp, D_LQUANT_MATCHSTEP, "lquantize( ) " "step (argument #3) doesn't match previous " "declaration: expected %d, found %d\n", ostep, (int)step); } /* * We shouldn't be able to get here -- one of the * parameters must be mismatched if the arguments * didn't match. */ assert(0); } incr = arg3 != NULL ? arg3->dn_list : NULL; argmax = 5; } if (fid->di_id == DTRACEAGG_LLQUANTIZE) { /* * For log/linear quantizations, we have between one and five * arguments in addition to the expression: * * arg1 => Factor * arg2 => Low magnitude * arg3 => High magnitude * arg4 => Number of steps per magnitude * arg5 => Quantization increment value (defaults to 1) */ dt_node_t *llarg = dnp->dn_aggfun->dn_args->dn_list; uint64_t oarg, order, v; dt_idsig_t *isp; int i; struct { char *str; /* string identifier */ int badtype; /* error on bad type */ int badval; /* error on bad value */ int mismatch; /* error on bad match */ int shift; /* shift value */ uint16_t value; /* value itself */ } args[] = { { "factor", D_LLQUANT_FACTORTYPE, D_LLQUANT_FACTORVAL, D_LLQUANT_FACTORMATCH, DTRACE_LLQUANTIZE_FACTORSHIFT }, { "low magnitude", D_LLQUANT_LOWTYPE, D_LLQUANT_LOWVAL, D_LLQUANT_LOWMATCH, DTRACE_LLQUANTIZE_LOWSHIFT }, { "high magnitude", D_LLQUANT_HIGHTYPE, D_LLQUANT_HIGHVAL, D_LLQUANT_HIGHMATCH, DTRACE_LLQUANTIZE_HIGHSHIFT }, { "linear steps per magnitude", D_LLQUANT_NSTEPTYPE, D_LLQUANT_NSTEPVAL, D_LLQUANT_NSTEPMATCH, DTRACE_LLQUANTIZE_NSTEPSHIFT }, { NULL } }; assert(arg == 0); for (i = 0; args[i].str != NULL; i++) { if (llarg->dn_kind != DT_NODE_INT) { dnerror(llarg, args[i].badtype, "llquantize( ) " "argument #%d (%s) must be an " "integer constant\n", i + 1, args[i].str); } if ((uint64_t)llarg->dn_value > UINT16_MAX) { dnerror(llarg, args[i].badval, "llquantize( ) " "argument #%d (%s) must be an unsigned " "16-bit quantity\n", i + 1, args[i].str); } args[i].value = (uint16_t)llarg->dn_value; assert(!(arg & (UINT16_MAX << args[i].shift))); arg |= ((uint64_t)args[i].value << args[i].shift); llarg = llarg->dn_list; } assert(arg != 0); if (args[0].value < 2) { dnerror(dnp, D_LLQUANT_FACTORSMALL, "llquantize( ) " "factor (argument #1) must be two or more\n"); } if (args[1].value >= args[2].value) { dnerror(dnp, D_LLQUANT_MAGRANGE, "llquantize( ) " "high magnitude (argument #3) must be greater " "than low magnitude (argument #2)\n"); } if (args[3].value < args[0].value) { dnerror(dnp, D_LLQUANT_FACTORNSTEPS, "llquantize( ) " "factor (argument #1) must be less than or " "equal to the number of linear steps per " "magnitude (argument #4)\n"); } for (v = args[0].value; v < args[3].value; v *= args[0].value) continue; if ((args[3].value % args[0].value) || (v % args[3].value)) { dnerror(dnp, D_LLQUANT_FACTOREVEN, "llquantize( ) " "factor (argument #1) must evenly divide the " "number of steps per magnitude (argument #4), " "and the number of steps per magnitude must evenly " "divide a power of the factor\n"); } for (i = 0, order = 1; i < args[2].value; i++) { if (order * args[0].value > order) { order *= args[0].value; continue; } dnerror(dnp, D_LLQUANT_MAGTOOBIG, "llquantize( ) " "factor (%d) raised to power of high magnitude " "(%d) overflows 64-bits\n", args[0].value, args[2].value); } isp = (dt_idsig_t *)aid->di_data; if (isp->dis_auxinfo == 0) { /* * This is the first time we've seen an llquantize() * for this aggregation; we'll store our argument * as the auxiliary signature information. */ isp->dis_auxinfo = arg; } else if ((oarg = isp->dis_auxinfo) != arg) { /* * If we have seen this llquantize() before and the * argument doesn't match the original argument, pick * the original argument apart to concisely report the * mismatch. */ int expected = 0, found = 0; for (i = 0; expected == found; i++) { assert(args[i].str != NULL); expected = (oarg >> args[i].shift) & UINT16_MAX; found = (arg >> args[i].shift) & UINT16_MAX; } dnerror(dnp, args[i - 1].mismatch, "llquantize( ) " "%s (argument #%d) doesn't match previous " "declaration: expected %d, found %d\n", args[i - 1].str, i, expected, found); } incr = llarg; argmax = 6; } if (fid->di_id == DTRACEAGG_QUANTIZE) { incr = dnp->dn_aggfun->dn_args->dn_list; argmax = 2; } if (incr != NULL) { if (!dt_node_is_scalar(incr)) { dnerror(dnp, D_PROTO_ARG, "%s( ) increment value " "(argument #%d) must be of scalar type\n", fid->di_name, argmax); } if ((anp = incr->dn_list) != NULL) { int argc = argmax; for (; anp != NULL; anp = anp->dn_list) argc++; dnerror(incr, D_PROTO_LEN, "%s( ) prototype " "mismatch: %d args passed, at most %d expected", fid->di_name, argc, argmax); } ap = dt_stmt_action(dtp, sdp); n++; dt_cg(yypcb, incr); ap->dtad_difo = dt_as(yypcb); ap->dtad_difo->dtdo_rtype = dt_void_rtype; ap->dtad_kind = DTRACEACT_DIFEXPR; } assert(sdp->dtsd_aggdata == NULL); sdp->dtsd_aggdata = aid; ap = dt_stmt_action(dtp, sdp); assert(fid->di_kind == DT_IDENT_AGGFUNC); assert(DTRACEACT_ISAGG(fid->di_id)); ap->dtad_kind = fid->di_id; ap->dtad_ntuple = n; ap->dtad_arg = arg; if (dnp->dn_aggfun->dn_args != NULL) { dt_cg(yypcb, dnp->dn_aggfun->dn_args); ap->dtad_difo = dt_as(yypcb); } } static void dt_compile_one_clause(dtrace_hdl_t *dtp, dt_node_t *cnp, dt_node_t *pnp) { dtrace_ecbdesc_t *edp; dtrace_stmtdesc_t *sdp; dt_node_t *dnp; yylineno = pnp->dn_line; dt_setcontext(dtp, pnp->dn_desc); (void) dt_node_cook(cnp, DT_IDFLG_REF); if (DT_TREEDUMP_PASS(dtp, 2)) dt_node_printr(cnp, stderr, 0); if ((edp = dt_ecbdesc_create(dtp, pnp->dn_desc)) == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); assert(yypcb->pcb_ecbdesc == NULL); yypcb->pcb_ecbdesc = edp; if (cnp->dn_pred != NULL) { dt_cg(yypcb, cnp->dn_pred); edp->dted_pred.dtpdd_difo = dt_as(yypcb); } if (cnp->dn_acts == NULL) { dt_stmt_append(dt_stmt_create(dtp, edp, cnp->dn_ctxattr, _dtrace_defattr), cnp); } for (dnp = cnp->dn_acts; dnp != NULL; dnp = dnp->dn_list) { assert(yypcb->pcb_stmt == NULL); sdp = dt_stmt_create(dtp, edp, cnp->dn_ctxattr, cnp->dn_attr); switch (dnp->dn_kind) { case DT_NODE_DEXPR: if (dnp->dn_expr->dn_kind == DT_NODE_AGG) dt_compile_agg(dtp, dnp->dn_expr, sdp); else dt_compile_exp(dtp, dnp, sdp); break; case DT_NODE_DFUNC: dt_compile_fun(dtp, dnp, sdp); break; case DT_NODE_AGG: dt_compile_agg(dtp, dnp, sdp); break; default: dnerror(dnp, D_UNKNOWN, "internal error -- node kind " "%u is not a valid statement\n", dnp->dn_kind); } assert(yypcb->pcb_stmt == sdp); dt_stmt_append(sdp, dnp); } assert(yypcb->pcb_ecbdesc == edp); dt_ecbdesc_release(dtp, edp); dt_endcontext(dtp); yypcb->pcb_ecbdesc = NULL; } static void dt_compile_clause(dtrace_hdl_t *dtp, dt_node_t *cnp) { dt_node_t *pnp; for (pnp = cnp->dn_pdescs; pnp != NULL; pnp = pnp->dn_list) dt_compile_one_clause(dtp, cnp, pnp); } static void dt_compile_xlator(dt_node_t *dnp) { dt_xlator_t *dxp = dnp->dn_xlator; dt_node_t *mnp; for (mnp = dnp->dn_members; mnp != NULL; mnp = mnp->dn_list) { assert(dxp->dx_membdif[mnp->dn_membid] == NULL); dt_cg(yypcb, mnp); dxp->dx_membdif[mnp->dn_membid] = dt_as(yypcb); } } void dt_setcontext(dtrace_hdl_t *dtp, dtrace_probedesc_t *pdp) { const dtrace_pattr_t *pap; dt_probe_t *prp; dt_provider_t *pvp; dt_ident_t *idp; char attrstr[8]; int err; /* * Both kernel and pid based providers are allowed to have names * ending with what could be interpreted as a number. We assume it's * a pid and that we may need to dynamically create probes for * that process if: * * (1) The provider doesn't exist, or, * (2) The provider exists and has DTRACE_PRIV_PROC privilege. * * On an error, dt_pid_create_probes() will set the error message * and tag -- we just have to longjmp() out of here. */ if (isdigit(pdp->dtpd_provider[strlen(pdp->dtpd_provider) - 1]) && ((pvp = dt_provider_lookup(dtp, pdp->dtpd_provider)) == NULL || pvp->pv_desc.dtvd_priv.dtpp_flags & DTRACE_PRIV_PROC) && dt_pid_create_probes(pdp, dtp, yypcb) != 0) { longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); } /* * Call dt_probe_info() to get the probe arguments and attributes. If * a representative probe is found, set 'pap' to the probe provider's * attributes. Otherwise set 'pap' to default Unstable attributes. */ if ((prp = dt_probe_info(dtp, pdp, &yypcb->pcb_pinfo)) == NULL) { pap = &_dtrace_prvdesc; err = dtrace_errno(dtp); bzero(&yypcb->pcb_pinfo, sizeof (dtrace_probeinfo_t)); yypcb->pcb_pinfo.dtp_attr = pap->dtpa_provider; yypcb->pcb_pinfo.dtp_arga = pap->dtpa_args; } else { pap = &prp->pr_pvp->pv_desc.dtvd_attr; err = 0; } if (err == EDT_NOPROBE && !(yypcb->pcb_cflags & DTRACE_C_ZDEFS)) { xyerror(D_PDESC_ZERO, "probe description %s:%s:%s:%s does not " "match any probes\n", pdp->dtpd_provider, pdp->dtpd_mod, pdp->dtpd_func, pdp->dtpd_name); } if (err != EDT_NOPROBE && err != EDT_UNSTABLE && err != 0) xyerror(D_PDESC_INVAL, "%s\n", dtrace_errmsg(dtp, err)); dt_dprintf("set context to %s:%s:%s:%s [%u] prp=%p attr=%s argc=%d\n", pdp->dtpd_provider, pdp->dtpd_mod, pdp->dtpd_func, pdp->dtpd_name, pdp->dtpd_id, (void *)prp, dt_attr_str(yypcb->pcb_pinfo.dtp_attr, attrstr, sizeof (attrstr)), yypcb->pcb_pinfo.dtp_argc); /* * Reset the stability attributes of D global variables that vary * based on the attributes of the provider and context itself. */ if ((idp = dt_idhash_lookup(dtp->dt_globals, "probeprov")) != NULL) idp->di_attr = pap->dtpa_provider; if ((idp = dt_idhash_lookup(dtp->dt_globals, "probemod")) != NULL) idp->di_attr = pap->dtpa_mod; if ((idp = dt_idhash_lookup(dtp->dt_globals, "probefunc")) != NULL) idp->di_attr = pap->dtpa_func; if ((idp = dt_idhash_lookup(dtp->dt_globals, "probename")) != NULL) idp->di_attr = pap->dtpa_name; if ((idp = dt_idhash_lookup(dtp->dt_globals, "args")) != NULL) idp->di_attr = pap->dtpa_args; yypcb->pcb_pdesc = pdp; yypcb->pcb_probe = prp; } /* * Reset context-dependent variables and state at the end of cooking a D probe * definition clause. This ensures that external declarations between clauses * do not reference any stale context-dependent data from the previous clause. */ void dt_endcontext(dtrace_hdl_t *dtp) { static const char *const cvars[] = { "probeprov", "probemod", "probefunc", "probename", "args", NULL }; dt_ident_t *idp; int i; for (i = 0; cvars[i] != NULL; i++) { if ((idp = dt_idhash_lookup(dtp->dt_globals, cvars[i])) != NULL) idp->di_attr = _dtrace_defattr; } yypcb->pcb_pdesc = NULL; yypcb->pcb_probe = NULL; } static int dt_reduceid(dt_idhash_t *dhp, dt_ident_t *idp, dtrace_hdl_t *dtp) { if (idp->di_vers != 0 && idp->di_vers > dtp->dt_vmax) dt_idhash_delete(dhp, idp); return (0); } /* * When dtrace_setopt() is called for "version", it calls dt_reduce() to remove * any identifiers or translators that have been previously defined as bound to * a version greater than the specified version. Therefore, in our current * version implementation, establishing a binding is a one-way transformation. * In addition, no versioning is currently provided for types as our .d library * files do not define any types and we reserve prefixes DTRACE_ and dtrace_ * for our exclusive use. If required, type versioning will require more work. */ int dt_reduce(dtrace_hdl_t *dtp, dt_version_t v) { char s[DT_VERSION_STRMAX]; dt_xlator_t *dxp, *nxp; if (v > dtp->dt_vmax) return (dt_set_errno(dtp, EDT_VERSREDUCED)); else if (v == dtp->dt_vmax) return (0); /* no reduction necessary */ dt_dprintf("reducing api version to %s\n", dt_version_num2str(v, s, sizeof (s))); dtp->dt_vmax = v; for (dxp = dt_list_next(&dtp->dt_xlators); dxp != NULL; dxp = nxp) { nxp = dt_list_next(dxp); if ((dxp->dx_souid.di_vers != 0 && dxp->dx_souid.di_vers > v) || (dxp->dx_ptrid.di_vers != 0 && dxp->dx_ptrid.di_vers > v)) dt_list_delete(&dtp->dt_xlators, dxp); } (void) dt_idhash_iter(dtp->dt_macros, (dt_idhash_f *)dt_reduceid, dtp); (void) dt_idhash_iter(dtp->dt_aggs, (dt_idhash_f *)dt_reduceid, dtp); (void) dt_idhash_iter(dtp->dt_globals, (dt_idhash_f *)dt_reduceid, dtp); (void) dt_idhash_iter(dtp->dt_tls, (dt_idhash_f *)dt_reduceid, dtp); return (0); } /* * Fork and exec the cpp(1) preprocessor to run over the specified input file, * and return a FILE handle for the cpp output. We use the /dev/fd filesystem * here to simplify the code by leveraging file descriptor inheritance. */ static FILE * dt_preproc(dtrace_hdl_t *dtp, FILE *ifp) { int argc = dtp->dt_cpp_argc; char **argv = malloc(sizeof (char *) * (argc + 5)); FILE *ofp = tmpfile(); char ipath[20], opath[20]; /* big enough for /dev/fd/ + INT_MAX + \0 */ char verdef[32]; /* big enough for -D__SUNW_D_VERSION=0x%08x + \0 */ struct sigaction act, oact; sigset_t mask, omask; int wstat, estat; pid_t pid; off64_t off; int c; if (argv == NULL || ofp == NULL) { (void) dt_set_errno(dtp, errno); goto err; } /* * If the input is a seekable file, see if it is an interpreter file. * If we see #!, seek past the first line because cpp will choke on it. * We start cpp just prior to the \n at the end of this line so that * it still sees the newline, ensuring that #line values are correct. */ if (isatty(fileno(ifp)) == 0 && (off = ftello64(ifp)) != -1) { if ((c = fgetc(ifp)) == '#' && (c = fgetc(ifp)) == '!') { for (off += 2; c != '\n'; off++) { if ((c = fgetc(ifp)) == EOF) break; } if (c == '\n') off--; /* start cpp just prior to \n */ } (void) fflush(ifp); (void) fseeko64(ifp, off, SEEK_SET); } (void) snprintf(ipath, sizeof (ipath), "/dev/fd/%d", fileno(ifp)); (void) snprintf(opath, sizeof (opath), "/dev/fd/%d", fileno(ofp)); bcopy(dtp->dt_cpp_argv, argv, sizeof (char *) * argc); (void) snprintf(verdef, sizeof (verdef), "-D__SUNW_D_VERSION=0x%08x", dtp->dt_vmax); argv[argc++] = verdef; switch (dtp->dt_stdcmode) { case DT_STDC_XA: case DT_STDC_XT: argv[argc++] = "-D__STDC__=0"; break; case DT_STDC_XC: argv[argc++] = "-D__STDC__=1"; break; } argv[argc++] = ipath; argv[argc++] = opath; argv[argc] = NULL; /* * libdtrace must be able to be embedded in other programs that may * include application-specific signal handlers. Therefore, if we * need to fork to run cpp(1), we must avoid generating a SIGCHLD * that could confuse the containing application. To do this, * we block SIGCHLD and reset its disposition to SIG_DFL. * We restore our signal state once we are done. */ (void) sigemptyset(&mask); (void) sigaddset(&mask, SIGCHLD); (void) sigprocmask(SIG_BLOCK, &mask, &omask); bzero(&act, sizeof (act)); act.sa_handler = SIG_DFL; (void) sigaction(SIGCHLD, &act, &oact); if ((pid = fork1()) == -1) { (void) sigaction(SIGCHLD, &oact, NULL); (void) sigprocmask(SIG_SETMASK, &omask, NULL); (void) dt_set_errno(dtp, EDT_CPPFORK); goto err; } if (pid == 0) { (void) execvp(dtp->dt_cpp_path, argv); _exit(errno == ENOENT ? 127 : 126); } do { dt_dprintf("waiting for %s (PID %d)\n", dtp->dt_cpp_path, (int)pid); } while (waitpid(pid, &wstat, 0) == -1 && errno == EINTR); (void) sigaction(SIGCHLD, &oact, NULL); (void) sigprocmask(SIG_SETMASK, &omask, NULL); dt_dprintf("%s returned exit status 0x%x\n", dtp->dt_cpp_path, wstat); estat = WIFEXITED(wstat) ? WEXITSTATUS(wstat) : -1; if (estat != 0) { switch (estat) { case 126: (void) dt_set_errno(dtp, EDT_CPPEXEC); break; case 127: (void) dt_set_errno(dtp, EDT_CPPENT); break; default: (void) dt_set_errno(dtp, EDT_CPPERR); } goto err; } free(argv); (void) fflush(ofp); (void) fseek(ofp, 0, SEEK_SET); return (ofp); err: free(argv); (void) fclose(ofp); return (NULL); } static void dt_lib_depend_error(dtrace_hdl_t *dtp, const char *format, ...) { va_list ap; va_start(ap, format); dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap); va_end(ap); } int dt_lib_depend_add(dtrace_hdl_t *dtp, dt_list_t *dlp, const char *arg) { dt_lib_depend_t *dld; const char *end; assert(arg != NULL); if ((end = strrchr(arg, '/')) == NULL) return (dt_set_errno(dtp, EINVAL)); if ((dld = dt_zalloc(dtp, sizeof (dt_lib_depend_t))) == NULL) return (-1); if ((dld->dtld_libpath = dt_alloc(dtp, MAXPATHLEN)) == NULL) { dt_free(dtp, dld); return (-1); } (void) strlcpy(dld->dtld_libpath, arg, end - arg + 2); if ((dld->dtld_library = strdup(arg)) == NULL) { dt_free(dtp, dld->dtld_libpath); dt_free(dtp, dld); return (dt_set_errno(dtp, EDT_NOMEM)); } dt_list_append(dlp, dld); return (0); } dt_lib_depend_t * dt_lib_depend_lookup(dt_list_t *dld, const char *arg) { dt_lib_depend_t *dldn; for (dldn = dt_list_next(dld); dldn != NULL; dldn = dt_list_next(dldn)) { if (strcmp(dldn->dtld_library, arg) == 0) return (dldn); } return (NULL); } /* * Go through all the library files, and, if any library dependencies exist for * that file, add it to that node's list of dependents. The result of this * will be a graph which can then be topologically sorted to produce a * compilation order. */ static int dt_lib_build_graph(dtrace_hdl_t *dtp) { dt_lib_depend_t *dld, *dpld; for (dld = dt_list_next(&dtp->dt_lib_dep); dld != NULL; dld = dt_list_next(dld)) { char *library = dld->dtld_library; for (dpld = dt_list_next(&dld->dtld_dependencies); dpld != NULL; dpld = dt_list_next(dpld)) { dt_lib_depend_t *dlda; if ((dlda = dt_lib_depend_lookup(&dtp->dt_lib_dep, dpld->dtld_library)) == NULL) { dt_lib_depend_error(dtp, "Invalid library dependency in %s: %s\n", dld->dtld_library, dpld->dtld_library); return (dt_set_errno(dtp, EDT_COMPILER)); } if ((dt_lib_depend_add(dtp, &dlda->dtld_dependents, library)) != 0) { return (-1); /* preserve dt_errno */ } } } return (0); } static int dt_topo_sort(dtrace_hdl_t *dtp, dt_lib_depend_t *dld, int *count) { dt_lib_depend_t *dpld, *dlda, *new; dld->dtld_start = ++(*count); for (dpld = dt_list_next(&dld->dtld_dependents); dpld != NULL; dpld = dt_list_next(dpld)) { dlda = dt_lib_depend_lookup(&dtp->dt_lib_dep, dpld->dtld_library); assert(dlda != NULL); if (dlda->dtld_start == 0 && dt_topo_sort(dtp, dlda, count) == -1) return (-1); } if ((new = dt_zalloc(dtp, sizeof (dt_lib_depend_t))) == NULL) return (-1); if ((new->dtld_library = strdup(dld->dtld_library)) == NULL) { dt_free(dtp, new); return (dt_set_errno(dtp, EDT_NOMEM)); } new->dtld_start = dld->dtld_start; new->dtld_finish = dld->dtld_finish = ++(*count); dt_list_prepend(&dtp->dt_lib_dep_sorted, new); dt_dprintf("library %s sorted (%d/%d)\n", new->dtld_library, new->dtld_start, new->dtld_finish); return (0); } static int dt_lib_depend_sort(dtrace_hdl_t *dtp) { dt_lib_depend_t *dld, *dpld, *dlda; int count = 0; if (dt_lib_build_graph(dtp) == -1) return (-1); /* preserve dt_errno */ /* * Perform a topological sort of the graph that hangs off * dtp->dt_lib_dep. The result of this process will be a * dependency ordered list located at dtp->dt_lib_dep_sorted. */ for (dld = dt_list_next(&dtp->dt_lib_dep); dld != NULL; dld = dt_list_next(dld)) { if (dld->dtld_start == 0 && dt_topo_sort(dtp, dld, &count) == -1) return (-1); /* preserve dt_errno */; } /* * Check the graph for cycles. If an ancestor's finishing time is * less than any of its dependent's finishing times then a back edge * exists in the graph and this is a cycle. */ for (dld = dt_list_next(&dtp->dt_lib_dep); dld != NULL; dld = dt_list_next(dld)) { for (dpld = dt_list_next(&dld->dtld_dependents); dpld != NULL; dpld = dt_list_next(dpld)) { dlda = dt_lib_depend_lookup(&dtp->dt_lib_dep_sorted, dpld->dtld_library); assert(dlda != NULL); if (dlda->dtld_finish > dld->dtld_finish) { dt_lib_depend_error(dtp, "Cyclic dependency detected: %s => %s\n", dld->dtld_library, dpld->dtld_library); return (dt_set_errno(dtp, EDT_COMPILER)); } } } return (0); } static void dt_lib_depend_free(dtrace_hdl_t *dtp) { dt_lib_depend_t *dld, *dlda; while ((dld = dt_list_next(&dtp->dt_lib_dep)) != NULL) { while ((dlda = dt_list_next(&dld->dtld_dependencies)) != NULL) { dt_list_delete(&dld->dtld_dependencies, dlda); dt_free(dtp, dlda->dtld_library); dt_free(dtp, dlda->dtld_libpath); dt_free(dtp, dlda); } while ((dlda = dt_list_next(&dld->dtld_dependents)) != NULL) { dt_list_delete(&dld->dtld_dependents, dlda); dt_free(dtp, dlda->dtld_library); dt_free(dtp, dlda->dtld_libpath); dt_free(dtp, dlda); } dt_list_delete(&dtp->dt_lib_dep, dld); dt_free(dtp, dld->dtld_library); dt_free(dtp, dld->dtld_libpath); dt_free(dtp, dld); } while ((dld = dt_list_next(&dtp->dt_lib_dep_sorted)) != NULL) { dt_list_delete(&dtp->dt_lib_dep_sorted, dld); dt_free(dtp, dld->dtld_library); dt_free(dtp, dld); } } /* * Open all the .d library files found in the specified directory and * compile each one of them. We silently ignore any missing directories and * other files found therein. We only fail (and thereby fail dt_load_libs()) if * we fail to compile a library and the error is something other than #pragma D * depends_on. Dependency errors are silently ignored to permit a library * directory to contain libraries which may not be accessible depending on our * privileges. */ static int dt_load_libs_dir(dtrace_hdl_t *dtp, const char *path) { struct dirent *dp; const char *p, *end; DIR *dirp; char fname[PATH_MAX]; FILE *fp; void *rv; dt_lib_depend_t *dld; if ((dirp = opendir(path)) == NULL) { dt_dprintf("skipping lib dir %s: %s\n", path, strerror(errno)); return (0); } /* First, parse each file for library dependencies. */ while ((dp = readdir(dirp)) != NULL) { if ((p = strrchr(dp->d_name, '.')) == NULL || strcmp(p, ".d")) continue; /* skip any filename not ending in .d */ (void) snprintf(fname, sizeof (fname), "%s/%s", path, dp->d_name); if ((fp = fopen(fname, "r")) == NULL) { dt_dprintf("skipping library %s: %s\n", fname, strerror(errno)); continue; } /* * Skip files whose name match an already processed library */ for (dld = dt_list_next(&dtp->dt_lib_dep); dld != NULL; dld = dt_list_next(dld)) { end = strrchr(dld->dtld_library, '/'); /* dt_lib_depend_add ensures this */ assert(end != NULL); if (strcmp(end + 1, dp->d_name) == 0) break; } if (dld != NULL) { dt_dprintf("skipping library %s, already processed " "library with the same name: %s", dp->d_name, dld->dtld_library); continue; } dtp->dt_filetag = fname; if (dt_lib_depend_add(dtp, &dtp->dt_lib_dep, fname) != 0) return (-1); /* preserve dt_errno */ rv = dt_compile(dtp, DT_CTX_DPROG, DTRACE_PROBESPEC_NAME, NULL, DTRACE_C_EMPTY | DTRACE_C_CTL, 0, NULL, fp, NULL); if (rv != NULL && dtp->dt_errno && (dtp->dt_errno != EDT_COMPILER || dtp->dt_errtag != dt_errtag(D_PRAGMA_DEPEND))) return (-1); /* preserve dt_errno */ if (dtp->dt_errno) dt_dprintf("error parsing library %s: %s\n", fname, dtrace_errmsg(dtp, dtrace_errno(dtp))); (void) fclose(fp); dtp->dt_filetag = NULL; } (void) closedir(dirp); return (0); } /* * Perform a topological sorting of all the libraries found across the entire * dt_lib_path. Once sorted, compile each one in topological order to cache its * inlines and translators, etc. We silently ignore any missing directories and * other files found therein. We only fail (and thereby fail dt_load_libs()) if * we fail to compile a library and the error is something other than #pragma D * depends_on. Dependency errors are silently ignored to permit a library * directory to contain libraries which may not be accessible depending on our * privileges. */ static int dt_load_libs_sort(dtrace_hdl_t *dtp) { dtrace_prog_t *pgp; FILE *fp; dt_lib_depend_t *dld; /* * Finish building the graph containing the library dependencies * and perform a topological sort to generate an ordered list * for compilation. */ if (dt_lib_depend_sort(dtp) == -1) goto err; for (dld = dt_list_next(&dtp->dt_lib_dep_sorted); dld != NULL; dld = dt_list_next(dld)) { if ((fp = fopen(dld->dtld_library, "r")) == NULL) { dt_dprintf("skipping library %s: %s\n", dld->dtld_library, strerror(errno)); continue; } dtp->dt_filetag = dld->dtld_library; pgp = dtrace_program_fcompile(dtp, fp, DTRACE_C_EMPTY, 0, NULL); (void) fclose(fp); dtp->dt_filetag = NULL; if (pgp == NULL && (dtp->dt_errno != EDT_COMPILER || dtp->dt_errtag != dt_errtag(D_PRAGMA_DEPEND))) goto err; if (pgp == NULL) { dt_dprintf("skipping library %s: %s\n", dld->dtld_library, dtrace_errmsg(dtp, dtrace_errno(dtp))); } else { dld->dtld_loaded = B_TRUE; dt_program_destroy(dtp, pgp); } } dt_lib_depend_free(dtp); return (0); err: dt_lib_depend_free(dtp); return (-1); /* preserve dt_errno */ } /* * Load the contents of any appropriate DTrace .d library files. These files * contain inlines and translators that will be cached by the compiler. We * defer this activity until the first compile to permit libdtrace clients to * add their own library directories and so that we can properly report errors. */ static int dt_load_libs(dtrace_hdl_t *dtp) { dt_dirpath_t *dirp; if (dtp->dt_cflags & DTRACE_C_NOLIBS) return (0); /* libraries already processed */ dtp->dt_cflags |= DTRACE_C_NOLIBS; /* * /usr/lib/dtrace is always at the head of the list. The rest of the * list is specified in the precedence order the user requested. Process * everything other than the head first. DTRACE_C_NOLIBS has already * been spcified so dt_vopen will ensure that there is always one entry * in dt_lib_path. */ for (dirp = dt_list_next(dt_list_next(&dtp->dt_lib_path)); dirp != NULL; dirp = dt_list_next(dirp)) { if (dt_load_libs_dir(dtp, dirp->dir_path) != 0) { dtp->dt_cflags &= ~DTRACE_C_NOLIBS; return (-1); /* errno is set for us */ } } /* Handle /usr/lib/dtrace */ dirp = dt_list_next(&dtp->dt_lib_path); if (dt_load_libs_dir(dtp, dirp->dir_path) != 0) { dtp->dt_cflags &= ~DTRACE_C_NOLIBS; return (-1); /* errno is set for us */ } if (dt_load_libs_sort(dtp) < 0) return (-1); /* errno is set for us */ return (0); } static void * dt_compile(dtrace_hdl_t *dtp, int context, dtrace_probespec_t pspec, void *arg, uint_t cflags, int argc, char *const argv[], FILE *fp, const char *s) { dt_node_t *dnp; dt_decl_t *ddp; dt_pcb_t pcb; void *rv; int err; if ((fp == NULL && s == NULL) || (cflags & ~DTRACE_C_MASK) != 0) { (void) dt_set_errno(dtp, EINVAL); return (NULL); } if (dt_list_next(&dtp->dt_lib_path) != NULL && dt_load_libs(dtp) != 0) return (NULL); /* errno is set for us */ if (dtp->dt_globals->dh_nelems != 0) (void) dt_idhash_iter(dtp->dt_globals, dt_idreset, NULL); if (dtp->dt_tls->dh_nelems != 0) (void) dt_idhash_iter(dtp->dt_tls, dt_idreset, NULL); if (fp && (cflags & DTRACE_C_CPP) && (fp = dt_preproc(dtp, fp)) == NULL) return (NULL); /* errno is set for us */ dt_pcb_push(dtp, &pcb); pcb.pcb_fileptr = fp; pcb.pcb_string = s; pcb.pcb_strptr = s; pcb.pcb_strlen = s ? strlen(s) : 0; pcb.pcb_sargc = argc; pcb.pcb_sargv = argv; pcb.pcb_sflagv = argc ? calloc(argc, sizeof (ushort_t)) : NULL; pcb.pcb_pspec = pspec; pcb.pcb_cflags = dtp->dt_cflags | cflags; pcb.pcb_amin = dtp->dt_amin; pcb.pcb_yystate = -1; pcb.pcb_context = context; pcb.pcb_token = context; if (context != DT_CTX_DPROG) yybegin(YYS_EXPR); else if (cflags & DTRACE_C_CTL) yybegin(YYS_CONTROL); else yybegin(YYS_CLAUSE); if ((err = setjmp(yypcb->pcb_jmpbuf)) != 0) goto out; if (yypcb->pcb_sargc != 0 && yypcb->pcb_sflagv == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); yypcb->pcb_idents = dt_idhash_create("ambiguous", NULL, 0, 0); yypcb->pcb_locals = dt_idhash_create("clause local", NULL, DIF_VAR_OTHER_UBASE, DIF_VAR_OTHER_MAX); if (yypcb->pcb_idents == NULL || yypcb->pcb_locals == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); /* * Invoke the parser to evaluate the D source code. If any errors * occur during parsing, an error function will be called and we * will longjmp back to pcb_jmpbuf to abort. If parsing succeeds, * we optionally display the parse tree if debugging is enabled. */ if (yyparse() != 0 || yypcb->pcb_root == NULL) xyerror(D_EMPTY, "empty D program translation unit\n"); yybegin(YYS_DONE); if (cflags & DTRACE_C_CTL) goto out; if (context != DT_CTX_DTYPE && DT_TREEDUMP_PASS(dtp, 1)) dt_node_printr(yypcb->pcb_root, stderr, 0); if (yypcb->pcb_pragmas != NULL) (void) dt_idhash_iter(yypcb->pcb_pragmas, dt_idpragma, NULL); if (argc > 1 && !(yypcb->pcb_cflags & DTRACE_C_ARGREF) && !(yypcb->pcb_sflagv[argc - 1] & DT_IDFLG_REF)) { xyerror(D_MACRO_UNUSED, "extraneous argument '%s' ($%d is " "not referenced)\n", yypcb->pcb_sargv[argc - 1], argc - 1); } /* * If we have successfully created a parse tree for a D program, loop * over the clauses and actions and instantiate the corresponding * libdtrace program. If we are parsing a D expression, then we * simply run the code generator and assembler on the resulting tree. */ switch (context) { case DT_CTX_DPROG: assert(yypcb->pcb_root->dn_kind == DT_NODE_PROG); if ((dnp = yypcb->pcb_root->dn_list) == NULL && !(yypcb->pcb_cflags & DTRACE_C_EMPTY)) xyerror(D_EMPTY, "empty D program translation unit\n"); if ((yypcb->pcb_prog = dt_program_create(dtp)) == NULL) longjmp(yypcb->pcb_jmpbuf, dtrace_errno(dtp)); for (; dnp != NULL; dnp = dnp->dn_list) { switch (dnp->dn_kind) { case DT_NODE_CLAUSE: dt_compile_clause(dtp, dnp); break; case DT_NODE_XLATOR: if (dtp->dt_xlatemode == DT_XL_DYNAMIC) dt_compile_xlator(dnp); break; case DT_NODE_PROVIDER: (void) dt_node_cook(dnp, DT_IDFLG_REF); break; } } yypcb->pcb_prog->dp_xrefs = yypcb->pcb_asxrefs; yypcb->pcb_prog->dp_xrefslen = yypcb->pcb_asxreflen; yypcb->pcb_asxrefs = NULL; yypcb->pcb_asxreflen = 0; rv = yypcb->pcb_prog; break; case DT_CTX_DEXPR: (void) dt_node_cook(yypcb->pcb_root, DT_IDFLG_REF); dt_cg(yypcb, yypcb->pcb_root); rv = dt_as(yypcb); break; case DT_CTX_DTYPE: ddp = (dt_decl_t *)yypcb->pcb_root; /* root is really a decl */ err = dt_decl_type(ddp, arg); dt_decl_free(ddp); if (err != 0) longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); rv = NULL; break; } out: if (context != DT_CTX_DTYPE && yypcb->pcb_root != NULL && DT_TREEDUMP_PASS(dtp, 3)) dt_node_printr(yypcb->pcb_root, stderr, 0); if (dtp->dt_cdefs_fd != -1 && (ftruncate64(dtp->dt_cdefs_fd, 0) == -1 || lseek64(dtp->dt_cdefs_fd, 0, SEEK_SET) == -1 || ctf_write(dtp->dt_cdefs->dm_ctfp, dtp->dt_cdefs_fd) == CTF_ERR)) dt_dprintf("failed to update CTF cache: %s\n", strerror(errno)); if (dtp->dt_ddefs_fd != -1 && (ftruncate64(dtp->dt_ddefs_fd, 0) == -1 || lseek64(dtp->dt_ddefs_fd, 0, SEEK_SET) == -1 || ctf_write(dtp->dt_ddefs->dm_ctfp, dtp->dt_ddefs_fd) == CTF_ERR)) dt_dprintf("failed to update CTF cache: %s\n", strerror(errno)); if (yypcb->pcb_fileptr && (cflags & DTRACE_C_CPP)) (void) fclose(yypcb->pcb_fileptr); /* close dt_preproc() file */ dt_pcb_pop(dtp, err); (void) dt_set_errno(dtp, err); return (err ? NULL : rv); } dtrace_prog_t * dtrace_program_strcompile(dtrace_hdl_t *dtp, const char *s, dtrace_probespec_t spec, uint_t cflags, int argc, char *const argv[]) { return (dt_compile(dtp, DT_CTX_DPROG, spec, NULL, cflags, argc, argv, NULL, s)); } dtrace_prog_t * dtrace_program_fcompile(dtrace_hdl_t *dtp, FILE *fp, uint_t cflags, int argc, char *const argv[]) { return (dt_compile(dtp, DT_CTX_DPROG, DTRACE_PROBESPEC_NAME, NULL, cflags, argc, argv, fp, NULL)); } int dtrace_type_strcompile(dtrace_hdl_t *dtp, const char *s, dtrace_typeinfo_t *dtt) { (void) dt_compile(dtp, DT_CTX_DTYPE, DTRACE_PROBESPEC_NONE, dtt, 0, 0, NULL, NULL, s); return (dtp->dt_errno ? -1 : 0); } int dtrace_type_fcompile(dtrace_hdl_t *dtp, FILE *fp, dtrace_typeinfo_t *dtt) { (void) dt_compile(dtp, DT_CTX_DTYPE, DTRACE_PROBESPEC_NONE, dtt, 0, 0, NULL, fp, NULL); return (dtp->dt_errno ? -1 : 0); }