/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * FMD Transport Subsystem * * A transport module uses some underlying mechanism to transport events. * This mechanism may use any underlying link-layer protocol and may support * additional link-layer packets unrelated to FMA. Some appropriate link- * layer mechanism to create the underlying connection is expected to be * called prior to calling fmd_xprt_open() itself. Alternatively, a transport * may be created in the suspended state by specifying the FMD_XPRT_SUSPENDED * flag as part of the call to fmd_xprt_open(), and then may be resumed later. * The underlying transport mechanism is *required* to provide ordering: that * is, the sequences of bytes written across the transport must be read by * the remote peer in the order that they are written, even across separate * calls to fmdo_send(). As an example, the Internet TCP protocol would be * a valid transport as it guarantees ordering, whereas the Internet UDP * protocol would not because UDP datagrams may be delivered in any order * as a result of delays introduced when datagrams pass through routers. * * Similar to sending events, a transport module receives events that are from * its peer remote endpoint using some transport-specific mechanism that is * unknown to FMD. As each event is received, the transport module is * responsible for constructing a valid nvlist_t object from the data and then * calling fmd_xprt_post() to post the event to the containing FMD's dispatch * queue, making it available to all local modules that are not transport * modules that have subscribed to the event. * * The following state machine is used for each transport. The initial state * is either SYN, ACK, or RUN, depending on the flags specified to xprt_create. * * FMD_XPRT_ACCEPT !FMD_XPRT_ACCEPT * | | * waiting +--v--+ +--v--+ waiting * for syn | SYN |--+ --+| ACK | for ack * event +-----+ \ / +-----+ event * | \ / | * drop all +--v--+ X +--v--+ send subscriptions, * events | ERR |<---+ +--->| SUB | recv subscriptions, * +-----+ +-----+ wait for run event * ^ | * | +-----+ | * +-----| RUN |<----+ * +--^--+ * | * FMD_XPRT_RDONLY * * When fmd_xprt_open() is called without FMD_XPRT_ACCEPT, the Common Transport * Layer enqueues a "syn" event for the module in its event queue and sets the * state to ACK. In state ACK, we are waiting for the transport to get an * "ack" event and call fmd_xprt_post() on this event. Other events will be * discarded. If an "ack" is received, we transition to state SUB. If a * configurable timeout occurs or if the "ack" is invalid (e.g. invalid version * exchange), we transition to state ERR. Once in state ERR, no further * operations are valid except fmd_xprt_close() and fmd_xprt_error() will * return a non-zero value to the caller indicating the transport has failed. * * When fmd_xprt_open() is called with FMD_XPRT_ACCEPT, the Common Transport * Layer assumes this transport is being used to accept a virtual connection * from a remote peer that is sending a "syn", and sets the initial state to * SYN. In this state, the transport waits for a "syn" event, validates it, * and then transitions to state SUB if it is valid or state ERR if it is not. * * Once in state SUB, the transport module is expected to receive a sequence of * zero or more "subscribe" events from the remote peer, followed by a "run" * event. Once in state RUN, the transport is active and any events can be * sent or received. The transport module is free to call fmd_xprt_close() * from any state. The fmd_xprt_error() function will return zero if the * transport is not in the ERR state, or non-zero if it is in the ERR state. * * Once the state machine reaches RUN, other FMA protocol events can be sent * and received across the transport in addition to the various control events. * * Table of Common Transport Layer Control Events * ============================================== * * FMA Class Payload * --------- ------- * resource.fm.xprt.uuclose string (uuid of case) * resource.fm.xprt.uuresolved string (uuid of case) * resource.fm.xprt.updated string (uuid of case) * resource.fm.xprt.subscribe string (class pattern) * resource.fm.xprt.unsubscribe string (class pattern) * resource.fm.xprt.unsuback string (class pattern) * resource.fm.xprt.syn version information * resource.fm.xprt.ack version information * resource.fm.xprt.run version information * * Control events are used to add and delete proxy subscriptions on the remote * transport peer module, and to set up connections. When a "syn" event is * sent, FMD will include in the payload the highest version of the FMA event * protocol that is supported by the sender. When a "syn" event is received, * the receiving FMD will use the minimum of this version and its version of * the protocol, and reply with this new minimum version in the "ack" event. * The receiver will then use this new minimum for subsequent event semantics. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The states shown above in the transport state machine diagram are encoded * using arrays of class patterns and a corresponding action function. These * arrays are then passed to fmd_xprt_transition() to change transport states. */ const fmd_xprt_rule_t _fmd_xprt_state_syn[] = { { "resource.fm.xprt.syn", fmd_xprt_event_syn }, { "*", fmd_xprt_event_error }, { NULL, NULL } }; const fmd_xprt_rule_t _fmd_xprt_state_ack[] = { { "resource.fm.xprt.ack", fmd_xprt_event_ack }, { "*", fmd_xprt_event_error }, }; const fmd_xprt_rule_t _fmd_xprt_state_err[] = { { "*", fmd_xprt_event_drop }, { NULL, NULL } }; const fmd_xprt_rule_t _fmd_xprt_state_sub[] = { { "resource.fm.xprt.subscribe", fmd_xprt_event_sub }, { "resource.fm.xprt.run", fmd_xprt_event_run }, { "resource.fm.xprt.*", fmd_xprt_event_error }, { "*", fmd_xprt_event_drop }, { NULL, NULL } }; const fmd_xprt_rule_t _fmd_xprt_state_run[] = { { "resource.fm.xprt.subscribe", fmd_xprt_event_sub }, { "resource.fm.xprt.unsubscribe", fmd_xprt_event_unsub }, { "resource.fm.xprt.unsuback", fmd_xprt_event_unsuback }, { "resource.fm.xprt.uuclose", fmd_xprt_event_uuclose }, { "resource.fm.xprt.uuresolved", fmd_xprt_event_uuresolved }, { "resource.fm.xprt.updated", fmd_xprt_event_updated }, { "resource.fm.xprt.*", fmd_xprt_event_error }, { NULL, NULL } }; /* * Template for per-transport statistics installed by fmd on behalf of each * transport. These are used to initialize the per-transport xi_stats. For * each statistic, the name is prepended with "fmd.xprt.%u", where %u is the * transport ID (xi_id) and then are inserted into the per-module stats hash. * The values in this array must match fmd_xprt_stat_t from . */ static const fmd_xprt_stat_t _fmd_xprt_stat_tmpl = { { { "dispatched", FMD_TYPE_UINT64, "total events dispatched to transport" }, { "dequeued", FMD_TYPE_UINT64, "total events dequeued by transport" }, { "prdequeued", FMD_TYPE_UINT64, "protocol events dequeued by transport" }, { "dropped", FMD_TYPE_UINT64, "total events dropped on queue overflow" }, { "wcnt", FMD_TYPE_UINT32, "count of events waiting on queue" }, { "wtime", FMD_TYPE_TIME, "total wait time on queue" }, { "wlentime", FMD_TYPE_TIME, "total wait length * time product" }, { "wlastupdate", FMD_TYPE_TIME, "hrtime of last wait queue update" }, { "dtime", FMD_TYPE_TIME, "total processing time after dequeue" }, { "dlastupdate", FMD_TYPE_TIME, "hrtime of last event dequeue completion" }, }, { "module", FMD_TYPE_STRING, "module that owns this transport" }, { "authority", FMD_TYPE_STRING, "authority associated with this transport" }, { "state", FMD_TYPE_STRING, "current transport state" }, { "received", FMD_TYPE_UINT64, "events received by transport" }, { "discarded", FMD_TYPE_UINT64, "bad events discarded by transport" }, { "retried", FMD_TYPE_UINT64, "retries requested of transport" }, { "replayed", FMD_TYPE_UINT64, "events replayed by transport" }, { "lost", FMD_TYPE_UINT64, "events lost by transport" }, { "timeouts", FMD_TYPE_UINT64, "events received by transport with ttl=0" }, { "subscriptions", FMD_TYPE_UINT64, "subscriptions registered to transport" }, }; static void fmd_xprt_class_hash_create(fmd_xprt_class_hash_t *xch, fmd_eventq_t *eq) { uint_t hashlen = fmd.d_str_buckets; xch->xch_queue = eq; xch->xch_hashlen = hashlen; xch->xch_hash = fmd_zalloc(sizeof (void *) * hashlen, FMD_SLEEP); } static void fmd_xprt_class_hash_destroy(fmd_xprt_class_hash_t *xch) { fmd_eventq_t *eq = xch->xch_queue; fmd_xprt_class_t *xcp, *ncp; uint_t i; for (i = 0; i < xch->xch_hashlen; i++) { for (xcp = xch->xch_hash[i]; xcp != NULL; xcp = ncp) { ncp = xcp->xc_next; if (eq != NULL) fmd_dispq_delete(fmd.d_disp, eq, xcp->xc_class); fmd_strfree(xcp->xc_class); fmd_free(xcp, sizeof (fmd_xprt_class_t)); } } fmd_free(xch->xch_hash, sizeof (void *) * xch->xch_hashlen); } /* * Insert the specified class into the specified class hash, and return the * reference count. A return value of one indicates this is the first insert. * If an eventq is associated with the hash, insert a dispq subscription for it. */ static uint_t fmd_xprt_class_hash_insert(fmd_xprt_impl_t *xip, fmd_xprt_class_hash_t *xch, const char *class) { uint_t h = fmd_strhash(class) % xch->xch_hashlen; fmd_xprt_class_t *xcp; ASSERT(MUTEX_HELD(&xip->xi_lock)); for (xcp = xch->xch_hash[h]; xcp != NULL; xcp = xcp->xc_next) { if (strcmp(class, xcp->xc_class) == 0) return (++xcp->xc_refs); } xcp = fmd_alloc(sizeof (fmd_xprt_class_t), FMD_SLEEP); xcp->xc_class = fmd_strdup(class, FMD_SLEEP); xcp->xc_next = xch->xch_hash[h]; xcp->xc_refs = 1; xch->xch_hash[h] = xcp; if (xch->xch_queue != NULL) fmd_dispq_insert(fmd.d_disp, xch->xch_queue, class); return (xcp->xc_refs); } /* * Delete the specified class from the specified class hash, and return the * reference count. A return value of zero indicates the class was deleted. * If an eventq is associated with the hash, delete the dispq subscription. */ static uint_t fmd_xprt_class_hash_delete(fmd_xprt_impl_t *xip, fmd_xprt_class_hash_t *xch, const char *class) { uint_t h = fmd_strhash(class) % xch->xch_hashlen; fmd_xprt_class_t *xcp, **pp; ASSERT(MUTEX_HELD(&xip->xi_lock)); pp = &xch->xch_hash[h]; for (xcp = *pp; xcp != NULL; xcp = xcp->xc_next) { if (strcmp(class, xcp->xc_class) == 0) break; else pp = &xcp->xc_next; } if (xcp == NULL) return (-1U); /* explicitly permit an invalid delete */ if (--xcp->xc_refs != 0) return (xcp->xc_refs); ASSERT(xcp->xc_refs == 0); *pp = xcp->xc_next; fmd_strfree(xcp->xc_class); fmd_free(xcp, sizeof (fmd_xprt_class_t)); if (xch->xch_queue != NULL) fmd_dispq_delete(fmd.d_disp, xch->xch_queue, class); return (0); } /* * Queue subscribe events for the specified transport corresponding to all of * the active module subscriptions. This is an extremely heavyweight operation * that we expect to take place rarely (i.e. when loading a transport module * or when it establishes a connection). We lock all of the known modules to * prevent them from adding or deleting subscriptions, then snapshot their * subscriptions, and then unlock all of the modules. We hold the modhash * lock for the duration of this operation to prevent new modules from loading. */ static void fmd_xprt_subscribe_modhash(fmd_xprt_impl_t *xip, fmd_modhash_t *mhp) { fmd_xprt_t *xp = (fmd_xprt_t *)xip; const fmd_conf_path_t *pap; fmd_module_t *mp; uint_t i, j; (void) pthread_rwlock_rdlock(&mhp->mh_lock); for (i = 0; i < mhp->mh_hashlen; i++) { for (mp = mhp->mh_hash[i]; mp != NULL; mp = mp->mod_next) fmd_module_lock(mp); } (void) pthread_mutex_lock(&xip->xi_lock); ASSERT(!(xip->xi_flags & FMD_XPRT_SUBSCRIBER)); xip->xi_flags |= FMD_XPRT_SUBSCRIBER; (void) pthread_mutex_unlock(&xip->xi_lock); for (i = 0; i < mhp->mh_hashlen; i++) { for (mp = mhp->mh_hash[i]; mp != NULL; mp = mp->mod_next) { (void) fmd_conf_getprop(mp->mod_conf, FMD_PROP_SUBSCRIPTIONS, &pap); for (j = 0; j < pap->cpa_argc; j++) fmd_xprt_subscribe(xp, pap->cpa_argv[j]); } } for (i = 0; i < mhp->mh_hashlen; i++) { for (mp = mhp->mh_hash[i]; mp != NULL; mp = mp->mod_next) fmd_module_unlock(mp); } (void) pthread_rwlock_unlock(&mhp->mh_lock); } static void fmd_xprt_transition(fmd_xprt_impl_t *xip, const fmd_xprt_rule_t *state, const char *tag) { fmd_xprt_t *xp = (fmd_xprt_t *)xip; fmd_event_t *e; nvlist_t *nvl; char *s; TRACE((FMD_DBG_XPRT, "xprt %u -> %s\n", xip->xi_id, tag)); xip->xi_state = state; s = fmd_strdup(tag, FMD_SLEEP); (void) pthread_mutex_lock(&xip->xi_stats_lock); fmd_strfree(xip->xi_stats->xs_state.fmds_value.str); xip->xi_stats->xs_state.fmds_value.str = s; (void) pthread_mutex_unlock(&xip->xi_stats_lock); /* * If we've reached the SUB state, take out the big hammer and snapshot * all of the subscriptions of all of the loaded modules. Then queue a * run event for our remote peer indicating that it can enter RUN. */ if (state == _fmd_xprt_state_sub) { fmd_xprt_subscribe_modhash(xip, fmd.d_mod_hash); /* * For read-write transports, we always want to set up remote * subscriptions to the bultin list.* events, regardless of * whether any agents have subscribed to them. */ if (xip->xi_flags & FMD_XPRT_RDWR) { fmd_xprt_subscribe(xp, FM_LIST_SUSPECT_CLASS); fmd_xprt_subscribe(xp, FM_LIST_ISOLATED_CLASS); fmd_xprt_subscribe(xp, FM_LIST_UPDATED_CLASS); fmd_xprt_subscribe(xp, FM_LIST_RESOLVED_CLASS); fmd_xprt_subscribe(xp, FM_LIST_REPAIRED_CLASS); } nvl = fmd_protocol_xprt_ctl(xip->xi_queue->eq_mod, "resource.fm.xprt.run", xip->xi_version); (void) nvlist_lookup_string(nvl, FM_CLASS, &s); e = fmd_event_create(FMD_EVT_PROTOCOL, FMD_HRT_NOW, nvl, s); fmd_eventq_insert_at_time(xip->xi_queue, e); } } static void fmd_xprt_authupdate(fmd_xprt_impl_t *xip) { char *s = fmd_fmri_auth2str(xip->xi_auth); (void) pthread_mutex_lock(&xip->xi_stats_lock); fmd_strfree(xip->xi_stats->xs_authority.fmds_value.str); xip->xi_stats->xs_authority.fmds_value.str = s; (void) pthread_mutex_unlock(&xip->xi_stats_lock); } static int fmd_xprt_vmismatch(fmd_xprt_impl_t *xip, nvlist_t *nvl, uint_t *rversionp) { uint8_t rversion; if (nvlist_lookup_uint8(nvl, FM_VERSION, &rversion) != 0) { (void) pthread_mutex_lock(&xip->xi_stats_lock); xip->xi_stats->xs_discarded.fmds_value.ui64++; (void) pthread_mutex_unlock(&xip->xi_stats_lock); fmd_xprt_transition(xip, _fmd_xprt_state_err, "ERR"); return (1); } if (rversion > xip->xi_version) { fmd_dprintf(FMD_DBG_XPRT, "xprt %u protocol mismatch: %u>%u\n", xip->xi_id, rversion, xip->xi_version); (void) pthread_mutex_lock(&xip->xi_stats_lock); xip->xi_stats->xs_discarded.fmds_value.ui64++; (void) pthread_mutex_unlock(&xip->xi_stats_lock); fmd_xprt_transition(xip, _fmd_xprt_state_err, "ERR"); return (1); } if (rversionp != NULL) *rversionp = rversion; return (0); } void fmd_xprt_event_syn(fmd_xprt_impl_t *xip, nvlist_t *nvl) { fmd_event_t *e; uint_t vers; char *class; if (fmd_xprt_vmismatch(xip, nvl, &vers)) return; /* transitioned to error state */ /* * If the transport module didn't specify an authority, extract the * one that is passed along with the xprt.syn event and use that. */ if (xip->xi_auth == NULL && nvlist_lookup_nvlist(nvl, FM_RSRC_RESOURCE, &nvl) == 0 && nvlist_lookup_nvlist(nvl, FM_FMRI_AUTHORITY, &nvl) == 0) { (void) nvlist_xdup(nvl, &xip->xi_auth, &fmd.d_nva); fmd_xprt_authupdate(xip); } nvl = fmd_protocol_xprt_ctl(xip->xi_queue->eq_mod, "resource.fm.xprt.ack", xip->xi_version); (void) nvlist_lookup_string(nvl, FM_CLASS, &class); e = fmd_event_create(FMD_EVT_PROTOCOL, FMD_HRT_NOW, nvl, class); fmd_eventq_insert_at_time(xip->xi_queue, e); xip->xi_version = MIN(FM_RSRC_XPRT_VERSION, vers); fmd_xprt_transition(xip, _fmd_xprt_state_sub, "SUB"); } void fmd_xprt_event_ack(fmd_xprt_impl_t *xip, nvlist_t *nvl) { uint_t vers; if (fmd_xprt_vmismatch(xip, nvl, &vers)) return; /* transitioned to error state */ /* * If the transport module didn't specify an authority, extract the * one that is passed along with the xprt.syn event and use that. */ if (xip->xi_auth == NULL && nvlist_lookup_nvlist(nvl, FM_RSRC_RESOURCE, &nvl) == 0 && nvlist_lookup_nvlist(nvl, FM_FMRI_AUTHORITY, &nvl) == 0) { (void) nvlist_xdup(nvl, &xip->xi_auth, &fmd.d_nva); fmd_xprt_authupdate(xip); } xip->xi_version = MIN(FM_RSRC_XPRT_VERSION, vers); fmd_xprt_transition(xip, _fmd_xprt_state_sub, "SUB"); } /* * Upon transition to RUN, we take every solved case and resend a list.suspect * event for it to our remote peer. If a case transitions from solved to a * future state (CLOSE_WAIT, CLOSED, or REPAIRED) while we are iterating over * the case hash, we will get it as part of examining the resource cache, next. */ static void fmd_xprt_send_case(fmd_case_t *cp, void *arg) { fmd_case_impl_t *cip = (fmd_case_impl_t *)cp; fmd_xprt_impl_t *xip = arg; fmd_event_t *e; nvlist_t *nvl; char *class; if (cip->ci_state == FMD_CASE_UNSOLVED) return; nvl = fmd_case_mkevent(cp, FM_LIST_SUSPECT_CLASS); (void) nvlist_lookup_string(nvl, FM_CLASS, &class); e = fmd_event_create(FMD_EVT_PROTOCOL, FMD_HRT_NOW, nvl, class); fmd_dprintf(FMD_DBG_XPRT, "re-send %s for %s to transport %u\n", FM_LIST_SUSPECT_CLASS, cip->ci_uuid, xip->xi_id); fmd_dispq_dispatch_gid(fmd.d_disp, e, class, xip->xi_queue->eq_sgid); } void fmd_xprt_event_run(fmd_xprt_impl_t *xip, nvlist_t *nvl) { if (!fmd_xprt_vmismatch(xip, nvl, NULL)) { fmd_xprt_transition(xip, _fmd_xprt_state_run, "RUN"); fmd_case_hash_apply(fmd.d_cases, fmd_xprt_send_case, xip); } } void fmd_xprt_event_sub(fmd_xprt_impl_t *xip, nvlist_t *nvl) { char *class; if (fmd_xprt_vmismatch(xip, nvl, NULL)) return; /* transitioned to error state */ if (nvlist_lookup_string(nvl, FM_RSRC_XPRT_SUBCLASS, &class) != 0) return; /* malformed protocol event */ (void) pthread_mutex_lock(&xip->xi_lock); (void) fmd_xprt_class_hash_insert(xip, &xip->xi_lsub, class); (void) pthread_mutex_unlock(&xip->xi_lock); (void) pthread_mutex_lock(&xip->xi_stats_lock); xip->xi_stats->xs_subscriptions.fmds_value.ui64++; (void) pthread_mutex_unlock(&xip->xi_stats_lock); } void fmd_xprt_event_unsub(fmd_xprt_impl_t *xip, nvlist_t *nvl) { fmd_event_t *e; char *class; if (fmd_xprt_vmismatch(xip, nvl, NULL)) return; /* transitioned to error state */ if (nvlist_lookup_string(nvl, FM_RSRC_XPRT_SUBCLASS, &class) != 0) return; /* malformed protocol event */ (void) pthread_mutex_lock(&xip->xi_lock); (void) fmd_xprt_class_hash_delete(xip, &xip->xi_lsub, class); (void) pthread_mutex_unlock(&xip->xi_lock); (void) pthread_mutex_lock(&xip->xi_stats_lock); xip->xi_stats->xs_subscriptions.fmds_value.ui64--; (void) pthread_mutex_unlock(&xip->xi_stats_lock); nvl = fmd_protocol_xprt_sub(xip->xi_queue->eq_mod, "resource.fm.xprt.unsuback", xip->xi_version, class); (void) nvlist_lookup_string(nvl, FM_CLASS, &class); e = fmd_event_create(FMD_EVT_PROTOCOL, FMD_HRT_NOW, nvl, class); fmd_eventq_insert_at_time(xip->xi_queue, e); } void fmd_xprt_event_unsuback(fmd_xprt_impl_t *xip, nvlist_t *nvl) { char *class; if (fmd_xprt_vmismatch(xip, nvl, NULL)) return; /* transitioned to error state */ if (nvlist_lookup_string(nvl, FM_RSRC_XPRT_SUBCLASS, &class) != 0) return; /* malformed protocol event */ (void) pthread_mutex_lock(&xip->xi_lock); (void) fmd_xprt_class_hash_delete(xip, &xip->xi_usub, class); (void) pthread_mutex_unlock(&xip->xi_lock); } /* * on diagnosing side, receive a uuclose from the proxy. */ void fmd_xprt_event_uuclose(fmd_xprt_impl_t *xip, nvlist_t *nvl) { fmd_case_t *cp; char *uuid; if (fmd_xprt_vmismatch(xip, nvl, NULL)) return; /* transitioned to error state */ if (nvlist_lookup_string(nvl, FM_RSRC_XPRT_UUID, &uuid) == 0 && (cp = fmd_case_hash_lookup(fmd.d_cases, uuid)) != NULL) { /* * update resource cache status and transition case */ fmd_case_close_status(cp); fmd_case_transition(cp, FMD_CASE_CLOSE_WAIT, FMD_CF_ISOLATED); fmd_case_rele(cp); } } /* * on diagnosing side, receive a uuresolved from the proxy. */ void fmd_xprt_event_uuresolved(fmd_xprt_impl_t *xip, nvlist_t *nvl) { fmd_case_t *cp; char *uuid; if (fmd_xprt_vmismatch(xip, nvl, NULL)) return; /* transitioned to error state */ if (nvlist_lookup_string(nvl, FM_RSRC_XPRT_UUID, &uuid) == 0 && (cp = fmd_case_hash_lookup(fmd.d_cases, uuid)) != NULL) { fmd_case_impl_t *cip = (fmd_case_impl_t *)cp; fmd_case_transition(cp, (cip->ci_state == FMD_CASE_REPAIRED) ? FMD_CASE_RESOLVED : (cip->ci_state == FMD_CASE_CLOSED) ? FMD_CASE_REPAIRED : FMD_CASE_CLOSE_WAIT, FMD_CF_RESOLVED); fmd_case_rele(cp); } } /* * on diagnosing side, receive a repair/acquit from the proxy. */ void fmd_xprt_event_updated(fmd_xprt_impl_t *xip, nvlist_t *nvl) { fmd_case_t *cp; char *uuid; if (fmd_xprt_vmismatch(xip, nvl, NULL)) return; /* transitioned to error state */ if (nvlist_lookup_string(nvl, FM_RSRC_XPRT_UUID, &uuid) == 0 && (cp = fmd_case_hash_lookup(fmd.d_cases, uuid)) != NULL) { uint8_t *statusp, *proxy_asrup = NULL; uint_t nelem = 0; /* * Only update status with new repairs if "no remote repair" * is not set. Do the case_update anyway though (as this will * refresh the status on the proxy side). */ if (!(xip->xi_flags & FMD_XPRT_NO_REMOTE_REPAIR)) { if (nvlist_lookup_uint8_array(nvl, FM_RSRC_XPRT_FAULT_STATUS, &statusp, &nelem) == 0 && nelem != 0) { (void) nvlist_lookup_uint8_array(nvl, FM_RSRC_XPRT_FAULT_HAS_ASRU, &proxy_asrup, &nelem); fmd_case_update_status(cp, statusp, proxy_asrup, NULL); } fmd_case_update_containees(cp); } fmd_case_update(cp); fmd_case_rele(cp); } } void fmd_xprt_event_error(fmd_xprt_impl_t *xip, nvlist_t *nvl) { char *class = ""; (void) pthread_mutex_lock(&xip->xi_stats_lock); xip->xi_stats->xs_discarded.fmds_value.ui64++; (void) pthread_mutex_unlock(&xip->xi_stats_lock); (void) nvlist_lookup_string(nvl, FM_CLASS, &class); TRACE((FMD_DBG_XPRT, "xprt %u bad event %s\n", xip->xi_id, class)); fmd_xprt_transition(xip, _fmd_xprt_state_err, "ERR"); } void fmd_xprt_event_drop(fmd_xprt_impl_t *xip, nvlist_t *nvl) { char *class = ""; (void) pthread_mutex_lock(&xip->xi_stats_lock); xip->xi_stats->xs_discarded.fmds_value.ui64++; (void) pthread_mutex_unlock(&xip->xi_stats_lock); (void) nvlist_lookup_string(nvl, FM_CLASS, &class); TRACE((FMD_DBG_XPRT, "xprt %u drop event %s\n", xip->xi_id, class)); } fmd_xprt_t * fmd_xprt_create(fmd_module_t *mp, uint_t flags, nvlist_t *auth, void *data) { fmd_xprt_impl_t *xip = fmd_zalloc(sizeof (fmd_xprt_impl_t), FMD_SLEEP); fmd_stat_t *statv; uint_t i, statc; char buf[PATH_MAX]; fmd_event_t *e; nvlist_t *nvl; char *s; (void) pthread_mutex_init(&xip->xi_lock, NULL); (void) pthread_cond_init(&xip->xi_cv, NULL); (void) pthread_mutex_init(&xip->xi_stats_lock, NULL); xip->xi_auth = auth; xip->xi_data = data; xip->xi_version = FM_RSRC_XPRT_VERSION; xip->xi_flags = flags; /* * Grab fmd.d_xprt_lock to block fmd_xprt_suspend_all() and then create * a transport ID and make it visible in fmd.d_xprt_ids. If transports * were previously suspended, set the FMD_XPRT_DSUSPENDED flag on us to * ensure that this transport will not run until fmd_xprt_resume_all(). */ (void) pthread_mutex_lock(&fmd.d_xprt_lock); xip->xi_id = fmd_idspace_alloc(fmd.d_xprt_ids, xip); if (fmd.d_xprt_suspend != 0) xip->xi_flags |= FMD_XPRT_DSUSPENDED; (void) pthread_mutex_unlock(&fmd.d_xprt_lock); /* * If the module has not yet finished _fmd_init(), set the ISUSPENDED * bit so that fmdo_send() is not called until _fmd_init() completes. */ if (!(mp->mod_flags & FMD_MOD_INIT)) xip->xi_flags |= FMD_XPRT_ISUSPENDED; /* * Initialize the transport statistics that we keep on behalf of fmd. * These are set up using a template defined at the top of this file. * We rename each statistic with a prefix ensuring its uniqueness. */ statc = sizeof (_fmd_xprt_stat_tmpl) / sizeof (fmd_stat_t); statv = fmd_alloc(sizeof (_fmd_xprt_stat_tmpl), FMD_SLEEP); bcopy(&_fmd_xprt_stat_tmpl, statv, sizeof (_fmd_xprt_stat_tmpl)); for (i = 0; i < statc; i++) { (void) snprintf(statv[i].fmds_name, sizeof (statv[i].fmds_name), "fmd.xprt.%u.%s", xip->xi_id, ((fmd_stat_t *)&_fmd_xprt_stat_tmpl + i)->fmds_name); } xip->xi_stats = (fmd_xprt_stat_t *)fmd_ustat_insert( mp->mod_ustat, FMD_USTAT_NOALLOC, statc, statv, NULL); if (xip->xi_stats == NULL) fmd_panic("failed to create xi_stats (%p)\n", (void *)statv); xip->xi_stats->xs_module.fmds_value.str = fmd_strdup(mp->mod_name, FMD_SLEEP); if (xip->xi_auth != NULL) fmd_xprt_authupdate(xip); /* * Create the outbound eventq for this transport and link to its stats. * If any suspend bits were set above, suspend the eventq immediately. */ xip->xi_queue = fmd_eventq_create(mp, &xip->xi_stats->xs_evqstat, &xip->xi_stats_lock, mp->mod_stats->ms_xprtqlimit.fmds_value.ui32); if (xip->xi_flags & FMD_XPRT_SMASK) fmd_eventq_suspend(xip->xi_queue); /* * Create our subscription hashes: local subscriptions go to xi_queue, * remote subscriptions are tracked only for protocol requests, and * pending unsubscriptions are associated with the /dev/null eventq. */ fmd_xprt_class_hash_create(&xip->xi_lsub, xip->xi_queue); fmd_xprt_class_hash_create(&xip->xi_rsub, NULL); fmd_xprt_class_hash_create(&xip->xi_usub, fmd.d_rmod->mod_queue); /* * Determine our initial state based upon the creation flags. If we're * read-only, go directly to RUN. If we're accepting a new connection, * wait for a SYN. Otherwise send a SYN and wait for an ACK. */ if ((flags & FMD_XPRT_RDWR) == FMD_XPRT_RDONLY) fmd_xprt_transition(xip, _fmd_xprt_state_run, "RUN"); else if (flags & FMD_XPRT_ACCEPT) fmd_xprt_transition(xip, _fmd_xprt_state_syn, "SYN"); else fmd_xprt_transition(xip, _fmd_xprt_state_ack, "ACK"); /* * If client.xprtlog is set to TRUE, create a debugging log for the * events received by the transport in var/fm/fmd/xprt/. */ (void) fmd_conf_getprop(fmd.d_conf, "client.xprtlog", &i); (void) fmd_conf_getprop(fmd.d_conf, "log.xprt", &s); if (i) { (void) snprintf(buf, sizeof (buf), "%s/%u.log", s, xip->xi_id); xip->xi_log = fmd_log_open(fmd.d_rootdir, buf, FMD_LOG_XPRT); } ASSERT(fmd_module_locked(mp)); fmd_list_append(&mp->mod_transports, xip); (void) pthread_mutex_lock(&mp->mod_stats_lock); mp->mod_stats->ms_xprtopen.fmds_value.ui32++; (void) pthread_mutex_unlock(&mp->mod_stats_lock); /* * If this is a read-only transport, return without creating a send * queue thread and setting up any connection events in our queue. */ if ((flags & FMD_XPRT_RDWR) == FMD_XPRT_RDONLY) goto out; /* * Once the transport is fully initialized, create a send queue thread * and start any connect events flowing to complete our initialization. */ if ((xip->xi_thread = fmd_thread_create(mp, (fmd_thread_f *)fmd_xprt_send, xip)) == NULL) { fmd_error(EFMD_XPRT_THR, "failed to create thread for transport %u", xip->xi_id); fmd_xprt_destroy((fmd_xprt_t *)xip); (void) fmd_set_errno(EFMD_XPRT_THR); return (NULL); } /* * If the transport is not being opened to accept an inbound connect, * start an outbound connection by enqueuing a SYN event for our peer. */ if (!(flags & FMD_XPRT_ACCEPT)) { nvl = fmd_protocol_xprt_ctl(mp, "resource.fm.xprt.syn", FM_RSRC_XPRT_VERSION); (void) nvlist_lookup_string(nvl, FM_CLASS, &s); e = fmd_event_create(FMD_EVT_PROTOCOL, FMD_HRT_NOW, nvl, s); fmd_eventq_insert_at_time(xip->xi_queue, e); } out: fmd_dprintf(FMD_DBG_XPRT, "opened transport %u\n", xip->xi_id); return ((fmd_xprt_t *)xip); } void fmd_xprt_destroy(fmd_xprt_t *xp) { fmd_xprt_impl_t *xip = (fmd_xprt_impl_t *)xp; fmd_module_t *mp = xip->xi_queue->eq_mod; uint_t id = xip->xi_id; fmd_case_impl_t *cip, *nip; fmd_stat_t *sp; uint_t i, n; ASSERT(fmd_module_locked(mp)); fmd_list_delete(&mp->mod_transports, xip); (void) pthread_mutex_lock(&mp->mod_stats_lock); mp->mod_stats->ms_xprtopen.fmds_value.ui32--; (void) pthread_mutex_unlock(&mp->mod_stats_lock); (void) pthread_mutex_lock(&xip->xi_lock); while (xip->xi_busy != 0) (void) pthread_cond_wait(&xip->xi_cv, &xip->xi_lock); /* * Remove the transport from global visibility, cancel its send-side * thread, join with it, and then remove the transport from module * visibility. Once all this is done, destroy and free the transport. */ (void) fmd_idspace_free(fmd.d_xprt_ids, xip->xi_id); if (xip->xi_thread != NULL) { fmd_eventq_abort(xip->xi_queue); fmd_module_unlock(mp); fmd_thread_destroy(xip->xi_thread, FMD_THREAD_JOIN); fmd_module_lock(mp); } if (xip->xi_log != NULL) fmd_log_rele(xip->xi_log); /* * Release every case handle in the module that was cached by this * transport. This will result in these cases disappearing from the * local case hash so that fmd_case_uuclose() and fmd_case_repaired() * etc can no longer be used. */ for (cip = fmd_list_next(&mp->mod_cases); cip != NULL; cip = nip) { nip = fmd_list_next(cip); if (cip->ci_xprt == xp) fmd_case_discard((fmd_case_t *)cip, B_TRUE); } /* * Destroy every class in the various subscription hashes and remove * any corresponding subscriptions from the event dispatch queue. */ fmd_xprt_class_hash_destroy(&xip->xi_lsub); fmd_xprt_class_hash_destroy(&xip->xi_rsub); fmd_xprt_class_hash_destroy(&xip->xi_usub); /* * Uniquify the stat names exactly as was done in fmd_xprt_create() * before calling fmd_ustat_insert(), otherwise fmd_ustat_delete() * won't find the entries in the hash table. */ n = sizeof (_fmd_xprt_stat_tmpl) / sizeof (fmd_stat_t); sp = fmd_alloc(sizeof (_fmd_xprt_stat_tmpl), FMD_SLEEP); bcopy(&_fmd_xprt_stat_tmpl, sp, sizeof (_fmd_xprt_stat_tmpl)); for (i = 0; i < n; i++) { (void) snprintf(sp[i].fmds_name, sizeof (sp[i].fmds_name), "fmd.xprt.%u.%s", xip->xi_id, ((fmd_stat_t *)&_fmd_xprt_stat_tmpl + i)->fmds_name); } fmd_ustat_delete(mp->mod_ustat, n, sp); fmd_free(sp, sizeof (_fmd_xprt_stat_tmpl)); fmd_free(xip->xi_stats, sizeof (fmd_xprt_stat_t)); fmd_eventq_destroy(xip->xi_queue); nvlist_free(xip->xi_auth); fmd_free(xip, sizeof (fmd_xprt_impl_t)); fmd_dprintf(FMD_DBG_XPRT, "closed transport %u\n", id); } void fmd_xprt_xsuspend(fmd_xprt_t *xp, uint_t flags) { fmd_xprt_impl_t *xip = (fmd_xprt_impl_t *)xp; uint_t oflags; ASSERT((flags & ~FMD_XPRT_SMASK) == 0); (void) pthread_mutex_lock(&xip->xi_lock); oflags = xip->xi_flags; xip->xi_flags |= flags; if (!(oflags & FMD_XPRT_SMASK) && (xip->xi_flags & FMD_XPRT_SMASK) != 0) fmd_eventq_suspend(xip->xi_queue); (void) pthread_cond_broadcast(&xip->xi_cv); while (xip->xi_busy != 0) (void) pthread_cond_wait(&xip->xi_cv, &xip->xi_lock); (void) pthread_mutex_unlock(&xip->xi_lock); } void fmd_xprt_xresume(fmd_xprt_t *xp, uint_t flags) { fmd_xprt_impl_t *xip = (fmd_xprt_impl_t *)xp; uint_t oflags; ASSERT((flags & ~FMD_XPRT_SMASK) == 0); (void) pthread_mutex_lock(&xip->xi_lock); oflags = xip->xi_flags; xip->xi_flags &= ~flags; if ((oflags & FMD_XPRT_SMASK) != 0 && !(xip->xi_flags & FMD_XPRT_SMASK)) fmd_eventq_resume(xip->xi_queue); (void) pthread_cond_broadcast(&xip->xi_cv); (void) pthread_mutex_unlock(&xip->xi_lock); } void fmd_xprt_send(fmd_xprt_t *xp) { fmd_xprt_impl_t *xip = (fmd_xprt_impl_t *)xp; fmd_module_t *mp = xip->xi_queue->eq_mod; fmd_event_t *ep; int err; while ((ep = fmd_eventq_delete(xip->xi_queue)) != NULL) { if (FMD_EVENT_TTL(ep) == 0) { fmd_event_rele(ep); continue; } fmd_dprintf(FMD_DBG_XPRT, "xprt %u sending %s\n", xip->xi_id, (char *)FMD_EVENT_DATA(ep)); err = mp->mod_ops->mop_transport(mp, xp, ep); fmd_eventq_done(xip->xi_queue); if (err == FMD_SEND_RETRY) { fmd_eventq_insert_at_time(xip->xi_queue, ep); (void) pthread_mutex_lock(&xip->xi_stats_lock); xip->xi_stats->xs_retried.fmds_value.ui64++; (void) pthread_mutex_unlock(&xip->xi_stats_lock); } if (err != FMD_SEND_SUCCESS && err != FMD_SEND_RETRY) { (void) pthread_mutex_lock(&xip->xi_stats_lock); xip->xi_stats->xs_lost.fmds_value.ui64++; (void) pthread_mutex_unlock(&xip->xi_stats_lock); } fmd_event_rele(ep); } } /* * This function creates a local suspect list. This is used when a suspect list * is created directly by an external source like fminject. */ static void fmd_xprt_list_suspect_local(fmd_xprt_t *xp, nvlist_t *nvl) { nvlist_t **nvlp; nvlist_t *de_fmri, *de_fmri_dup = NULL; int64_t *diag_time; char *code = NULL; fmd_xprt_impl_t *xip = (fmd_xprt_impl_t *)xp; fmd_case_t *cp; uint_t nelem = 0, nelem2 = 0, i; fmd_module_lock(xip->xi_queue->eq_mod); cp = fmd_case_create(xip->xi_queue->eq_mod, NULL); if (cp == NULL) { fmd_module_unlock(xip->xi_queue->eq_mod); return; } /* * copy diag_code if present */ (void) nvlist_lookup_string(nvl, FM_SUSPECT_DIAG_CODE, &code); if (code != NULL) { fmd_case_impl_t *cip = (fmd_case_impl_t *)cp; cip->ci_precanned = 1; fmd_case_setcode(cp, code); } /* * copy suspects */ (void) nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST, &nvlp, &nelem); for (i = 0; i < nelem; i++) { nvlist_t *flt_copy, *asru = NULL, *fru = NULL, *rsrc = NULL; topo_hdl_t *thp; char *loc = NULL; int err; thp = fmd_fmri_topo_hold(TOPO_VERSION); (void) nvlist_xdup(nvlp[i], &flt_copy, &fmd.d_nva); (void) nvlist_lookup_nvlist(nvlp[i], FM_FAULT_RESOURCE, &rsrc); /* * If no fru specified, get it from topo */ if (nvlist_lookup_nvlist(nvlp[i], FM_FAULT_FRU, &fru) != 0 && rsrc && topo_fmri_fru(thp, rsrc, &fru, &err) == 0) (void) nvlist_add_nvlist(flt_copy, FM_FAULT_FRU, fru); /* * If no asru specified, get it from topo */ if (nvlist_lookup_nvlist(nvlp[i], FM_FAULT_ASRU, &asru) != 0 && rsrc && topo_fmri_asru(thp, rsrc, &asru, &err) == 0) (void) nvlist_add_nvlist(flt_copy, FM_FAULT_ASRU, asru); /* * If no location specified, get it from topo */ if (nvlist_lookup_string(nvlp[i], FM_FAULT_LOCATION, &loc) != 0) { if (fru && topo_fmri_label(thp, fru, &loc, &err) == 0) (void) nvlist_add_string(flt_copy, FM_FAULT_LOCATION, loc); else if (rsrc && topo_fmri_label(thp, rsrc, &loc, &err) == 0) (void) nvlist_add_string(flt_copy, FM_FAULT_LOCATION, loc); if (loc) topo_hdl_strfree(thp, loc); } if (fru) nvlist_free(fru); if (asru) nvlist_free(asru); if (rsrc) nvlist_free(rsrc); fmd_fmri_topo_rele(thp); fmd_case_insert_suspect(cp, flt_copy); } /* * copy diag_time if present */ if (nvlist_lookup_int64_array(nvl, FM_SUSPECT_DIAG_TIME, &diag_time, &nelem2) == 0 && nelem2 >= 2) fmd_case_settime(cp, diag_time[0], diag_time[1]); /* * copy DE fmri if present */ if (nvlist_lookup_nvlist(nvl, FM_SUSPECT_DE, &de_fmri) == 0) { (void) nvlist_xdup(de_fmri, &de_fmri_dup, &fmd.d_nva); fmd_case_set_de_fmri(cp, de_fmri_dup); } fmd_case_transition(cp, FMD_CASE_SOLVED, FMD_CF_SOLVED); fmd_module_unlock(xip->xi_queue->eq_mod); } /* * This function is called to create a proxy case on receipt of a list.suspect * from the diagnosing side of the transport. */ static void fmd_xprt_list_suspect(fmd_xprt_t *xp, nvlist_t *nvl) { fmd_xprt_impl_t *xip = (fmd_xprt_impl_t *)xp; nvlist_t **nvlp; uint_t nelem = 0, nelem2 = 0, i; int64_t *diag_time; topo_hdl_t *thp; char *class; nvlist_t *rsrc, *asru, *de_fmri, *de_fmri_dup = NULL; nvlist_t *flt_copy; int err; nvlist_t **asrua; uint8_t *proxy_asru = NULL; int got_proxy_asru = 0; int got_hc_rsrc = 0; int got_present_rsrc = 0; uint8_t *diag_asru = NULL; char *scheme; uint8_t *statusp; char *uuid, *code; fmd_case_t *cp; fmd_case_impl_t *cip; int need_update = 0; if (nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) != 0) return; if (nvlist_lookup_string(nvl, FM_SUSPECT_DIAG_CODE, &code) != 0) return; (void) nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST, &nvlp, &nelem); /* * In order to implement FMD_XPRT_HCONLY and FMD_XPRT_HC_PRESENT_ONLY * etc we first scan the suspects to see if * - there was an asru in the received fault * - there was an hc-scheme resource in the received fault * - any hc-scheme resource in the received fault is present in the * local topology * - any hc-scheme resource in the received fault has an asru in the * local topology */ if (nelem > 0) { asrua = fmd_zalloc(sizeof (nvlist_t *) * nelem, FMD_SLEEP); proxy_asru = fmd_zalloc(sizeof (uint8_t) * nelem, FMD_SLEEP); diag_asru = fmd_zalloc(sizeof (uint8_t) * nelem, FMD_SLEEP); thp = fmd_fmri_topo_hold(TOPO_VERSION); for (i = 0; i < nelem; i++) { if (nvlist_lookup_nvlist(nvlp[i], FM_FAULT_ASRU, &asru) == 0 && asru != NULL) diag_asru[i] = 1; if (nvlist_lookup_string(nvlp[i], FM_CLASS, &class) != 0 || strncmp(class, "fault", 5) != 0) continue; /* * If there is an hc-scheme asru, use that to find the * real asru. Otherwise if there is an hc-scheme * resource, work out the old asru from that. * This order is to allow a two stage evaluation * of the asru where a fault in the diagnosing side * is in a component not visible to the proxy side, * but prevents a component that is visible from * working. So the diagnosing side sets the asru to * the latter component (in hc-scheme as the diagnosing * side doesn't know about the proxy side's virtual * schemes), and then the proxy side can convert that * to a suitable virtual scheme asru. */ if (nvlist_lookup_nvlist(nvlp[i], FM_FAULT_ASRU, &asru) == 0 && asru != NULL && nvlist_lookup_string(asru, FM_FMRI_SCHEME, &scheme) == 0 && strcmp(scheme, FM_FMRI_SCHEME_HC) == 0) { got_hc_rsrc = 1; if (xip->xi_flags & FMD_XPRT_EXTERNAL) continue; if (topo_fmri_present(thp, asru, &err) == 0) got_present_rsrc = 1; if (topo_fmri_asru(thp, asru, &asrua[i], &err) == 0) { proxy_asru[i] = FMD_PROXY_ASRU_FROM_ASRU; got_proxy_asru = 1; } } else if (nvlist_lookup_nvlist(nvlp[i], FM_FAULT_RESOURCE, &rsrc) == 0 && rsrc != NULL && nvlist_lookup_string(rsrc, FM_FMRI_SCHEME, &scheme) == 0 && strcmp(scheme, FM_FMRI_SCHEME_HC) == 0) { got_hc_rsrc = 1; if (xip->xi_flags & FMD_XPRT_EXTERNAL) continue; if (topo_fmri_present(thp, rsrc, &err) == 0) got_present_rsrc = 1; if (topo_fmri_asru(thp, rsrc, &asrua[i], &err) == 0) { proxy_asru[i] = FMD_PROXY_ASRU_FROM_RSRC; got_proxy_asru = 1; } } } fmd_fmri_topo_rele(thp); } /* * If we're set up only to report hc-scheme faults, and * there aren't any, then just drop the event. */ if (got_hc_rsrc == 0 && (xip->xi_flags & FMD_XPRT_HCONLY)) { if (nelem > 0) { fmd_free(proxy_asru, sizeof (uint8_t) * nelem); fmd_free(diag_asru, sizeof (uint8_t) * nelem); fmd_free(asrua, sizeof (nvlist_t *) * nelem); } return; } /* * If we're set up only to report locally present hc-scheme * faults, and there aren't any, then just drop the event. */ if (got_present_rsrc == 0 && (xip->xi_flags & FMD_XPRT_HC_PRESENT_ONLY)) { if (nelem > 0) { for (i = 0; i < nelem; i++) if (asrua[i]) nvlist_free(asrua[i]); fmd_free(proxy_asru, sizeof (uint8_t) * nelem); fmd_free(diag_asru, sizeof (uint8_t) * nelem); fmd_free(asrua, sizeof (nvlist_t *) * nelem); } return; } /* * If fmd_case_recreate() returns NULL, UUID is already known. */ fmd_module_lock(xip->xi_queue->eq_mod); if ((cp = fmd_case_recreate(xip->xi_queue->eq_mod, xp, FMD_CASE_UNSOLVED, uuid, code)) == NULL) { if (nelem > 0) { for (i = 0; i < nelem; i++) if (asrua[i]) nvlist_free(asrua[i]); fmd_free(proxy_asru, sizeof (uint8_t) * nelem); fmd_free(diag_asru, sizeof (uint8_t) * nelem); fmd_free(asrua, sizeof (nvlist_t *) * nelem); } fmd_module_unlock(xip->xi_queue->eq_mod); return; } cip = (fmd_case_impl_t *)cp; cip->ci_diag_asru = diag_asru; cip->ci_proxy_asru = proxy_asru; for (i = 0; i < nelem; i++) { (void) nvlist_xdup(nvlp[i], &flt_copy, &fmd.d_nva); if (proxy_asru[i] != FMD_PROXY_ASRU_NOT_NEEDED) { /* * Copy suspects, but remove/replace asru first. Also if * the original asru was hc-scheme use that as resource. */ if (proxy_asru[i] == FMD_PROXY_ASRU_FROM_ASRU) { (void) nvlist_remove(flt_copy, FM_FAULT_RESOURCE, DATA_TYPE_NVLIST); (void) nvlist_lookup_nvlist(flt_copy, FM_FAULT_ASRU, &asru); (void) nvlist_add_nvlist(flt_copy, FM_FAULT_RESOURCE, asru); } (void) nvlist_remove(flt_copy, FM_FAULT_ASRU, DATA_TYPE_NVLIST); (void) nvlist_add_nvlist(flt_copy, FM_FAULT_ASRU, asrua[i]); nvlist_free(asrua[i]); } else if (nvlist_lookup_nvlist(flt_copy, FM_FAULT_ASRU, &asru) == 0 && asru != NULL) { /* * keep asru from diag side, but but mark as no retire */ (void) nvlist_add_boolean_value(flt_copy, FM_SUSPECT_RETIRE, B_FALSE); } fmd_case_insert_suspect(cp, flt_copy); } /* * copy diag_time */ if (nvlist_lookup_int64_array(nvl, FM_SUSPECT_DIAG_TIME, &diag_time, &nelem2) == 0 && nelem2 >= 2) fmd_case_settime(cp, diag_time[0], diag_time[1]); /* * copy DE fmri */ if (nvlist_lookup_nvlist(nvl, FM_SUSPECT_DE, &de_fmri) == 0) { (void) nvlist_xdup(de_fmri, &de_fmri_dup, &fmd.d_nva); fmd_case_set_de_fmri(cp, de_fmri_dup); } /* * Transition to solved. This will log the suspect list and create * the resource cache entries. */ fmd_case_transition(cp, FMD_CASE_SOLVED, FMD_CF_SOLVED); /* * Update status if it is not simply "all faulty" (can happen if * list.suspects are being re-sent when the transport has reconnected). */ (void) nvlist_lookup_uint8_array(nvl, FM_SUSPECT_FAULT_STATUS, &statusp, &nelem); for (i = 0; i < nelem; i++) { if ((statusp[i] & (FM_SUSPECT_FAULTY | FM_SUSPECT_UNUSABLE | FM_SUSPECT_NOT_PRESENT | FM_SUSPECT_DEGRADED)) != FM_SUSPECT_FAULTY) need_update = 1; } if (need_update) { fmd_case_update_status(cp, statusp, cip->ci_proxy_asru, cip->ci_diag_asru); fmd_case_update_containees(cp); fmd_case_update(cp); } /* * if asru on proxy side, send an update back to the diagnosing side to * update UNUSABLE/DEGRADED. */ if (got_proxy_asru) fmd_case_xprt_updated(cp); if (nelem > 0) fmd_free(asrua, sizeof (nvlist_t *) * nelem); fmd_module_unlock(xip->xi_queue->eq_mod); } void fmd_xprt_recv(fmd_xprt_t *xp, nvlist_t *nvl, hrtime_t hrt, boolean_t logonly) { fmd_xprt_impl_t *xip = (fmd_xprt_impl_t *)xp; const fmd_xprt_rule_t *xrp; fmd_t *dp = &fmd; fmd_event_t *e; char *class, *uuid; boolean_t isproto, isereport; uint64_t *tod; uint8_t ttl; uint_t n; fmd_case_t *cp; /* * Grab the transport lock and set the busy flag to indicate we are * busy receiving an event. If [DI]SUSPEND is pending, wait until fmd * resumes the transport before continuing on with the receive. */ (void) pthread_mutex_lock(&xip->xi_lock); while (xip->xi_flags & (FMD_XPRT_DSUSPENDED | FMD_XPRT_ISUSPENDED)) { if (fmd.d_signal != 0) { (void) pthread_mutex_unlock(&xip->xi_lock); return; /* fmd_destroy() is in progress */ } (void) pthread_cond_wait(&xip->xi_cv, &xip->xi_lock); } xip->xi_busy++; ASSERT(xip->xi_busy != 0); (void) pthread_mutex_unlock(&xip->xi_lock); (void) pthread_mutex_lock(&xip->xi_stats_lock); xip->xi_stats->xs_received.fmds_value.ui64++; (void) pthread_mutex_unlock(&xip->xi_stats_lock); if (nvlist_lookup_string(nvl, FM_CLASS, &class) != 0) { fmd_error(EFMD_XPRT_PAYLOAD, "discarding nvlist %p: missing " "required \"%s\" payload element", (void *)nvl, FM_CLASS); (void) pthread_mutex_lock(&xip->xi_stats_lock); xip->xi_stats->xs_discarded.fmds_value.ui64++; (void) pthread_mutex_unlock(&xip->xi_stats_lock); nvlist_free(nvl); goto done; } fmd_dprintf(FMD_DBG_XPRT, "xprt %u %s %s\n", xip->xi_id, ((logonly == FMD_B_TRUE) ? "logging" : "posting"), class); isereport = (strncmp(class, FM_EREPORT_CLASS, sizeof (FM_EREPORT_CLASS - 1)) == 0) ? FMD_B_TRUE : FMD_B_FALSE; /* * The logonly flag should only be set for ereports. */ if ((logonly == FMD_B_TRUE) && (isereport == FMD_B_FALSE)) { fmd_error(EFMD_XPRT_INVAL, "discarding nvlist %p: " "logonly flag is not valid for class %s", (void *)nvl, class); (void) pthread_mutex_lock(&xip->xi_stats_lock); xip->xi_stats->xs_discarded.fmds_value.ui64++; (void) pthread_mutex_unlock(&xip->xi_stats_lock); nvlist_free(nvl); goto done; } /* * If a time-to-live value is present in the event and is zero, drop * the event and bump xs_timeouts. Otherwise decrement the TTL value. */ if (nvlist_lookup_uint8(nvl, FMD_EVN_TTL, &ttl) == 0) { if (ttl == 0) { fmd_dprintf(FMD_DBG_XPRT, "xprt %u nvlist %p (%s) " "timeout: event received with ttl=0\n", xip->xi_id, (void *)nvl, class); (void) pthread_mutex_lock(&xip->xi_stats_lock); xip->xi_stats->xs_timeouts.fmds_value.ui64++; (void) pthread_mutex_unlock(&xip->xi_stats_lock); nvlist_free(nvl); goto done; } (void) nvlist_remove(nvl, FMD_EVN_TTL, DATA_TYPE_UINT8); (void) nvlist_add_uint8(nvl, FMD_EVN_TTL, ttl - 1); } /* * If we are using the native system clock, the underlying transport * code can provide a tighter event time bound by telling us when the * event was enqueued. If we're using simulated clocks, this time * has no meaning to us, so just reset the value to use HRT_NOW. */ if (dp->d_clockops != &fmd_timeops_native) hrt = FMD_HRT_NOW; /* * If an event's class is in the FMD_CTL_CLASS family, then create a * control event. If a FMD_EVN_TOD member is found, create a protocol * event using this time. Otherwise create a protocol event using hrt. */ isproto = (strncmp(class, FMD_CTL_CLASS, FMD_CTL_CLASS_LEN) == 0) ? FMD_B_FALSE : FMD_B_TRUE; if (isproto == FMD_B_FALSE) e = fmd_event_create(FMD_EVT_CTL, hrt, nvl, fmd_ctl_init(nvl)); else if (nvlist_lookup_uint64_array(nvl, FMD_EVN_TOD, &tod, &n) != 0) e = fmd_event_create(FMD_EVT_PROTOCOL, hrt, nvl, class); else { e = fmd_event_recreate(FMD_EVT_PROTOCOL, NULL, nvl, class, NULL, 0, 0); } /* * If the debug log is enabled, create a temporary event, log it to the * debug log, and then reset the underlying state of the event. */ if (xip->xi_log != NULL) { fmd_event_impl_t *ep = (fmd_event_impl_t *)e; fmd_log_append(xip->xi_log, e, NULL); ep->ev_flags |= FMD_EVF_VOLATILE; ep->ev_off = 0; ep->ev_len = 0; if (ep->ev_log != NULL) { fmd_log_rele(ep->ev_log); ep->ev_log = NULL; } } /* * Iterate over the rules for the current state trying to match the * event class to one of our special rules. If a rule is matched, the * event is consumed and not dispatched to other modules. If the rule * set ends without matching an event, we fall through to dispatching. */ for (xrp = xip->xi_state; xrp->xr_class != NULL; xrp++) { if (fmd_event_match(e, FMD_EVT_PROTOCOL, xrp->xr_class)) { fmd_event_hold(e); xrp->xr_func(xip, nvl); fmd_event_rele(e); goto done; } } /* * Record the event in the errlog if it is an ereport. This code will * be replaced later with a per-transport intent log instead. */ if (isereport == FMD_B_TRUE) { (void) pthread_rwlock_rdlock(&dp->d_log_lock); fmd_log_append(dp->d_errlog, e, NULL); (void) pthread_rwlock_unlock(&dp->d_log_lock); } /* * If a list.suspect event is received, create a case for the specified * UUID in the case hash, with the transport module as its owner. */ if (fmd_event_match(e, FMD_EVT_PROTOCOL, FM_LIST_SUSPECT_CLASS)) { if (xip->xi_flags & FMD_XPRT_CACHE_AS_LOCAL) fmd_xprt_list_suspect_local(xp, nvl); else fmd_xprt_list_suspect(xp, nvl); fmd_event_hold(e); fmd_event_rele(e); goto done; } /* * If a list.updated or list.repaired event is received, update the * resource cache status and the local case. */ if (fmd_event_match(e, FMD_EVT_PROTOCOL, FM_LIST_REPAIRED_CLASS) || fmd_event_match(e, FMD_EVT_PROTOCOL, FM_LIST_UPDATED_CLASS)) { uint8_t *statusp; uint_t nelem = 0; (void) nvlist_lookup_uint8_array(nvl, FM_SUSPECT_FAULT_STATUS, &statusp, &nelem); fmd_module_lock(xip->xi_queue->eq_mod); if (nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) == 0 && (cp = fmd_case_hash_lookup(fmd.d_cases, uuid)) != NULL) { fmd_case_impl_t *cip = (fmd_case_impl_t *)cp; if (cip->ci_xprt != NULL) { fmd_case_update_status(cp, statusp, cip->ci_proxy_asru, cip->ci_diag_asru); fmd_case_update_containees(cp); fmd_case_update(cp); } fmd_case_rele(cp); } fmd_module_unlock(xip->xi_queue->eq_mod); fmd_event_hold(e); fmd_event_rele(e); goto done; } /* * If a list.isolated event is received, update resource cache status */ if (fmd_event_match(e, FMD_EVT_PROTOCOL, FM_LIST_ISOLATED_CLASS)) { uint8_t *statusp; uint_t nelem = 0; (void) nvlist_lookup_uint8_array(nvl, FM_SUSPECT_FAULT_STATUS, &statusp, &nelem); fmd_module_lock(xip->xi_queue->eq_mod); if (nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) == 0 && (cp = fmd_case_hash_lookup(fmd.d_cases, uuid)) != NULL) { fmd_case_impl_t *cip = (fmd_case_impl_t *)cp; if (cip->ci_xprt != NULL) fmd_case_update_status(cp, statusp, cip->ci_proxy_asru, cip->ci_diag_asru); fmd_case_rele(cp); } fmd_module_unlock(xip->xi_queue->eq_mod); fmd_event_hold(e); fmd_event_rele(e); goto done; } /* * If a list.resolved event is received, resolve the local case. */ if (fmd_event_match(e, FMD_EVT_PROTOCOL, FM_LIST_RESOLVED_CLASS)) { fmd_module_lock(xip->xi_queue->eq_mod); if (nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) == 0 && (cp = fmd_case_hash_lookup(fmd.d_cases, uuid)) != NULL) { fmd_case_impl_t *cip = (fmd_case_impl_t *)cp; if (cip->ci_xprt != NULL) fmd_case_transition(cp, (cip->ci_state == FMD_CASE_REPAIRED) ? FMD_CASE_RESOLVED : (cip->ci_state == FMD_CASE_CLOSED) ? FMD_CASE_REPAIRED : FMD_CASE_CLOSE_WAIT, FMD_CF_RESOLVED); fmd_case_rele(cp); } fmd_module_unlock(xip->xi_queue->eq_mod); fmd_event_hold(e); fmd_event_rele(e); goto done; } if (logonly == FMD_B_TRUE || (xip->xi_flags & FMD_XPRT_EXTERNAL)) { /* * Don't proxy ereports on an EXTERNAL transport - we won't * know how to diagnose them with the wrong topology. Note * that here (and above) we have to hold/release the event in * order for it to be freed. */ fmd_event_hold(e); fmd_event_rele(e); } else if (isproto == FMD_B_TRUE) fmd_dispq_dispatch(dp->d_disp, e, class); else fmd_modhash_dispatch(dp->d_mod_hash, e); done: (void) pthread_mutex_lock(&xip->xi_lock); ASSERT(xip->xi_busy != 0); xip->xi_busy--; (void) pthread_cond_broadcast(&xip->xi_cv); (void) pthread_mutex_unlock(&xip->xi_lock); } void fmd_xprt_uuclose(fmd_xprt_t *xp, const char *uuid) { fmd_xprt_impl_t *xip = (fmd_xprt_impl_t *)xp; fmd_event_t *e; nvlist_t *nvl; char *s; if ((xip->xi_flags & FMD_XPRT_RDWR) == FMD_XPRT_RDONLY) return; /* read-only transports do not proxy uuclose */ TRACE((FMD_DBG_XPRT, "xprt %u closing case %s\n", xip->xi_id, uuid)); nvl = fmd_protocol_xprt_uuclose(xip->xi_queue->eq_mod, "resource.fm.xprt.uuclose", xip->xi_version, uuid); (void) nvlist_lookup_string(nvl, FM_CLASS, &s); e = fmd_event_create(FMD_EVT_PROTOCOL, FMD_HRT_NOW, nvl, s); fmd_eventq_insert_at_time(xip->xi_queue, e); } /* * On proxy side, send back uuresolved request to diagnosing side */ void fmd_xprt_uuresolved(fmd_xprt_t *xp, const char *uuid) { fmd_xprt_impl_t *xip = (fmd_xprt_impl_t *)xp; fmd_event_t *e; nvlist_t *nvl; char *s; if ((xip->xi_flags & FMD_XPRT_RDWR) == FMD_XPRT_RDONLY) return; /* read-only transports do not proxy uuresolved */ TRACE((FMD_DBG_XPRT, "xprt %u resolving case %s\n", xip->xi_id, uuid)); nvl = fmd_protocol_xprt_uuresolved(xip->xi_queue->eq_mod, "resource.fm.xprt.uuresolved", xip->xi_version, uuid); (void) nvlist_lookup_string(nvl, FM_CLASS, &s); e = fmd_event_create(FMD_EVT_PROTOCOL, FMD_HRT_NOW, nvl, s); fmd_eventq_insert_at_time(xip->xi_queue, e); } /* * On proxy side, send back repair/acquit/etc request to diagnosing side */ void fmd_xprt_updated(fmd_xprt_t *xp, const char *uuid, uint8_t *statusp, uint8_t *has_asrup, uint_t nelem) { fmd_xprt_impl_t *xip = (fmd_xprt_impl_t *)xp; fmd_event_t *e; nvlist_t *nvl; char *s; if ((xip->xi_flags & FMD_XPRT_RDWR) == FMD_XPRT_RDONLY) return; /* read-only transports do not support remote repairs */ TRACE((FMD_DBG_XPRT, "xprt %u updating case %s\n", xip->xi_id, uuid)); nvl = fmd_protocol_xprt_updated(xip->xi_queue->eq_mod, "resource.fm.xprt.updated", xip->xi_version, uuid, statusp, has_asrup, nelem); (void) nvlist_lookup_string(nvl, FM_CLASS, &s); e = fmd_event_create(FMD_EVT_PROTOCOL, FMD_HRT_NOW, nvl, s); fmd_eventq_insert_at_time(xip->xi_queue, e); } /* * Insert the specified class into our remote subscription hash. If the class * is already present, bump the reference count; otherwise add it to the hash * and then enqueue an event for our remote peer to proxy our subscription. */ void fmd_xprt_subscribe(fmd_xprt_t *xp, const char *class) { fmd_xprt_impl_t *xip = (fmd_xprt_impl_t *)xp; uint_t refs; nvlist_t *nvl; fmd_event_t *e; char *s; if ((xip->xi_flags & FMD_XPRT_RDWR) == FMD_XPRT_RDONLY) return; /* read-only transports do not proxy subscriptions */ if (!(xip->xi_flags & FMD_XPRT_SUBSCRIBER)) return; /* transport is not yet an active subscriber */ (void) pthread_mutex_lock(&xip->xi_lock); refs = fmd_xprt_class_hash_insert(xip, &xip->xi_rsub, class); (void) pthread_mutex_unlock(&xip->xi_lock); if (refs > 1) return; /* we've already asked our peer for this subscription */ fmd_dprintf(FMD_DBG_XPRT, "xprt %u subscribing to %s\n", xip->xi_id, class); nvl = fmd_protocol_xprt_sub(xip->xi_queue->eq_mod, "resource.fm.xprt.subscribe", xip->xi_version, class); (void) nvlist_lookup_string(nvl, FM_CLASS, &s); e = fmd_event_create(FMD_EVT_PROTOCOL, FMD_HRT_NOW, nvl, s); fmd_eventq_insert_at_time(xip->xi_queue, e); } /* * Delete the specified class from the remote subscription hash. If the * reference count drops to zero, ask our remote peer to unsubscribe by proxy. */ void fmd_xprt_unsubscribe(fmd_xprt_t *xp, const char *class) { fmd_xprt_impl_t *xip = (fmd_xprt_impl_t *)xp; uint_t refs; nvlist_t *nvl; fmd_event_t *e; char *s; if ((xip->xi_flags & FMD_XPRT_RDWR) == FMD_XPRT_RDONLY) return; /* read-only transports do not proxy subscriptions */ if (!(xip->xi_flags & FMD_XPRT_SUBSCRIBER)) return; /* transport is not yet an active subscriber */ /* * If the subscription reference count drops to zero in xi_rsub, insert * an entry into the xi_usub hash indicating we await an unsuback event. */ (void) pthread_mutex_lock(&xip->xi_lock); if ((refs = fmd_xprt_class_hash_delete(xip, &xip->xi_rsub, class)) == 0) (void) fmd_xprt_class_hash_insert(xip, &xip->xi_usub, class); (void) pthread_mutex_unlock(&xip->xi_lock); if (refs != 0) return; /* other subscriptions for this class still active */ fmd_dprintf(FMD_DBG_XPRT, "xprt %u unsubscribing from %s\n", xip->xi_id, class); nvl = fmd_protocol_xprt_sub(xip->xi_queue->eq_mod, "resource.fm.xprt.unsubscribe", xip->xi_version, class); (void) nvlist_lookup_string(nvl, FM_CLASS, &s); e = fmd_event_create(FMD_EVT_PROTOCOL, FMD_HRT_NOW, nvl, s); fmd_eventq_insert_at_time(xip->xi_queue, e); } static void fmd_xprt_subscribe_xid(fmd_idspace_t *ids, id_t id, void *class) { fmd_xprt_t *xp; if ((xp = fmd_idspace_hold(ids, id)) != NULL) { fmd_xprt_subscribe(xp, class); fmd_idspace_rele(ids, id); } } void fmd_xprt_subscribe_all(const char *class) { fmd_idspace_t *ids = fmd.d_xprt_ids; if (ids->ids_count != 0) fmd_idspace_apply(ids, fmd_xprt_subscribe_xid, (void *)class); } static void fmd_xprt_unsubscribe_xid(fmd_idspace_t *ids, id_t id, void *class) { fmd_xprt_t *xp; if ((xp = fmd_idspace_hold(ids, id)) != NULL) { fmd_xprt_unsubscribe(xp, class); fmd_idspace_rele(ids, id); } } void fmd_xprt_unsubscribe_all(const char *class) { fmd_idspace_t *ids = fmd.d_xprt_ids; if (ids->ids_count != 0) fmd_idspace_apply(ids, fmd_xprt_unsubscribe_xid, (void *)class); } /*ARGSUSED*/ static void fmd_xprt_suspend_xid(fmd_idspace_t *ids, id_t id, void *arg) { fmd_xprt_t *xp; if ((xp = fmd_idspace_hold(ids, id)) != NULL) { fmd_xprt_xsuspend(xp, FMD_XPRT_DSUSPENDED); fmd_idspace_rele(ids, id); } } void fmd_xprt_suspend_all(void) { fmd_idspace_t *ids = fmd.d_xprt_ids; (void) pthread_mutex_lock(&fmd.d_xprt_lock); if (fmd.d_xprt_suspend++ != 0) { (void) pthread_mutex_unlock(&fmd.d_xprt_lock); return; /* already suspended */ } if (ids->ids_count != 0) fmd_idspace_apply(ids, fmd_xprt_suspend_xid, NULL); (void) pthread_mutex_unlock(&fmd.d_xprt_lock); } /*ARGSUSED*/ static void fmd_xprt_resume_xid(fmd_idspace_t *ids, id_t id, void *arg) { fmd_xprt_t *xp; if ((xp = fmd_idspace_hold(ids, id)) != NULL) { fmd_xprt_xresume(xp, FMD_XPRT_DSUSPENDED); fmd_idspace_rele(ids, id); } } void fmd_xprt_resume_all(void) { fmd_idspace_t *ids = fmd.d_xprt_ids; (void) pthread_mutex_lock(&fmd.d_xprt_lock); if (fmd.d_xprt_suspend == 0) fmd_panic("fmd_xprt_suspend/resume_all mismatch\n"); if (--fmd.d_xprt_suspend != 0) { (void) pthread_mutex_unlock(&fmd.d_xprt_lock); return; /* not ready to be resumed */ } if (ids->ids_count != 0) fmd_idspace_apply(ids, fmd_xprt_resume_xid, NULL); (void) pthread_mutex_unlock(&fmd.d_xprt_lock); }