/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include <sys/fm/protocol.h> #include <limits.h> #include <fmd_alloc.h> #include <fmd_subr.h> #include <fmd_event.h> #include <fmd_string.h> #include <fmd_module.h> #include <fmd_case.h> #include <fmd_log.h> #include <fmd_time.h> #include <fmd_topo.h> #include <fmd_ctl.h> #include <fmd.h> static void fmd_event_nvwrap(fmd_event_impl_t *ep) { (void) nvlist_remove_all(ep->ev_nvl, FMD_EVN_TTL); (void) nvlist_remove_all(ep->ev_nvl, FMD_EVN_TOD); (void) nvlist_add_uint8(ep->ev_nvl, FMD_EVN_TTL, ep->ev_ttl); (void) nvlist_add_uint64_array(ep->ev_nvl, FMD_EVN_TOD, (uint64_t *)&ep->ev_time, 2); } static void fmd_event_nvunwrap(fmd_event_impl_t *ep, const fmd_timeval_t *tp) { uint64_t *tod; uint_t n; if (nvlist_lookup_uint8(ep->ev_nvl, FMD_EVN_TTL, &ep->ev_ttl) != 0) { ep->ev_flags |= FMD_EVF_LOCAL; ep->ev_ttl = (uint8_t)fmd.d_xprt_ttl; } if (tp != NULL) ep->ev_time = *tp; else if (nvlist_lookup_uint64_array(ep->ev_nvl, FMD_EVN_TOD, &tod, &n) == 0 && n >= 2) ep->ev_time = *(const fmd_timeval_t *)tod; else fmd_time_sync(&ep->ev_time, &ep->ev_hrt, 1); } fmd_event_t * fmd_event_recreate(uint_t type, const fmd_timeval_t *tp, nvlist_t *nvl, void *data, fmd_log_t *lp, off64_t off, size_t len) { fmd_event_impl_t *ep = fmd_alloc(sizeof (fmd_event_impl_t), FMD_SLEEP); fmd_timeval_t tod; hrtime_t hr0; (void) pthread_mutex_init(&ep->ev_lock, NULL); ep->ev_refs = 0; ASSERT(type < FMD_EVT_NTYPES); ep->ev_type = (uint8_t)type; ep->ev_state = FMD_EVS_RECEIVED; ep->ev_flags = FMD_EVF_REPLAY; ep->ev_nvl = nvl; ep->ev_data = data; ep->ev_log = lp; ep->ev_off = off; ep->ev_len = len; fmd_event_nvunwrap(ep, tp); /* * If we're not restoring from a log, the event is marked volatile. If * we are restoring from a log, then hold the log pointer and increment * the pending count. If we're using a log but no offset and data len * are specified, it's a checkpoint event: don't replay or set pending. */ if (lp == NULL) ep->ev_flags |= FMD_EVF_VOLATILE; else if (off != 0 && len != 0) fmd_log_hold_pending(lp); else { ep->ev_flags &= ~FMD_EVF_REPLAY; fmd_log_hold(lp); } /* * Sample a (TOD, hrtime) pair from the current system clocks and then * compute ev_hrt by taking the delta between this TOD and ev_time. */ fmd_time_sync(&tod, &hr0, 1); fmd_time_tod2hrt(hr0, &tod, &ep->ev_time, &ep->ev_hrt); fmd_event_nvwrap(ep); return ((fmd_event_t *)ep); } fmd_event_t * fmd_event_create(uint_t type, hrtime_t hrt, nvlist_t *nvl, void *data) { fmd_event_impl_t *ep = fmd_alloc(sizeof (fmd_event_impl_t), FMD_SLEEP); fmd_timeval_t tod; hrtime_t hr0; const char *p; uint64_t ena; (void) pthread_mutex_init(&ep->ev_lock, NULL); ep->ev_refs = 0; ASSERT(type < FMD_EVT_NTYPES); ep->ev_type = (uint8_t)type; ep->ev_state = FMD_EVS_RECEIVED; ep->ev_flags = FMD_EVF_VOLATILE | FMD_EVF_REPLAY | FMD_EVF_LOCAL; ep->ev_ttl = (uint8_t)fmd.d_xprt_ttl; ep->ev_nvl = nvl; ep->ev_data = data; ep->ev_log = NULL; ep->ev_off = 0; ep->ev_len = 0; /* * Sample TOD and then set ev_time to the earlier TOD corresponding to * the input hrtime value. This needs to be improved later: hrestime * should be sampled by the transport and passed as an input parameter. */ fmd_time_sync(&tod, &hr0, 1); if (hrt == FMD_HRT_NOW) hrt = hr0; /* use hrtime sampled by fmd_time_sync() */ /* * If this is an FMA protocol event of class "ereport.*" that contains * valid ENA, we can compute a more precise bound on the event time. */ if (type == FMD_EVT_PROTOCOL && (p = strchr(data, '.')) != NULL && strncmp(data, FM_EREPORT_CLASS, (size_t)(p - (char *)data)) == 0 && nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) == 0 && fmd.d_clockops == &fmd_timeops_native) hrt = fmd_time_ena2hrt(hrt, ena); fmd_time_hrt2tod(hr0, &tod, hrt, &ep->ev_time); ep->ev_hrt = hrt; fmd_event_nvwrap(ep); return ((fmd_event_t *)ep); } void fmd_event_destroy(fmd_event_t *e) { fmd_event_impl_t *ep = (fmd_event_impl_t *)e; ASSERT(MUTEX_HELD(&ep->ev_lock)); ASSERT(ep->ev_refs == 0); /* * If the current state is RECEIVED (i.e. no module has accepted the * event) and the event was logged, then change the state to DISCARDED. */ if (ep->ev_state == FMD_EVS_RECEIVED) ep->ev_state = FMD_EVS_DISCARDED; /* * If the current state is DISCARDED, ACCEPTED, or DIAGNOSED and the * event has not yet been commited, then attempt to commit it now. */ if (ep->ev_state != FMD_EVS_RECEIVED && (ep->ev_flags & ( FMD_EVF_VOLATILE | FMD_EVF_REPLAY)) == FMD_EVF_REPLAY) fmd_log_commit(ep->ev_log, e); if (ep->ev_log != NULL) { if (ep->ev_flags & FMD_EVF_REPLAY) fmd_log_decommit(ep->ev_log, e); fmd_log_rele(ep->ev_log); } /* * Perform any event type-specific cleanup activities, and then free * the name-value pair list and underlying event data structure. */ switch (ep->ev_type) { case FMD_EVT_TIMEOUT: fmd_free(ep->ev_data, sizeof (fmd_modtimer_t)); break; case FMD_EVT_CLOSE: case FMD_EVT_PUBLISH: fmd_case_rele(ep->ev_data); break; case FMD_EVT_CTL: fmd_ctl_fini(ep->ev_data); break; case FMD_EVT_TOPO: fmd_topo_rele(ep->ev_data); break; } if (ep->ev_nvl != NULL) nvlist_free(ep->ev_nvl); fmd_free(ep, sizeof (fmd_event_impl_t)); } void fmd_event_hold(fmd_event_t *e) { fmd_event_impl_t *ep = (fmd_event_impl_t *)e; (void) pthread_mutex_lock(&ep->ev_lock); ep->ev_refs++; ASSERT(ep->ev_refs != 0); (void) pthread_mutex_unlock(&ep->ev_lock); if (ep->ev_type == FMD_EVT_CTL) fmd_ctl_hold(ep->ev_data); } void fmd_event_rele(fmd_event_t *e) { fmd_event_impl_t *ep = (fmd_event_impl_t *)e; if (ep->ev_type == FMD_EVT_CTL) fmd_ctl_rele(ep->ev_data); (void) pthread_mutex_lock(&ep->ev_lock); ASSERT(ep->ev_refs != 0); if (--ep->ev_refs == 0) fmd_event_destroy(e); else (void) pthread_mutex_unlock(&ep->ev_lock); } /* * Transition event from its current state to the specified state. The states * for events are defined in fmd_event.h and work according to the diagram: * * ------------- ------------- State Description * ( RECEIVED =1 )-->( ACCEPTED =2 ) ---------- --------------------------- * -----+-------\ ------+------ DISCARDED No active references in fmd * | \ | RECEIVED Active refs in fmd, no case * -----v------- \ ------v------ ACCEPTED Active refs, case assigned * ( DISCARDED=0 ) v( DIAGNOSED=3 ) DIAGNOSED Active refs, case solved * ------------- ------------- * * Since events are reference counted on behalf of multiple subscribers, any * attempt to transition an event to an "earlier" or "equal" state (as defined * by the numeric state values shown in the diagram) is silently ignored. * An event begins life in the RECEIVED state, so the RECEIVED -> DISCARDED * transition is handled by fmd_event_destroy() when no references remain. */ void fmd_event_transition(fmd_event_t *e, uint_t state) { fmd_event_impl_t *ep = (fmd_event_impl_t *)e; (void) pthread_mutex_lock(&ep->ev_lock); TRACE((FMD_DBG_EVT, "event %p transition %u -> %u", (void *)ep, ep->ev_state, state)); if (state <= ep->ev_state) { (void) pthread_mutex_unlock(&ep->ev_lock); return; /* no state change necessary */ } if (ep->ev_state < FMD_EVS_RECEIVED || ep->ev_state > FMD_EVS_DIAGNOSED) fmd_panic("illegal transition %u -> %u\n", ep->ev_state, state); ep->ev_state = state; (void) pthread_mutex_unlock(&ep->ev_lock); } /* * If the specified event is DISCARDED, ACCEPTED, OR DIAGNOSED and it has been * written to a log but is still marked for replay, attempt to commit it to the * log so that it will not be replayed. If fmd_log_commit() is successful, it * will clear the FMD_EVF_REPLAY flag on the event for us. */ void fmd_event_commit(fmd_event_t *e) { fmd_event_impl_t *ep = (fmd_event_impl_t *)e; (void) pthread_mutex_lock(&ep->ev_lock); if (ep->ev_state != FMD_EVS_RECEIVED && (ep->ev_flags & ( FMD_EVF_VOLATILE | FMD_EVF_REPLAY)) == FMD_EVF_REPLAY) fmd_log_commit(ep->ev_log, e); (void) pthread_mutex_unlock(&ep->ev_lock); } /* * Compute the delta between events in nanoseconds. To account for very old * events which are replayed, we must handle the case where ev_hrt is negative. * We convert the hrtime_t's to unsigned 64-bit integers and then handle the * case where 'old' is greater than 'new' (i.e. high-res time has wrapped). */ hrtime_t fmd_event_delta(fmd_event_t *e1, fmd_event_t *e2) { uint64_t old = ((fmd_event_impl_t *)e1)->ev_hrt; uint64_t new = ((fmd_event_impl_t *)e2)->ev_hrt; return (new >= old ? new - old : (UINT64_MAX - old) + new + 1); } hrtime_t fmd_event_hrtime(fmd_event_t *ep) { return (((fmd_event_impl_t *)ep)->ev_hrt); } int fmd_event_match(fmd_event_t *e, uint_t type, const void *data) { fmd_event_impl_t *ep = (fmd_event_impl_t *)e; if (type == FMD_EVT_PROTOCOL) return (ep->ev_type == type && fmd_strmatch(ep->ev_data, data)); else if (type == FMD_EVT_TIMEOUT) return ((id_t)data == ((fmd_modtimer_t *)ep->ev_data)->mt_id); else return (ep->ev_type == type && ep->ev_data == data); } int fmd_event_equal(fmd_event_t *e1, fmd_event_t *e2) { fmd_event_impl_t *ep1 = (fmd_event_impl_t *)e1; fmd_event_impl_t *ep2 = (fmd_event_impl_t *)e2; return (ep1->ev_log != NULL && ep1->ev_log == ep2->ev_log && ep1->ev_off == ep2->ev_off); }