/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ /* All Rights Reserved */ /* Copyright (c) 1987, 1988 Microsoft Corporation */ /* All Rights Reserved */ #pragma ident "%Z%%M% %I% %E% SMI" /* * PROGRAM: fdisk(1M) * This program reads the partition table on the specified device and * also reads the drive parameters. The user can perform various * operations from a supplied menu or from the command line. Diagnostic * options are also available. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CLR_SCR "" #define CLR_LIN "" #define HOME "" \ "" #define Q_LINE "" #define W_LINE "" #define E_LINE "" #define M_LINE "" \ "" #define T_LINE "" #define DEFAULT_PATH "/dev/rdsk/" /* XXX - should be in fdisk.h, used by sd as well */ /* * the MAX values are the maximum usable values for BIOS chs values * The MAX_CYL value of 1022 is the maximum usable value * the value of 1023 is a fence value, * indicating no CHS geometry exists for the corresponding LBA value. * HEAD range [ 0 .. MAX_HEAD ], so number of heads is (MAX_HEAD + 1) * SECT range [ 1 .. MAX_SECT ], so number of sectors is (MAX_SECT) */ #define MAX_SECT (63) #define MAX_CYL (1022) #define MAX_HEAD (254) /* for clear_vtoc() */ #define OLD 0 #define NEW 1 /* readvtoc/writevtoc return codes */ #define VTOC_OK 0 /* Good VTOC */ #define VTOC_INVAL 1 /* invalid VTOC */ #define VTOC_NOTSUP 2 /* operation not supported - EFI label */ #define VTOC_RWERR 3 /* couldn't read or write VTOC */ /* * Support for fdisk(1M) on the SPARC platform * In order to convert little endian values to big endian for SPARC, * byte/short and long values must be swapped. * These swapping macros will be used to access information in the * mboot and ipart structures. */ #ifdef sparc #define les(val) ((((val)&0xFF)<<8)|(((val)>>8)&0xFF)) #define lel(val) (((unsigned)(les((val)&0x0000FFFF))<<16) | \ (les((unsigned)((val)&0xffff0000)>>16))) #else #define les(val) (val) #define lel(val) (val) #endif #if defined(_SUNOS_VTOC_16) #define VTOC_OFFSET 512 #elif defined(_SUNOS_VTOC_8) #define VTOC_OFFSET 0 #else #error No VTOC format defined. #endif char Usage[] = "Usage: fdisk\n" "[ -A id:act:bhead:bsect:bcyl:ehead:esect:ecyl:rsect:numsect ]\n" "[ -b masterboot ]\n" "[ -D id:act:bhead:bsect:bcyl:ehead:esect:ecyl:rsect:numsect ]\n" "[ -F fdisk_file ] [ -h ] [ -o offset ] [ -P fill_patt ] [ -s size ]\n" "[ -S geom_file ] [ [ -v ] -W { creat_fdisk_file | - } ]\n" "[ -w | r | d | n | I | B | E | g | G | R | t | T ] rdevice"; char Usage1[] = " Partition options:\n" " -A id:act:bhead:bsect:bcyl:ehead:esect:ecyl:rsect:numsect\n" " Create a partition with specific attributes:\n" " id = system id number (fdisk.h) for the partition type\n" " act = active partition flag (0 is off and 128 is on)\n" " bhead = beginning head for start of partition\n" " bsect = beginning sector for start of partition\n" " bcyl = beginning cylinder for start of partition\n" " ehead = ending head for end of partition\n" " esect = ending sector for end of partition\n" " ecyl = ending cylinder for end of partition\n" " rsect = sector number from start of disk for\n" " start of partition\n" " numsect = partition size in sectors\n" " -b master_boot\n" " Use master_boot as the master boot file.\n" " -B Create one Solaris partition that uses the entire disk.\n" " -E Create one EFI partition that uses the entire disk.\n" " -D id:act:bhead:bsect:bcyl:ehead:esect:ecyl:rsect:numsect\n" " Delete a partition. See attribute definitions for -A.\n" " -F fdisk_file\n" " Use fdisk_file to initialize on-line fdisk table.\n" " -I Forego device checks. Generate a file image of what would go\n" " on a disk using the geometry specified with the -S option.\n" " -n Do not run in interactive mode.\n" " -R Open the disk device as read-only.\n" " -t Check and adjust VTOC to be consistent with fdisk table.\n" " VTOC slices exceeding the partition size will be truncated.\n" " -T Check and adjust VTOC to be consistent with fdisk table.\n" " VTOC slices exceeding the partition size will be removed.\n" " -W fdisk_file\n" " Write on-disk table to fdisk_file.\n" " -W - Write on-disk table to standard output.\n" " -v Display virtual geometry. Must be used with the -W option.\n" " Diagnostic options:\n" " -d Activate debug information about progress.\n" " -g Write label geometry to standard output:\n" " PCYL number of physical cylinders\n" " NCYL number of usable cylinders\n" " ACYL number of alternate cylinders\n" " BCYL cylinder offset\n" " NHEADS number of heads\n" " NSECTORS number of sectors per track\n" " SECTSIZ size of a sector in bytes\n" " -G Write physical geometry to standard output (see -g).\n" " -h Issue this verbose help message.\n" " -o offset\n" " Block offset from start of disk (default 0). Ignored if\n" " -P # specified.\n" " -P fill_patt\n" " Fill disk with pattern fill_patt. fill_patt can be decimal or\n" " hexadecimal and is used as number for constant long word\n" " pattern. If fill_patt is \"#\" then pattern of block #\n" " for each block. Pattern is put in each block as long words\n" " and fills each block (see -o and -s).\n" " -r Read from a disk to stdout (see -o and -s).\n" " -s size Number of blocks on which to perform operation (see -o).\n" " -S geom_file\n" " Use geom_file to set the label geometry (see -g).\n" " -w Write to a disk from stdin (see -o and -s)."; char Ostr[] = "Other OS"; char Dstr[] = "DOS12"; char D16str[] = "DOS16"; char DDstr[] = "DOS-DATA"; char EDstr[] = "EXT-DOS"; char DBstr[] = "DOS-BIG"; char PCstr[] = "PCIX"; char Ustr[] = "UNIX System"; char SUstr[] = "Solaris"; char SU2str[] = "Solaris2"; char X86str[] = "x86 Boot"; char DIAGstr[] = "Diagnostic"; char IFSstr[] = "IFS: NTFS"; char AIXstr[] = "AIX Boot"; char AIXDstr[] = "AIX Data"; char OS2str[] = "OS/2 Boot"; char WINstr[] = "Win95 FAT32"; char EWINstr[] = "Ext Win95"; char FAT95str[] = "FAT16 LBA"; char EXTLstr[] = "EXT LBA"; char LINUXstr[] = "Linux"; char CPMstr[] = "CP/M"; char NOVstr[] = "Netware 3.x+"; char QNXstr[] = "QNX 4.x"; char QNX2str[] = "QNX part 2"; char QNX3str[] = "QNX part 3"; char LINNATstr[] = "Linux native"; char NTFSVOL1str[] = "NT volset 1"; char NTFSVOL2str[] = "NT volset 2"; char BSDstr[] = "BSD OS"; char NEXTSTEPstr[] = "NeXTSTEP"; char BSDIFSstr[] = "BSDI FS"; char BSDISWAPstr[] = "BSDI swap"; char Actvstr[] = "Active"; char EFIstr[] = "EFI"; char NAstr[] = " "; /* All the user options and flags */ char *Dfltdev; /* name of fixed disk drive */ /* Diagnostic options */ int io_wrt = 0; /* write standard input to disk (-w) */ int io_rd = 0; /* read from disk and write to stdout (-r) */ char *io_fatt; /* user supplied pattern (-P pattern) */ int io_patt = 0; /* write a pattern to disk (-P pattern) */ int io_lgeom = 0; /* get label geometry (-g) */ int io_pgeom = 0; /* get drive physical geometry (-G) */ char *io_sgeom = 0; /* set label geometry (-S geom_file) */ int io_readonly = 0; /* do not write to disk (-R) */ /* The -o offset and -s size options specify the area of the disk on */ /* which to perform the particular operation; i.e., -P, -r, or -w. */ int io_offset = 0; /* offset sector (-o offset) */ int io_size = 0; /* size in sectors (-s size) */ /* Partition table flags */ int v_flag = 0; /* virtual geometry-HBA flag (-v) */ int stdo_flag = 0; /* stdout flag (-W -) */ int io_fdisk = 0; /* do fdisk operation */ int io_ifdisk = 0; /* interactive partition */ int io_nifdisk = 0; /* non-interactive partition (-n) */ int io_adjt = 0; /* check and adjust VTOC (truncate (-t)) */ int io_ADJT = 0; /* check and adjust VTOC (delete (-T)) */ char *io_ffdisk = 0; /* name of input fdisk file (-F file) */ char *io_Wfdisk = 0; /* name of output fdisk file (-W file) */ char *io_Afdisk = 0; /* entry to add to partition table (-A) */ char *io_Dfdisk = 0; /* entry to delete from partition table (-D) */ char *io_mboot = 0; /* master boot record (-b boot_file) */ struct mboot BootCod; /* buffer for master boot record */ int io_wholedisk = 0; /* use whole disk for Solaris partition (-B) */ int io_EFIdisk = 0; /* use whole disk for EFI partition (-E) */ int io_debug = 0; /* activate verbose mode (-d) */ int io_image = 0; /* create image using supplied geometry (-I) */ struct mboot *Bootblk; /* pointer to cut and paste sector zero */ char *Bootsect; /* pointer to sector zero buffer */ char *Nullsect; struct vtoc disk_vtoc; /* verify VTOC table */ int vt_inval = 0; int no_virtgeom_ioctl = 0; /* ioctl for virtual geometry failed */ int no_physgeom_ioctl = 0; /* ioctl for physical geometry failed */ struct ipart Table[FD_NUMPART]; struct ipart Old_Table[FD_NUMPART]; /* Disk geometry information */ struct dk_geom disk_geom; int Dev; /* fd for open device */ /* Physical geometry for the drive */ int Numcyl; /* number of cylinders */ int heads; /* number of heads */ int sectors; /* number of sectors per track */ int acyl; /* number of alternate sectors */ /* HBA (virtual) geometry for the drive */ int hba_Numcyl; /* number of cylinders */ int hba_heads; /* number of heads */ int hba_sectors; /* number of sectors per track */ int sectsiz; /* sector size */ int drtype; /* Type of drive; i.e., scsi, floppy, ... */ /* Load functions for fdisk table modification */ #define LOADFILE 0 /* load fdisk from file */ #define LOADDEL 1 /* delete an fdisk entry */ #define LOADADD 2 /* add an fdisk entry */ #define CBUFLEN 80 char s[CBUFLEN]; void sanity_check_provided_device(char *devname, int fd); static int clear_vtoc(int table, int part); static char *get_node(char *devname); static void Set_Table_CHS_Values(int ti); static void update_disk_and_exit(boolean_t table_changed) { if (table_changed) { /* * Copy the new table back to the sector buffer * and write it to disk */ copy_Table_to_Bootblk(); dev_mboot_write(0, Bootsect, sectsiz); } /* If the VTOC table is wrong fix it (truncation only) */ if (io_adjt) fix_slice(); exit(0); } /* * main * Process command-line options. */ void main(int argc, char *argv[]) { int c, i, j; extern int optind; extern char *optarg; int errflg = 0; int diag_cnt = 0; int openmode; int check_support_fdisk(); setbuf(stderr, 0); /* so all output gets out on exit */ setbuf(stdout, 0); /* Process the options. */ while ((c = getopt(argc, argv, "o:s:P:F:b:A:D:W:S:tTIhwvrndgGRBE")) != EOF) { switch (c) { case 'o': io_offset = strtoul(optarg, 0, 0); continue; case 's': io_size = strtoul(optarg, 0, 0); continue; case 'P': diag_cnt++; io_patt++; io_fatt = optarg; continue; case 'w': diag_cnt++; io_wrt++; continue; case 'r': diag_cnt++; io_rd++; continue; case 'd': io_debug++; continue; case 'I': io_image++; continue; case 'R': io_readonly++; continue; case 'S': diag_cnt++; io_sgeom = optarg; continue; case 'T': io_ADJT++; case 't': io_adjt++; continue; case 'B': io_wholedisk++; io_fdisk++; continue; case 'E': io_EFIdisk++; io_fdisk++; continue; case 'g': diag_cnt++; io_lgeom++; continue; case 'G': diag_cnt++; io_pgeom++; continue; case 'n': io_nifdisk++; io_fdisk++; continue; case 'F': io_fdisk++; io_ffdisk = optarg; continue; case 'b': io_mboot = optarg; continue; case 'W': /* * If '-' is the -W argument, then write * to standard output, otherwise write * to the specified file. */ if (strncmp(optarg, "-", 1) == 0) stdo_flag = 1; else io_Wfdisk = optarg; io_fdisk++; continue; case 'A': io_fdisk++; io_Afdisk = optarg; continue; case 'D': io_fdisk++; io_Dfdisk = optarg; continue; case 'h': fprintf(stderr, "%s\n", Usage); fprintf(stderr, "%s\n", Usage1); exit(0); case 'v': v_flag = 1; continue; case '?': errflg++; break; } break; } if (io_image && io_sgeom && diag_cnt == 1) { diag_cnt = 0; } /* User option checking */ /* By default, run in interactive mode */ if (!io_fdisk && !diag_cnt && !io_nifdisk) { io_ifdisk++; io_fdisk++; } if (((io_fdisk || io_adjt) && diag_cnt) || (diag_cnt > 1)) { errflg++; } /* Was any error detected? */ if (errflg || argc == optind) { fprintf(stderr, "%s\n", Usage); fprintf(stderr, "\nDetailed help is available with the -h option.\n"); exit(2); } /* Figure out the correct device node to open */ Dfltdev = get_node(argv[optind]); if (io_readonly) openmode = O_RDONLY; else openmode = O_RDWR|O_CREAT; if ((Dev = open(Dfltdev, openmode, 0666)) == -1) { fprintf(stderr, "fdisk: Cannot open device %s.\n", Dfltdev); exit(1); } /* Get the disk geometry */ if (!io_image) { /* Get disk's HBA (virtual) geometry */ errno = 0; if (ioctl(Dev, DKIOCG_VIRTGEOM, &disk_geom)) { /* * If ioctl isn't implemented on this platform, then * turn off flag to print out virtual geometry (-v), * otherwise use the virtual geometry. */ if (errno == ENOTTY) { v_flag = 0; no_virtgeom_ioctl = 1; } else if (errno == EINVAL) { /* * This means that the ioctl exists, but * is invalid for this disk, meaning the * disk doesn't have an HBA geometry * (like, say, it's larger than 8GB). */ v_flag = 0; hba_Numcyl = hba_heads = hba_sectors = 0; } else { (void) fprintf(stderr, "%s: Cannot get virtual disk geometry.\n", argv[optind]); exit(1); } } else { /* save virtual geometry values obtained by ioctl */ hba_Numcyl = disk_geom.dkg_ncyl; hba_heads = disk_geom.dkg_nhead; hba_sectors = disk_geom.dkg_nsect; } errno = 0; if (ioctl(Dev, DKIOCG_PHYGEOM, &disk_geom)) { if (errno == ENOTTY) { no_physgeom_ioctl = 1; } else { (void) fprintf(stderr, "%s: Cannot get physical disk geometry.\n", argv[optind]); exit(1); } } /* * Call DKIOCGGEOM if the ioctls for physical and virtual * geometry fail. Get both from this generic call. */ if (no_virtgeom_ioctl && no_physgeom_ioctl) { errno = 0; if (ioctl(Dev, DKIOCGGEOM, &disk_geom)) { (void) fprintf(stderr, "%s: Cannot get disk label geometry.\n", argv[optind]); exit(1); } } Numcyl = disk_geom.dkg_ncyl; heads = disk_geom.dkg_nhead; sectors = disk_geom.dkg_nsect; sectsiz = 512; acyl = disk_geom.dkg_acyl; /* * if hba geometry was not set by DKIOC_VIRTGEOM * or we got an invalid hba geometry * then set hba geometry based on max values */ if (no_virtgeom_ioctl || disk_geom.dkg_ncyl <= 0 || disk_geom.dkg_nhead <= 0 || disk_geom.dkg_nsect <= 0 || disk_geom.dkg_ncyl > MAX_CYL || disk_geom.dkg_nhead > MAX_HEAD || disk_geom.dkg_nsect > MAX_SECT) { /* * turn off flag to print out virtual geometry (-v) */ v_flag = 0; hba_sectors = MAX_SECT; hba_heads = MAX_HEAD + 1; hba_Numcyl = (Numcyl * heads * sectors) / (hba_sectors * hba_heads); } if (io_debug) { fprintf(stderr, "Physical Geometry:\n"); fprintf(stderr, " cylinders[%d] heads[%d] sectors[%d]\n" " sector size[%d] blocks[%d] mbytes[%d]\n", Numcyl, heads, sectors, sectsiz, Numcyl*heads*sectors, (Numcyl*heads*sectors*sectsiz)/1048576); fprintf(stderr, "Virtual (HBA) Geometry:\n"); fprintf(stderr, " cylinders[%d] heads[%d] sectors[%d]\n" " sector size[%d] blocks[%d] mbytes[%d]\n", hba_Numcyl, hba_heads, hba_sectors, sectsiz, hba_Numcyl*hba_heads*hba_sectors, (hba_Numcyl*hba_heads*hba_sectors*sectsiz)/1048576); } } /* If user has requested a geometry report just do it and exit */ if (io_lgeom) { if (ioctl(Dev, DKIOCGGEOM, &disk_geom)) { (void) fprintf(stderr, "%s: Cannot get disk label geometry.\n", argv[optind]); exit(1); } Numcyl = disk_geom.dkg_ncyl; heads = disk_geom.dkg_nhead; sectors = disk_geom.dkg_nsect; sectsiz = 512; acyl = disk_geom.dkg_acyl; printf("* Label geometry for device %s\n", Dfltdev); printf("* PCYL NCYL ACYL BCYL NHEAD NSECT" " SECSIZ\n"); printf(" %-8d %-8d %-8d %-8d %-5d %-5d %-6d\n", Numcyl, disk_geom.dkg_ncyl, disk_geom.dkg_acyl, disk_geom.dkg_bcyl, heads, sectors, sectsiz); exit(0); } else if (io_pgeom) { if (ioctl(Dev, DKIOCG_PHYGEOM, &disk_geom)) { (void) fprintf(stderr, "%s: Cannot get physical disk geometry.\n", argv[optind]); exit(1); } printf("* Physical geometry for device %s\n", Dfltdev); printf("* PCYL NCYL ACYL BCYL NHEAD NSECT" " SECSIZ\n"); printf(" %-8d %-8d %-8d %-8d %-5d %-5d %-6d\n", disk_geom.dkg_pcyl, disk_geom.dkg_ncyl, disk_geom.dkg_acyl, disk_geom.dkg_bcyl, disk_geom.dkg_nhead, disk_geom.dkg_nsect, sectsiz); exit(0); } else if (io_sgeom) { if (read_geom(io_sgeom)) { exit(1); } else if (!io_image) { exit(0); } } /* Allocate memory to hold three complete sectors */ Bootsect = (char *)malloc(3 * sectsiz); if (Bootsect == NULL) { fprintf(stderr, "fdisk: Unable to obtain enough buffer memory" " (%d bytes).\n", 3*sectsiz); exit(1); } Nullsect = Bootsect + sectsiz; /* Zero out the "NULL" sector */ for (i = 0; i < sectsiz; i++) { Nullsect[i] = 0; } /* Find out what the user wants done */ if (io_rd) { /* abs disk read */ abs_read(); /* will not return */ } else if (io_wrt && !io_readonly) { abs_write(); /* will not return */ } else if (io_patt && !io_readonly) { fill_patt(); /* will not return */ } /* This is the fdisk edit, the real reason for the program. */ sanity_check_provided_device(Dfltdev, Dev); /* Get the new BOOT program in case we write a new fdisk table */ mboot_read(); /* Read from disk master boot */ dev_mboot_read(); /* * Verify and copy the device's fdisk table. This will be used * as the prototype mboot if the device's mboot looks invalid. */ Bootblk = (struct mboot *)Bootsect; copy_Bootblk_to_Table(); /* save away a copy of Table in Old_Table for sensing changes */ copy_Table_to_Old_Table(); /* Load fdisk table from specified file (-F fdisk_file) */ if (io_ffdisk) { /* Load and verify user-specified table parameters */ load(LOADFILE, io_ffdisk); } /* Does user want to delete or add an entry? */ if (io_Dfdisk) { load(LOADDEL, io_Dfdisk); } if (io_Afdisk) { load(LOADADD, io_Afdisk); } if (!io_ffdisk && !io_Afdisk && !io_Dfdisk) { /* Check if there is no fdisk table */ if (Table[0].systid == UNUSED || io_wholedisk || io_EFIdisk) { if (io_ifdisk && !io_wholedisk && !io_EFIdisk) { printf("No fdisk table exists. The default" " partition for the disk is:\n\n"); printf(" a 100%% \"SOLARIS System\" " "partition\n\n"); printf("Type \"y\" to accept the default " "partition, otherwise type \"n\" to " "edit the\n partition table.\n"); } /* Edit the partition table as directed */ if (io_wholedisk ||(io_ifdisk && yesno())) { /* Default scenario */ nulltbl(); /* now set up UNIX System partition */ Table[0].bootid = ACTIVE; Table[0].relsect = lel(heads * sectors); Table[0].numsect = lel((long)((Numcyl-1) * heads * sectors)); Table[0].systid = SUNIXOS2; /* Solaris */ /* calculate CHS values for table entry 0 */ Set_Table_CHS_Values(0); update_disk_and_exit(B_TRUE); } else if (io_EFIdisk) { /* create an EFI partition for the whole disk */ nulltbl(); i = insert_tbl(EFI_PMBR, 0, 0, 0, 0, 0, 0, 0, 1, (Numcyl * heads * sectors) - 1); if (i != 0) { fprintf(stderr, "Error creating EFI " "partition\n"); exit(1); } update_disk_and_exit(B_TRUE); } } } /* Display complete fdisk table entries for debugging purposes */ if (io_debug) { fprintf(stderr, "Partition Table Entry Values:\n"); print_Table(); if (io_ifdisk) { fprintf(stderr, "\n"); fprintf(stderr, "Press Enter to continue.\n"); gets(s); } } /* Interactive fdisk mode */ if (io_ifdisk) { printf(CLR_SCR); disptbl(); while (1) { stage0(argv[1]); copy_Bootblk_to_Table(); disptbl(); } } /* If user wants to write the table to a file, do it */ if (io_Wfdisk) ffile_write(io_Wfdisk); else if (stdo_flag) ffile_write((char *)stdout); update_disk_and_exit(TableChanged() == 1); } /* * read_geom * Read geometry from specified file (-S). */ read_geom(sgeom) char *sgeom; { char line[256]; FILE *fp; /* open the prototype file */ if ((fp = fopen(sgeom, "r")) == NULL) { (void) fprintf(stderr, "fdisk: Cannot open file %s.\n", io_sgeom); return (1); } /* Read a line from the file */ while (fgets(line, sizeof (line) - 1, fp)) { if (line[0] == '\0' || line[0] == '\n' || line[0] == '*') continue; else { line[strlen(line)] = '\0'; if (sscanf(line, "%d %d %d %d %d %d %d", &disk_geom.dkg_pcyl, &disk_geom.dkg_ncyl, &disk_geom.dkg_acyl, &disk_geom.dkg_bcyl, &disk_geom.dkg_nhead, &disk_geom.dkg_nsect, §siz) != 7) { (void) fprintf(stderr, "Syntax error:\n \"%s\".\n", line); return (1); } break; } /* else */ } /* while (fgets(line, sizeof (line) - 1, fp)) */ if (!io_image) { if (ioctl(Dev, DKIOCSGEOM, &disk_geom)) { (void) fprintf(stderr, "fdisk: Cannot set label geometry.\n"); return (1); } } else { Numcyl = hba_Numcyl = disk_geom.dkg_ncyl; heads = hba_heads = disk_geom.dkg_nhead; sectors = hba_sectors = disk_geom.dkg_nsect; acyl = disk_geom.dkg_acyl; } fclose(fp); return (0); } /* * dev_mboot_read * Read the master boot sector from the device. */ dev_mboot_read() { if ((ioctl(Dev, DKIOCGMBOOT, Bootsect) < 0) && (errno != ENOTTY)) { perror("Error in ioctl DKIOCGMBOOT"); } if (errno == 0) return; if (lseek(Dev, 0, SEEK_SET) == -1) { fprintf(stderr, "fdisk: Error seeking to partition table on %s.\n", Dfltdev); if (!io_image) exit(1); } if (read(Dev, Bootsect, sectsiz) != sectsiz) { fprintf(stderr, "fdisk: Error reading partition table from %s.\n", Dfltdev); if (!io_image) exit(1); } } /* * dev_mboot_write * Write the master boot sector to the device. */ dev_mboot_write(int sect, char *buff, int bootsiz) { int new_pt, old_pt, error; int clr_efi = -1, old_solaris = -1, new_solaris = -1; if (io_readonly) return (0); if (io_debug) { fprintf(stderr, "About to write fdisk table:\n"); print_Table(); if (io_ifdisk) { fprintf(stderr, "Press Enter to continue.\n"); gets(s); } } /* see if the old table had EFI or Solaris partitions */ for (old_pt = 0; old_pt < FD_NUMPART; old_pt++) { if (Old_Table[old_pt].systid == SUNIXOS || Old_Table[old_pt].systid == SUNIXOS2) { old_solaris = old_pt; } else if (Old_Table[old_pt].systid == EFI_PMBR) { clr_efi = old_pt; } } /* look to see if Solaris partition changed in relsect/numsect */ for (new_pt = 0; new_pt < FD_NUMPART; new_pt++) { /* * if this is not a Solaris partition, ignore it */ if (Table[new_pt].systid != SUNIXOS && Table[new_pt].systid != SUNIXOS2) continue; /* * if there was no previous Solaris partition * or if the old partition was in a different place * or if the old partition was a different size * then this must be a new Solaris partition */ if (old_solaris == -1 || Old_Table[old_solaris].relsect != Table[new_pt].relsect || Old_Table[old_solaris].numsect != Table[new_pt].numsect) { new_solaris = new_pt; break; } } /* look to see if a EFI partition changed in relsect/numsect */ for (new_pt = 0; new_pt < FD_NUMPART; new_pt++) { if (Table[new_pt].systid != EFI_PMBR) continue; for (old_pt = 0; old_pt < FD_NUMPART; old_pt++) { if ((Old_Table[old_pt].systid == Table[new_pt].systid) && (Old_Table[old_pt].relsect == Table[new_pt].relsect) && (Old_Table[old_pt].numsect == Table[new_pt].numsect)) break; } /* * if EFI partition changed, set the flag to clear * the EFI GPT */ if (old_pt == FD_NUMPART && Table[new_pt].begcyl != 0) { clr_efi = 0; } break; } /* clear labels if necessary */ if (clr_efi >= 0) { if (io_debug) { fprintf(stderr, "Clearing EFI labels\n"); } if ((error = clear_efi()) != 0) { if (io_debug) { fprintf(stderr, "\tError %d clearing EFI labels" " (probably no EFI labels exist)\n", error); } } } if (new_solaris >= 0) { if (io_debug) { fprintf(stderr, "Clearing VTOC labels from NEW" " table\n"); } clear_vtoc(NEW, new_solaris); } if ((ioctl(Dev, DKIOCSMBOOT, buff) == -1) && (errno != ENOTTY)) { fprintf(stderr, "fdisk: Error in ioctl DKIOCSMBOOT on %s.\n", Dfltdev); } if (errno == 0) return; /* write to disk drive */ if (lseek(Dev, sect, SEEK_SET) == -1) { fprintf(stderr, "fdisk: Error seeking to master boot record on %s.\n", Dfltdev); exit(1); } if (write(Dev, buff, bootsiz) != bootsiz) { fprintf(stderr, "fdisk: Error writing master boot record to %s.\n", Dfltdev); exit(1); } } /* * mboot_read * Read the prototype boot records from the files. */ mboot_read() { int mDev, i; struct stat statbuf; struct ipart *part; #if defined(i386) || defined(sparc) /* * If the master boot file hasn't been specified, use the * implementation architecture name to generate the default one. */ if (io_mboot == (char *)0) { /* * Bug ID 1249035: * The mboot file must be delivered on all platforms * and installed in a non-platform-dependent * directory; i.e., /usr/lib/fs/ufs. */ io_mboot = "/usr/lib/fs/ufs/mboot"; } /* First read in the master boot record */ /* Open the master boot proto file */ if ((mDev = open(io_mboot, O_RDONLY, 0666)) == -1) { fprintf(stderr, "fdisk: Cannot open master boot file %s.\n", io_mboot); exit(1); } /* Read the master boot program */ if (read(mDev, &BootCod, sizeof (struct mboot)) != sizeof (struct mboot)) { fprintf(stderr, "fdisk: Cannot read master boot file %s.\n", io_mboot); exit(1); } /* Is this really a master boot record? */ if (les(BootCod.signature) != MBB_MAGIC) { fprintf(stderr, "fdisk: Invalid master boot file %s.\n", io_mboot); fprintf(stderr, "Bad magic number: is %x, but should be %x.\n", les(BootCod.signature), MBB_MAGIC); exit(1); } close(mDev); #else #error fdisk needs to be ported to new architecture #endif /* Zero out the partitions part of this record */ part = (struct ipart *)BootCod.parts; for (i = 0; i < FD_NUMPART; i++, part++) { memset(part, 0, sizeof (struct ipart)); } } /* * fill_patt * Fill the disk with user/sector number pattern. */ fill_patt() { int *buff_ptr, i, c; int io_fpatt = 0; int io_ipatt = 0; if (strncmp(io_fatt, "#", 1) != 0) { io_fpatt++; io_ipatt = strtoul(io_fatt, 0, 0); buff_ptr = (int *)Bootsect; for (i = 0; i < sectsiz; i += 4, buff_ptr++) *buff_ptr = io_ipatt; } /* * Fill disk with pattern based on block number. * Write to the disk at absolute relative block io_offset * for io_size blocks. */ while (io_size--) { buff_ptr = (int *)Bootsect; if (!io_fpatt) { for (i = 0; i < sectsiz; i += 4, buff_ptr++) *buff_ptr = io_offset; } /* Write the data to disk */ if (lseek(Dev, sectsiz * io_offset++, SEEK_SET) == -1) { fprintf(stderr, "fdisk: Error seeking on %s.\n", Dfltdev); exit(1); } if (write(Dev, Bootsect, sectsiz) != sectsiz) { fprintf(stderr, "fdisk: Error writing %s.\n", Dfltdev); exit(1); } } /* while (--io_size); */ } /* * abs_read * Read from the disk at absolute relative block io_offset for * io_size blocks. Write the data to standard ouput (-r). */ abs_read() { int c; while (io_size--) { if (lseek(Dev, sectsiz * io_offset++, SEEK_SET) == -1) { fprintf(stderr, "fdisk: Error seeking on %s.\n", Dfltdev); exit(1); } if (read(Dev, Bootsect, sectsiz) != sectsiz) { fprintf(stderr, "fdisk: Error reading %s.\n", Dfltdev); exit(1); } /* Write to standard ouptut */ if ((c = write(1, Bootsect, (unsigned)sectsiz)) != sectsiz) { if (c >= 0) { if (io_debug) fprintf(stderr, "fdisk: Output warning: %d of %d" " characters written.\n", c, sectsiz); exit(2); } else { perror("write error on output file."); exit(2); } } /* if ((c = write(1, Bootsect, (unsigned)sectsiz)) */ /* != sectsiz) */ } /* while (--io_size); */ exit(0); } /* * abs_write * Read the data from standard input. Write to the disk at * absolute relative block io_offset for io_size blocks (-w). */ abs_write() { int c, i; while (io_size--) { int part_exit = 0; /* Read from standard input */ if ((c = read(0, Bootsect, (unsigned)sectsiz)) != sectsiz) { if (c >= 0) { if (io_debug) fprintf(stderr, "fdisk: WARNING: Incomplete read (%d of" " %d characters read) on input file.\n", c, sectsiz); /* Fill pattern to mark partial sector in buf */ for (i = c; i < sectsiz; ) { Bootsect[i++] = 0x41; Bootsect[i++] = 0x62; Bootsect[i++] = 0x65; Bootsect[i++] = 0; } part_exit++; } else { perror("read error on input file."); exit(2); } } /* Write to disk drive */ if (lseek(Dev, sectsiz * io_offset++, SEEK_SET) == -1) { fprintf(stderr, "fdisk: Error seeking on %s.\n", Dfltdev); exit(1); } if (write(Dev, Bootsect, sectsiz) != sectsiz) { fprintf(stderr, "fdisk: Error writing %s.\n", Dfltdev); exit(1); } if (part_exit) exit(0); } /* while (--io_size); */ exit(1); } /* * load * Load will either read the fdisk table from a file or add or * delete an entry (-A, -D, -F). */ load(funct, file) int funct; char *file; /* Either file name or delete/add line */ { int id; int act; int bhead; int bsect; int bcyl; int ehead; int esect; int ecyl; int rsect; int numsect; char line[256]; int i = 0; int j; FILE *fp; switch (funct) { case LOADFILE: /* * Zero out the table before loading it, which will * force it to be updated on disk later (-F * fdisk_file). */ nulltbl(); /* Open the prototype file */ if ((fp = fopen(file, "r")) == NULL) { (void) fprintf(stderr, "fdisk: Cannot open prototype partition file %s.\n", file); exit(1); } /* Read a line from the file */ while (fgets(line, sizeof (line) - 1, fp)) { if (pars_fdisk(line, &id, &act, &bhead, &bsect, &bcyl, &ehead, &esect, &ecyl, &rsect, &numsect)) { continue; } /* * Validate the partition. It cannot start at sector * 0 unless it is UNUSED or already exists */ if (validate_part(id, rsect, numsect) < 0) { (void) fprintf(stderr, "fdisk: Error on entry \"%s\".\n", line); exit(1); } /* * Find an unused entry to use and put the entry * in table */ if (insert_tbl(id, act, bhead, bsect, bcyl, ehead, esect, ecyl, rsect, numsect) < 0) { (void) fprintf(stderr, "fdisk: Error on entry \"%s\".\n", line); exit(1); } } /* while (fgets(line, sizeof (line) - 1, fp)) */ if (verify_tbl() < 0) { fprintf(stderr, "fdisk: Cannot create partition table\n"); exit(1); } fclose(fp); return; case LOADDEL: /* Parse the user-supplied deletion line (-D) */ pars_fdisk(file, &id, &act, &bhead, &bsect, &bcyl, &ehead, &esect, &ecyl, &rsect, &numsect); /* Find the exact entry in the table */ for (i = 0; i < FD_NUMPART; i++) { if (Table[i].systid == id && Table[i].bootid == act && Table[i].beghead == bhead && Table[i].begsect == ((bsect & 0x3f) | (unsigned char)((bcyl>>2) & 0xc0)) && Table[i].begcyl == (unsigned char)(bcyl & 0xff) && Table[i].endhead == ehead && Table[i].endsect == ((esect & 0x3f) | (unsigned char)((ecyl>>2) & 0xc0)) && Table[i].endcyl == (unsigned char)(ecyl & 0xff) && Table[i].relsect == lel(rsect) && Table[i].numsect == lel(numsect)) { /* * Found the entry. Now move rest of * entries up toward the top of the * table, leaving available entries at * the end of the fdisk table. */ for (j = i; j < FD_NUMPART-1; j++) { Table[j].systid = Table[j+1].systid; Table[j].bootid = Table[j+1].bootid; Table[j].beghead = Table[j+1].beghead; Table[j].begsect = Table[j+1].begsect; Table[j].begcyl = Table[j+1].begcyl; Table[j].endhead = Table[j+1].endhead; Table[j].endsect = Table[j+1].endsect; Table[j].endcyl = Table[j+1].endcyl; Table[j].relsect = Table[j+1].relsect; Table[j].numsect = Table[j+1].numsect; } /* * Mark the last entry as unused in case * all table entries were in use prior * to the deletion. */ Table[FD_NUMPART-1].systid = UNUSED; Table[FD_NUMPART-1].bootid = 0; return; } } fprintf(stderr, "fdisk: Entry does not match any existing partition:\n" " \"%s\"\n", file); exit(1); case LOADADD: /* Parse the user-supplied addition line (-A) */ pars_fdisk(file, &id, &act, &bhead, &bsect, &bcyl, &ehead, &esect, &ecyl, &rsect, &numsect); /* Validate the partition. It cannot start at sector 0 */ if (rsect == 0) { (void) fprintf(stderr, "fdisk: New partition cannot start at sector 0:\n" " \"%s\".\n", file); exit(1); } /* * if the user wishes to add an EFI partition, we need * more extensive validation. rsect should be 1, and * numsect should equal the entire disk capacity - 1 */ if (id == EFI_PMBR) { if (rsect != 1) { (void) fprintf(stderr, "fdisk: EFI partitions must start at sector" " 1 (input rsect = %d)\n", rsect); exit(1); } if (numsect != ((Numcyl * heads * sectors) -1)) { (void) fprintf(stderr, "fdisk: EFI partitions must encompass the " "entire disk\n (input numsect: %ld - avail:" " %ld)\n", numsect, ((Numcyl * heads * sectors) -1)); exit(1); } } /* Find unused entry for use and put entry in table */ if (insert_tbl(id, act, bhead, bsect, bcyl, ehead, esect, ecyl, rsect, numsect) < 0) { (void) fprintf(stderr, "fdisk: Invalid entry could not be inserted:\n" " \"%s\"\n", file); exit(1); } /* Make sure new entry does not overlap existing entry */ if (verify_tbl() < 0) { fprintf(stderr, "fdisk: Cannot create partition \"%s\",\n"); exit(1); } } /* switch funct */ } /* * Set_Table_CHS_Values * * This will calculate the CHS values for beginning and ending CHS * for a single partition table entry (ti) based on the relsect * and numsect values contained in the partion table entry. * * hba_heads and hba_sectors contain the number of heads and sectors. * * If the number of cylinders exceeds the MAX_CYL, * then maximum values will be placed in the corresponding chs entry. */ static void Set_Table_CHS_Values(int ti) { uint32_t lba, cy, hd, sc; lba = (uint32_t)Table[ti].relsect; if (lba >= hba_heads * hba_sectors * MAX_CYL) { /* * the lba address cannot be expressed in CHS value * so store the maximum CHS field values in the CHS fields. */ cy = MAX_CYL + 1; hd = MAX_HEAD; sc = MAX_SECT; } else { cy = lba / hba_sectors / hba_heads; hd = lba / hba_sectors % hba_heads; sc = lba % hba_sectors + 1; } Table[ti].begcyl = cy & 0xff; Table[ti].beghead = hd; Table[ti].begsect = ((cy >> 2) & 0xc0) | sc; /* * This code is identical to the code above * except that it works on ending CHS values */ lba = (uint32_t)(Table[ti].relsect + Table[ti].numsect - 1); if (lba >= hba_heads * hba_sectors * MAX_CYL) { cy = MAX_CYL + 1; hd = MAX_HEAD; sc = MAX_SECT; } else { cy = lba / hba_sectors / hba_heads; hd = lba / hba_sectors % hba_heads; sc = lba % hba_sectors + 1; } Table[ti].endcyl = cy & 0xff; Table[ti].endhead = hd; Table[ti].endsect = ((cy >> 2) & 0xc0) | sc; } /* * insert_tbl * Insert entry into fdisk table. Check all user-supplied values * for the entry, but not the validity relative to other table * entries! */ insert_tbl(id, act, bhead, bsect, bcyl, ehead, esect, ecyl, rsect, numsect) int id, act, bhead, bsect, bcyl, ehead, esect, ecyl, rsect, numsect; { int i; /* validate partition size */ if (rsect+numsect > (Numcyl * heads * sectors)) { fprintf(stderr, "fdisk: Partition table exceeds the size of the disk.\n"); return (-1); } /* find UNUSED partition table entry */ for (i = 0; i < FD_NUMPART; i++) { if (Table[i].systid == UNUSED) { break; } } if (i >= FD_NUMPART) { fprintf(stderr, "fdisk: Partition table is full.\n"); return (-1); } Table[i].systid = id; Table[i].bootid = act; Table[i].numsect = lel(numsect); Table[i].relsect = lel(rsect); /* * If we have been called with a valid geometry, use it * valid means non-zero values that fit in the BIOS fields */ if (0 < bsect && bsect <= MAX_SECT && 0 <= bhead && bhead <= MAX_HEAD && 0 < esect && esect <= MAX_SECT && 0 <= ehead && ehead <= MAX_HEAD) { if (bcyl > MAX_CYL) bcyl = MAX_CYL + 1; if (ecyl > MAX_CYL) ecyl = MAX_CYL + 1; Table[i].begcyl = bcyl & 0xff; Table[i].endcyl = ecyl & 0xff; Table[i].beghead = bhead; Table[i].endhead = ehead; Table[i].begsect = ((bcyl >> 2) & 0xc0) | bsect; Table[i].endsect = ((ecyl >> 2) & 0xc0) | esect; } else { /* * The specified values are invalid, * so calculate the values based on hba_heads, hba_sectors */ Set_Table_CHS_Values(i); } /* * return partition index */ return (i); } /* * verify_tbl * Verify that no partition entries overlap or exceed the size of * the disk. */ int verify_tbl() { int i, j, rsect, numsect; int noMoreParts = 0; int numParts = 0; /* Make sure new entry does not overlap an existing entry */ for (i = 0; i < FD_NUMPART-1; i++) { if (Table[i].systid != UNUSED) { numParts++; /* * No valid partitions allowed after an UNUSED or * EFI_PMBR part */ if (noMoreParts) { return (-1); } /* * EFI_PMBR partitions must be the only partition * and must be Table entry 0 */ if (Table[i].systid == EFI_PMBR) { if (i == 0) { noMoreParts = 1; } else { return (-1); } if (Table[i].relsect != 1) { fprintf(stderr, "ERROR: " "Invalid starting sector " "for EFI_PMBR partition:\n" "relsect %d " "(should be 1)\n", Table[i].relsect); return (-1); } if (Table[i].numsect != ((Numcyl * heads * sectors) - 1)) { fprintf(stderr, "ERROR: " "EFI_PMBR partition must " "encompass the entire " "disk.\n numsect %ld - " "actual %ld\n", Table[i].numsect, ((Numcyl * heads * sectors) - 1)); return (-1); } } /* make sure the partition isn't larger than the disk */ rsect = lel(Table[i].relsect); numsect = lel(Table[i].numsect); if ((rsect + numsect) > (Numcyl * heads * sectors)) { return (-1); } for (j = i+1; j < FD_NUMPART; j++) { if (Table[j].systid != UNUSED) { int t_relsect = lel(Table[j].relsect); int t_numsect = lel(Table[j].numsect); if (noMoreParts) { fprintf(stderr, "Cannot add partition to " "table; no more partitions " "allowed\n"); if (io_debug) { fprintf(stderr, "DEBUG: Current " "partition:\t" "%d:%d:%d:%d:%d:" "%d:%d:%d:%d:%ld\n" " Next " "partition:\t\t" "%d:%d:%d:%d:%d:" "%d:%d:%d:%d:%ld\n", Table[i].systid, Table[i].bootid, Table[i].begcyl, Table[i].beghead, Table[i].begsect, Table[i].endcyl, Table[i].endhead, Table[i].endsect, Table[i].relsect, Table[i].numsect, Table[j].systid, Table[j].bootid, Table[j].begcyl, Table[j].beghead, Table[j].begsect, Table[j].endcyl, Table[j].endhead, Table[j].endsect, Table[j].relsect, Table[j].numsect); } return (-1); } if ((rsect >= (t_relsect + t_numsect)) || ((rsect+numsect) <= t_relsect)) { continue; } else { fprintf(stderr, "ERROR: " "current partition overlaps" " following partition\n"); return (-1); } } } } else { noMoreParts = 1; } } if (Table[i].systid != UNUSED) { if (noMoreParts || ((lel(Table[i].relsect) + lel(Table[i].numsect)) > (Numcyl * heads * sectors))) { return (-1); } } return (numParts); } /* * pars_fdisk * Parse user-supplied data to set up fdisk partitions * (-A, -D, -F). */ pars_fdisk(line, id, act, bhead, bsect, bcyl, ehead, esect, ecyl, rsect, numsect) char *line; char *id, *act, *bhead, *bsect, *bcyl, *ehead, *esect, *ecyl, *rsect; char *numsect; { int i; if (line[0] == '\0' || line[0] == '\n' || line[0] == '*') return (1); line[strlen(line)] = '\0'; for (i = 0; i < strlen(line); i++) { if (line[i] == '\0') { break; } else if (line[i] == ':') { line[i] = ' '; } } if (sscanf(line, "%d %d %d %d %d %d %d %d %ld %ld", id, act, bhead, bsect, bcyl, ehead, esect, ecyl, rsect, numsect) != 10) { (void) fprintf(stderr, "Syntax error:\n \"%s\".\n", line); exit(1); } return (0); } /* * validate_part * Validate that a new partition does not start at sector 0. Only UNUSED * partitions and previously existing partitions are allowed to start at 0. */ validate_part(id, rsect, numsect) int id, rsect, numsect; { int i; if ((id != UNUSED) && (rsect == 0)) { for (i = 0; i < FD_NUMPART; i++) { if ((Old_Table[i].systid == id) && (Old_Table[i].relsect == lel(rsect)) && (Old_Table[i].numsect == lel(numsect))) return (0); } fprintf(stderr, "New partition cannot start at sector 0\n"); return (-1); } return (0); } /* * stage0 * Print out interactive menu and process user input. */ stage0(file) char *file; { dispmenu(file); while (1) { printf(Q_LINE); printf("Enter Selection: "); gets(s); rm_blanks(s); while (!((s[0] > '0') && (s[0] < '7') && (s[1] == 0))) { printf(E_LINE); /* Clear any previous error */ printf("Enter a one-digit number between 1 and 6."); printf(Q_LINE); printf("Enter Selection: "); gets(s); rm_blanks(s); } printf(E_LINE); switch (s[0]) { case '1': if (pcreate() == -1) return; break; case '2': if (pchange() == -1) return; break; case '3': if (pdelete() == -1) return; break; case '4': if (ppartid() == -1) return; break; case '5': /* update disk partition table, if changed */ if (TableChanged() == 1) { copy_Table_to_Bootblk(); dev_mboot_write(0, Bootsect, sectsiz); } /* * If the VTOC table is wrong fix it * (truncate only) */ if (io_adjt) { fix_slice(); } close(Dev); exit(0); case '6': /* * If the VTOC table is wrong fix it * (truncate only) */ if (io_adjt) { fix_slice(); } close(Dev); exit(0); default: break; } copy_Table_to_Bootblk(); disptbl(); dispmenu(file); } } /* * pcreate * Create partition entry in the table (interactive mode). */ pcreate() { unsigned char tsystid = 'z'; int i, j; int startcyl, endcyl; int rsect = 1; int retCode = 0; i = 0; while (1) { if (i == FD_NUMPART) { printf(E_LINE); printf("The partition table is full!\n"); printf("You must delete a partition before creating" " a new one.\n"); return (-1); } if (Table[i].systid == UNUSED) { break; } i++; } j = 0; for (i = 0; i < FD_NUMPART; i++) { if (Table[i].systid != UNUSED) { j += lel(Table[i].numsect); } if (j >= Numcyl * heads * sectors) { printf(E_LINE); printf("There is no more room on the disk for" " another partition.\n"); printf("You must delete a partition before creating" " a new one.\n"); return (-1); } } while (tsystid == 'z') { printf(Q_LINE); printf("Select the partition type to create:\n"); printf(" 1=SOLARIS2 2=UNIX 3=PCIXOS 4=Other\n"); printf(" 5=DOS12 6=DOS16 7=DOSEXT 8=DOSBIG\n"); printf(" 9=DOS16LBA A=x86 Boot B=Diagnostic C=FAT32\n"); printf(" D=FAT32LBA E=DOSEXTLBA F=EFI 0=Exit? "); gets(s); rm_blanks(s); if (s[1] != 0) { printf(E_LINE); printf("Invalid selection, try again."); continue; } switch (s[0]) { case '0': /* exit */ printf(E_LINE); return (-1); case '1': /* Solaris partition */ tsystid = SUNIXOS2; break; case '2': /* UNIX partition */ tsystid = UNIXOS; break; case '3': /* PCIXOS partition */ tsystid = PCIXOS; break; case '4': /* OTHEROS System partition */ tsystid = OTHEROS; break; case '5': tsystid = DOSOS12; /* DOS 12 bit fat */ break; case '6': tsystid = DOSOS16; /* DOS 16 bit fat */ break; case '7': tsystid = EXTDOS; break; case '8': tsystid = DOSHUGE; break; case '9': tsystid = FDISK_FAT95; /* FAT16, need extended int13 */ break; case 'a': /* x86 Boot partition */ case 'A': tsystid = X86BOOT; break; case 'b': /* Diagnostic boot partition */ case 'B': tsystid = DIAGPART; break; case 'c': /* FAT32 */ case 'C': tsystid = FDISK_WINDOWS; break; case 'd': /* FAT32 and need extended int13 */ case 'D': tsystid = FDISK_EXT_WIN; break; case 'e': /* Extended partition, need extended int13 */ case 'E': tsystid = FDISK_EXTLBA; break; case 'f': case 'F': tsystid = EFI_PMBR; break; default: printf(E_LINE); printf("Invalid selection, try again."); continue; } } printf(E_LINE); if (tsystid != EFI_PMBR) { /* create the new partition */ i = specify(tsystid); if (i != -1) { /* see if it should be the active partition */ printf(E_LINE); printf(Q_LINE); printf("Should this become the active partition? If " "yes, it will be activated\n"); printf("each time the computer is reset or turned " "on.\n"); printf("Please type \"y\" or \"n\". "); if (yesno()) { printf(E_LINE); for (j = 0; j < FD_NUMPART; j++) { if (j == i) { Table[j].bootid = ACTIVE; printf(E_LINE); printf("Partition %d is now " "the active partition.", j+1); } else { Table[j].bootid = 0; } } } else { Table[i].bootid = 0; } /* set up the return code */ i = 1; } } else { /* * partitions of type EFI_PMBR must be the only partitions in * the table * * First, make sure there were no errors the table is * empty */ retCode = verify_tbl(); if (retCode < 0) { fprintf(stderr, "fdisk: Cannot create EFI partition table; \n" "current partition table is invalid.\n"); return (-1); } else if (retCode > 0) { printf("An EFI partition must be the only partition on " "disk. You may manually delete existing\n" "partitions, or fdisk can do it.\n"); printf("Do you want fdisk to destroy existing " "partitions?\n"); printf("Please type \"y\" or \"n\". "); if (yesno()) { nulltbl(); } else { return (-1); } } /* create the table entry - i should be 0 */ i = insert_tbl(tsystid, 0, 0, 0, 0, 0, 0, 0, rsect, (Numcyl * heads * sectors) - rsect); if (i != 0) { printf("Error creating EFI partition!!!\n"); i = -1; } else { /* EFI partitions are currently never active */ Table[i].bootid = 0; /* set up the return code */ i = 1; } } return (i); } /* * specify * Query the user to specify the size of the new partition in * terms of percentage of the disk or by specifying the starting * cylinder and length in cylinders. */ specify(tsystid) unsigned char tsystid; { int i, j, percent = -1; int cyl, cylen, first_free, size_free; struct ipart *partition[FD_NUMPART]; printf(Q_LINE); printf("Specify the percentage of disk to use for this partition\n"); printf("(or type \"c\" to specify the size in cylinders). "); gets(s); rm_blanks(s); if (s[0] != 'c') { /* Specify size in percentage of disk */ i = 0; while (s[i] != '\0') { if (s[i] < '0' || s[i] > '9') { printf(E_LINE); printf("Invalid percentage value specified; retry" " the operation."); return (-1); } i++; if (i > 3) { printf(E_LINE); printf("Invalid percentage value specified; retry" " the operation."); return (-1); } } if ((percent = atoi(s)) > 100) { printf(E_LINE); printf("Percentage value is too large. The value must be" " between 1 and 100;\nretry the operation.\n"); return (-1); } if (percent < 1) { printf(E_LINE); printf("Percentage value is too small. The value must be" " between 1 and 100;\nretry the operation.\n"); return (-1); } cylen = (Numcyl * percent) / 100; if ((percent < 100) && (((Numcyl * percent) % 10) > 5)) cylen++; /* Verify that the DOS12 partition does not exceed the maximum */ /* size of 32MB. */ if ((tsystid == DOSOS12) && ((long)((long)cylen*heads*sectors) > MAXDOS)) { int n; n = (int)(MAXDOS*100/(int)(heads*sectors)/Numcyl); printf(E_LINE); printf("Maximum size for a DOS partition is %d%%;" " retry the operation.", n <= 100 ? n : 100); return (-1); } /* Before searching the partitions, sort them into sector order */ /* in the partition array, note that we only need to sort */ /* NUMPART-1 entries as at least the last one must be empty */ for (i = 0; i < FD_NUMPART; i++) partition[i] = &Table[i]; for (i = 0; i < FD_NUMPART-2; i++) { if (partition[i]->systid == UNUSED) break; for (j = i+1; j < FD_NUMPART-1; j++) { if (partition[j]->systid == UNUSED) break; if (lel(partition[j]->relsect) < lel(partition[i]->relsect)) { struct ipart *temp = partition[i]; partition[i] = partition[j]; partition[j] = temp; } } } for (i = 0; i < FD_NUMPART; i++) { int last_ent = 0; /* Find start of current check area */ if (i) { /* Not an empty table */ first_free = lel(partition[i-1]->relsect) + lel(partition[i-1]->numsect); } else { first_free = heads * sectors; } /* Determine size of current check area */ if (partition[i]->systid == UNUSED) { /* Special case hack for whole unused disk */ if (percent == 100 && i == 0) cylen--; size_free = (Numcyl*heads*sectors) - first_free; last_ent++; } else { if (i && ((lel(partition[i-1]->relsect) + lel(partition[i-1]->numsect)) != lel(partition[i]->relsect))) { /* There is a hole in table */ size_free = lel(partition[i]->relsect) - (lel(partition[i-1]->relsect) + lel(partition[i-1]->numsect)); } else if (i == 0) { size_free = lel(partition[i]->relsect) - heads*sectors; } else { size_free = 0; } } if ((cylen*heads*sectors) <= size_free) { /* We found a place to use */ break; } else if (last_ent) { size_free = 0; break; } } if (i < FD_NUMPART && size_free) { printf(E_LINE); if ((i = insert_tbl(tsystid, 0, 0, 0, 0, 0, 0, 0, first_free, cylen*heads*sectors)) < 0) { fprintf(stderr, "fdisk: Partition entry too big.\n"); return (-1); } } else { printf(E_LINE); fprintf(stderr, "fdisk: Partition entry too big.\n"); i = -1; } return (i); } else { /* Specifying size in cylinders */ printf(E_LINE); printf(Q_LINE); printf("Enter starting cylinder number: "); if ((cyl = getcyl()) == -1) { printf(E_LINE); printf("Invalid number; retry the operation."); return (-1); } if (cyl == 0) { printf(E_LINE); printf("New partition cannot start at cylinder 0.\n"); return (-1); } if (cyl >= (unsigned int)Numcyl) { printf(E_LINE); printf("Cylinder %d is out of bounds, the maximum is %d.\n", cyl, Numcyl - 1); return (-1); } printf(Q_LINE); printf("Enter partition size in cylinders: "); if ((cylen = getcyl()) == -1) { printf(E_LINE); printf("Invalid number, retry the operation."); return (-1); } /* Verify that the DOS12 partition does not exceed the maximum */ /* size of 32MB. */ if ((tsystid == DOSOS12) && ((long)((long)cylen*heads*sectors) > MAXDOS)) { printf(E_LINE); printf("Maximum size for a %s partition is %ld cylinders;" "\nretry the operation.", Dstr, MAXDOS/(int)(heads*sectors)); return (-1); } i = insert_tbl(tsystid, 0, 0, 0, 0, 0, 0, 0, cyl*heads*sectors, cylen*heads*sectors); if (verify_tbl() < 0) { printf(E_LINE); printf("fdisk: Cannot create partition table\n"); return (-1); } return (i); } } /* * dispmenu * Display command menu (interactive mode). */ dispmenu(file) char *file; { printf(M_LINE); printf("SELECT ONE OF THE FOLLOWING:\n"); printf(" 1. Create a partition\n"); printf(" 2. Specify the active partition\n"); printf(" 3. Delete a partition\n"); printf(" 4. Change between Solaris and Solaris2 Partition IDs\n"); printf(" 5. Exit (update disk configuration and exit)\n"); printf(" 6. Cancel (exit without updating disk configuration)\n"); } /* * pchange * Change the ACTIVE designation of a partition. */ pchange() { char s[80]; int i, j; while (1) { printf(Q_LINE); { printf("Specify the partition number to boot from" " (or specify 0 for none): "); } gets(s); rm_blanks(s); if ((s[1] != 0) || (s[0] < '0') || (s[0] > '4')) { printf(E_LINE); printf("Invalid response, please specify a number" " between 0 and 4.\n"); } else { break; } } if (s[0] == '0') { /* No active partitions */ for (i = 0; i < FD_NUMPART; i++) { if (Table[i].systid != UNUSED && Table[i].bootid == ACTIVE) Table[i].bootid = 0; } printf(E_LINE); printf("No partition is currently marked as active."); return (0); } else { /* User has selected a partition to be active */ i = s[0] - '1'; if (Table[i].systid == UNUSED) { printf(E_LINE); printf("Partition does not exist."); return (-1); } /* a DOS-DATA or EXT-DOS partition cannot be active */ else if ((Table[i].systid == DOSDATA) || (Table[i].systid == EXTDOS) || (Table[i].systid == FDISK_EXTLBA)) { printf(E_LINE); printf("DOS-DATA, EXT_DOS and EXT_DOS_LBA partitions " "cannot be made active.\n"); printf("Select another partition."); return (-1); } Table[i].bootid = ACTIVE; for (j = 0; j < FD_NUMPART; j++) { if (j != i) Table[j].bootid = 0; } } printf(E_LINE); { printf("Partition %d is now active. The system will start up" " from this\n", i+1); printf("partition after the next reboot."); } return (1); } /* * Change between SOLARIS and SOLARIS2 partition id */ ppartid() { char *p, s[80]; int i; for (;;) { printf(Q_LINE); printf("Specify the partition number to change" " (or enter 0 to exit): "); fgets(s, sizeof (s), stdin); i = strtol(s, &p, 10); if (*p != '\n' || i < 0 || i > FD_NUMPART) { printf(E_LINE); printf("Invalid response, retry the operation.\n"); continue; } if (i == 0) { /* exit delete command */ printf(E_LINE); /* clear error message */ return (1); } i -= 1; if (Table[i].systid == SUNIXOS) { Table[i].systid = SUNIXOS2; } else if (Table[i].systid == SUNIXOS2) { Table[i].systid = SUNIXOS; } else { printf(E_LINE); printf("Partition %d is not a Solaris partition.", i + 1); continue; } printf(E_LINE); printf("Partition %d has been changed.", i + 1); return (1); } } /* * pdelete * Remove partition entry from the table (interactive mode). */ pdelete() { char s[80]; int i, j; char pactive; DEL1: printf(Q_LINE); printf("Specify the partition number to delete" " (or enter 0 to exit): "); gets(s); rm_blanks(s); if ((s[0] == '0')) { /* exit delete command */ printf(E_LINE); /* clear error message */ return (1); } /* Accept only a single digit between 1 and 4 */ if (s[1] != 0 || (i = atoi(s)) < 1 || i > FD_NUMPART) { printf(E_LINE); printf("Invalid response, retry the operation.\n"); goto DEL1; } else { /* Found a digit between 1 and 4 */ --i; /* Structure begins with element 0 */ } if (Table[i].systid == UNUSED) { printf(E_LINE); printf("Partition %d does not exist.", i+1); return (-1); } printf(Q_LINE); printf("Are you sure you want to delete partition %d?" " This will make all files and \n", i+1); printf("programs in this partition inaccessible (type" " \"y\" or \"n\"). "); printf(E_LINE); if (! yesno()) { return (1); } if (Table[i].bootid == ACTIVE) { pactive = 1; } else { pactive = 0; } for (j = i; j < FD_NUMPART - 1; j++) { Table[j] = Table[j+1]; } Table[j].systid = UNUSED; Table[j].numsect = 0; Table[j].relsect = 0; Table[j].bootid = 0; printf(E_LINE); printf("Partition %d has been deleted.", i+1); if (pactive) { printf(" This was the active partition."); } return (1); } /* * rm_blanks * Remove blanks from strings of user responses. */ rm_blanks(s) char *s; { register int i, j; for (i = 0; i < CBUFLEN; i++) { if ((s[i] == ' ') || (s[i] == '\t')) continue; else /* Found first non-blank character of the string */ break; } for (j = 0; i < CBUFLEN; j++, i++) { if ((s[j] = s[i]) == '\0') { /* Reached end of string */ return; } } } /* * getcyl * Take the user-specified cylinder number and convert it from a * string to a decimal value. */ getcyl() { int slen, i, j; unsigned int cyl; gets(s); rm_blanks(s); slen = strlen(s); j = 1; cyl = 0; for (i = slen-1; i >= 0; i--) { if (s[i] < '0' || s[i] > '9') { return (-1); } cyl += (j*(s[i]-'0')); j *= 10; } return (cyl); } /* * disptbl * Display the current fdisk table; determine percentage * of the disk used for each partition. */ disptbl() { int i; unsigned int startcyl, endcyl, length, percent, remainder; char *stat, *type; unsigned char *t; if ((heads == 0) || (sectors == 0)) { printf("WARNING: critical disk geometry information" " missing!\n"); printf("\theads = %d, sectors = %d\n", heads, sectors); exit(1); } printf(HOME); printf(T_LINE); printf(" Total disk size is %d cylinders\n", Numcyl); printf(" Cylinder size is %d (512 byte) blocks\n\n", heads*sectors); printf(" Cylinders\n"); printf(" Partition Status Type Start End Length" " %%\n"); printf(" ========= ====== ============ ===== === ======" " ==="); for (i = 0; i < FD_NUMPART; i++) { if (Table[i].systid == UNUSED) { printf("\n"); printf(CLR_LIN); continue; } if (Table[i].bootid == ACTIVE) stat = Actvstr; else stat = NAstr; switch (Table[i].systid) { case UNIXOS: type = Ustr; break; case SUNIXOS: type = SUstr; break; case SUNIXOS2: type = SU2str; break; case X86BOOT: type = X86str; break; case DOSOS12: type = Dstr; break; case DOSOS16: type = D16str; break; case EXTDOS: type = EDstr; break; case DOSDATA: type = DDstr; break; case DOSHUGE: type = DBstr; break; case PCIXOS: type = PCstr; break; case DIAGPART: type = DIAGstr; break; case FDISK_IFS: type = IFSstr; break; case FDISK_AIXBOOT: type = AIXstr; break; case FDISK_AIXDATA: type = AIXDstr; break; case FDISK_OS2BOOT: type = OS2str; break; case FDISK_WINDOWS: type = WINstr; break; case FDISK_EXT_WIN: type = EWINstr; break; case FDISK_FAT95: type = FAT95str; break; case FDISK_EXTLBA: type = EXTLstr; break; case FDISK_LINUX: type = LINUXstr; break; case FDISK_CPM: type = CPMstr; break; case FDISK_NOVELL3: type = NOVstr; break; case FDISK_QNX4: type = QNXstr; break; case FDISK_QNX42: type = QNX2str; break; case FDISK_QNX43: type = QNX3str; break; case FDISK_LINUXNAT: type = LINNATstr; break; case FDISK_NTFSVOL1: type = NTFSVOL1str; break; case FDISK_NTFSVOL2: type = NTFSVOL2str; break; case FDISK_BSD: type = BSDstr; break; case FDISK_NEXTSTEP: type = NEXTSTEPstr; break; case FDISK_BSDIFS: type = BSDIFSstr; break; case FDISK_BSDISWAP: type = BSDISWAPstr; break; case EFI_PMBR: type = EFIstr; break; default: type = Ostr; break; } t = &Table[i].bootid; startcyl = lel(Table[i].relsect)/(heads*sectors); length = lel(Table[i].numsect) / (long)(heads * sectors); if (lel(Table[i].numsect) % (long)(heads * sectors)) length++; endcyl = startcyl + length - 1; percent = length * 100 / Numcyl; if ((remainder = (length*100 % Numcyl)) != 0) { if ((remainder * 100 / Numcyl) > 50) { /* round up */ percent++; } /* Else leave the percent as is since it's already */ /* rounded down */ } if (percent > 100) percent = 100; printf("\n %d %s %-12.12s %4d %4d %4d" " %3d", i+1, stat, type, startcyl, endcyl, length, percent); } /* Print warning message if table is empty */ if (Table[0].systid == UNUSED) { printf(W_LINE); printf("WARNING: no partitions are defined!"); } else { /* Clear the warning line */ printf(W_LINE); } } /* * print_Table * Write the detailed fdisk table to standard error for * the selected disk device. */ print_Table() { int i; fprintf(stderr, " SYSID ACT BHEAD BSECT BEGCYL EHEAD ESECT ENDCYL RELSECT" " NUMSECT\n"); for (i = 0; i < FD_NUMPART; i++) { fprintf(stderr, " %-5d ", Table[i].systid); fprintf(stderr, "%-3d ", Table[i].bootid); fprintf(stderr, "%-5d ", Table[i].beghead); fprintf(stderr, "%-5d ", Table[i].begsect & 0x3f); fprintf(stderr, "%-8d ", (((uint_t)Table[i].begsect & 0xc0) << 2) + Table[i].begcyl); fprintf(stderr, "%-5d ", Table[i].endhead); fprintf(stderr, "%-5d ", Table[i].endsect & 0x3f); fprintf(stderr, "%-8d ", (((uint_t)Table[i].endsect & 0xc0) << 2) + Table[i].endcyl); fprintf(stderr, "%-9d ", lel(Table[i].relsect)); fprintf(stderr, "%-9d\n", lel(Table[i].numsect)); } } /* * copy_Table_to_Old_Table * Copy Table into Old_Table. The function only copies the systid, * numsect, relsect, and bootid values because they are the only * ones compared when determining if Table has changed. */ copy_Table_to_Old_Table() { int i; for (i = 0; i < FD_NUMPART; i++) { memcpy(&Old_Table[i], &Table[i], sizeof (Table[0])); } } /* * nulltbl * Zero out the systid, numsect, relsect, and bootid values in the * fdisk table. */ nulltbl() { int i; for (i = 0; i < FD_NUMPART; i++) { Table[i].systid = UNUSED; Table[i].numsect = lel(UNUSED); Table[i].relsect = lel(UNUSED); Table[i].bootid = 0; } } /* * copy_Bootblk_to_Table * Copy the bytes from the boot record to an internal "Table". * All unused are padded with zeros starting at offset 446. */ copy_Bootblk_to_Table() { int i, j; char *bootptr; unsigned char *tbl_ptr; int tblpos; void fill_ipart(char *, struct ipart *); struct ipart iparts[FD_NUMPART]; /* Get an aligned copy of the partition tables */ memcpy(iparts, Bootblk->parts, sizeof (iparts)); tbl_ptr = &Table[0].bootid; bootptr = (char *)iparts; /* Points to start of partition table */ if (les(Bootblk->signature) != MBB_MAGIC) { /* Signature is missing */ nulltbl(); memcpy(Bootblk->bootinst, &BootCod, BOOTSZ); return; } /* * When the DOS fdisk command deletes a partition, it is not * recognized by the old algorithm. The algorithm that * follows looks at each entry in the Bootrec and copies all * those that are valid. */ j = 0; for (i = 0; i < FD_NUMPART; i++) { if (iparts[i].systid == 0) { /* Null entry */ bootptr += sizeof (struct ipart); } else { (void) fill_ipart(bootptr, &Table[j]); j++; bootptr += sizeof (struct ipart); } } for (i = j; i < FD_NUMPART; i++) { Table[i].systid = UNUSED; Table[i].numsect = lel(UNUSED); Table[i].relsect = lel(UNUSED); Table[i].bootid = 0; } /* For now, always replace the bootcode with ours */ memcpy(Bootblk->bootinst, &BootCod, BOOTSZ); copy_Table_to_Bootblk(); } /* * fill_ipart * Initialize ipart structure values. */ void fill_ipart(char *bootptr, struct ipart *partp) { #ifdef sparc /* Packing struct ipart for Sparc */ partp->bootid = getbyte(&bootptr); partp->beghead = getbyte(&bootptr); partp->begsect = getbyte(&bootptr); partp->begcyl = getbyte(&bootptr); partp->systid = getbyte(&bootptr); partp->endhead = getbyte(&bootptr); partp->endsect = getbyte(&bootptr); partp->endcyl = getbyte(&bootptr); partp->relsect = getlong(&bootptr); partp->numsect = getlong(&bootptr); #else *partp = *(struct ipart *)bootptr; #endif } /* * getbyte, getshort, getlong * Get a byte, a short, or a long (SPARC only). */ #ifdef sparc getbyte(uchar_t **bp) { int b; b = **bp; *bp = *bp + 1; return (b); } getshort(uchar_t **bp) { int b; b = ((**bp) << 8) | *(*bp + 1); *bp += 2; return (b); } getlong(uchar_t **bp) { int b, bh, bl; bh = ((**bp) << 8) | *(*bp + 1); *bp += 2; bl = ((**bp) << 8) | *(*bp + 1); *bp += 2; b = (bh << 16) | bl; return (b); } #endif /* * copy_Table_to_Bootblk * Copy the table into the 512 boot record. Note that the unused * entries will always be the last ones in the table and they are * marked with 100 in sysind. The the unused portion of the table * is padded with zeros in the bytes after the used entries. */ copy_Table_to_Bootblk() { struct ipart *boot_ptr, *tbl_ptr; boot_ptr = (struct ipart *)Bootblk->parts; tbl_ptr = (struct ipart *)&Table[0].bootid; for (; tbl_ptr < (struct ipart *)&Table[FD_NUMPART].bootid; tbl_ptr++, boot_ptr++) { if (tbl_ptr->systid == UNUSED) memset(boot_ptr, 0, sizeof (struct ipart)); else memcpy(boot_ptr, tbl_ptr, sizeof (struct ipart)); } Bootblk->signature = les(MBB_MAGIC); } /* * TableChanged * Check for any changes in the partition table. */ TableChanged() { int i, changed; changed = 0; for (i = 0; i < FD_NUMPART; i++) { if (memcmp(&Old_Table[i], &Table[i], sizeof (Table[0])) != 0) { /* Partition table changed, write back to disk */ changed = 1; } } return (changed); } /* * ffile_write * Display contents of partition table to standard output or * another file name without writing it to the disk (-W file). */ ffile_write(file) char *file; { register int i; register int c; FILE *fp; /* * If file isn't standard output, then it's a file name. * Open file and write it. */ if (file != (char *)stdout) { if ((fp = fopen(file, "w")) == NULL) { (void) fprintf(stderr, "fdisk: Cannot open output file %s.\n", file); exit(1); } } else fp = stdout; /* * Write the fdisk table information */ fprintf(fp, "\n* %s default fdisk table\n", Dfltdev); fprintf(fp, "* Dimensions:\n"); fprintf(fp, "* %4d bytes/sector\n", sectsiz); fprintf(fp, "* %4d sectors/track\n", sectors); fprintf(fp, "* %4d tracks/cylinder\n", heads); fprintf(fp, "* %4d cylinders\n", Numcyl); fprintf(fp, "*\n"); /* Write virtual (HBA) geometry, if required */ if (v_flag) { fprintf(fp, "* HBA Dimensions:\n"); fprintf(fp, "* %4d bytes/sector\n", sectsiz); fprintf(fp, "* %4d sectors/track\n", hba_sectors); fprintf(fp, "* %4d tracks/cylinder\n", hba_heads); fprintf(fp, "* %4d cylinders\n", hba_Numcyl); fprintf(fp, "*\n"); } fprintf(fp, "* systid:\n"); fprintf(fp, "* 1: DOSOS12\n"); fprintf(fp, "* 2: PCIXOS\n"); fprintf(fp, "* 4: DOSOS16\n"); fprintf(fp, "* 5: EXTDOS\n"); fprintf(fp, "* 6: DOSBIG\n"); fprintf(fp, "* 7: FDISK_IFS\n"); fprintf(fp, "* 8: FDISK_AIXBOOT\n"); fprintf(fp, "* 9: FDISK_AIXDATA\n"); fprintf(fp, "* 10: FDISK_0S2BOOT\n"); fprintf(fp, "* 11: FDISK_WINDOWS\n"); fprintf(fp, "* 12: FDISK_EXT_WIN\n"); fprintf(fp, "* 14: FDISK_FAT95\n"); fprintf(fp, "* 15: FDISK_EXTLBA\n"); fprintf(fp, "* 18: DIAGPART\n"); fprintf(fp, "* 65: FDISK_LINUX\n"); fprintf(fp, "* 82: FDISK_CPM\n"); fprintf(fp, "* 86: DOSDATA\n"); fprintf(fp, "* 98: OTHEROS\n"); fprintf(fp, "* 99: UNIXOS\n"); fprintf(fp, "* 101: FDISK_NOVELL3\n"); fprintf(fp, "* 119: FDISK_QNX4\n"); fprintf(fp, "* 120: FDISK_QNX42\n"); fprintf(fp, "* 121: FDISK_QNX43\n"); fprintf(fp, "* 130: SUNIXOS\n"); fprintf(fp, "* 131: FDISK_LINUXNAT\n"); fprintf(fp, "* 134: FDISK_NTFSVOL1\n"); fprintf(fp, "* 135: FDISK_NTFSVOL2\n"); fprintf(fp, "* 165: FDISK_BSD\n"); fprintf(fp, "* 167: FDISK_NEXTSTEP\n"); fprintf(fp, "* 183: FDISK_BSDIFS\n"); fprintf(fp, "* 184: FDISK_BSDISWAP\n"); fprintf(fp, "* 190: X86BOOT\n"); fprintf(fp, "* 191: SUNIXOS2\n"); fprintf(fp, "* 238: EFI_PMBR\n"); fprintf(fp, "* 239: EFI_FS\n"); fprintf(fp, "*\n"); fprintf(fp, "\n* Id Act Bhead Bsect Bcyl Ehead Esect Ecyl" " Rsect Numsect\n"); for (i = 0; i < FD_NUMPART; i++) { if (Table[i].systid != UNUSED) fprintf(fp, " %-5d %-4d %-6d %-6d %-7d %-6d %-6d %-7d %-8d" " %-8d\n", Table[i].systid, Table[i].bootid, Table[i].beghead, Table[i].begsect & 0x3f, ((Table[i].begcyl & 0xff) | ((Table[i].begsect & 0xc0) << 2)), Table[i].endhead, Table[i].endsect & 0x3f, ((Table[i].endcyl & 0xff) | ((Table[i].endsect & 0xc0) << 2)), lel(Table[i].relsect), lel(Table[i].numsect)); } if (fp != stdout) fclose(fp); } /* * fix_slice * Read the VTOC table on the Solaris partition and check that no * slices exist that extend past the end of the Solaris partition. * If no Solaris partition exists, nothing is done. */ fix_slice() { int i; int ret; int numsect; if (io_image) { return (0); } for (i = 0; i < FD_NUMPART; i++) { if (Table[i].systid == SUNIXOS || Table[i].systid == SUNIXOS2) { /* * Only the size matters (not starting point), since * VTOC entries are relative to the start of * the partition. */ numsect = lel(Table[i].numsect); break; } } if (i >= FD_NUMPART) { if (!io_nifdisk) { (void) fprintf(stderr, "fdisk: No Solaris partition found - VTOC not" " checked.\n"); } return (1); } if ((ret = readvtoc()) != VTOC_OK) { exit(1); /* Failed to read the VTOC */ } else { for (i = 0; i < V_NUMPAR; i++) { /* Special case for slice two (entire disk) */ if (i == 2) { if (disk_vtoc.v_part[i].p_start != 0) { (void) fprintf(stderr, "slice %d starts at %d, is not at" " start of partition", i, disk_vtoc.v_part[i].p_start); if (!io_nifdisk) { printf(" adjust ?:"); if (yesno()) disk_vtoc.v_part[i].p_start = 0; } else { disk_vtoc.v_part[i].p_start = 0; (void) fprintf(stderr, " adjusted!\n"); } } if (disk_vtoc.v_part[i].p_size != numsect) { (void) fprintf(stderr, "slice %d size %d does not cover" " complete partition", i, disk_vtoc.v_part[i].p_size); if (!io_nifdisk) { printf(" adjust ?:"); if (yesno()) disk_vtoc.v_part[i].p_size = numsect; } else { disk_vtoc.v_part[i].p_size = numsect; (void) fprintf(stderr, " adjusted!\n"); } } if (disk_vtoc.v_part[i].p_tag != V_BACKUP) { (void) fprintf(stderr, "slice %d tag was %d should be %d", i, disk_vtoc.v_part[i].p_tag, V_BACKUP); if (!io_nifdisk) { printf(" fix ?:"); if (yesno()) disk_vtoc.v_part[i].p_tag = V_BACKUP; } else { disk_vtoc.v_part[i].p_tag = V_BACKUP; (void) fprintf(stderr, " fixed!\n"); } } } else { if (io_ADJT) { if (disk_vtoc.v_part[i].p_start > numsect || disk_vtoc.v_part[i].p_start + disk_vtoc.v_part[i].p_size > numsect) { (void) fprintf(stderr, "slice %d (start %d, end %d) is" " larger than the partition", i, disk_vtoc.v_part[i].p_start, disk_vtoc.v_part[i].p_start + disk_vtoc.v_part[i].p_size); if (!io_nifdisk) { printf(" remove ?:"); if (yesno()) { disk_vtoc.v_part[i].p_size = 0; disk_vtoc.v_part[i].p_start = 0; disk_vtoc.v_part[i].p_tag = 0; disk_vtoc.v_part[i].p_flag = 0; } } else { disk_vtoc.v_part[i].p_size = 0; disk_vtoc.v_part[i].p_start = 0; disk_vtoc.v_part[i].p_tag = 0; disk_vtoc.v_part[i].p_flag = 0; (void) fprintf(stderr, " removed!\n"); } } } else { if (disk_vtoc.v_part[i].p_start > numsect) { (void) fprintf(stderr, "slice %d (start %d) is larger" " than the partition", i, disk_vtoc.v_part[i].p_start); if (!io_nifdisk) { printf(" remove ?:"); if (yesno()) { disk_vtoc.v_part[i].p_size = 0; disk_vtoc.v_part[i].p_start = 0; disk_vtoc.v_part[i].p_tag = 0; disk_vtoc.v_part[i].p_flag = 0; } } else { disk_vtoc.v_part[i].p_size = 0; disk_vtoc.v_part[i].p_start = 0; disk_vtoc.v_part[i].p_tag = 0; disk_vtoc.v_part[i].p_flag = 0; (void) fprintf(stderr, " removed!\n"); } } else if (disk_vtoc.v_part[i].p_start + disk_vtoc.v_part[i].p_size > numsect) { (void) fprintf(stderr, "slice %d (end %d) is larger" " than the partition", i, disk_vtoc.v_part[i].p_start + disk_vtoc.v_part[i].p_size); if (!io_nifdisk) { printf(" adjust ?:"); if (yesno()) { disk_vtoc.v_part[i].p_size = numsect; } } else { disk_vtoc.v_part[i].p_size = numsect; (void) fprintf(stderr, " adjusted!\n"); } } } } } } #if 1 /* bh for now */ /* Make the VTOC look sane - ha ha */ disk_vtoc.v_version = V_VERSION; disk_vtoc.v_sanity = VTOC_SANE; disk_vtoc.v_nparts = V_NUMPAR; if (disk_vtoc.v_sectorsz == 0) disk_vtoc.v_sectorsz = NBPSCTR; #endif /* Write the VTOC back to the disk */ if (!io_readonly) writevtoc(); } /* * yesno * Get yes or no answer. Return 1 for yes and 0 for no. */ yesno() { char s[80]; for (;;) { gets(s); rm_blanks(s); if ((s[1] != 0) || ((s[0] != 'y') && (s[0] != 'n'))) { printf(E_LINE); printf("Please answer with \"y\" or \"n\": "); continue; } if (s[0] == 'y') return (1); else return (0); } } /* * readvtoc * Read the VTOC from the Solaris partition of the device. */ readvtoc() { int i; int retval = VTOC_OK; if ((i = read_vtoc(Dev, &disk_vtoc)) < VTOC_OK) { if (i == VT_EINVAL) { (void) fprintf(stderr, "fdisk: Invalid VTOC.\n"); vt_inval++; retval = VTOC_INVAL; } else if (i == VT_ENOTSUP) { (void) fprintf(stderr, "fdisk: partition may have EFI " "GPT\n"); retval = VTOC_NOTSUP; } else { (void) fprintf(stderr, "fdisk: Cannot read VTOC.\n"); retval = VTOC_RWERR; } } return (retval); } /* * writevtoc * Write the VTOC to the Solaris partition on the device. */ writevtoc() { int i; int retval = 0; if ((i = write_vtoc(Dev, &disk_vtoc)) != 0) { if (i == VT_EINVAL) { (void) fprintf(stderr, "fdisk: Invalid entry exists in VTOC.\n"); retval = VTOC_INVAL; } else if (i == VT_ENOTSUP) { (void) fprintf(stderr, "fdisk: partition may have EFI " "GPT\n"); retval = VTOC_NOTSUP; } else { (void) fprintf(stderr, "fdisk: Cannot write VTOC.\n"); retval = VTOC_RWERR; } } return (retval); } /* * efi_ioctl * issues DKIOCSETEFI IOCTL * (duplicate of private efi_ioctl() in rdwr_efi.c */ static int efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) { void *data = dk_ioc->dki_data; int error; dk_ioc->dki_data_64 = (uintptr_t)data; error = ioctl(fd, cmd, (void *)dk_ioc); return (error); } /* * clear_efi * Clear EFI labels from the EFI_PMBR partition on the device * This function is modeled on the libefi(3LIB) call efi_write() */ int clear_efi() { struct dk_gpt *efi_vtoc; dk_efi_t dk_ioc; /* * see if we can read the EFI label */ if (efi_alloc_and_read(Dev, &efi_vtoc) < 0) { return (VT_ERROR); } /* * set up the dk_ioc structure for writing */ dk_ioc.dki_lba = 1; dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + efi_vtoc->efi_lbasize; if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL) { return (VT_ERROR); } /* * clear the primary label */ if (io_debug) { fprintf(stderr, "\tClearing primary EFI label at block " "%d\n", dk_ioc.dki_lba); } if (efi_ioctl(Dev, DKIOCSETEFI, &dk_ioc) == -1) { free(dk_ioc.dki_data); switch (errno) { case EIO: return (VT_EIO); case EINVAL: return (VT_EINVAL); default: return (VT_ERROR); } } /* * clear the backup partition table */ dk_ioc.dki_lba = efi_vtoc->efi_last_u_lba + 1; dk_ioc.dki_length -= efi_vtoc->efi_lbasize; dk_ioc.dki_data++; if (io_debug) { fprintf(stderr, "\tClearing backup partition table at block " "%d\n", dk_ioc.dki_lba); } if (efi_ioctl(Dev, DKIOCSETEFI, &dk_ioc) == -1) { (void) fprintf(stderr, "\tUnable to clear backup EFI label at " "block %llu; errno %d\n", efi_vtoc->efi_last_u_lba + 1, errno); } /* * clear the backup label */ dk_ioc.dki_lba = efi_vtoc->efi_last_lba; dk_ioc.dki_length = efi_vtoc->efi_lbasize; dk_ioc.dki_data--; if (io_debug) { fprintf(stderr, "\tClearing backup label at block " "%d\n", dk_ioc.dki_lba); } if (efi_ioctl(Dev, DKIOCSETEFI, &dk_ioc) == -1) { (void) fprintf(stderr, "\tUnable to clear backup EFI label at " "block %llu; errno %d\n", efi_vtoc->efi_last_lba, errno); } free(dk_ioc.dki_data); efi_free(efi_vtoc); return (0); } /* * clear_vtoc * Clear the VTOC from the current or previous Solaris partition on the * device. */ int clear_vtoc(int table, int part) { struct ipart *clr_table; struct dk_label disk_label; int pcyl, ncyl, backup_block, solaris_offset, count, bytes, seek_byte; #ifdef DEBUG struct dk_label read_label; #endif /* DEBUG */ if (table == OLD) { clr_table = &Old_Table[part]; } else { clr_table = &Table[part]; } if (memset(&disk_label, 0, sizeof (struct dk_label)) == NULL) { fprintf(stderr, "\tError zeroing dk_label structure\n"); } seek_byte = (lel(clr_table->relsect) * sectsiz) + VTOC_OFFSET; if (io_debug) { fprintf(stderr, "\tClearing primary VTOC at byte %d\n", seek_byte); } if (lseek(Dev, seek_byte, SEEK_SET) == -1) { fprintf(stderr, "\tError seeking to primary label at byte %d\n", seek_byte); return (0); } bytes = write(Dev, &disk_label, sizeof (struct dk_label)); if (bytes != sizeof (struct dk_label)) { fprintf(stderr, "\tWarning: only %d bytes written to clear" " primary VTOC!\n", bytes); } #ifdef DEBUG if (lseek(Dev, seek_byte, SEEK_SET) == -1) { fprintf(stderr, "DEBUG: Error seeking to primary label at byte " "%d\n", seek_byte); return (0); } else { fprintf(stderr, "DEBUG: Successful lseek() to byte %d\n", seek_byte); } bytes = read(Dev, &read_label, sizeof (struct dk_label)); if (bytes != sizeof (struct dk_label)) { fprintf(stderr, "DEBUG: Warning: only %d bytes read of label\n", bytes); } if (memcmp(&disk_label, &read_label, sizeof (struct dk_label)) != 0) { fprintf(stderr, "DEBUG: Warning: disk_label and read_label " "differ!!!\n"); } else { fprintf(stderr, "DEBUG Good compare of disk_label and " "read_label\n"); } #endif /* DEBUG */ /* Clear backup label */ pcyl = lel(clr_table->numsect) / (heads * sectors); solaris_offset = lel(clr_table->relsect); ncyl = pcyl - acyl; backup_block = ((ncyl + acyl - 1) * (heads * sectors)) + ((heads - 1) * sectors) + 1; for (count = 1; count < 6; count++) { seek_byte = (solaris_offset + backup_block) * 512; if (lseek(Dev, seek_byte, SEEK_SET) == -1) { fprintf(stderr, "\tError seeking to backup label at byte %d on " "%s.\n", seek_byte, Dfltdev); return (0); } if (io_debug) { fprintf(stderr, "\tClearing backup VTOC at" " byte %d (block %d)\n", (solaris_offset + backup_block) * 512, (solaris_offset + backup_block)); } bytes = write(Dev, &disk_label, sizeof (struct dk_label)); if (bytes != sizeof (struct dk_label)) { fprintf(stderr, "\t\tWarning: only %d bytes written to " "clear backup VTOC at block %d!\n", bytes, (solaris_offset + backup_block)); } #ifdef DEBUG if (lseek(Dev, seek_byte, SEEK_SET) == -1) { fprintf(stderr, "DEBUG: Error seeking to backup label at byte " "%d\n", seek_byte); return (0); } else { fprintf(stderr, "DEBUG: Successful lseek() to byte %d\n", seek_byte); } bytes = read(Dev, &read_label, sizeof (struct dk_label)); if (bytes != sizeof (struct dk_label)) { fprintf(stderr, "DEBUG: Warning: only %d bytes read of backup " "label\n", bytes); } if (memcmp(&disk_label, &read_label, sizeof (struct dk_label)) != 0) { fprintf(stderr, "DEBUG: Warning: disk_label and read_label " "differ!!!\n"); } else { fprintf(stderr, "DEBUG: Good compare of disk_label and backup " "read_label\n"); } #endif /* DEBUG */ backup_block += 2; } return (0); } #define FDISK_STANDARD_LECTURE \ "Fdisk is normally used with the device that " \ "represents the entire fixed disk.\n" \ "(For example, /dev/rdsk/c0d0p0 on x86 or " \ "/dev/rdsk/c0t5d0s2 on sparc).\n" #define FDISK_LECTURE_NOT_SECTOR_ZERO \ "The device does not appear to include absolute\n" \ "sector 0 of the PHYSICAL disk " \ "(the normal location for an fdisk table).\n" #define FDISK_LECTURE_NOT_FULL \ "The device does not appear to encompass the entire PHYSICAL disk.\n" #define FDISK_LECTURE_NO_VTOC \ "Unable to find a volume table of contents.\n" \ "Cannot verify the device encompasses the full PHYSICAL disk.\n" #define FDISK_LECTURE_NO_GEOM \ "Unable to get geometry from device.\n" \ "Cannot verify the device encompasses the full PHYSICAL disk.\n" #define FDISK_SHALL_I_CONTINUE \ "Are you sure you want to continue? (y/n) " /* * lecture_and_query * Called when a sanity check fails. This routine gives a warning * specific to the check that fails, followed by a generic lecture * about the "right" device to supply as input. Then, if appropriate, * it will prompt the user on whether or not they want to continue. * Inappropriate times for prompting are when the user has selected * non-interactive mode or read-only mode. */ int lecture_and_query(char *warning, char *devname) { if (io_nifdisk) return (0); fprintf(stderr, "WARNING: Device %s: \n", devname); fprintf(stderr, "%s", warning); fprintf(stderr, FDISK_STANDARD_LECTURE); fprintf(stderr, FDISK_SHALL_I_CONTINUE); return (yesno()); } void sanity_check_provided_device(char *devname, int fd) { struct vtoc v; struct dk_geom d; struct part_info pi; long totsize; int idx = -1; /* * First try the PARTINFO ioctl. If it works, we will be able * to tell if they've specified the full disk partition by checking * to see if they've specified a partition that starts at sector 0. */ if (ioctl(fd, DKIOCPARTINFO, &pi) != -1) { if (pi.p_start != 0) { if (!lecture_and_query(FDISK_LECTURE_NOT_SECTOR_ZERO, devname)) { (void) close(fd); exit(1); } } } else { if ((idx = read_vtoc(fd, &v)) < 0) { if (!lecture_and_query(FDISK_LECTURE_NO_VTOC, devname)) { (void) close(fd); exit(1); } return; } if (ioctl(fd, DKIOCGGEOM, &d) == -1) { perror(devname); if (!lecture_and_query(FDISK_LECTURE_NO_GEOM, devname)) { (void) close(fd); exit(1); } return; } totsize = d.dkg_ncyl * d.dkg_nhead * d.dkg_nsect; if (v.v_part[idx].p_size != totsize) { if (!lecture_and_query(FDISK_LECTURE_NOT_FULL, devname)) { (void) close(fd); exit(1); } } } } /* * get_node * Called from main to construct the name of the device node to open. * Initially tries to stat the node exactly as provided, if that fails * we prepend the default path (/dev/rdsk/). */ static char * get_node(char *devname) { char *node; struct stat statbuf; size_t space; /* Don't do anything if we are skipping device checks */ if (io_image) return (devname); node = devname; /* Try the node as provided first */ if (stat(node, (struct stat *)&statbuf) == -1) { /* * Copy the passed in string to a new buffer, prepend the * default path and try again. */ space = strlen(DEFAULT_PATH) + strlen(devname) + 1; if ((node = malloc(space)) == NULL) { fprintf(stderr, "fdisk: Unable to obtain memory " "for device node.\n"); exit(1); } /* Copy over the default path and the provided node */ (void) strncpy(node, DEFAULT_PATH, strlen(DEFAULT_PATH)); space -= strlen(DEFAULT_PATH); (void) strlcpy(node + strlen(DEFAULT_PATH), devname, space); /* Try to stat it again */ if (stat(node, (struct stat *)&statbuf) == -1) { /* Failed all options, give up */ fprintf(stderr, "fdisk: Cannot stat device %s.\n", devname); exit(1); } } /* Make sure the device specified is the raw device */ if ((statbuf.st_mode & S_IFMT) != S_IFCHR) { fprintf(stderr, "fdisk: %s must be a raw device.\n", node); exit(1); } return (node); }