/* * Copyright 2003 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * Copyright (c) 1980 Regents of the University of California. * All rights reserved. The Berkeley Software License Agreement * specifies the terms and conditions for redistribution. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * 4.3BSD signal compatibility functions * * the implementation interprets signal masks equal to -1 as "all of the * signals in the signal set", thereby allowing signals with numbers * above 32 to be blocked when referenced in code such as: * * for (i = 0; i < NSIG; i++) * mask |= sigmask(i) */ #include #include #include #include #include "signal.h" #include #include #define set2mask(setp) ((setp)->__sigbits[0]) #define mask2set(mask, setp) \ ((mask) == -1 ? sigfillset(setp) : sigemptyset(setp), (((setp)->__sigbits[0]) = (mask))) void (*_siguhandler[NSIG])() = { 0 }; /* * sigstack is emulated with sigaltstack by guessing an appropriate * value for the stack size - on machines that have stacks that grow * upwards, the ss_sp arguments for both functions mean the same thing, * (the initial stack pointer sigstack() is also the stack base * sigaltstack()), so a "very large" value should be chosen for the * stack size - on machines that have stacks that grow downwards, the * ss_sp arguments mean opposite things, so 0 should be used (hopefully * these machines don't have hardware stack bounds registers that pay * attention to sigaltstack()'s size argument. */ #ifdef sun #define SIGSTACKSIZE 0 #endif /* * sigvechandler is the real signal handler installed for all * signals handled in the 4.3BSD compatibility interface - it translates * SVR4 signal hander arguments into 4.3BSD signal handler arguments * and then calls the real handler */ static void sigvechandler(sig, sip, ucp) int sig; siginfo_t *sip; ucontext_t *ucp; { struct sigcontext sc; int code; char *addr; register int i, j; int gwinswitch = 0; sc.sc_onstack = ((ucp->uc_stack.ss_flags & SS_ONSTACK) != 0); sc.sc_mask = set2mask(&ucp->uc_sigmask); /* * Machine dependent code begins */ sc.sc_sp = (int) ucp->uc_mcontext.gregs[UESP]; sc.sc_pc = (int) ucp->uc_mcontext.gregs[EIP]; sc.sc_ps = (int) ucp->uc_mcontext.gregs[EFL]; sc.sc_eax = (int) ucp->uc_mcontext.gregs[EAX]; sc.sc_edx = (int) ucp->uc_mcontext.gregs[EDX]; /* * Machine dependent code ends */ if (sip != NULL) if ((code = sip->si_code) == BUS_OBJERR) code = SEGV_MAKE_ERR(sip->si_errno); if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV || sig == SIGBUS) if (sip != NULL) addr = (char *)sip->si_addr; else addr = SIG_NOADDR; (*_siguhandler[sig])(sig, code, &sc, addr); if (sc.sc_onstack) ucp->uc_stack.ss_flags |= SS_ONSTACK; else ucp->uc_stack.ss_flags &= ~SS_ONSTACK; mask2set(sc.sc_mask, &ucp->uc_sigmask); /* * Machine dependent code begins */ ucp->uc_mcontext.gregs[UESP] = (int) sc.sc_sp; ucp->uc_mcontext.gregs[EIP] = (int) sc.sc_pc; ucp->uc_mcontext.gregs[EFL] = (int) sc.sc_ps; ucp->uc_mcontext.gregs[EAX] = (int) sc.sc_eax; ucp->uc_mcontext.gregs[EDX] = (int) sc.sc_edx; /* * Machine dependent code ends */ setcontext (ucp); } sigsetmask(mask) int mask; { sigset_t oset; sigset_t nset; (void) sigprocmask(0, (sigset_t *)0, &nset); mask2set(mask, &nset); (void) sigprocmask(SIG_SETMASK, &nset, &oset); return set2mask(&oset); } sigblock(mask) int mask; { sigset_t oset; sigset_t nset; (void) sigprocmask(0, (sigset_t *)0, &nset); mask2set(mask, &nset); (void) sigprocmask(SIG_BLOCK, &nset, &oset); return set2mask(&oset); } sigpause(mask) int mask; { sigset_t set; (void) sigprocmask(0, (sigset_t *)0, &set); mask2set(mask, &set); return (sigsuspend(&set)); } sigvec(sig, nvec, ovec) int sig; struct sigvec *nvec; struct sigvec *ovec; { struct sigaction nact; struct sigaction oact; struct sigaction *nactp; void (*ohandler)(), (*nhandler)(); if (sig <= 0 || sig >= NSIG) { errno = EINVAL; return -1; } ohandler = _siguhandler[sig]; if (nvec) { _sigaction(sig, (struct sigaction *)0, &nact); nhandler = nvec->sv_handler; _siguhandler[sig] = nhandler; if (nhandler != SIG_DFL && nhandler != SIG_IGN) nact.sa_handler = (void (*)())sigvechandler; else nact.sa_handler = nhandler; mask2set(nvec->sv_mask, &nact.sa_mask); /* if ( sig == SIGTSTP || sig == SIGSTOP ) nact.sa_handler = SIG_DFL; */ nact.sa_flags = SA_SIGINFO; if (!(nvec->sv_flags & SV_INTERRUPT)) nact.sa_flags |= SA_RESTART; if (nvec->sv_flags & SV_RESETHAND) nact.sa_flags |= SA_RESETHAND; if (nvec->sv_flags & SV_ONSTACK) nact.sa_flags |= SA_ONSTACK; nactp = &nact; } else nactp = (struct sigaction *)0; if (_sigaction(sig, nactp, &oact) < 0) { _siguhandler[sig] = ohandler; return -1; } if (ovec) { if (oact.sa_handler == SIG_DFL || oact.sa_handler == SIG_IGN) ovec->sv_handler = oact.sa_handler; else ovec->sv_handler = ohandler; ovec->sv_mask = set2mask(&oact.sa_mask); ovec->sv_flags = 0; if (oact.sa_flags & SA_ONSTACK) ovec->sv_flags |= SV_ONSTACK; if (oact.sa_flags & SA_RESETHAND) ovec->sv_flags |= SV_RESETHAND; if (!(oact.sa_flags & SA_RESTART)) ovec->sv_flags |= SV_INTERRUPT; } return 0; } void (* signal(s, a))() int s; void (*a)(); { struct sigvec osv; struct sigvec nsv; static int mask[NSIG]; static int flags[NSIG]; nsv.sv_handler = a; nsv.sv_mask = mask[s]; nsv.sv_flags = flags[s]; if (sigvec(s, &nsv, &osv) < 0) return (SIG_ERR); if (nsv.sv_mask != osv.sv_mask || nsv.sv_flags != osv.sv_flags) { mask[s] = nsv.sv_mask = osv.sv_mask; flags[s] = nsv.sv_flags = osv.sv_flags & ~SV_RESETHAND; if (sigvec(s, &nsv, (struct sigvec *)0) < 0) return (SIG_ERR); } return (osv.sv_handler); }