/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Starfire Post Descriptor Array (post2obp) management. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern struct cpu *SIGBCPU; extern cpu_sgnblk_t *cpu_sgnblkp[]; extern uint64_t mc_get_mem_alignment(); extern uint64_t mc_asr_to_pa(uint_t mcreg); static post2obp_info_t *cpu_p2o_mapin(int cpuid); static void cpu_p2o_mapout(int cpuid, post2obp_info_t *p2o); static void p2o_update_checksum(post2obp_info_t *p2o); static uint_t p2o_calc_checksum(post2obp_info_t *p2o); static void p2o_mem_sort(post2obp_info_t *p2o); static void p2o_mem_coalesce(post2obp_info_t *p2o); typedef struct { post2obp_info_t *p2o_ptr; int p2o_cpuid; } p2o_info_t; /* * PDA management routines. Should ultimately be made * accessible to other Starfire subsystems, but for * now we'll leave it here. */ pda_handle_t pda_open() { p2o_info_t *pip; if (SIGBCPU == NULL) { cmn_err(CE_WARN, "pda_open: SIGBCPU is NULL"); return (NULL); } pip = (p2o_info_t *)kmem_alloc(sizeof (p2o_info_t), KM_SLEEP); pip->p2o_cpuid = (int)SIGBCPU->cpu_id; pip->p2o_ptr = cpu_p2o_mapin(pip->p2o_cpuid); if (pip->p2o_ptr == NULL) { kmem_free((caddr_t)pip, sizeof (p2o_info_t)); return ((pda_handle_t)NULL); } else { return ((pda_handle_t)pip); } } void pda_close(pda_handle_t ph) { p2o_info_t *pip; if ((pip = (p2o_info_t *)ph) == NULL) return; cpu_p2o_mapout(pip->p2o_cpuid, pip->p2o_ptr); kmem_free((caddr_t)pip, sizeof (p2o_info_t)); } int pda_board_present(pda_handle_t ph, int boardnum) { ushort_t bda_board; post2obp_info_t *p2o = ((p2o_info_t *)ph)->p2o_ptr; bda_board = p2o->p2o_bdinfo[boardnum].bda_board; if ((bda_board & BDAN_MASK) != BDAN_GOOD) return (0); else return (1); } void * pda_get_board_info(pda_handle_t ph, int boardnum) { post2obp_info_t *p2o = ((p2o_info_t *)ph)->p2o_ptr; return ((void *)&(p2o->p2o_bdinfo[boardnum])); } uint_t pda_get_mem_size(pda_handle_t ph, int boardnum) { int c; pgcnt_t npages; uint_t asr; pfn_t basepfn, endpfn; uint64_t basepa, endpa; post2obp_info_t *p2o = ((p2o_info_t *)ph)->p2o_ptr; if (boardnum == -1) return (p2o->p2o_memtotal.Memt_NumPages); asr = p2o->p2o_bdminfo[boardnum].bmda_adr; basepa = mc_asr_to_pa(asr); /* * Put on MC alignment. */ endpa = mc_get_mem_alignment(); basepa &= ~(endpa - 1); endpa += basepa; basepfn = (pfn_t)(basepa >> PAGESHIFT); endpfn = (pfn_t)(endpa >> PAGESHIFT); npages = 0; for (c = 0; c < p2o->p2o_memtotal.Memt_NumChunks; c++) { pfn_t c_basepfn, c_endpfn; c_basepfn = (pfn_t)p2o->p2o_mchunks[c].Memc_StartAddress >> (PAGESHIFT - BDA_PAGESHIFT); c_endpfn = (pfn_t)p2o->p2o_mchunks[c].Memc_Size >> (PAGESHIFT - BDA_PAGESHIFT); c_endpfn += c_basepfn; if ((endpfn <= c_basepfn) || (basepfn >= c_endpfn)) continue; c_basepfn = MAX(c_basepfn, basepfn); c_endpfn = MIN(c_endpfn, endpfn); ASSERT(c_basepfn <= c_endpfn); npages += c_endpfn - c_basepfn; } return (npages); } void pda_mem_add_span(pda_handle_t ph, uint64_t basepa, uint64_t nbytes) { post2obp_info_t *p2o = ((p2o_info_t *)ph)->p2o_ptr; int c, nchunks; pfn_t a_pfn, a_npgs; ASSERT(p2o); nchunks = p2o->p2o_memtotal.Memt_NumChunks; a_pfn = (pfn_t)(basepa >> BDA_PAGESHIFT); a_npgs = (pfn_t)(nbytes >> BDA_PAGESHIFT); for (c = 0; c < nchunks; c++) { int cend; if (a_pfn <= p2o->p2o_mchunks[c].Memc_StartAddress) { for (cend = nchunks; cend > c; cend--) p2o->p2o_mchunks[cend] = p2o->p2o_mchunks[cend - 1]; break; } } p2o->p2o_mchunks[c].Memc_StartAddress = a_pfn; p2o->p2o_mchunks[c].Memc_Size = a_npgs; nchunks++; p2o->p2o_memtotal.Memt_NumChunks = nchunks; p2o->p2o_memtotal.Memt_NumPages += a_npgs; p2o_mem_sort(p2o); p2o_mem_coalesce(p2o); p2o_update_checksum(p2o); } void pda_mem_del_span(pda_handle_t ph, uint64_t basepa, uint64_t nbytes) { post2obp_info_t *p2o = ((p2o_info_t *)ph)->p2o_ptr; int c, o_nchunks, n_nchunks; pfn_t d_pfn; pgcnt_t d_npgs, npages; MemChunk_t *mp, *endp; ASSERT(p2o); d_pfn = (pfn_t)(basepa >> BDA_PAGESHIFT); d_npgs = (pgcnt_t)(nbytes >> BDA_PAGESHIFT); n_nchunks = o_nchunks = p2o->p2o_memtotal.Memt_NumChunks; endp = &(p2o->p2o_mchunks[o_nchunks]); npages = 0; for (c = 0; c < o_nchunks; c++) { uint_t p_pfn, p_npgs; p_pfn = p2o->p2o_mchunks[c].Memc_StartAddress; p_npgs = p2o->p2o_mchunks[c].Memc_Size; if (p_npgs == 0) continue; if (((d_pfn + d_npgs) <= p_pfn) || (d_pfn >= (p_pfn + p_npgs))) { npages += p_npgs; continue; } if (d_pfn < p_pfn) { if ((d_pfn + d_npgs) >= (p_pfn + p_npgs)) { /* * Entire chunk goes away. */ p_pfn = p_npgs = 0; } else { p_npgs -= d_pfn + d_npgs - p_pfn; p_pfn = d_pfn + d_npgs; } } else if (d_pfn == p_pfn) { if ((d_pfn + d_npgs) >= (p_pfn + p_npgs)) { p_pfn = p_npgs = 0; } else { p_npgs -= d_npgs; p_pfn += d_npgs; } } else { if ((d_pfn + d_npgs) >= (p_pfn + p_npgs)) { p_npgs = d_pfn - p_pfn; npages += p_npgs; } else { /* * Ugh, got to split a * memchunk, we're going to * need an extra one. It's * gotten from the end. */ endp->Memc_StartAddress = d_pfn + d_npgs; endp->Memc_Size = (p_pfn + p_npgs) - (d_pfn + d_npgs); npages += endp->Memc_Size; endp++; n_nchunks++; p_npgs = d_pfn - p_pfn; } } p2o->p2o_mchunks[c].Memc_StartAddress = p_pfn; p2o->p2o_mchunks[c].Memc_Size = p_npgs; if (p_npgs == 0) n_nchunks--; npages += p_npgs; } p2o->p2o_memtotal.Memt_NumChunks = n_nchunks; p2o->p2o_memtotal.Memt_NumPages = npages; /* * There is a possibility we created holes in the memchunk list * due to memchunks that went away. Before we can sort and * coalesce we need to "pull up" the end of the memchunk list * and get rid of any holes. * endp = points to the last empty memchunk entry. */ for (mp = &(p2o->p2o_mchunks[0]); mp < endp; mp++) { register MemChunk_t *mmp; if (mp->Memc_Size) continue; for (mmp = mp; mmp < endp; mmp++) *mmp = *(mmp + 1); mp--; endp--; } ASSERT(endp == &(p2o->p2o_mchunks[n_nchunks])); p2o_mem_sort(p2o); p2o_mem_coalesce(p2o); p2o_update_checksum(p2o); } /* * Synchonize all memory attributes (currently just MC ADRs [aka ASR]) * with PDA representative values for the given board. A board value * of (-1) indicates all boards. */ /*ARGSUSED*/ void pda_mem_sync(pda_handle_t ph, int board, int unit) { post2obp_info_t *p2o = ((p2o_info_t *)ph)->p2o_ptr; register int b; for (b = 0; b < MAX_SYSBDS; b++) { if ((board != -1) && (board != b)) continue; if (pda_board_present(ph, b)) { uint64_t masr; uint_t masr_value; masr = STARFIRE_MC_ASR_ADDR_BOARD(b); masr_value = ldphysio(masr); p2o->p2o_bdminfo[b].bmda_adr = masr_value; } if (board == b) break; } p2o_update_checksum(p2o); } void pda_get_busmask(pda_handle_t ph, short *amask, short *dmask) { post2obp_info_t *p2o = ((p2o_info_t *)ph)->p2o_ptr; if (amask) *amask = p2o ? p2o->p2o_abus_mask : 0; if (dmask) *dmask = p2o ? p2o->p2o_dbus_mask : 0; } int pda_is_valid(pda_handle_t ph) { post2obp_info_t *p2o = ((p2o_info_t *)ph)->p2o_ptr; uint_t csum; if (p2o == NULL) return (0); csum = p2o_calc_checksum(p2o); return (csum == p2o->p2o_csum); } /* * Post2obp support functions below here. Internal to PDA module. * * p2o_update_checksum * * Calculate checksum for post2obp structure and insert it so * when POST reads it he'll be happy. */ static void p2o_update_checksum(post2obp_info_t *p2o) { uint_t new_csum; ASSERT(p2o); new_csum = p2o_calc_checksum(p2o); p2o->p2o_csum = new_csum; } static uint_t p2o_calc_checksum(post2obp_info_t *p2o) { int i, nchunks; uint_t *csumptr; uint_t p2o_size; uint_t csum, o_csum; ASSERT(p2o != NULL); nchunks = p2o->p2o_memtotal.Memt_NumChunks; p2o_size = sizeof (post2obp_info_t) + ((nchunks - VAR_ARRAY_LEN) * sizeof (MemChunk_t)); p2o_size /= sizeof (uint_t); o_csum = p2o->p2o_csum; p2o->p2o_csum = 0; csum = 0; for (i = 0, csumptr = (uint_t *)p2o; i < p2o_size; i++) csum += *csumptr++; p2o->p2o_csum = o_csum; return (-csum); } /* * Sort the mchunk list in ascending order based on the * Memc_StartAddress field. * * disclosure: This is based on the qsort() library routine. */ static void p2o_mem_sort(post2obp_info_t *p2o) { MemChunk_t *base; int nchunks; uint_t c1, c2; char *min, *max; register char c, *i, *j, *lo, *hi; ASSERT(p2o != NULL); nchunks = p2o->p2o_memtotal.Memt_NumChunks; base = &p2o->p2o_mchunks[0]; /* ala qsort() */ max = (char *)base + nchunks * sizeof (MemChunk_t); hi = max; for (j = lo = (char *)base; (lo += sizeof (MemChunk_t)) < hi; ) { c1 = ((MemChunk_t *)j)->Memc_StartAddress; c2 = ((MemChunk_t *)lo)->Memc_StartAddress; if (c1 > c2) j = lo; } if (j != (char *)base) { for (i = (char *)base, hi = (char *)base + sizeof (MemChunk_t); /* CSTYLED */ i < hi;) { c = *j; *j++ = *i; *i++ = c; } } for (min = (char *)base; /* CSTYLED */ (hi = min += sizeof (MemChunk_t)) < max;) { do { hi -= sizeof (MemChunk_t); c1 = ((MemChunk_t *)hi)->Memc_StartAddress; c2 = ((MemChunk_t *)min)->Memc_StartAddress; } while (c1 > c2); if ((hi += sizeof (MemChunk_t)) != min) { for (lo = min + sizeof (MemChunk_t); /* CSTYLED */ --lo >= min;) { c = *lo; for (i = j = lo; (j -= sizeof (MemChunk_t)) >= hi; i = j) { *i = *j; } *i = c; } } } } static void p2o_mem_coalesce(post2obp_info_t *p2o) { MemChunk_t *mc; int nchunks, new_nchunks; uint_t addr, size, naddr, nsize; uint_t npages; register int i, cp, ncp; ASSERT(p2o != NULL); nchunks = new_nchunks = p2o->p2o_memtotal.Memt_NumChunks; mc = &p2o->p2o_mchunks[0]; for (cp = i = 0; i < (nchunks-1); i++, cp = ncp) { ncp = cp + 1; addr = mc[cp].Memc_StartAddress; size = mc[cp].Memc_Size; naddr = mc[ncp].Memc_StartAddress; nsize = mc[ncp].Memc_Size; if ((addr + size) >= naddr) { uint_t overlap; overlap = addr + size - naddr; /* * if (nsize < overlap) then * next entry fits within the current * entry so no need to update size. */ if (nsize >= overlap) { size += nsize - overlap; mc[cp].Memc_Size = size; } bcopy((char *)&mc[ncp+1], (char *)&mc[ncp], (nchunks - ncp - 1) * sizeof (MemChunk_t)); ncp = cp; new_nchunks--; } } npages = 0; for (i = 0; i < new_nchunks; i++) npages += p2o->p2o_mchunks[i].Memc_Size; p2o->p2o_memtotal.Memt_NumChunks = new_nchunks; p2o->p2o_memtotal.Memt_NumPages = npages; } /* * Mapin the the cpu's post2obp structure. */ static post2obp_info_t * cpu_p2o_mapin(int cpuid) { uint64_t cpu_p2o_physaddr; uint32_t cpu_p2o_offset; caddr_t cvaddr; uint_t num_pages; pfn_t pfn; ASSERT(cpu_sgnblkp[cpuid] != NULL); /* * Construct the physical base address of the bbsram * in PSI space associated with this cpu in question. */ cpu_p2o_offset = (uint32_t)cpu_sgnblkp[cpuid]->sigb_postconfig; if (cpu_p2o_offset == 0) { cmn_err(CE_WARN, "cpu_p2o_mapin:%d: sigb_postconfig == NULL\n", cpuid); return (NULL); } cpu_p2o_physaddr = (STARFIRE_UPAID2UPS(cpuid) | STARFIRE_PSI_BASE) + (uint64_t)cpu_p2o_offset; cpu_p2o_offset = (uint32_t)(cpu_p2o_physaddr & MMU_PAGEOFFSET); cpu_p2o_physaddr -= (uint64_t)cpu_p2o_offset; /* * cpu_p2o_physaddr = Beginning of page containing p2o. * cpu_p2o_offset = Offset within page where p2o starts. */ pfn = (pfn_t)(cpu_p2o_physaddr >> MMU_PAGESHIFT); num_pages = mmu_btopr(cpu_p2o_offset + sizeof (post2obp_info_t)); /* * Map in the post2obp structure. */ cvaddr = vmem_alloc(heap_arena, ptob(num_pages), VM_SLEEP); hat_devload(kas.a_hat, cvaddr, ptob(num_pages), pfn, PROT_READ | PROT_WRITE, HAT_LOAD_LOCK); return ((post2obp_info_t *)(cvaddr + (ulong_t)cpu_p2o_offset)); } static void cpu_p2o_mapout(int cpuid, post2obp_info_t *p2o) { ulong_t cvaddr, num_pages; uint32_t cpu_p2o_offset; ASSERT(cpu_sgnblkp[cpuid] != NULL); cpu_p2o_offset = (uint32_t)cpu_sgnblkp[cpuid]->sigb_postconfig; if (cpu_p2o_offset == 0) { cmn_err(CE_WARN, "cpu_p2o_mapout:%d: sigb_postconfig == NULL\n", cpuid); return; } cpu_p2o_offset = (uint32_t)(((STARFIRE_UPAID2UPS(cpuid) | STARFIRE_PSI_BASE) + (uint64_t)cpu_p2o_offset) & MMU_PAGEOFFSET); num_pages = mmu_btopr(cpu_p2o_offset + sizeof (post2obp_info_t)); cvaddr = (ulong_t)p2o - cpu_p2o_offset; if (cvaddr & MMU_PAGEOFFSET) { cmn_err(CE_WARN, "cpu_p2o_mapout:%d: cvaddr (0x%x) not on page " "boundary\n", cpuid, (uint_t)cvaddr); return; } hat_unload(kas.a_hat, (caddr_t)cvaddr, ptob(num_pages), HAT_UNLOAD_UNLOCK); vmem_free(heap_arena, (caddr_t)cvaddr, ptob(num_pages)); }