/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Psycho+ specifics implementation: * interrupt mapping register * PBM configuration * ECC and PBM error handling * Iommu mapping handling * Streaming Cache flushing */ #include #include #include #include #include #include #include /* UPAID_TO_IGN() */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _STARFIRE #include #endif /* _STARFIRE */ static uint32_t pci_identity_init(pci_t *pci_p); static int pci_intr_setup(pci_t *pci_p); static void pci_pbm_errstate_get(pci_t *pci_p, pbm_errstate_t *pbm_err_p); static pci_ksinfo_t *pci_name_kstat; /*LINTLIBRARY*/ /* called by pci_attach() DDI_ATTACH to initialize pci objects */ int pci_obj_setup(pci_t *pci_p) { pci_common_t *cmn_p; int ret; mutex_enter(&pci_global_mutex); cmn_p = get_pci_common_soft_state(pci_p->pci_id); if (cmn_p == NULL) { uint_t id = pci_p->pci_id; if (alloc_pci_common_soft_state(id) != DDI_SUCCESS) { mutex_exit(&pci_global_mutex); return (DDI_FAILURE); } cmn_p = get_pci_common_soft_state(id); cmn_p->pci_common_id = id; } ASSERT((pci_p->pci_side == 0) || (pci_p->pci_side == 1)); if (cmn_p->pci_p[pci_p->pci_side]) { /* second side attach */ pci_p->pci_side = PCI_OTHER_SIDE(pci_p->pci_side); ASSERT(cmn_p->pci_p[pci_p->pci_side] == NULL); } cmn_p->pci_p[pci_p->pci_side] = pci_p; pci_p->pci_common_p = cmn_p; if (cmn_p->pci_common_refcnt == 0) { /* Perform allocation first to avoid delicate unwinding. */ if (pci_alloc_tsb(pci_p) != DDI_SUCCESS) { cmn_p->pci_p[pci_p->pci_side] = NULL; pci_p->pci_common_p = NULL; free_pci_common_soft_state(cmn_p->pci_common_id); mutex_exit(&pci_global_mutex); return (DDI_FAILURE); } cmn_p->pci_common_tsb_cookie = pci_p->pci_tsb_cookie; cmn_p->pci_chip_id = pci_identity_init(pci_p); ib_create(pci_p); cmn_p->pci_common_ib_p = pci_p->pci_ib_p; cb_create(pci_p); cmn_p->pci_common_cb_p = pci_p->pci_cb_p; iommu_create(pci_p); cmn_p->pci_common_iommu_p = pci_p->pci_iommu_p; ecc_create(pci_p); cmn_p->pci_common_ecc_p = pci_p->pci_ecc_p; } else { ASSERT(cmn_p->pci_common_refcnt == 1); pci_p->pci_tsb_cookie = cmn_p->pci_common_tsb_cookie; pci_p->pci_ib_p = cmn_p->pci_common_ib_p; pci_p->pci_cb_p = cmn_p->pci_common_cb_p; pci_p->pci_iommu_p = cmn_p->pci_common_iommu_p; pci_p->pci_ecc_p = cmn_p->pci_common_ecc_p; } pbm_create(pci_p); sc_create(pci_p); pci_fm_create(pci_p); if ((ret = pci_intr_setup(pci_p)) != DDI_SUCCESS) goto done; if (CHIP_TYPE(pci_p) == PCI_CHIP_PSYCHO) pci_kstat_create(pci_p); cmn_p->pci_common_attachcnt++; cmn_p->pci_common_refcnt++; done: mutex_exit(&pci_global_mutex); if (ret != DDI_SUCCESS) cmn_err(CE_NOTE, "Interrupt register failure, returning 0x%x\n", ret); return (ret); } /* called by pci_detach() DDI_DETACH to destroy pci objects */ void pci_obj_destroy(pci_t *pci_p) { pci_common_t *cmn_p; mutex_enter(&pci_global_mutex); cmn_p = pci_p->pci_common_p; cmn_p->pci_common_refcnt--; cmn_p->pci_common_attachcnt--; pci_kstat_destroy(pci_p); sc_destroy(pci_p); pbm_destroy(pci_p); pci_fm_destroy(pci_p); if (cmn_p->pci_common_refcnt != 0) { cmn_p->pci_p[pci_p->pci_side] = NULL; mutex_exit(&pci_global_mutex); return; } ecc_destroy(pci_p); iommu_destroy(pci_p); cb_destroy(pci_p); ib_destroy(pci_p); free_pci_common_soft_state(cmn_p->pci_common_id); pci_intr_teardown(pci_p); mutex_exit(&pci_global_mutex); } /* called by pci_attach() DDI_RESUME to (re)initialize pci objects */ void pci_obj_resume(pci_t *pci_p) { pci_common_t *cmn_p = pci_p->pci_common_p; mutex_enter(&pci_global_mutex); if (cmn_p->pci_common_attachcnt == 0) { ib_configure(pci_p->pci_ib_p); iommu_configure(pci_p->pci_iommu_p); ecc_configure(pci_p); ib_resume(pci_p->pci_ib_p); } pbm_configure(pci_p->pci_pbm_p); sc_configure(pci_p->pci_sc_p); if (cmn_p->pci_common_attachcnt == 0) cb_resume(pci_p->pci_cb_p); pbm_resume(pci_p->pci_pbm_p); cmn_p->pci_common_attachcnt++; mutex_exit(&pci_global_mutex); } /* called by pci_detach() DDI_SUSPEND to suspend pci objects */ void pci_obj_suspend(pci_t *pci_p) { mutex_enter(&pci_global_mutex); pbm_suspend(pci_p->pci_pbm_p); if (!--pci_p->pci_common_p->pci_common_attachcnt) { ib_suspend(pci_p->pci_ib_p); cb_suspend(pci_p->pci_cb_p); } mutex_exit(&pci_global_mutex); } static uint32_t javelin_prom_fix[] = {0xfff800, 0, 0, 0x3f}; static int pci_intr_setup(pci_t *pci_p) { extern char *platform; dev_info_t *dip = pci_p->pci_dip; pbm_t *pbm_p = pci_p->pci_pbm_p; cb_t *cb_p = pci_p->pci_cb_p; int i, no_of_intrs; /* * This is a hack to fix a broken imap entry in the javelin PROM. * see bugid 4226603 */ if (strcmp((const char *)&platform, "SUNW,Ultra-250") == 0) (void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, "interrupt-map-mask", (caddr_t)javelin_prom_fix, sizeof (javelin_prom_fix)); /* * Get the interrupts property. */ if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "interrupts", (caddr_t)&pci_p->pci_inos, &pci_p->pci_inos_len) != DDI_SUCCESS) cmn_err(CE_PANIC, "%s%d: no interrupts property\n", ddi_driver_name(dip), ddi_get_instance(dip)); /* * figure out number of interrupts in the "interrupts" property * and convert them all into ino. */ i = ddi_getprop(DDI_DEV_T_ANY, dip, 0, "#interrupt-cells", 1); i = CELLS_1275_TO_BYTES(i); no_of_intrs = pci_p->pci_inos_len / i; for (i = 0; i < no_of_intrs; i++) pci_p->pci_inos[i] = IB_MONDO_TO_INO(pci_p->pci_inos[i]); if (pci_p->pci_common_p->pci_common_refcnt == 0) { cb_p->cb_no_of_inos = no_of_intrs; if (i = cb_register_intr(pci_p)) goto teardown; if (i = ecc_register_intr(pci_p)) goto teardown; intr_dist_add(cb_intr_dist, cb_p); cb_enable_intr(pci_p); ecc_enable_intr(pci_p); } if (i = pbm_register_intr(pbm_p)) { if (pci_p->pci_common_p->pci_common_refcnt == 0) intr_dist_rem(cb_intr_dist, cb_p); goto teardown; } intr_dist_add(pbm_intr_dist, pbm_p); ib_intr_enable(pci_p, pci_p->pci_inos[CBNINTR_PBM]); if (pci_p->pci_common_p->pci_common_refcnt == 0) intr_dist_add_weighted(ib_intr_dist_all, pci_p->pci_ib_p); return (DDI_SUCCESS); teardown: pci_intr_teardown(pci_p); return (i); } /* * pci_fix_ranges - fixes the config space entry of the "ranges" * property on psycho+ platforms */ void pci_fix_ranges(pci_ranges_t *rng_p, int rng_entries) { int i; for (i = 0; i < rng_entries; i++, rng_p++) if ((rng_p->child_high & PCI_REG_ADDR_M) == PCI_ADDR_CONFIG) rng_p->parent_low |= rng_p->child_high; } /* * map_pci_registers * * This function is called from the attach routine to map the registers * accessed by this driver. * * used by: pci_attach() * * return value: DDI_FAILURE on failure */ int map_pci_registers(pci_t *pci_p, dev_info_t *dip) { ddi_device_acc_attr_t attr; attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC; if (ddi_regs_map_setup(dip, 0, &pci_p->pci_address[0], 0, 0, &attr, &pci_p->pci_ac[0]) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d: unable to map reg entry 0\n", ddi_driver_name(dip), ddi_get_instance(dip)); return (DDI_FAILURE); } /* * if we don't have streaming buffer, then we don't have * pci_address[2]. */ if (pci_stream_buf_exists && ddi_regs_map_setup(dip, 2, &pci_p->pci_address[2], 0, 0, &attr, &pci_p->pci_ac[2]) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d: unable to map reg entry 2\n", ddi_driver_name(dip), ddi_get_instance(dip)); ddi_regs_map_free(&pci_p->pci_ac[0]); return (DDI_FAILURE); } /* * The second register set contains the bridge's configuration * header. This header is at the very beginning of the bridge's * configuration space. This space has litte-endian byte order. */ attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; if (ddi_regs_map_setup(dip, 1, &pci_p->pci_address[1], 0, PCI_CONF_HDR_SIZE, &attr, &pci_p->pci_ac[1]) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d: unable to map reg entry 1\n", ddi_driver_name(dip), ddi_get_instance(dip)); ddi_regs_map_free(&pci_p->pci_ac[0]); if (pci_stream_buf_exists) ddi_regs_map_free(&pci_p->pci_ac[2]); return (DDI_FAILURE); } DEBUG3(DBG_ATTACH, dip, "address (%p,%p,%p)\n", pci_p->pci_address[0], pci_p->pci_address[1], pci_p->pci_address[2]); return (DDI_SUCCESS); } /* * unmap_pci_registers: * * This routine unmap the registers mapped by map_pci_registers. * * used by: pci_detach() * * return value: none */ void unmap_pci_registers(pci_t *pci_p) { ddi_regs_map_free(&pci_p->pci_ac[0]); ddi_regs_map_free(&pci_p->pci_ac[1]); if (pci_stream_buf_exists) ddi_regs_map_free(&pci_p->pci_ac[2]); } /* * These convenience wrappers relies on map_pci_registers() to setup * pci_address[0-2] correctly at first. */ /* The psycho+ reg base is at 1fe.0000.0000 */ static uintptr_t get_reg_base(pci_t *pci_p) { return ((uintptr_t)pci_p->pci_address[pci_stream_buf_exists ? 2 : 0]); } /* The psycho+ config reg base is always the 2nd reg entry */ static uintptr_t get_config_reg_base(pci_t *pci_p) { return ((uintptr_t)(pci_p->pci_address[1])); } uint64_t ib_get_map_reg(ib_mondo_t mondo, uint32_t cpu_id) { return ((mondo) | (cpu_id << COMMON_INTR_MAP_REG_TID_SHIFT) | COMMON_INTR_MAP_REG_VALID); } uint32_t ib_map_reg_get_cpu(volatile uint64_t reg) { return ((reg & COMMON_INTR_MAP_REG_TID) >> COMMON_INTR_MAP_REG_TID_SHIFT); } uint64_t * ib_intr_map_reg_addr(ib_t *ib_p, ib_ino_t ino) { uint64_t *addr; if (ino & 0x20) addr = (uint64_t *)(ib_p->ib_obio_intr_map_regs + (((uint_t)ino & 0x1f) << 3)); else addr = (uint64_t *)(ib_p->ib_slot_intr_map_regs + (((uint_t)ino & 0x3c) << 1)); return (addr); } uint64_t * ib_clear_intr_reg_addr(ib_t *ib_p, ib_ino_t ino) { uint64_t *addr; if (ino & 0x20) addr = (uint64_t *)(ib_p->ib_obio_clear_intr_regs + (((uint_t)ino & 0x1f) << 3)); else addr = (uint64_t *)(ib_p->ib_slot_clear_intr_regs + (((uint_t)ino & 0x1f) << 3)); return (addr); } /* * psycho have one mapping register per slot */ void ib_ino_map_reg_share(ib_t *ib_p, ib_ino_t ino, ib_ino_info_t *ino_p) { if (!IB_IS_OBIO_INO(ino)) { ASSERT(ino_p->ino_slot_no < 8); ib_p->ib_map_reg_counters[ino_p->ino_slot_no]++; } } /* * return true if the ino shares mapping register with other interrupts * of the same slot, or is still shared by other On-board devices. */ int ib_ino_map_reg_unshare(ib_t *ib_p, ib_ino_t ino, ib_ino_info_t *ino_p) { ASSERT(IB_IS_OBIO_INO(ino) || ino_p->ino_slot_no < 8); if (IB_IS_OBIO_INO(ino)) return (ino_p->ino_ih_size); else return (--ib_p->ib_map_reg_counters[ino_p->ino_slot_no]); } /*ARGSUSED*/ void pci_pbm_intr_dist(pbm_t *pbm_p) { } uintptr_t pci_ib_setup(ib_t *ib_p) { pci_t *pci_p = ib_p->ib_pci_p; uintptr_t a = get_reg_base(pci_p); ib_p->ib_ign = PCI_ID_TO_IGN(pci_p->pci_id); ib_p->ib_max_ino = PSYCHO_MAX_INO; ib_p->ib_slot_intr_map_regs = a + PSYCHO_IB_SLOT_INTR_MAP_REG_OFFSET; ib_p->ib_obio_intr_map_regs = a + PSYCHO_IB_OBIO_INTR_MAP_REG_OFFSET; ib_p->ib_obio_clear_intr_regs = a + PSYCHO_IB_OBIO_CLEAR_INTR_REG_OFFSET; return (a); } uint32_t pci_xlate_intr(dev_info_t *dip, dev_info_t *rdip, ib_t *ib_p, uint32_t intr) { int32_t len; dev_info_t *cdip; pci_regspec_t *pci_rp; uint32_t bus, dev, phys_hi; if ((intr > PCI_INTD) || (intr < PCI_INTA)) goto done; if (ddi_prop_exists(DDI_DEV_T_ANY, rdip, NULL, "interrupt-map")) goto done; /* * Hack for pre 1275 imap machines e.g. quark & tazmo * We need to turn any PCI interrupts into ino interrupts. machines * supporting imap will have this done in the map. */ cdip = get_my_childs_dip(dip, rdip); if (ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, "reg", (caddr_t)&pci_rp, &len) != DDI_SUCCESS) return (0); phys_hi = pci_rp->pci_phys_hi; kmem_free(pci_rp, len); bus = PCI_REG_BUS_G(phys_hi); dev = PCI_REG_DEV_G(phys_hi); /* * The ino for a given device id is derived as 0BSSNN where * * B = 0 for bus A, 1 for bus B * SS = dev - 1 for bus A, dev - 2 for bus B * NN = 00 for INTA#, 01 for INTB#, 10 for INTC#, 11 for INTD# * * if pci bus number > 0x80, then devices are located on the A side(66) */ DEBUG3(DBG_IB, dip, "pci_xlate_intr: bus=%x, dev=%x, intr=%x\n", bus, dev, intr); intr--; intr |= (bus & 0x80) ? ((dev - 1) << 2) : (0x10 | ((dev - 2) << 2)); DEBUG1(DBG_IB, dip, "pci_xlate_intr: done ino=%x\n", intr); done: return (IB_INO_TO_MONDO(ib_p, intr)); } /* * Return the cpuid to to be used for an ino. Psycho has special slot-cpu * constraints on cpu assignment: * * On multi-function pci cards, functions have separate devinfo nodes and * interrupts. Some pci support hardware, such as the psycho/pcipsy chip, * control interrupt-to-cpu binding on a per pci-slot basis instead of per * function. For hardware like this, if an interrupt for one function has * already been directed to a particular cpu, we can't choose a different * cpu for another function implemented in the same pci-slot - if we did * we would be redirecting the first function too (which causes problems * for consistent interrupt distribution). * * This function determines if there is already an established slot-oriented * interrupt-to-cpu binding established, if there is then it returns that * cpu. Otherwise a new cpu is selected by intr_dist_cpuid(). * * The devinfo node we are trying to associate a cpu with is * ino_p->ino_ih_head->ih_dip. */ uint32_t pci_intr_dist_cpuid(ib_t *ib_p, ib_ino_info_t *ino_p) { dev_info_t *rdip = ino_p->ino_ih_head->ih_dip; dev_info_t *prdip = ddi_get_parent(rdip); ib_ino_info_t *sino_p; dev_info_t *sdip; dev_info_t *psdip; char *buf1 = NULL, *buf2 = NULL; char *s1, *s2, *s3; int l2; int cpu_id; /* must be psycho driver parent (not ebus) */ if (strcmp(ddi_driver_name(prdip), "pcipsy") != 0) goto newcpu; /* * From PCI 1275 binding: 2.2.1.3 Unit Address representation: * Since the "unit-number" is the address that appears in on Open * Firmware 'device path', it follows that only the DD and DD,FF * forms of the text representation can appear in a 'device path'. * * The rdip unit address is of the form "DD[,FF]". Define two * unit address strings that represent same-slot use: "DD" and "DD,". * The first compare uses strcmp, the second uses strncmp. */ s1 = ddi_get_name_addr(rdip); if (s1 == NULL) goto newcpu; buf1 = kmem_alloc(MAXNAMELEN, KM_SLEEP); /* strcmp */ buf2 = kmem_alloc(MAXNAMELEN, KM_SLEEP); /* strncmp */ s1 = strcpy(buf1, s1); s2 = strcpy(buf2, s1); s1 = strrchr(s1, ','); if (s1) { *s1 = '\0'; /* have "DD,FF" */ s1 = buf1; /* search via strcmp "DD" */ s2 = strrchr(s2, ','); *(s2 + 1) = '\0'; s2 = buf2; l2 = strlen(s2); /* search via strncmp "DD," */ } else { (void) strcat(s2, ","); /* have "DD" */ l2 = strlen(s2); /* search via strncmp "DD," */ } /* * Search the established ino list for devinfo nodes bound * to an ino that matches one of the slot use strings. */ ASSERT(MUTEX_HELD(&ib_p->ib_ino_lst_mutex)); for (sino_p = ib_p->ib_ino_lst; sino_p; sino_p = sino_p->ino_next) { /* skip self and non-established */ if ((sino_p == ino_p) || (sino_p->ino_established == 0)) continue; /* skip non-siblings */ sdip = sino_p->ino_ih_head->ih_dip; psdip = ddi_get_parent(sdip); if (psdip != prdip) continue; /* must be psycho driver parent (not ebus) */ if (strcmp(ddi_driver_name(psdip), "pcipsy") != 0) continue; s3 = ddi_get_name_addr(sdip); if ((s1 && (strcmp(s1, s3) == 0)) || (strncmp(s2, s3, l2) == 0)) { extern int intr_dist_debug; if (intr_dist_debug) cmn_err(CE_CONT, "intr_dist: " "pcipsy`pci_intr_dist_cpuid " "%s#%d %s: cpu %d established " "by %s#%d %s\n", ddi_driver_name(rdip), ddi_get_instance(rdip), ddi_deviname(rdip, buf1), sino_p->ino_cpuid, ddi_driver_name(sdip), ddi_get_instance(sdip), ddi_deviname(sdip, buf2)); break; } } /* If a slot use match is found then use established cpu */ if (sino_p) { cpu_id = sino_p->ino_cpuid; /* target established cpu */ goto out; } newcpu: cpu_id = intr_dist_cpuid(); /* target new cpu */ out: if (buf1) kmem_free(buf1, MAXNAMELEN); if (buf2) kmem_free(buf2, MAXNAMELEN); return (cpu_id); } /*ARGSUSED*/ static void cb_thermal_timeout(void *arg) { do_shutdown(); /* * In case do_shutdown() fails to halt the system. */ (void) timeout((void(*)(void *))power_down, NULL, thermal_powerdown_delay * hz); } /* * High-level handler for psycho's CBNINTR_THERMAL interrupt. * * Use timeout(9f) to implement the core functionality so that the * timeout(9f) function can sleep, if needed. */ /*ARGSUSED*/ uint_t cb_thermal_intr(caddr_t a) { cmn_err(CE_WARN, "pci: Thermal warning detected!\n"); if (pci_thermal_intr_fatal) { (void) timeout(cb_thermal_timeout, NULL, 0); } return (DDI_INTR_CLAIMED); } void pci_cb_teardown(pci_t *pci_p) { cb_t *cb_p = pci_p->pci_cb_p; uint32_t mondo; if (pci_p->pci_thermal_interrupt != -1) { mondo = ((pci_p->pci_cb_p->cb_ign << PCI_INO_BITS) | pci_p->pci_inos[CBNINTR_THERMAL]); mondo = CB_MONDO_TO_XMONDO(pci_p->pci_cb_p, mondo); cb_disable_nintr(cb_p, CBNINTR_THERMAL, IB_INTR_WAIT); rem_ivintr(mondo, NULL); } #ifdef _STARFIRE pc_ittrans_uninit(cb_p->cb_ittrans_cookie); #endif /* _STARFIRE */ } int cb_register_intr(pci_t *pci_p) { uint32_t mondo; if (pci_p->pci_thermal_interrupt == -1) return (DDI_SUCCESS); mondo = ((pci_p->pci_cb_p->cb_ign << PCI_INO_BITS) | pci_p->pci_inos[CBNINTR_THERMAL]); mondo = CB_MONDO_TO_XMONDO(pci_p->pci_cb_p, mondo); VERIFY(add_ivintr(mondo, pci_pil[CBNINTR_THERMAL], cb_thermal_intr, (caddr_t)pci_p->pci_cb_p, NULL) == 0); return (PCI_ATTACH_RETCODE(PCI_CB_OBJ, PCI_OBJ_INTR_ADD, DDI_SUCCESS)); } void cb_enable_intr(pci_t *pci_p) { if (pci_p->pci_thermal_interrupt != -1) cb_enable_nintr(pci_p, CBNINTR_THERMAL); } uint64_t cb_ino_to_map_pa(cb_t *cb_p, ib_ino_t ino) { return (cb_p->cb_map_pa + ((ino & 0x1f) << 3)); } uint64_t cb_ino_to_clr_pa(cb_t *cb_p, ib_ino_t ino) { return (cb_p->cb_clr_pa + ((ino & 0x1f) << 3)); } /* * allow removal of exported/shared thermal interrupt */ int cb_remove_xintr(pci_t *pci_p, dev_info_t *dip, dev_info_t *rdip, ib_ino_t ino, ib_mondo_t mondo) { if (ino != pci_p->pci_inos[CBNINTR_THERMAL]) return (DDI_FAILURE); cb_disable_nintr(pci_p->pci_cb_p, CBNINTR_THERMAL, IB_INTR_WAIT); rem_ivintr(mondo, NULL); DEBUG1(DBG_R_INTX, dip, "remove xintr %x\n", ino); return (DDI_SUCCESS); } int pci_ecc_add_intr(pci_t *pci_p, int inum, ecc_intr_info_t *eii_p) { uint32_t mondo; mondo = ((pci_p->pci_cb_p->cb_ign << PCI_INO_BITS) | pci_p->pci_inos[inum]); mondo = CB_MONDO_TO_XMONDO(pci_p->pci_cb_p, mondo); VERIFY(add_ivintr(mondo, pci_pil[inum], ecc_intr, (caddr_t)eii_p, NULL) == 0); return (PCI_ATTACH_RETCODE(PCI_ECC_OBJ, PCI_OBJ_INTR_ADD, DDI_SUCCESS)); } void pci_ecc_rem_intr(pci_t *pci_p, int inum, ecc_intr_info_t *eii_p) { uint32_t mondo; mondo = ((pci_p->pci_cb_p->cb_ign << PCI_INO_BITS) | pci_p->pci_inos[inum]); mondo = CB_MONDO_TO_XMONDO(pci_p->pci_cb_p, mondo); rem_ivintr(mondo, NULL); } static int pbm_has_pass_1_cheerio(pci_t *pci_p); void pbm_configure(pbm_t *pbm_p) { pci_t *pci_p = pbm_p->pbm_pci_p; cb_t *cb_p = pci_p->pci_cb_p; dev_info_t *dip = pci_p->pci_dip; int instance = ddi_get_instance(dip); uint32_t mask = 1 << instance; uint64_t l; uint16_t s = 0; /* * Workarounds for hardware bugs: * * bus parking * * Pass 2 psycho parts have a bug that requires bus * parking to be disabled. * * Pass 1 cheerio parts have a bug which prevents them * from working on a PBM with bus parking enabled. * * rerun disable * * Pass 1 and 2 psycho's require that the rerun's be * enabled. * * retry limit * * For pass 1 and pass 2 psycho parts we disable the * retry limit. This is because the limit of 16 seems * too restrictive for devices that are children of pci * to pci bridges. For pass 3 this limit will be 64. * * DMA write/PIO read sync * * For pass 2 psycho, the disable this feature. */ l = lddphysio(cb_p->cb_base_pa + PSYCHO_CB_CONTROL_STATUS_REG_OFFSET); l &= PSYCHO_CB_CONTROL_STATUS_VER; l >>= PSYCHO_CB_CONTROL_STATUS_VER_SHIFT; DEBUG2(DBG_ATTACH, dip, "cb_create: ver=%d, mask=%x\n", l, mask); pci_rerun_disable = (uint32_t)-1; switch (l) { case 0: DEBUG0(DBG_ATTACH, dip, "cb_create: psycho pass 1\n"); if (!pci_disable_pass1_workarounds) { if (pbm_has_pass_1_cheerio(pci_p)) pci_bus_parking_enable &= ~mask; pci_rerun_disable &= ~mask; pci_retry_disable |= mask; } break; case 1: if (!pci_disable_pass2_workarounds) { pci_bus_parking_enable &= ~mask; pci_rerun_disable &= ~mask; pci_retry_disable |= mask; pci_dwsync_disable |= mask; } break; case 2: if (!pci_disable_pass3_workarounds) { pci_dwsync_disable |= mask; if (pbm_has_pass_1_cheerio(pci_p)) pci_bus_parking_enable &= ~mask; } break; case 3: if (!pci_disable_plus_workarounds) { pci_dwsync_disable |= mask; if (pbm_has_pass_1_cheerio(pci_p)) pci_bus_parking_enable &= ~mask; } break; default: if (!pci_disable_default_workarounds) { pci_dwsync_disable |= mask; if (pbm_has_pass_1_cheerio(pci_p)) pci_bus_parking_enable &= ~mask; } break; } /* * Clear any PBM errors. */ l = (PSYCHO_PCI_AFSR_E_MASK << PSYCHO_PCI_AFSR_PE_SHIFT) | (PSYCHO_PCI_AFSR_E_MASK << PSYCHO_PCI_AFSR_SE_SHIFT); *pbm_p->pbm_async_flt_status_reg = l; /* * Clear error bits in configuration status register. */ s = PCI_STAT_PERROR | PCI_STAT_S_PERROR | PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB | PCI_STAT_S_TARG_AB | PCI_STAT_S_PERROR; DEBUG1(DBG_ATTACH, dip, "pbm_configure: conf status reg=%x\n", s); pbm_p->pbm_config_header->ch_status_reg = s; DEBUG1(DBG_ATTACH, dip, "pbm_configure: conf status reg==%x\n", pbm_p->pbm_config_header->ch_status_reg); l = *pbm_p->pbm_ctrl_reg; /* save control register state */ DEBUG1(DBG_ATTACH, dip, "pbm_configure: ctrl reg==%llx\n", l); /* * See if any SERR# signals are asserted. We'll clear them later. */ if (l & COMMON_PCI_CTRL_SERR) cmn_err(CE_WARN, "%s%d: SERR asserted on pci bus\n", ddi_driver_name(dip), instance); /* * Determine if PCI bus is running at 33 or 66 mhz. */ if (l & COMMON_PCI_CTRL_SPEED) pbm_p->pbm_speed = PBM_SPEED_66MHZ; else pbm_p->pbm_speed = PBM_SPEED_33MHZ; DEBUG1(DBG_ATTACH, dip, "pbm_configure: %d mhz\n", pbm_p->pbm_speed == PBM_SPEED_66MHZ ? 66 : 33); /* * Enable error interrupts. */ if (pci_error_intr_enable & mask) l |= PSYCHO_PCI_CTRL_ERR_INT_EN; else l &= ~PSYCHO_PCI_CTRL_ERR_INT_EN; /* * Disable pci streaming byte errors and error interrupts. */ pci_sbh_error_intr_enable &= ~mask; l &= ~PSYCHO_PCI_CTRL_SBH_INT_EN; /* * Enable/disable bus parking. */ if ((pci_bus_parking_enable & mask) && !ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "no-bus-parking")) l |= PSYCHO_PCI_CTRL_ARB_PARK; else l &= ~PSYCHO_PCI_CTRL_ARB_PARK; /* * Enable arbitration. */ if (pci_p->pci_side == B) l = (l & ~PSYCHO_PCI_CTRL_ARB_EN_MASK) | pci_b_arb_enable; else l = (l & ~PSYCHO_PCI_CTRL_ARB_EN_MASK) | pci_a_arb_enable; /* * Make sure SERR is clear */ l |= COMMON_PCI_CTRL_SERR; /* * Make sure power management interrupt is disabled. */ l &= ~PSYCHO_PCI_CTRL_WAKEUP_EN; #ifdef _STARFIRE /* * Hack to determine whether we do Starfire special handling * For starfire, we simply program a constant odd-value * (0x1D) in the MID field. * * Zero out the MID field before ORing. We leave the LSB of * the MID field intact since we cannot have a zero (even) * MID value. */ l &= 0xFF0FFFFFFFFFFFFFULL; l |= 0x1DULL << 51; /* * Program in the Interrupt Group Number. Here we have to * convert the starfire 7bit upaid into a 5bit value. */ l |= (uint64_t)STARFIRE_UPAID2HWIGN(pbm_p->pbm_pci_p->pci_id) << COMMON_CB_CONTROL_STATUS_IGN_SHIFT; #endif /* _STARFIRE */ /* * Now finally write the control register with the appropriate value. */ DEBUG1(DBG_ATTACH, dip, "pbm_configure: ctrl reg=%llx\n", l); *pbm_p->pbm_ctrl_reg = l; /* * Allow the diag register to be set based upon variable that * can be configured via /etc/system. */ l = *pbm_p->pbm_diag_reg; DEBUG1(DBG_ATTACH, dip, "pbm_configure: PCI diag reg==%llx\n", l); if (pci_retry_disable & mask) l |= COMMON_PCI_DIAG_DIS_RETRY; if (pci_retry_enable & mask) l &= ~COMMON_PCI_DIAG_DIS_RETRY; if (pci_intsync_disable & mask) l |= COMMON_PCI_DIAG_DIS_INTSYNC; else l &= ~COMMON_PCI_DIAG_DIS_INTSYNC; if (pci_dwsync_disable & mask) l |= PSYCHO_PCI_DIAG_DIS_DWSYNC; else l &= ~PSYCHO_PCI_DIAG_DIS_DWSYNC; DEBUG1(DBG_ATTACH, dip, "pbm_configure: PCI diag reg=%llx\n", l); *pbm_p->pbm_diag_reg = l; /* * Enable SERR# and parity reporting via command register. */ s = pci_perr_enable & mask ? PCI_COMM_PARITY_DETECT : 0; s |= pci_serr_enable & mask ? PCI_COMM_SERR_ENABLE : 0; DEBUG1(DBG_ATTACH, dip, "pbm_configure: conf command reg=%x\n", s); pbm_p->pbm_config_header->ch_command_reg = s; DEBUG1(DBG_ATTACH, dip, "pbm_configure: conf command reg==%x\n", pbm_p->pbm_config_header->ch_command_reg); /* * The current versions of the obp are suppose to set the latency * timer register but do not. Bug 1234181 is open against this * problem. Until this bug is fixed we check to see if the obp * has attempted to set the latency timer register by checking * for the existence of a "latency-timer" property. */ if (pci_set_latency_timer_register) { DEBUG1(DBG_ATTACH, dip, "pbm_configure: set psycho latency timer to %x\n", pci_latency_timer); pbm_p->pbm_config_header->ch_latency_timer_reg = pci_latency_timer; } (void) ndi_prop_update_int(DDI_DEV_T_ANY, dip, "latency-timer", (int)pbm_p->pbm_config_header->ch_latency_timer_reg); } uint_t pbm_disable_pci_errors(pbm_t *pbm_p) { pci_t *pci_p = pbm_p->pbm_pci_p; ib_t *ib_p = pci_p->pci_ib_p; /* * Disable error and streaming byte hole interrupts via the * PBM control register. */ *pbm_p->pbm_ctrl_reg &= ~(PSYCHO_PCI_CTRL_ERR_INT_EN | PSYCHO_PCI_CTRL_SBH_INT_EN); /* * Disable error interrupts via the interrupt mapping register. */ ib_intr_disable(ib_p, pci_p->pci_inos[CBNINTR_PBM], IB_INTR_NOWAIT); return (BF_NONE); } /*ARGSUSED*/ uint64_t pci_sc_configure(pci_t *pci_p) { return (0); } /*ARGSUSED*/ void pci_pbm_dma_sync(pbm_t *pbm_p, ib_ino_t ino) { uint64_t pa = pbm_p->pbm_sync_reg_pa; if (pa) (void) lddphysio(pa); /* Load from Sync Register */ } /*ARGSUSED*/ dvma_context_t pci_iommu_get_dvma_context(iommu_t *iommu_p, dvma_addr_t dvma_pg_index) { ASSERT(0); return (0); } /*ARGSUSED*/ void pci_iommu_free_dvma_context(iommu_t *iommu_p, dvma_context_t ctx) { ASSERT(0); } void pci_iommu_config(iommu_t *iommu_p, uint64_t iommu_ctl, uint64_t cfgpa) { volatile uint64_t *pbm_csr_p = (volatile uint64_t *) get_pbm_reg_base(iommu_p->iommu_pci_p); volatile uint64_t pbm_ctl = *pbm_csr_p; volatile uint64_t *iommu_ctl_p = iommu_p->iommu_ctrl_reg; volatile uint64_t tsb_bar_val = iommu_p->iommu_tsb_paddr; volatile uint64_t *tsb_bar_p = iommu_p->iommu_tsb_base_addr_reg; DEBUG2(DBG_ATTACH, iommu_p->iommu_pci_p->pci_dip, "\npci_iommu_config: pbm_csr_p=%016llx pbm_ctl=%016llx", pbm_csr_p, pbm_ctl); DEBUG2(DBG_ATTACH|DBG_CONT, iommu_p->iommu_pci_p->pci_dip, "\n\tiommu_ctl_p=%016llx iommu_ctl=%016llx", iommu_ctl_p, iommu_ctl); DEBUG2(DBG_ATTACH|DBG_CONT, iommu_p->iommu_pci_p->pci_dip, "\n\tcfgpa=%016llx tsb_bar_val=%016llx", cfgpa, tsb_bar_val); if (!cfgpa) goto reprog; /* disable PBM arbiters - turn off bits 0-7 */ *pbm_csr_p = (pbm_ctl >> 8) << 8; /* make sure we own the bus by reading any child device config space */ (void) ldphysio(cfgpa); /* also flushes the prev write */ reprog: *tsb_bar_p = tsb_bar_val; *iommu_ctl_p = iommu_ctl; *pbm_csr_p = pbm_ctl; /* re-enable bus arbitration */ pbm_ctl = *pbm_csr_p; /* flush all prev writes */ } int pci_sc_ctx_inv(dev_info_t *dip, sc_t *sc_p, ddi_dma_impl_t *mp) { ASSERT(0); return (DDI_FAILURE); } void pci_cb_setup(pci_t *pci_p) { uint64_t csr, csr_pa, pa; cb_t *cb_p = pci_p->pci_cb_p; /* cb_p->cb_node_id = 0; */ cb_p->cb_ign = PCI_ID_TO_IGN(pci_p->pci_id); pa = (uint64_t)hat_getpfnum(kas.a_hat, pci_p->pci_address[0]); cb_p->cb_base_pa = pa = pa >> (32 - MMU_PAGESHIFT) << 32; cb_p->cb_map_pa = pa + PSYCHO_IB_OBIO_INTR_MAP_REG_OFFSET; cb_p->cb_clr_pa = pa + PSYCHO_IB_OBIO_CLEAR_INTR_REG_OFFSET; cb_p->cb_obsta_pa = pa + COMMON_IB_OBIO_INTR_STATE_DIAG_REG; csr_pa = pa + PSYCHO_CB_CONTROL_STATUS_REG_OFFSET; csr = lddphysio(csr_pa); /* * Clear any pending address parity errors. */ if (csr & COMMON_CB_CONTROL_STATUS_APERR) { csr |= COMMON_CB_CONTROL_STATUS_APERR; cmn_err(CE_WARN, "clearing UPA address parity error\n"); } csr |= COMMON_CB_CONTROL_STATUS_APCKEN; csr &= ~COMMON_CB_CONTROL_STATUS_IAP; stdphysio(csr_pa, csr); #ifdef _STARFIRE /* Setup Starfire interrupt target translation */ pc_ittrans_init(pci_p->pci_id, &cb_p->cb_ittrans_cookie); #endif /* _STARFIRE */ } void pci_ecc_setup(ecc_t *ecc_p) { ecc_p->ecc_ue.ecc_errpndg_mask = 0; ecc_p->ecc_ue.ecc_offset_mask = PSYCHO_ECC_UE_AFSR_DW_OFFSET; ecc_p->ecc_ue.ecc_offset_shift = PSYCHO_ECC_UE_AFSR_DW_OFFSET_SHIFT; ecc_p->ecc_ue.ecc_size_log2 = 3; ecc_p->ecc_ce.ecc_errpndg_mask = 0; ecc_p->ecc_ce.ecc_offset_mask = PSYCHO_ECC_CE_AFSR_DW_OFFSET; ecc_p->ecc_ce.ecc_offset_shift = PSYCHO_ECC_CE_AFSR_DW_OFFSET_SHIFT; ecc_p->ecc_ce.ecc_size_log2 = 3; } /* * overwrite dvma end address (only on virtual-dma systems) * initialize tsb size * reset context bits * return: IOMMU CSR bank base address (VA) */ uintptr_t pci_iommu_setup(iommu_t *iommu_p) { pci_dvma_range_prop_t *dvma_prop; int dvma_prop_len; pci_t *pci_p = iommu_p->iommu_pci_p; dev_info_t *dip = pci_p->pci_dip; uint_t tsb_size = iommu_tsb_cookie_to_size(pci_p->pci_tsb_cookie); uint_t tsb_size_prop; if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "virtual-dma", (caddr_t)&dvma_prop, &dvma_prop_len) != DDI_PROP_SUCCESS) goto tsb_done; if (dvma_prop_len != sizeof (pci_dvma_range_prop_t)) { cmn_err(CE_WARN, "%s%d: invalid virtual-dma property", ddi_driver_name(dip), ddi_get_instance(dip)); goto tsb_end; } iommu_p->iommu_dvma_end = dvma_prop->dvma_base + (dvma_prop->dvma_len - 1); tsb_size_prop = IOMMU_BTOP(dvma_prop->dvma_len) * sizeof (uint64_t); tsb_size = MIN(tsb_size_prop, tsb_size); tsb_end: kmem_free(dvma_prop, dvma_prop_len); tsb_done: iommu_p->iommu_tsb_size = iommu_tsb_size_encode(tsb_size); if (CHIP_TYPE(pci_p) != PCI_CHIP_HUMMINGBIRD) pci_preserve_iommu_tsb = 0; /* * Psycho has no context support. */ iommu_p->iommu_ctx_bitmap = NULL; iommu_p->iommu_flush_ctx_reg = NULL; pci_use_contexts = 0; pci_sc_use_contexts = 0; /* * Determine the virtual address of the register block * containing the iommu control registers. */ return (get_reg_base(pci_p)); } /*ARGSUSED*/ void pci_iommu_teardown(iommu_t *iommu_p) { } /* The psycho+ PBM reg base is at 1fe.0000.2000 */ uintptr_t get_pbm_reg_base(pci_t *pci_p) { return ((uintptr_t)(pci_p->pci_address[0] + (pci_stream_buf_exists ? 0 : PSYCHO_PCI_PBM_REG_BASE))); } void pci_post_uninit_child(pci_t *pci_p) { } void pci_pbm_setup(pbm_t *pbm_p) { pci_t *pci_p = pbm_p->pbm_pci_p; /* * Get the base virtual address for the PBM control block. */ uintptr_t a = get_pbm_reg_base(pci_p); /* * Get the virtual address of the PCI configuration header. * This should be mapped little-endian. */ pbm_p->pbm_config_header = (config_header_t *)get_config_reg_base(pci_p); /* * Get the virtual addresses for control, error and diag * registers. */ pbm_p->pbm_ctrl_reg = (uint64_t *)(a + PSYCHO_PCI_CTRL_REG_OFFSET); pbm_p->pbm_diag_reg = (uint64_t *)(a + PSYCHO_PCI_DIAG_REG_OFFSET); pbm_p->pbm_async_flt_status_reg = (uint64_t *)(a + PSYCHO_PCI_ASYNC_FLT_STATUS_REG_OFFSET); pbm_p->pbm_async_flt_addr_reg = (uint64_t *)(a + PSYCHO_PCI_ASYNC_FLT_ADDR_REG_OFFSET); if (CHIP_TYPE(pci_p) >= PCI_CHIP_SABRE) pbm_p->pbm_sync_reg_pa = pci_p->pci_cb_p->cb_base_pa + DMA_WRITE_SYNC_REG; } /*ARGSUSED*/ void pci_pbm_teardown(pbm_t *pbm_p) { } void pci_sc_setup(sc_t *sc_p) { pci_t *pci_p = sc_p->sc_pci_p; /* * Determine the virtual addresses of the streaming cache * control/status and flush registers. */ uintptr_t a = get_pbm_reg_base(pci_p); sc_p->sc_ctrl_reg = (uint64_t *)(a + PSYCHO_SC_CTRL_REG_OFFSET); sc_p->sc_invl_reg = (uint64_t *)(a + PSYCHO_SC_INVL_REG_OFFSET); sc_p->sc_sync_reg = (uint64_t *)(a + PSYCHO_SC_SYNC_REG_OFFSET); /* * Determine the virtual addresses of the streaming cache * diagnostic access registers. */ a = get_reg_base(pci_p); if (pci_p->pci_bus_range.lo != 0) { sc_p->sc_data_diag_acc = (uint64_t *) (a + PSYCHO_SC_A_DATA_DIAG_OFFSET); sc_p->sc_tag_diag_acc = (uint64_t *) (a + PSYCHO_SC_A_TAG_DIAG_OFFSET); sc_p->sc_ltag_diag_acc = (uint64_t *) (a + PSYCHO_SC_A_LTAG_DIAG_OFFSET); } else { sc_p->sc_data_diag_acc = (uint64_t *) (a + PSYCHO_SC_B_DATA_DIAG_OFFSET); sc_p->sc_tag_diag_acc = (uint64_t *) (a + PSYCHO_SC_B_TAG_DIAG_OFFSET); sc_p->sc_ltag_diag_acc = (uint64_t *) (a + PSYCHO_SC_B_LTAG_DIAG_OFFSET); } } int pci_get_numproxy(dev_info_t *dip) { return (ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "#upa-interrupt-proxies", 1)); } int pci_get_portid(dev_info_t *dip) { return (ddi_getprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "upa-portid", -1)); } /* * pbm_has_pass_1_cheerio * * * Given a PBM soft state pointer, this routine scans it child nodes * to see if one is a pass 1 cheerio. * * return value: 1 if pass 1 cheerio is found, 0 otherwise */ static int pbm_has_pass_1_cheerio(pci_t *pci_p) { dev_info_t *cdip; int found = 0; char *s; int rev; cdip = ddi_get_child(pci_p->pci_dip); while (cdip != NULL && found == 0) { s = ddi_get_name(cdip); if (strcmp(s, "ebus") == 0 || strcmp(s, "pci108e,1000") == 0) { rev = ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, "revision-id", 0); if (rev == 0) found = 1; } cdip = ddi_get_next_sibling(cdip); } return (found); } /* * Psycho Performance Events. */ pci_kev_mask_t psycho_pci_events[] = { {"dvma_stream_rd_a", 0x0}, {"dvma_stream_wr_a", 0x1}, {"dvma_const_rd_a", 0x2}, {"dvma_const_wr_a", 0x3}, {"dvma_stream_buf_mis_a", 0x4}, {"dvma_cycles_a", 0x5}, {"dvma_wd_xfr_a", 0x6}, {"pio_cycles_a", 0x7}, {"dvma_stream_rd_b", 0x8}, {"dvma_stream_wr_b", 0x9}, {"dvma_const_rd_b", 0xa}, {"dvma_const_wr_b", 0xb}, {"dvma_stream_buf_mis_b", 0xc}, {"dvma_cycles_b", 0xd}, {"dvma_wd_xfr_b", 0xe}, {"pio_cycles_b", 0xf}, {"dvma_tlb_misses", 0x10}, {"interrupts", 0x11}, {"upa_inter_nack", 0x12}, {"pio_reads", 0x13}, {"pio_writes", 0x14}, {"merge_buffer", 0x15}, {"dma_tbwalk_a", 0x16}, {"dma_stc_a", 0x17}, {"dma_tbwalk_b", 0x18}, {"dma_stc_b", 0x19}, {"clear_pic", 0x1f} }; /* * Create the picN kstat's. */ void pci_kstat_init() { pci_name_kstat = (pci_ksinfo_t *)kmem_alloc(sizeof (pci_ksinfo_t), KM_NOSLEEP); if (pci_name_kstat == NULL) { cmn_err(CE_WARN, "pcipsy : no space for kstat\n"); } else { pci_name_kstat->pic_no_evs = sizeof (psycho_pci_events) / sizeof (pci_kev_mask_t); pci_name_kstat->pic_shift[0] = PSYCHO_SHIFT_PIC0; pci_name_kstat->pic_shift[1] = PSYCHO_SHIFT_PIC1; pci_create_name_kstat("pcip", pci_name_kstat, psycho_pci_events); } } /* * Called from _fini() */ void pci_kstat_fini() { if (pci_name_kstat != NULL) { pci_delete_name_kstat(pci_name_kstat); kmem_free(pci_name_kstat, sizeof (pci_ksinfo_t)); pci_name_kstat = NULL; } } /* ARGSUSED */ void pci_add_pci_kstat(pci_t *pci_p) { } /* ARGSUSED */ void pci_rem_pci_kstat(pci_t *pci_p) { } /* * Create the performance 'counters' kstat. */ void pci_add_upstream_kstat(pci_t *pci_p) { pci_common_t *cmn_p = pci_p->pci_common_p; pci_cntr_pa_t *cntr_pa_p = &cmn_p->pci_cmn_uks_pa; uint64_t regbase = va_to_pa((void *)get_reg_base(pci_p)); cntr_pa_p->pcr_pa = regbase + PSYCHO_PERF_PCR_OFFSET; cntr_pa_p->pic_pa = regbase + PSYCHO_PERF_PIC_OFFSET; cmn_p->pci_common_uksp = pci_create_cntr_kstat(pci_p, "pcip", NUM_OF_PICS, pci_cntr_kstat_pa_update, cntr_pa_p); } /* * Extract the drivers binding name to identify which chip * we're binding to. Whenever a new bus bridge is created, the driver alias * entry should be added here to identify the device if needed. If a device * isn't added, the identity defaults to PCI_CHIP_UNIDENTIFIED. */ static uint32_t pci_identity_init(pci_t *pci_p) { dev_info_t *dip = pci_p->pci_dip; char *name = ddi_binding_name(dip); if (strcmp(name, "pci108e,8000") == 0) return (CHIP_ID(PCI_CHIP_PSYCHO, 0x00, 0x00)); if (strcmp(name, "pci108e,a000") == 0) return (CHIP_ID(PCI_CHIP_SABRE, 0x00, 0x00)); if (strcmp(name, "pci108e,a001") == 0) return (CHIP_ID(PCI_CHIP_HUMMINGBIRD, 0x00, 0x00)); cmn_err(CE_CONT, "?%s%d:using default chip identity\n", ddi_driver_name(dip), ddi_get_instance(dip)); return (CHIP_ID(PCI_CHIP_PSYCHO, 0x00, 0x00)); } /*ARGSUSED*/ void pci_post_init_child(pci_t *pci_p, dev_info_t *child) { } /*ARGSUSED*/ int pci_pbm_add_intr(pci_t *pci_p) { return (DDI_SUCCESS); } /*ARGSUSED*/ void pci_pbm_rem_intr(pci_t *pci_p) { } /*ARGSUSED*/ void pci_pbm_suspend(pci_t *pci_p) { } /*ARGSUSED*/ void pci_pbm_resume(pci_t *pci_p) { } /* * pcipsy error handling 101: * * The various functions below are responsible for error handling. Given * a particular error, they must gather the appropriate state, report all * errors with correct payload, and attempt recovery where ever possible. * * Recovery in the context of this driver is being able notify a leaf device * of the failed transaction. This leaf device may either be the master or * target for this transaction and may have already received an error * notification via a PCI interrupt. Notification is done via DMA and access * handles. If we capture an address for the transaction then we can map it * to a handle(if the leaf device is fma-compliant) and fault the handle as * well as call the device driver registered callback. * * The hardware can either interrupt or trap upon detection of an error, in * some rare cases it also causes a fatal reset. * * pbm_error_intr() and ecc_intr() are responsible for PCI Block Module * errors(generic PCI + bridge specific) and ECC errors, respectively. They * are common between pcisch and pcipsy and therefore exist in pci_pbm.c and * pci_ecc.c. To support error handling certain chip specific handlers * must exist and they are defined below. * * cpu_deferred_error() and cpu_async_error(), handle the traps that may * have originated from IO space. They call into the registered IO callbacks * to report and handle errors that may have caused the trap. * * pci_pbm_err_handler() is called by pbm_error_intr() or pci_err_callback() * (generic fma callback for pcipsy/pcisch, pci_fm.c). pci_err_callback() is * called when the CPU has trapped because of a possible IO error(TO/BERR/UE). * It will call pci_pbm_err_handler() to report and handle all PCI/PBM/IOMMU * related errors which are detected by the chip. * * pci_pbm_err_handler() calls a generic interface pbm_afsr_report()(pci_pbm.c) * to report the pbm specific errors and attempt to map the failed address * (if captured) to a device instance. pbm_afsr_report() calls a chip specific * interface to interpret the afsr bits pci_pbm_classify()(pcisch.c/pcipsy.c). * * ecc_err_handler()(pci_ecc.c) also calls a chip specific interface to * interpret the afsr, pci_ecc_classify(). ecc_err_handler() also calls * pci_pbm_err_handler() and ndi_fm_handler_dispatch() to log any related * errors. * * To make sure that the trap code and the interrupt code are not going * to step on each others toes we have a per chip pci_fm_mutex. This also * makes it necessary for us to be cautious while we are at a high PIL, so * that we do not cause a subsequent trap that causes us to hang. * * The attempt to commonize code was meant to keep in line with the current * pci driver implementation and it was not meant to confuse. If you are * confused then don't worry, I was too. */ /* * For Psycho, a UE is always fatal, except if it is a translation error on a * Darwin platform. We ignore these because they do not cause data corruption. */ int ecc_ue_is_fatal(struct async_flt *ecc) { return (((uint_t)(ecc->flt_stat >> SABRE_UE_AFSR_PDTE_SHIFT) & SABRE_UE_AFSR_E_PDTE) == 0); } /* * pci_ecc_classify, called by ecc_handler to classify ecc errors * and determine if we should panic or not. * * Note that it is possible yet extremely rare for more than one * primary error bit to be set. We classify the ecc error based * on the first set bit that is found. */ void pci_ecc_classify(uint64_t err, ecc_errstate_t *ecc_err_p) { struct async_flt *ecc = &ecc_err_p->ecc_aflt; pci_common_t *cmn_p = ecc_err_p->ecc_ii_p.ecc_p->ecc_pci_cmn_p; ASSERT(MUTEX_HELD(&cmn_p->pci_fm_mutex)); ecc_err_p->ecc_bridge_type = PCI_BRIDGE_TYPE(cmn_p); /* * Get the parent bus id that caused the error. */ ecc_err_p->ecc_dev_id = (ecc_err_p->ecc_afsr & PSYCHO_ECC_UE_AFSR_ID) >> PSYCHO_ECC_UE_AFSR_ID_SHIFT; /* * Determine the doubleword offset of the error. */ ecc_err_p->ecc_dw_offset = (ecc_err_p->ecc_afsr & PSYCHO_ECC_UE_AFSR_DW_OFFSET) >> PSYCHO_ECC_UE_AFSR_DW_OFFSET_SHIFT; /* * Determine the primary error type. */ if (err & COMMON_ECC_UE_AFSR_E_PIO) { if (ecc_err_p->ecc_ii_p.ecc_type == CBNINTR_UE) { if (ecc_err_p->ecc_pri) { ecc->flt_erpt_class = PCI_ECC_PIO_UE; } else { ecc->flt_erpt_class = PCI_ECC_SEC_PIO_UE; } ecc->flt_panic = ecc_ue_is_fatal(&ecc_err_p->ecc_aflt); } else { ecc->flt_erpt_class = ecc_err_p->ecc_pri ? PCI_ECC_PIO_CE : PCI_ECC_SEC_PIO_CE; return; } } else if (err & COMMON_ECC_UE_AFSR_E_DRD) { if (ecc_err_p->ecc_ii_p.ecc_type == CBNINTR_UE) { if (ecc_err_p->ecc_pri) { ecc->flt_erpt_class = PCI_ECC_DRD_UE; } else { ecc->flt_erpt_class = PCI_ECC_SEC_DRD_UE; } ecc->flt_panic = ecc_ue_is_fatal(&ecc_err_p->ecc_aflt); } else { ecc->flt_erpt_class = ecc_err_p->ecc_pri ? PCI_ECC_DRD_CE : PCI_ECC_SEC_DRD_CE; return; } } else if (err & COMMON_ECC_UE_AFSR_E_DWR) { if (ecc_err_p->ecc_ii_p.ecc_type == CBNINTR_UE) { if (ecc_err_p->ecc_pri) { ecc->flt_erpt_class = PCI_ECC_DWR_UE; } else { ecc->flt_erpt_class = PCI_ECC_SEC_DWR_UE; } ecc->flt_panic = ecc_ue_is_fatal(&ecc_err_p->ecc_aflt); } else { ecc->flt_erpt_class = ecc_err_p->ecc_pri ? PCI_ECC_DWR_CE : PCI_ECC_SEC_DWR_CE; return; } } } ushort_t pci_ecc_get_synd(uint64_t afsr) { return ((ushort_t)((afsr & PSYCHO_ECC_CE_AFSR_SYND) >> PSYCHO_ECC_CE_AFSR_SYND_SHIFT)); } /* * pci_pbm_classify, called by pbm_afsr_report to classify piow afsr. */ int pci_pbm_classify(pbm_errstate_t *pbm_err_p) { uint32_t e; int nerr = 0; char **tmp_class; if (pbm_err_p->pbm_pri) { tmp_class = &pbm_err_p->pbm_pci.pci_err_class; e = PBM_AFSR_TO_PRIERR(pbm_err_p->pbm_afsr); pbm_err_p->pbm_log = FM_LOG_PCI; } else { tmp_class = &pbm_err_p->pbm_err_class; e = PBM_AFSR_TO_SECERR(pbm_err_p->pbm_afsr); pbm_err_p->pbm_log = FM_LOG_PBM; } if (e & PSYCHO_PCI_AFSR_E_MA) { *tmp_class = pbm_err_p->pbm_pri ? PCI_MA : PCI_SEC_MA; nerr++; } if (e & PSYCHO_PCI_AFSR_E_TA) { *tmp_class = pbm_err_p->pbm_pri ? PCI_REC_TA : PCI_SEC_REC_TA; nerr++; } if (e & PSYCHO_PCI_AFSR_E_RTRY) { pbm_err_p->pbm_err_class = pbm_err_p->pbm_pri ? PCI_PBM_RETRY : PCI_SEC_PBM_RETRY; pbm_err_p->pbm_log = FM_LOG_PBM; nerr++; } if (e & PSYCHO_PCI_AFSR_E_PERR) { *tmp_class = pbm_err_p->pbm_pri ? PCI_MDPE : PCI_SEC_MDPE; nerr++; } return (nerr); } /* * Function used to clear PBM/PCI/IOMMU error state after error handling * is complete. Only clearing error bits which have been logged. Called by * pci_pbm_err_handler and pci_bus_exit. */ static void pci_clear_error(pci_t *pci_p, pbm_errstate_t *pbm_err_p) { pbm_t *pbm_p = pci_p->pci_pbm_p; ASSERT(MUTEX_HELD(&pbm_p->pbm_pci_p->pci_common_p->pci_fm_mutex)); *pbm_p->pbm_ctrl_reg = pbm_err_p->pbm_ctl_stat; *pbm_p->pbm_async_flt_status_reg = pbm_err_p->pbm_afsr; pbm_p->pbm_config_header->ch_status_reg = pbm_err_p->pbm_pci.pci_cfg_stat; } /*ARGSUSED*/ int pci_pbm_err_handler(dev_info_t *dip, ddi_fm_error_t *derr, const void *impl_data, int caller) { int fatal = 0; int nonfatal = 0; int unknown = 0; uint32_t prierr, secerr; pbm_errstate_t pbm_err; char buf[FM_MAX_CLASS]; pci_t *pci_p = (pci_t *)impl_data; pbm_t *pbm_p = pci_p->pci_pbm_p; int ret = 0; uint64_t pbm_ctl_stat; uint16_t pci_cfg_stat; ASSERT(MUTEX_HELD(&pci_p->pci_common_p->pci_fm_mutex)); pci_pbm_errstate_get(pci_p, &pbm_err); derr->fme_ena = derr->fme_ena ? derr->fme_ena : fm_ena_generate(0, FM_ENA_FMT1); prierr = PBM_AFSR_TO_PRIERR(pbm_err.pbm_afsr); secerr = PBM_AFSR_TO_SECERR(pbm_err.pbm_afsr); if (derr->fme_flag == DDI_FM_ERR_EXPECTED) { if (caller == PCI_TRAP_CALL) { /* * For ddi_caut_get treat all events as * nonfatal. The trampoline will set * err_ena = 0, err_status = NONFATAL. We only * really call this function so that pci_clear_error() * and ndi_fm_handler_dispatch() will get called. */ derr->fme_status = DDI_FM_NONFATAL; nonfatal++; goto done; } else { /* * For ddi_caut_put treat all events as nonfatal. Here * we have the handle and can call ndi_fm_acc_err_set(). */ derr->fme_status = DDI_FM_NONFATAL; ndi_fm_acc_err_set(pbm_p->pbm_excl_handle, derr); nonfatal++; goto done; } } else if (derr->fme_flag == DDI_FM_ERR_PEEK) { /* * For ddi_peek treat all events as nonfatal. We only * really call this function so that pci_clear_error() * and ndi_fm_handler_dispatch() will get called. */ nonfatal++; goto done; } else if (derr->fme_flag == DDI_FM_ERR_POKE) { /* * For ddi_poke we can treat as nonfatal if the * following conditions are met : * 1. Make sure only primary error is MA/TA * 2. Make sure no secondary error * 3. check pci config header stat reg to see MA/TA is * logged. We cannot verify only MA/TA is recorded * since it gets much more complicated when a * PCI-to-PCI bridge is present. */ if ((prierr == PSYCHO_PCI_AFSR_E_MA) && !secerr && (pbm_err.pbm_pci.pci_cfg_stat & PCI_STAT_R_MAST_AB)) { nonfatal++; goto done; } if ((prierr == PSYCHO_PCI_AFSR_E_TA) && !secerr && (pbm_err.pbm_pci.pci_cfg_stat & PCI_STAT_R_TARG_AB)) { nonfatal++; goto done; } } if (prierr || secerr) { ret = pbm_afsr_report(dip, derr->fme_ena, &pbm_err); if (ret == DDI_FM_FATAL) fatal++; else nonfatal++; } ret = pci_cfg_report(dip, derr, &pbm_err.pbm_pci, caller, prierr); if (ret == DDI_FM_FATAL) fatal++; else if (ret == DDI_FM_NONFATAL) nonfatal++; pbm_ctl_stat = pbm_err.pbm_ctl_stat; pci_cfg_stat = pbm_err.pbm_pci.pci_cfg_stat; /* * PBM Received System Error - During any transaction, or * at any point on the bus, some device may detect a critical * error and signal a system error to the system. */ if (pbm_ctl_stat & COMMON_PCI_CTRL_SERR) { /* * may be expected (master abort from pci-pci bridge during * poke will generate SERR) */ if (derr->fme_flag != DDI_FM_ERR_POKE) { pbm_err.pbm_pci.pci_err_class = PCI_REC_SERR; (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", PCI_ERROR_SUBCLASS, pbm_err.pbm_pci.pci_err_class); ddi_fm_ereport_post(dip, buf, derr->fme_ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0, PCI_CONFIG_STATUS, DATA_TYPE_UINT16, pci_cfg_stat, PCI_CONFIG_COMMAND, DATA_TYPE_UINT16, pbm_err.pbm_pci.pci_cfg_comm, PCI_PA, DATA_TYPE_UINT64, (uint64_t)0, NULL); } unknown++; } /* Streaming Byte Hole Error */ if (pbm_ctl_stat & COMMON_PCI_CTRL_SBH_ERR) { if (pci_panic_on_sbh_errors) fatal++; else nonfatal++; pbm_err.pbm_err_class = PCI_PSY_SBH; pbm_ereport_post(dip, derr->fme_ena, &pbm_err); } done: ret = ndi_fm_handler_dispatch(dip, NULL, derr); if (ret == DDI_FM_FATAL) { fatal++; } else if (ret == DDI_FM_NONFATAL) { nonfatal++; } else if (ret == DDI_FM_UNKNOWN) { unknown++; } /* * rserr not claimed as nonfatal by a child is treated as fatal */ if (unknown && !nonfatal && !fatal) fatal++; /* Cleanup and reset error bits */ pci_clear_error(pci_p, &pbm_err); return (fatal ? DDI_FM_FATAL : (nonfatal ? DDI_FM_NONFATAL : (unknown ? DDI_FM_UNKNOWN : DDI_FM_OK))); } int pci_check_error(pci_t *pci_p) { pbm_t *pbm_p = pci_p->pci_pbm_p; uint16_t pci_cfg_stat; uint64_t pbm_ctl_stat, pbm_afsr; ASSERT(MUTEX_HELD(&pci_p->pci_common_p->pci_fm_mutex)); pci_cfg_stat = pbm_p->pbm_config_header->ch_status_reg; pbm_ctl_stat = *pbm_p->pbm_ctrl_reg; pbm_afsr = *pbm_p->pbm_async_flt_status_reg; if ((pci_cfg_stat & (PCI_STAT_S_PERROR | PCI_STAT_S_TARG_AB | PCI_STAT_R_TARG_AB | PCI_STAT_R_MAST_AB | PCI_STAT_S_SYSERR | PCI_STAT_PERROR)) || (pbm_ctl_stat & (COMMON_PCI_CTRL_SBH_ERR | COMMON_PCI_CTRL_SERR)) || (PBM_AFSR_TO_PRIERR(pbm_afsr))) return (1); return (0); } /* * Function used to gather PBM/PCI error state for the * pci_pbm_err_handler. This function must be called while pci_fm_mutex * is held. */ static void pci_pbm_errstate_get(pci_t *pci_p, pbm_errstate_t *pbm_err_p) { pbm_t *pbm_p = pci_p->pci_pbm_p; ASSERT(MUTEX_HELD(&pci_p->pci_common_p->pci_fm_mutex)); bzero(pbm_err_p, sizeof (pbm_errstate_t)); /* * Capture all pbm error state for later logging */ pbm_err_p->pbm_bridge_type = PCI_BRIDGE_TYPE(pci_p->pci_common_p); pbm_err_p->pbm_pci.pci_cfg_stat = pbm_p->pbm_config_header->ch_status_reg; pbm_err_p->pbm_ctl_stat = *pbm_p->pbm_ctrl_reg; pbm_err_p->pbm_pci.pci_cfg_comm = pbm_p->pbm_config_header->ch_command_reg; pbm_err_p->pbm_afsr = *pbm_p->pbm_async_flt_status_reg; pbm_err_p->pbm_afar = *pbm_p->pbm_async_flt_addr_reg; pbm_err_p->pbm_pci.pci_pa = *pbm_p->pbm_async_flt_addr_reg; } void pbm_clear_error(pbm_t *pbm_p) { uint64_t pbm_afsr, pbm_ctl_stat; /* * for poke() support - called from POKE_FLUSH. Spin waiting * for MA, TA or SERR to be cleared by a pbm_error_intr(). * We have to wait for SERR too in case the device is beyond * a pci-pci bridge. */ pbm_ctl_stat = *pbm_p->pbm_ctrl_reg; pbm_afsr = *pbm_p->pbm_async_flt_status_reg; while (((pbm_afsr >> PSYCHO_PCI_AFSR_PE_SHIFT) & (PSYCHO_PCI_AFSR_E_MA | PSYCHO_PCI_AFSR_E_TA)) || (pbm_ctl_stat & COMMON_PCI_CTRL_SERR)) { pbm_ctl_stat = *pbm_p->pbm_ctrl_reg; pbm_afsr = *pbm_p->pbm_async_flt_status_reg; } } /*ARGSUSED*/ void pci_format_addr(dev_info_t *dip, uint64_t *afar, uint64_t afsr) { /* * For Psycho the full address is stored in hardware. So * there is no need to format it. */ } /*ARGSUSED*/ int pci_bus_quiesce(pci_t *pci_p, dev_info_t *dip, void *result) { return (DDI_FAILURE); } /*ARGSUSED*/ int pci_bus_unquiesce(pci_t *pci_p, dev_info_t *dip, void *result) { return (DDI_FAILURE); } int pci_reloc_getkey(void) { return (0x100); } void pci_vmem_free(iommu_t *iommu_p, ddi_dma_impl_t *mp, void *dvma_addr, size_t npages) { pci_vmem_do_free(iommu_p, dvma_addr, npages, (mp->dmai_flags & DMAI_FLAGS_VMEMCACHE)); } /* * NOTE: This call is only used by legacy systems (eg. E250 and E450) that * require unregistering the pci driver's thermal intrerrupt handler before * they can register their own. */ void pci_thermal_rem_intr(dev_info_t *rdip, uint_t inum) { pci_t *pci_p; dev_info_t *pdip; uint32_t dev_mondo, pci_mondo; int instance; for (pdip = ddi_get_parent(rdip); pdip; pdip = ddi_get_parent(pdip)) { if (strcmp(ddi_driver_name(pdip), "pcipsy") == 0) break; } if (!pdip) { cmn_err(CE_WARN, "pci_thermal_rem_intr() no pcipsy parent\n"); return; } instance = ddi_get_instance(pdip); pci_p = get_pci_soft_state(instance); /* Calculate the requesting device's mondo */ dev_mondo = pci_xlate_intr(pci_p->pci_dip, rdip, pci_p->pci_ib_p, IB_MONDO_TO_INO(i_ddi_get_inum(rdip, inum))); /* get pci's thermal mondo */ pci_mondo = ((pci_p->pci_cb_p->cb_ign << PCI_INO_BITS) | pci_p->pci_inos[CBNINTR_THERMAL]); pci_mondo = CB_MONDO_TO_XMONDO(pci_p->pci_cb_p, pci_mondo); if (pci_mondo == dev_mondo) { DEBUG2(DBG_ATTACH, rdip, "pci_thermal_rem_intr unregistered " "for dip=%s%d:", ddi_driver_name(rdip), ddi_get_instance(rdip)); rem_ivintr(pci_mondo, NULL); } } /* * pci_iommu_bypass_end_configure * * Support for 40-bit bus width to UPA in DVMA and iommu bypass transfers: */ dma_bypass_addr_t pci_iommu_bypass_end_configure(void) { return ((dma_bypass_addr_t)UPA_IOMMU_BYPASS_END); }