/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG uint_t x_dstat[NCPU][XC_LOOP_EXIT+1]; uint_t x_rstat[NCPU][4]; #endif /* DEBUG */ static int xc_serv_inum; /* software interrupt number for xc_serv() */ static int xc_loop_inum; /* software interrupt number for xc_loop() */ kmutex_t xc_sys_mutex; /* protect xcall session and xc_mbox */ int xc_spl_enter[NCPU]; /* protect sending x-call */ static int xc_holder = -1; /* the cpu who initiates xc_attention, 0 is valid */ /* * Mail box for handshaking and xcall request; protected by xc_sys_mutex */ static struct xc_mbox { xcfunc_t *xc_func; uint64_t xc_arg1; uint64_t xc_arg2; cpuset_t xc_cpuset; volatile uint_t xc_state; } xc_mbox[NCPU]; uint64_t xc_tick_limit; /* send_mondo() tick limit value */ uint64_t xc_tick_limit_scale = 1; /* scale used to increase the limit */ uint64_t xc_tick_jump_limit; /* send_mondo() irregular tick jump limit */ /* timeout value for xcalls to be received by the target CPU */ uint64_t xc_mondo_time_limit; /* timeout value for xcall functions to be executed on the target CPU */ uint64_t xc_func_time_limit; uint64_t xc_scale = 1; /* scale used to calculate timeout limits */ uint_t sendmondo_in_recover; /* * sending x-calls */ void init_mondo(xcfunc_t *func, uint64_t arg1, uint64_t arg2); void send_one_mondo(int cpuid); void send_mondo_set(cpuset_t set); /* * xc_init - initialize x-call related locks */ void xc_init(void) { #ifdef DEBUG int pix; #endif /* DEBUG */ mutex_init(&xc_sys_mutex, NULL, MUTEX_SPIN, (void *)ipltospl(XCALL_PIL)); #ifdef DEBUG /* Initialize for all possible CPUs. */ for (pix = 0; pix < NCPU; pix++) { XC_STAT_INIT(pix); } #endif /* DEBUG */ xc_serv_inum = add_softintr(XCALL_PIL, (softintrfunc)xc_serv, 0); xc_loop_inum = add_softintr(XCALL_PIL, (softintrfunc)xc_loop, 0); /* * Initialize the calibrated tick limit for send_mondo. * The value represents the maximum tick count to wait. */ xc_tick_limit = ((uint64_t)sys_tick_freq * XC_SEND_MONDO_MSEC) / 1000; xc_tick_jump_limit = xc_tick_limit / 32; xc_tick_limit *= xc_tick_limit_scale; /* * Maximum number of loops to wait before timing out in xc_attention. */ xc_mondo_time_limit = cpunodes[CPU->cpu_id].clock_freq * xc_scale; /* * Maximum number of loops to wait for a xcall function to be * executed on the target CPU. Default to 10 times the value * of xc_mondo_time_limit. */ xc_func_time_limit = xc_mondo_time_limit * 10; } /* * The following routines basically provide callers with two kinds of * inter-processor interrupt services: * 1. cross calls (x-calls) - requests are handled at target cpu's TL=0 * 2. cross traps (c-traps) - requests are handled at target cpu's TL>0 * * Although these routines protect the services from migrating to other cpus * "after" they are called, it is the caller's choice or responsibility to * prevent the cpu migration "before" calling them. * * X-call routines: * * xc_one() - send a request to one processor * xc_some() - send a request to some processors * xc_all() - send a request to all processors * * Their common parameters: * func - a TL=0 handler address * arg1 and arg2 - optional * * The services provided by x-call routines allow callers * to send a request to target cpus to execute a TL=0 * handler. * The interface of the registers of the TL=0 handler: * %o0: arg1 * %o1: arg2 * * X-trap routines: * * xt_one() - send a request to one processor * xt_some() - send a request to some processors * xt_all() - send a request to all processors * * Their common parameters: * func - a TL>0 handler address or an interrupt number * arg1, arg2 * optional when "func" is an address; * 0 when "func" is an interrupt number * * If the request of "func" is a kernel address, then * the target cpu will execute the request of "func" with * args at "TL>0" level. * The interface of the registers of the TL>0 handler: * %g1: arg1 * %g2: arg2 * * If the request of "func" is not a kernel address, then it has * to be an assigned interrupt number through add_softintr(). * An interrupt number is an index to the interrupt vector table, * which entry contains an interrupt handler address with its * corresponding interrupt level and argument. * The target cpu will arrange the request to be serviced according * to its pre-registered information. * args are assumed to be zeros in this case. * * In addition, callers are allowed to capture and release cpus by * calling the routines: xc_attention() and xc_dismissed(). */ /* * xt_one - send a "x-trap" to a cpu */ void xt_one(int cix, xcfunc_t *func, uint64_t arg1, uint64_t arg2) { if (!CPU_IN_SET(cpu_ready_set, cix)) { return; } xt_one_unchecked(cix, func, arg1, arg2); } /* * xt_one_unchecked - send a "x-trap" to a cpu without checking for its * existance in cpu_ready_set */ void xt_one_unchecked(int cix, xcfunc_t *func, uint64_t arg1, uint64_t arg2) { int lcx; int opl; cpuset_t tset; /* * Make sure the function address will not be interpreted as a * dmv interrupt */ ASSERT(!DMV_IS_DMV(func)); /* * It's illegal to send software inums through the cross-trap * interface. */ ASSERT((uintptr_t)func >= KERNELBASE); CPUSET_ZERO(tset); XC_SPL_ENTER(lcx, opl); /* lcx set by the macro */ CPUSET_ADD(tset, cix); if (cix == lcx) { /* * same cpu - use software fast trap */ send_self_xcall(CPU, arg1, arg2, func); XC_STAT_INC(x_dstat[lcx][XT_ONE_SELF]); XC_TRACE(XT_ONE_SELF, &tset, func, arg1, arg2); } else { /* other cpu - send a mondo to the target cpu */ /* * other cpu - send a mondo to the target cpu */ XC_TRACE(XT_ONE_OTHER, &tset, func, arg1, arg2); init_mondo(func, arg1, arg2); send_one_mondo(cix); XC_STAT_INC(x_dstat[lcx][XT_ONE_OTHER]); } XC_SPL_EXIT(lcx, opl); } /* * xt_some - send a "x-trap" to some cpus */ void xt_some(cpuset_t cpuset, xcfunc_t *func, uint64_t arg1, uint64_t arg2) { int lcx; int opl; cpuset_t xc_cpuset, tset; /* * Make sure the function address will not be interpreted as a * dmv interrupt */ ASSERT(!DMV_IS_DMV(func)); /* * It's illegal to send software inums through the cross-trap * interface. */ ASSERT((uintptr_t)func >= KERNELBASE); CPUSET_ZERO(tset); XC_SPL_ENTER(lcx, opl); /* lcx set by the macro */ CPUSET_ADD(tset, lcx); /* * only send to the CPU_READY ones */ xc_cpuset = cpu_ready_set; CPUSET_AND(xc_cpuset, cpuset); /* * send to nobody; just return */ if (CPUSET_ISNULL(xc_cpuset)) { XC_SPL_EXIT(lcx, opl); return; } /* * don't send mondo to self */ if (CPU_IN_SET(xc_cpuset, lcx)) { /* * same cpu - use software fast trap */ send_self_xcall(CPU, arg1, arg2, func); XC_STAT_INC(x_dstat[lcx][XT_SOME_SELF]); XC_TRACE(XT_SOME_SELF, &tset, func, arg1, arg2); CPUSET_DEL(xc_cpuset, lcx); if (CPUSET_ISNULL(xc_cpuset)) { XC_SPL_EXIT(lcx, opl); return; } } XC_TRACE(XT_SOME_OTHER, &xc_cpuset, func, arg1, arg2); init_mondo(func, arg1, arg2); send_mondo_set(xc_cpuset); XC_STAT_INC(x_dstat[lcx][XT_SOME_OTHER]); XC_SPL_EXIT(lcx, opl); } /* * xt_all - send a "x-trap" to all cpus */ void xt_all(xcfunc_t *func, uint64_t arg1, uint64_t arg2) { int lcx; int opl; cpuset_t xc_cpuset, tset; /* * Make sure the function address will not be interpreted as a * dmv interrupt */ ASSERT(!DMV_IS_DMV(func)); /* * It's illegal to send software inums through the cross-trap * interface. */ ASSERT((uintptr_t)func >= KERNELBASE); CPUSET_ZERO(tset); XC_SPL_ENTER(lcx, opl); /* lcx set by the macro */ CPUSET_ADD(tset, lcx); /* * same cpu - use software fast trap */ if (CPU_IN_SET(cpu_ready_set, lcx)) send_self_xcall(CPU, arg1, arg2, func); XC_TRACE(XT_ALL_OTHER, &cpu_ready_set, func, arg1, arg2); /* * don't send mondo to self */ xc_cpuset = cpu_ready_set; CPUSET_DEL(xc_cpuset, lcx); if (CPUSET_ISNULL(xc_cpuset)) { XC_STAT_INC(x_dstat[lcx][XT_ALL_SELF]); XC_TRACE(XT_ALL_SELF, &tset, func, arg1, arg2); XC_SPL_EXIT(lcx, opl); return; } init_mondo(func, arg1, arg2); send_mondo_set(xc_cpuset); XC_STAT_INC(x_dstat[lcx][XT_ALL_OTHER]); XC_SPL_EXIT(lcx, opl); } /* * xc_one - send a "x-call" to a cpu */ void xc_one(int cix, xcfunc_t *func, uint64_t arg1, uint64_t arg2) { int lcx; int opl; uint64_t loop_cnt = 0; cpuset_t tset; int first_time = 1; /* * send to nobody; just return */ if (!CPU_IN_SET(cpu_ready_set, cix)) return; ASSERT((uintptr_t)func > KERNELBASE); ASSERT(((uintptr_t)func % PC_ALIGN) == 0); CPUSET_ZERO(tset); kpreempt_disable(); XC_SPL_ENTER(lcx, opl); /* lcx set by the macro */ CPUSET_ADD(tset, cix); if (cix == lcx) { /* same cpu just do it */ XC_TRACE(XC_ONE_SELF, &tset, func, arg1, arg2); (*func)(arg1, arg2); XC_STAT_INC(x_dstat[lcx][XC_ONE_SELF]); XC_SPL_EXIT(lcx, opl); kpreempt_enable(); return; } if (xc_holder == lcx) { /* got the xc_sys_mutex already */ ASSERT(MUTEX_HELD(&xc_sys_mutex)); ASSERT(CPU_IN_SET(xc_mbox[lcx].xc_cpuset, lcx)); ASSERT(CPU_IN_SET(xc_mbox[cix].xc_cpuset, cix)); ASSERT(xc_mbox[cix].xc_state == XC_WAIT); XC_TRACE(XC_ONE_OTHER_H, &tset, func, arg1, arg2); /* * target processor's xc_loop should be waiting * for the work to do; just set up the xc_mbox */ XC_SETUP(cix, func, arg1, arg2); membar_stld(); while (xc_mbox[cix].xc_state != XC_WAIT) { if (loop_cnt++ > xc_func_time_limit) { if (sendmondo_in_recover) { drv_usecwait(1); loop_cnt = 0; continue; } cmn_err(CE_PANIC, "xc_one() timeout, " "xc_state[%d] != XC_WAIT", cix); } } XC_STAT_INC(x_dstat[lcx][XC_ONE_OTHER_H]); XC_SPL_EXIT(lcx, opl); kpreempt_enable(); return; } /* * Avoid dead lock if someone has sent us a xc_loop request while * we are trying to grab xc_sys_mutex. */ XC_SPL_EXIT(lcx, opl); /* * At this point, since we don't own xc_sys_mutex, * our pil shouldn't run at or above the XCALL_PIL. */ ASSERT(getpil() < XCALL_PIL); /* * Since xc_holder is not owned by us, it could be that * no one owns it, or we are not informed to enter into * xc_loop(). In either case, we need to grab the * xc_sys_mutex before we write to the xc_mbox, and * we shouldn't release it until the request is finished. */ mutex_enter(&xc_sys_mutex); xc_spl_enter[lcx] = 1; /* * Since we own xc_sys_mutex now, we are safe to * write to the xc_mobx. */ ASSERT(xc_mbox[cix].xc_state == XC_IDLE); XC_TRACE(XC_ONE_OTHER, &tset, func, arg1, arg2); XC_SETUP(cix, func, arg1, arg2); init_mondo(setsoftint_tl1, xc_serv_inum, 0); send_one_mondo(cix); /* xc_serv does membar_stld */ while (xc_mbox[cix].xc_state != XC_IDLE) { if (loop_cnt++ > xc_func_time_limit) { if (sendmondo_in_recover) { drv_usecwait(1); loop_cnt = 0; continue; } if (first_time) { XT_SYNC_ONE(cix); first_time = 0; loop_cnt = 0; continue; } cmn_err(CE_PANIC, "xc_one() timeout, " "xc_state[%d] != XC_IDLE", cix); } } xc_spl_enter[lcx] = 0; XC_STAT_INC(x_dstat[lcx][XC_ONE_OTHER]); mutex_exit(&xc_sys_mutex); kpreempt_enable(); } /* * xc_some - send a "x-call" to some cpus; sending to self is excluded */ void xc_some(cpuset_t cpuset, xcfunc_t *func, uint64_t arg1, uint64_t arg2) { int lcx; int opl; cpuset_t xc_cpuset, tset; ASSERT((uintptr_t)func > KERNELBASE); ASSERT(((uintptr_t)func % PC_ALIGN) == 0); CPUSET_ZERO(tset); kpreempt_disable(); XC_SPL_ENTER(lcx, opl); /* lcx set by the macro */ CPUSET_ADD(tset, lcx); /* * only send to the CPU_READY ones */ xc_cpuset = cpu_ready_set; CPUSET_AND(xc_cpuset, cpuset); /* * send to nobody; just return */ if (CPUSET_ISNULL(xc_cpuset)) { XC_SPL_EXIT(lcx, opl); kpreempt_enable(); return; } if (CPU_IN_SET(xc_cpuset, lcx)) { /* * same cpu just do it */ (*func)(arg1, arg2); CPUSET_DEL(xc_cpuset, lcx); if (CPUSET_ISNULL(xc_cpuset)) { XC_STAT_INC(x_dstat[lcx][XC_SOME_SELF]); XC_TRACE(XC_SOME_SELF, &tset, func, arg1, arg2); XC_SPL_EXIT(lcx, opl); kpreempt_enable(); return; } } if (xc_holder == lcx) { /* got the xc_sys_mutex already */ cpuset_t mset = xc_mbox[lcx].xc_cpuset; CPUSET_AND(mset, cpuset); ASSERT(MUTEX_HELD(&xc_sys_mutex)); ASSERT(CPUSET_ISEQUAL(mset, cpuset)); SEND_MBOX_ONLY(xc_cpuset, func, arg1, arg2, lcx, XC_WAIT); WAIT_MBOX_DONE(xc_cpuset, lcx, XC_WAIT, 0); XC_STAT_INC(x_dstat[lcx][XC_SOME_OTHER_H]); XC_TRACE(XC_SOME_OTHER_H, &xc_cpuset, func, arg1, arg2); XC_SPL_EXIT(lcx, opl); kpreempt_enable(); return; } /* * Avoid dead lock if someone has sent us a xc_loop request while * we are trying to grab xc_sys_mutex. */ XC_SPL_EXIT(lcx, opl); /* * At this point, since we don't own xc_sys_mutex, * our pil shouldn't run at or above the XCALL_PIL. */ ASSERT(getpil() < XCALL_PIL); /* * grab xc_sys_mutex before writing to the xc_mbox */ mutex_enter(&xc_sys_mutex); xc_spl_enter[lcx] = 1; XC_TRACE(XC_SOME_OTHER, &xc_cpuset, func, arg1, arg2); init_mondo(setsoftint_tl1, xc_serv_inum, 0); SEND_MBOX_MONDO(xc_cpuset, func, arg1, arg2, XC_IDLE); WAIT_MBOX_DONE(xc_cpuset, lcx, XC_IDLE, 1); xc_spl_enter[lcx] = 0; XC_STAT_INC(x_dstat[lcx][XC_SOME_OTHER]); mutex_exit(&xc_sys_mutex); kpreempt_enable(); } /* * xc_all - send a "x-call" to all cpus */ void xc_all(xcfunc_t *func, uint64_t arg1, uint64_t arg2) { int lcx; int opl; cpuset_t xc_cpuset, tset; ASSERT((uintptr_t)func > KERNELBASE); ASSERT(((uintptr_t)func % PC_ALIGN) == 0); CPUSET_ZERO(tset); kpreempt_disable(); XC_SPL_ENTER(lcx, opl); /* lcx set by the macro */ CPUSET_ADD(tset, lcx); /* * same cpu just do it */ (*func)(arg1, arg2); xc_cpuset = cpu_ready_set; CPUSET_DEL(xc_cpuset, lcx); if (CPUSET_ISNULL(xc_cpuset)) { XC_STAT_INC(x_dstat[lcx][XC_ALL_SELF]); XC_TRACE(XC_ALL_SELF, &tset, func, arg1, arg2); XC_SPL_EXIT(lcx, opl); kpreempt_enable(); return; } if (xc_holder == lcx) { /* got the xc_sys_mutex already */ cpuset_t mset = xc_mbox[lcx].xc_cpuset; CPUSET_AND(mset, xc_cpuset); ASSERT(MUTEX_HELD(&xc_sys_mutex)); ASSERT(CPUSET_ISEQUAL(mset, xc_cpuset)); XC_TRACE(XC_ALL_OTHER_H, &xc_cpuset, func, arg1, arg2); SEND_MBOX_ONLY(xc_cpuset, func, arg1, arg2, lcx, XC_WAIT); WAIT_MBOX_DONE(xc_cpuset, lcx, XC_WAIT, 0); XC_STAT_INC(x_dstat[lcx][XC_ALL_OTHER_H]); XC_SPL_EXIT(lcx, opl); kpreempt_enable(); return; } /* * Avoid dead lock if someone has sent us a xc_loop request while * we are trying to grab xc_sys_mutex. */ XC_SPL_EXIT(lcx, opl); /* * At this point, since we don't own xc_sys_mutex, * our pil shouldn't run at or above the XCALL_PIL. */ ASSERT(getpil() < XCALL_PIL); /* * grab xc_sys_mutex before writing to the xc_mbox */ mutex_enter(&xc_sys_mutex); xc_spl_enter[lcx] = 1; XC_TRACE(XC_ALL_OTHER, &xc_cpuset, func, arg1, arg2); init_mondo(setsoftint_tl1, xc_serv_inum, 0); SEND_MBOX_MONDO(xc_cpuset, func, arg1, arg2, XC_IDLE); WAIT_MBOX_DONE(xc_cpuset, lcx, XC_IDLE, 1); xc_spl_enter[lcx] = 0; XC_STAT_INC(x_dstat[lcx][XC_ALL_OTHER]); mutex_exit(&xc_sys_mutex); kpreempt_enable(); } /* * xc_attention - paired with xc_dismissed() * * xt_attention() holds the xc_sys_mutex and xc_dismissed() releases it * called when an initiator wants to capture some/all cpus for a critical * session. */ void xc_attention(cpuset_t cpuset) { int pix, lcx; cpuset_t xc_cpuset, tmpset; cpuset_t recv_cpuset; uint64_t loop_cnt = 0; int first_time = 1; CPUSET_ZERO(recv_cpuset); /* * don't migrate the cpu until xc_dismissed() is finished */ ASSERT(getpil() < XCALL_PIL); mutex_enter(&xc_sys_mutex); lcx = (int)(CPU->cpu_id); ASSERT(x_dstat[lcx][XC_ATTENTION] == x_dstat[lcx][XC_DISMISSED]); ASSERT(xc_holder == -1); xc_mbox[lcx].xc_cpuset = cpuset; xc_holder = lcx; /* no membar; only current cpu needs the right lcx */ /* * only send to the CPU_READY ones */ xc_cpuset = cpu_ready_set; CPUSET_AND(xc_cpuset, cpuset); /* * don't send mondo to self */ CPUSET_DEL(xc_cpuset, lcx); XC_STAT_INC(x_dstat[lcx][XC_ATTENTION]); XC_TRACE(XC_ATTENTION, &xc_cpuset, NULL, NULL, NULL); if (CPUSET_ISNULL(xc_cpuset)) return; xc_spl_enter[lcx] = 1; /* * inform the target processors to enter into xc_loop() */ tmpset = xc_cpuset; init_mondo(setsoftint_tl1, xc_loop_inum, 0); for (pix = 0; pix < NCPU; pix++) { if (CPU_IN_SET(tmpset, pix)) { ASSERT(xc_mbox[pix].xc_state == XC_IDLE); xc_mbox[pix].xc_state = XC_ENTER; send_one_mondo(pix); CPUSET_DEL(tmpset, pix); if (CPUSET_ISNULL(tmpset)) { break; } } } xc_spl_enter[lcx] = 0; /* * make sure target processors have entered into xc_loop() */ while (!CPUSET_ISEQUAL(recv_cpuset, xc_cpuset)) { tmpset = xc_cpuset; for (pix = 0; pix < NCPU; pix++) { if (CPU_IN_SET(tmpset, pix)) { /* * membar_stld() is done in xc_loop */ if (xc_mbox[pix].xc_state == XC_WAIT) { CPUSET_ADD(recv_cpuset, pix); } CPUSET_DEL(tmpset, pix); if (CPUSET_ISNULL(tmpset)) { break; } } } if (loop_cnt++ > xc_mondo_time_limit) { if (sendmondo_in_recover) { drv_usecwait(1); loop_cnt = 0; continue; } if (first_time) { XT_SYNC_SOME(xc_cpuset); first_time = 0; loop_cnt = 0; continue; } cmn_err(CE_PANIC, "xc_attention() timeout"); } } /* * xc_sys_mutex remains held until xc_dismissed() is finished */ } /* * xc_dismissed - paired with xc_attention() * * Called after the critical session is finished. */ void xc_dismissed(cpuset_t cpuset) { int pix; int lcx = (int)(CPU->cpu_id); cpuset_t xc_cpuset, tmpset; cpuset_t recv_cpuset; uint64_t loop_cnt = 0; ASSERT(lcx == xc_holder); ASSERT(CPUSET_ISEQUAL(xc_mbox[lcx].xc_cpuset, cpuset)); ASSERT(getpil() >= XCALL_PIL); CPUSET_ZERO(xc_mbox[lcx].xc_cpuset); CPUSET_ZERO(recv_cpuset); membar_stld(); XC_STAT_INC(x_dstat[lcx][XC_DISMISSED]); ASSERT(x_dstat[lcx][XC_DISMISSED] == x_dstat[lcx][XC_ATTENTION]); /* * only send to the CPU_READY ones */ xc_cpuset = cpu_ready_set; CPUSET_AND(xc_cpuset, cpuset); /* * exclude itself */ CPUSET_DEL(xc_cpuset, lcx); XC_TRACE(XC_DISMISSED, &xc_cpuset, NULL, NULL, NULL); if (CPUSET_ISNULL(xc_cpuset)) { xc_holder = -1; mutex_exit(&xc_sys_mutex); return; } /* * inform other processors to get out of xc_loop() */ tmpset = xc_cpuset; for (pix = 0; pix < NCPU; pix++) { if (CPU_IN_SET(tmpset, pix)) { xc_mbox[pix].xc_state = XC_EXIT; membar_stld(); CPUSET_DEL(tmpset, pix); if (CPUSET_ISNULL(tmpset)) { break; } } } /* * make sure target processors have exited from xc_loop() */ while (!CPUSET_ISEQUAL(recv_cpuset, xc_cpuset)) { tmpset = xc_cpuset; for (pix = 0; pix < NCPU; pix++) { if (CPU_IN_SET(tmpset, pix)) { /* * membar_stld() is done in xc_loop */ if (xc_mbox[pix].xc_state == XC_IDLE) { CPUSET_ADD(recv_cpuset, pix); } CPUSET_DEL(tmpset, pix); if (CPUSET_ISNULL(tmpset)) { break; } } } if (loop_cnt++ > xc_func_time_limit) { if (sendmondo_in_recover) { drv_usecwait(1); loop_cnt = 0; continue; } cmn_err(CE_PANIC, "xc_dismissed() timeout"); } } xc_holder = -1; mutex_exit(&xc_sys_mutex); } /* * xc_serv - "x-call" handler at TL=0; serves only one x-call request * runs at XCALL_PIL level. */ uint_t xc_serv(void) { int lcx = (int)(CPU->cpu_id); struct xc_mbox *xmp; xcfunc_t *func; uint64_t arg1, arg2; cpuset_t tset; ASSERT(getpil() == XCALL_PIL); CPUSET_ZERO(tset); CPUSET_ADD(tset, lcx); flush_windows(); xmp = &xc_mbox[lcx]; ASSERT(lcx != xc_holder); ASSERT(xmp->xc_state == XC_DOIT); func = xmp->xc_func; XC_TRACE(XC_SERV, &tset, func, xmp->xc_arg1, xmp->xc_arg2); if (func != NULL) { arg1 = xmp->xc_arg1; arg2 = xmp->xc_arg2; (*func)(arg1, arg2); } XC_STAT_INC(x_rstat[lcx][XC_SERV]); XC_TRACE(XC_SERV, &tset, func, arg1, arg2); xmp->xc_state = XC_IDLE; membar_stld(); return (1); } /* * if == 1, an xc_loop timeout will cause a panic * otherwise print a warning */ uint_t xc_loop_panic = 0; /* * xc_loop - "x-call" handler at TL=0; capture the cpu for a critial * session, or serve multiple x-call requests runs at XCALL_PIL level. */ uint_t xc_loop(void) { int lcx = (int)(CPU->cpu_id); struct xc_mbox *xmp; xcfunc_t *func; uint64_t arg1, arg2; uint64_t loop_cnt = 0; cpuset_t tset; ASSERT(getpil() == XCALL_PIL); CPUSET_ZERO(tset); flush_windows(); /* * Some one must have owned the xc_sys_mutex; * no further interrupt (at XCALL_PIL or below) can * be taken by this processor until xc_loop exits. * * The owner of xc_sys_mutex (or xc_holder) can expect * its xc/xt requests are handled as follows: * xc requests use xc_mbox's handshaking for their services * xt requests at TL>0 will be handled immediately * xt requests at TL=0: * if their handlers'pils are <= XCALL_PIL, then * they will be handled after xc_loop exits * (so, they probably should not be used) * else they will be handled immediately * * For those who are not informed to enter xc_loop, if they * send xc/xt requests to this processor at this moment, * the requests will be handled as follows: * xc requests will be handled after they grab xc_sys_mutex * xt requests at TL>0 will be handled immediately * xt requests at TL=0: * if their handlers'pils are <= XCALL_PIL, then * they will be handled after xc_loop exits * else they will be handled immediately */ xmp = &xc_mbox[lcx]; ASSERT(lcx != xc_holder); ASSERT(xmp->xc_state == XC_ENTER); xmp->xc_state = XC_WAIT; CPUSET_ADD(tset, lcx); membar_stld(); XC_STAT_INC(x_rstat[lcx][XC_LOOP]); XC_TRACE(XC_LOOP_ENTER, &tset, NULL, NULL, NULL); while (xmp->xc_state != XC_EXIT) { if (xmp->xc_state == XC_DOIT) { func = xmp->xc_func; arg1 = xmp->xc_arg1; arg2 = xmp->xc_arg2; XC_TRACE(XC_LOOP_DOIT, &tset, func, arg1, arg2); if (func != NULL) (*func)(arg1, arg2); xmp->xc_state = XC_WAIT; membar_stld(); /* * reset the timeout counter * since some work was done */ loop_cnt = 0; } else { /* patience is a virtue... */ loop_cnt++; } if (loop_cnt > xc_func_time_limit) { if (sendmondo_in_recover) { drv_usecwait(1); loop_cnt = 0; continue; } cmn_err(xc_loop_panic ? CE_PANIC : CE_WARN, "xc_loop() timeout"); /* * if the above displayed a warning, * reset the timeout counter and be patient */ loop_cnt = 0; } } ASSERT(xmp->xc_state == XC_EXIT); ASSERT(xc_holder != -1); XC_TRACE(XC_LOOP_EXIT, &tset, NULL, NULL, NULL); xmp->xc_state = XC_IDLE; membar_stld(); return (1); }