/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * pci_resource.c -- routines to retrieve available bus resources from * the MP Spec. Table and Hotplug Resource Table */ #include #include #include #include #include #include #include #include "mps_table.h" #include "pcihrt.h" extern int pci_boot_debug; extern int pci_bios_maxbus; #define dprintf if (pci_boot_debug) printf static int tbl_init = 0; static uchar_t *mps_extp = NULL; static uchar_t *mps_ext_endp = NULL; static struct php_entry *hrt_hpep; static int hrt_entry_cnt = 0; static int acpi_cb_cnt = 0; static void mps_probe(void); static void acpi_pci_probe(void); static int mps_find_bus_res(int, int, struct memlist **); static void hrt_probe(void); static int hrt_find_bus_res(int, int, struct memlist **); static int acpi_find_bus_res(int, int, struct memlist **); static uchar_t *find_sig(uchar_t *cp, int len, char *sig); static int checksum(unsigned char *cp, int len); static ACPI_STATUS acpi_wr_cb(ACPI_RESOURCE *rp, void *context); void bus_res_fini(void); static void acpi_trim_bus_ranges(void); struct memlist *acpi_io_res[256]; struct memlist *acpi_mem_res[256]; struct memlist *acpi_pmem_res[256]; struct memlist *acpi_bus_res[256]; /* * -1 = attempt ACPI resource discovery * 0 = don't attempt ACPI resource discovery * 1 = ACPI resource discovery successful */ volatile int acpi_resource_discovery = -1; struct memlist * find_bus_res(int bus, int type) { struct memlist *res = NULL; if (tbl_init == 0) { tbl_init = 1; acpi_pci_probe(); hrt_probe(); mps_probe(); } if (acpi_find_bus_res(bus, type, &res) > 0) return (res); if (hrt_find_bus_res(bus, type, &res) > 0) return (res); (void) mps_find_bus_res(bus, type, &res); return (res); } static void acpi_pci_probe(void) { ACPI_HANDLE ah; dev_info_t *dip; int bus; if (acpi_resource_discovery == 0) return; for (bus = 0; bus <= pci_bios_maxbus; bus++) { /* if no dip or no ACPI handle, no resources to discover */ dip = pci_bus_res[bus].dip; if ((dip == NULL) || (ACPI_FAILURE(acpica_get_handle(dip, &ah)))) continue; (void) AcpiWalkResources(ah, "_CRS", acpi_wr_cb, (void *)(uintptr_t)bus); } if (acpi_cb_cnt > 0) { acpi_resource_discovery = 1; acpi_trim_bus_ranges(); } } /* * Trim overlapping bus ranges in acpi_bus_res[] * Some BIOSes report root-bridges with bus ranges that * overlap, for example:"0..255" and "8..255". Lower-numbered * ranges are trimmed by upper-numbered ranges (so "0..255" would * be trimmed to "0..7", in the example). */ static void acpi_trim_bus_ranges() { struct memlist *ranges, *current; int bus; ranges = NULL; /* * Assumptions: * - there exists at most 1 bus range entry for each bus number * - there are no (broken) ranges that start at the same bus number */ for (bus = 0; bus < 256; bus++) { struct memlist *prev, *orig, *new; /* skip buses with no range entry */ if ((orig = acpi_bus_res[bus]) == NULL) continue; /* * create copy of existing range and overload * 'prev' pointer to link existing to new copy */ new = memlist_alloc(); new->ml_address = orig->ml_address; new->ml_size = orig->ml_size; new->ml_prev = orig; /* sorted insertion of 'new' into ranges list */ for (current = ranges, prev = NULL; current != NULL; prev = current, current = current->ml_next) if (new->ml_address < current->ml_address) break; if (prev == NULL) { /* place at beginning of (possibly) empty list */ new->ml_next = ranges; ranges = new; } else { /* place in list (possibly at end) */ new->ml_next = current; prev->ml_next = new; } } /* scan the list, perform trimming */ current = ranges; while (current != NULL) { struct memlist *next = current->ml_next; /* done when no range above current */ if (next == NULL) break; /* * trim size in original range element * (current->ml_prev points to the original range) */ if ((current->ml_address + current->ml_size) > next->ml_address) current->ml_prev->ml_size = next->ml_address - current->ml_address; current = next; } /* discard the list */ memlist_free_all(&ranges); /* OK if ranges == NULL */ } static int acpi_find_bus_res(int bus, int type, struct memlist **res) { switch (type) { case IO_TYPE: *res = acpi_io_res[bus]; break; case MEM_TYPE: *res = acpi_mem_res[bus]; break; case PREFETCH_TYPE: *res = acpi_pmem_res[bus]; break; case BUSRANGE_TYPE: *res = acpi_bus_res[bus]; break; default: *res = NULL; break; } /* memlist_count() treats NULL head as zero-length */ return (memlist_count(*res)); } void bus_res_fini(void) { int bus; for (bus = 0; bus <= pci_bios_maxbus; bus++) { memlist_free_all(&acpi_io_res[bus]); memlist_free_all(&acpi_mem_res[bus]); memlist_free_all(&acpi_pmem_res[bus]); memlist_free_all(&acpi_bus_res[bus]); } } struct memlist ** rlistpp(UINT8 t, UINT8 flags, int bus) { switch (t) { case ACPI_MEMORY_RANGE: /* is this really the best we've got? */ if (((flags >> 1) & 0x3) == ACPI_PREFETCHABLE_MEMORY) return (&acpi_pmem_res[bus]); else return (&acpi_mem_res[bus]); case ACPI_IO_RANGE: return &acpi_io_res[bus]; case ACPI_BUS_NUMBER_RANGE: return &acpi_bus_res[bus]; } return ((struct memlist **)NULL); } ACPI_STATUS acpi_wr_cb(ACPI_RESOURCE *rp, void *context) { int bus = (intptr_t)context; /* ignore consumed resources */ if (rp->Data.Address.ProducerConsumer == 1) return (AE_OK); switch (rp->Type) { case ACPI_RESOURCE_TYPE_IRQ: /* never expect to see a PCI bus produce an Interrupt */ dprintf("%s\n", "IRQ"); break; case ACPI_RESOURCE_TYPE_DMA: /* never expect to see a PCI bus produce DMA */ dprintf("%s\n", "DMA"); break; case ACPI_RESOURCE_TYPE_START_DEPENDENT: dprintf("%s\n", "START_DEPENDENT"); break; case ACPI_RESOURCE_TYPE_END_DEPENDENT: dprintf("%s\n", "END_DEPENDENT"); break; case ACPI_RESOURCE_TYPE_IO: if (rp->Data.Io.AddressLength == 0) break; acpi_cb_cnt++; memlist_insert(&acpi_io_res[bus], rp->Data.Io.Minimum, rp->Data.Io.AddressLength); break; case ACPI_RESOURCE_TYPE_FIXED_IO: /* only expect to see this as a consumer */ dprintf("%s\n", "FIXED_IO"); break; case ACPI_RESOURCE_TYPE_VENDOR: dprintf("%s\n", "VENDOR"); break; case ACPI_RESOURCE_TYPE_END_TAG: dprintf("%s\n", "END_TAG"); break; case ACPI_RESOURCE_TYPE_MEMORY24: /* only expect to see this as a consumer */ dprintf("%s\n", "MEMORY24"); break; case ACPI_RESOURCE_TYPE_MEMORY32: /* only expect to see this as a consumer */ dprintf("%s\n", "MEMORY32"); break; case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: /* only expect to see this as a consumer */ dprintf("%s\n", "FIXED_MEMORY32"); break; case ACPI_RESOURCE_TYPE_ADDRESS16: if (rp->Data.Address16.AddressLength == 0) break; acpi_cb_cnt++; memlist_insert(rlistpp(rp->Data.Address16.ResourceType, rp->Data.Address16.Info.TypeSpecific, bus), rp->Data.Address16.Minimum, rp->Data.Address16.AddressLength); break; case ACPI_RESOURCE_TYPE_ADDRESS32: if (rp->Data.Address32.AddressLength == 0) break; acpi_cb_cnt++; memlist_insert(rlistpp(rp->Data.Address32.ResourceType, rp->Data.Address32.Info.TypeSpecific, bus), rp->Data.Address32.Minimum, rp->Data.Address32.AddressLength); break; case ACPI_RESOURCE_TYPE_ADDRESS64: /* * We comment out this block because we currently cannot deal with * PCI 64-bit addresses. Will revisit this when we add PCI 64-bit MMIO * support. */ #if 0 if (rp->Data.Address64.AddressLength == 0) break; acpi_cb_cnt++; memlist_insert(rlistpp(rp->Data.Address64.ResourceType, rp->Data.Address64.Info.TypeSpecific, bus), rp->Data.Address64.Minimum, rp->Data.Address64.AddressLength); #endif break; case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: #if 0 /* Will revisit this when we add PCI 64-bit MMIO support */ if (rp->Data.ExtAddress64.AddressLength == 0) break; acpi_cb_cnt++; memlist_insert(rlistpp(rp->Data.ExtAddress64.ResourceType, rp->Data.ExtAddress64.Info.TypeSpecific, bus), rp->Data.ExtAddress64.Minimum, rp->Data.ExtAddress64.AddressLength); #endif break; case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: /* never expect to see a PCI bus produce an Interrupt */ dprintf("%s\n", "EXTENDED_IRQ"); break; case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: /* never expect to see a PCI bus produce an GAS */ dprintf("%s\n", "GENERIC_REGISTER"); break; } return (AE_OK); } static void mps_probe() { uchar_t *extp; struct mps_fps_hdr *fpp = NULL; struct mps_ct_hdr *ctp; uintptr_t ebda_start, base_end; ushort_t ebda_seg, base_size, ext_len, base_len, base_end_seg; base_size = *((ushort_t *)(0x413)); ebda_seg = *((ushort_t *)(0x40e)); ebda_start = ((uint32_t)ebda_seg) << 4; if (ebda_seg != 0) { fpp = (struct mps_fps_hdr *)find_sig( (uchar_t *)ebda_start, 1024, "_MP_"); } if (fpp == NULL) { base_end_seg = (base_size > 512) ? 0x9FC0 : 0x7FC0; if (base_end_seg != ebda_seg) { base_end = ((uintptr_t)base_end_seg) << 4; fpp = (struct mps_fps_hdr *)find_sig( (uchar_t *)base_end, 1024, "_MP_"); } } if (fpp == NULL) { fpp = (struct mps_fps_hdr *)find_sig( (uchar_t *)0xF0000, 0x10000, "_MP_"); } if (fpp == NULL) { dprintf("MP Spec table doesn't exist"); return; } else { dprintf("Found MP Floating Pointer Structure at %p\n", (void *)fpp); } if (checksum((uchar_t *)fpp, fpp->fps_len * 16) != 0) { dprintf("MP Floating Pointer Structure checksum error"); return; } ctp = (struct mps_ct_hdr *)(uintptr_t)fpp->fps_mpct_paddr; if (ctp->ct_sig != 0x504d4350) { /* check "PCMP" signature */ dprintf("MP Configuration Table signature is wrong"); return; } base_len = ctp->ct_len; if (checksum((uchar_t *)ctp, base_len) != 0) { dprintf("MP Configuration Table checksum error"); return; } if (ctp->ct_spec_rev != 4) { /* not MPSpec rev 1.4 */ dprintf("MP Spec 1.1 found - extended table doesn't exist"); return; } if ((ext_len = ctp->ct_ext_tbl_len) == 0) { dprintf("MP Spec 1.4 found - extended table doesn't exist"); return; } extp = (uchar_t *)ctp + base_len; if (((checksum(extp, ext_len) + ctp->ct_ext_cksum) & 0xFF) != 0) { dprintf("MP Extended Table checksum error"); return; } mps_extp = extp; mps_ext_endp = mps_extp + ext_len; } static int mps_find_bus_res(int bus, int type, struct memlist **res) { struct sasm *sasmp; uchar_t *extp; int res_cnt; if (mps_extp == NULL) return (0); extp = mps_extp; res_cnt = 0; while (extp < mps_ext_endp) { switch (*extp) { case SYS_AS_MAPPING: sasmp = (struct sasm *)extp; if (((int)sasmp->sasm_as_type) == type && ((int)sasmp->sasm_bus_id) == bus) { if (sasmp->sasm_as_base_hi != 0 || sasmp->sasm_as_len_hi != 0) { printf("64 bits address space\n"); extp += SYS_AS_MAPPING_SIZE; break; } memlist_insert(res, (uint64_t)sasmp->sasm_as_base, sasmp->sasm_as_len); res_cnt++; } extp += SYS_AS_MAPPING_SIZE; break; case BUS_HIERARCHY_DESC: extp += BUS_HIERARCHY_DESC_SIZE; break; case COMP_BUS_AS_MODIFIER: extp += COMP_BUS_AS_MODIFIER_SIZE; break; default: cmn_err(CE_WARN, "Unknown descriptor type %d" " in BIOS Multiprocessor Spec table.", *extp); while (*res) { struct memlist *tmp = *res; *res = tmp->ml_next; memlist_free(tmp); } return (0); } } return (res_cnt); } static void hrt_probe() { struct hrt_hdr *hrtp; dprintf("search PCI Hot-Plug Resource Table starting at 0xF0000\n"); if ((hrtp = (struct hrt_hdr *)find_sig((uchar_t *)0xF0000, 0x10000, "$HRT")) == NULL) { dprintf("NO PCI Hot-Plug Resource Table"); return; } dprintf("Found PCI Hot-Plug Resource Table at %p\n", (void *)hrtp); if (hrtp->hrt_ver != 1) { dprintf("PCI Hot-Plug Resource Table version no. <> 1\n"); return; } hrt_entry_cnt = (int)hrtp->hrt_entry_cnt; dprintf("No. of PCI hot-plug slot entries = 0x%x\n", hrt_entry_cnt); hrt_hpep = (struct php_entry *)(hrtp + 1); } static int hrt_find_bus_res(int bus, int type, struct memlist **res) { int res_cnt, i; struct php_entry *hpep; if (hrt_hpep == NULL || hrt_entry_cnt == 0) return (0); hpep = hrt_hpep; res_cnt = 0; for (i = 0; i < hrt_entry_cnt; i++, hpep++) { if (hpep->php_pri_bus != bus) continue; if (type == IO_TYPE) { if (hpep->php_io_start == 0 || hpep->php_io_size == 0) continue; memlist_insert(res, (uint64_t)hpep->php_io_start, (uint64_t)hpep->php_io_size); res_cnt++; } else if (type == MEM_TYPE) { if (hpep->php_mem_start == 0 || hpep->php_mem_size == 0) continue; memlist_insert(res, (uint64_t)(((int)hpep->php_mem_start) << 16), (uint64_t)(((int)hpep->php_mem_size) << 16)); res_cnt++; } else if (type == PREFETCH_TYPE) { if (hpep->php_pfmem_start == 0 || hpep->php_pfmem_size == 0) continue; memlist_insert(res, (uint64_t)(((int)hpep->php_pfmem_start) << 16), (uint64_t)(((int)hpep->php_pfmem_size) << 16)); res_cnt++; } } return (res_cnt); } static uchar_t * find_sig(uchar_t *cp, int len, char *sig) { long i; /* Search for the "_MP_" or "$HRT" signature */ for (i = 0; i < len; i += 16) { if (cp[0] == sig[0] && cp[1] == sig[1] && cp[2] == sig[2] && cp[3] == sig[3]) return (cp); cp += 16; } return (NULL); } static int checksum(unsigned char *cp, int len) { int i; unsigned int cksum; for (i = cksum = 0; i < len; i++) cksum += (unsigned int) *cp++; return ((int)(cksum & 0xFF)); } #ifdef UNUSED_BUS_HIERARY_INFO /* * At this point, the bus hierarchy entries do not appear to * provide anything we can't find out from PCI config space. * The only interesting bit is the ISA bus number, which we * don't care. */ int mps_find_parent_bus(int bus) { struct sasm *sasmp; uchar_t *extp; if (mps_extp == NULL) return (-1); extp = mps_extp; while (extp < mps_ext_endp) { bhdp = (struct bhd *)extp; switch (*extp) { case SYS_AS_MAPPING: extp += SYS_AS_MAPPING_SIZE; break; case BUS_HIERARCHY_DESC: if (bhdp->bhd_bus_id == bus) return (bhdp->bhd_parent); extp += BUS_HIERARCHY_DESC_SIZE; break; case COMP_BUS_AS_MODIFIER: extp += COMP_BUS_AS_MODIFIER_SIZE; break; default: cmn_err(CE_WARN, "Unknown descriptor type %d" " in BIOS Multiprocessor Spec table.", *extp); return (-1); } } return (-1); } int hrt_find_bus_range(int bus) { int i, max_bus, sub_bus; struct php_entry *hpep; if (hrt_hpep == NULL || hrt_entry_cnt == 0) { return (-1); } hpep = hrt_hpep; max_bus = -1; for (i = 0; i < hrt_entry_cnt; i++, hpep++) { if (hpep->php_pri_bus != bus) continue; sub_bus = (int)hpep->php_subord_bus; if (sub_bus > max_bus) max_bus = sub_bus; } return (max_bus); } #endif /* UNUSED_BUS_HIERARY_INFO */