/******************************************************************************* * * Module Name: nsaccess - Top-level functions for accessing ACPI namespace * $Revision: 1.203 $ * ******************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2006, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * *****************************************************************************/ #define __NSACCESS_C__ #include "acpi.h" #include "amlcode.h" #include "acnamesp.h" #include "acdispat.h" #define _COMPONENT ACPI_NAMESPACE ACPI_MODULE_NAME ("nsaccess") /******************************************************************************* * * FUNCTION: AcpiNsRootInitialize * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Allocate and initialize the default root named objects * * MUTEX: Locks namespace for entire execution * ******************************************************************************/ ACPI_STATUS AcpiNsRootInitialize ( void) { ACPI_STATUS Status; const ACPI_PREDEFINED_NAMES *InitVal = NULL; ACPI_NAMESPACE_NODE *NewNode; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_STRING Val = NULL; ACPI_FUNCTION_TRACE (NsRootInitialize); Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* * The global root ptr is initially NULL, so a non-NULL value indicates * that AcpiNsRootInitialize() has already been called; just return. */ if (AcpiGbl_RootNode) { Status = AE_OK; goto UnlockAndExit; } /* * Tell the rest of the subsystem that the root is initialized * (This is OK because the namespace is locked) */ AcpiGbl_RootNode = &AcpiGbl_RootNodeStruct; /* Enter the pre-defined names in the name table */ ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Entering predefined entries into namespace\n")); for (InitVal = AcpiGbl_PreDefinedNames; InitVal->Name; InitVal++) { /* _OSI is optional for now, will be permanent later */ if (!ACPI_STRCMP (InitVal->Name, "_OSI") && !AcpiGbl_CreateOsiMethod) { continue; } Status = AcpiNsLookup (NULL, InitVal->Name, InitVal->Type, ACPI_IMODE_LOAD_PASS2, ACPI_NS_NO_UPSEARCH, NULL, &NewNode); if (ACPI_FAILURE (Status) || (!NewNode)) /* Must be on same line for code converter */ { ACPI_EXCEPTION ((AE_INFO, Status, "Could not create predefined name %s", InitVal->Name)); } /* * Name entered successfully. * If entry in PreDefinedNames[] specifies an * initial value, create the initial value. */ if (InitVal->Val) { Status = AcpiOsPredefinedOverride (InitVal, &Val); if (ACPI_FAILURE (Status)) { ACPI_ERROR ((AE_INFO, "Could not override predefined %s", InitVal->Name)); } if (!Val) { Val = InitVal->Val; } /* * Entry requests an initial value, allocate a * descriptor for it. */ ObjDesc = AcpiUtCreateInternalObject (InitVal->Type); if (!ObjDesc) { Status = AE_NO_MEMORY; goto UnlockAndExit; } /* * Convert value string from table entry to * internal representation. Only types actually * used for initial values are implemented here. */ switch (InitVal->Type) { case ACPI_TYPE_METHOD: ObjDesc->Method.ParamCount = (UINT8) ACPI_TO_INTEGER (Val); ObjDesc->Common.Flags |= AOPOBJ_DATA_VALID; #if defined (ACPI_ASL_COMPILER) /* Save the parameter count for the iASL compiler */ NewNode->Value = ObjDesc->Method.ParamCount; #else /* Mark this as a very SPECIAL method */ ObjDesc->Method.MethodFlags = AML_METHOD_INTERNAL_ONLY; #ifndef ACPI_DUMP_APP ObjDesc->Method.Implementation = AcpiUtOsiImplementation; #endif #endif break; case ACPI_TYPE_INTEGER: ObjDesc->Integer.Value = ACPI_TO_INTEGER (Val); break; case ACPI_TYPE_STRING: /* * Build an object around the static string */ ObjDesc->String.Length = (UINT32) ACPI_STRLEN (Val); ObjDesc->String.Pointer = Val; ObjDesc->Common.Flags |= AOPOBJ_STATIC_POINTER; break; case ACPI_TYPE_MUTEX: ObjDesc->Mutex.Node = NewNode; ObjDesc->Mutex.SyncLevel = (UINT8) (ACPI_TO_INTEGER (Val) - 1); /* Create a mutex */ Status = AcpiOsCreateMutex (&ObjDesc->Mutex.OsMutex); if (ACPI_FAILURE (Status)) { AcpiUtRemoveReference (ObjDesc); goto UnlockAndExit; } /* Special case for ACPI Global Lock */ if (ACPI_STRCMP (InitVal->Name, "_GL_") == 0) { AcpiGbl_GlobalLockMutex = ObjDesc->Mutex.OsMutex; /* Create additional counting semaphore for global lock */ Status = AcpiOsCreateSemaphore ( 1, 1, &AcpiGbl_GlobalLockSemaphore); if (ACPI_FAILURE (Status)) { AcpiUtRemoveReference (ObjDesc); goto UnlockAndExit; } } break; default: ACPI_ERROR ((AE_INFO, "Unsupported initial type value %X", InitVal->Type)); AcpiUtRemoveReference (ObjDesc); ObjDesc = NULL; continue; } /* Store pointer to value descriptor in the Node */ Status = AcpiNsAttachObject (NewNode, ObjDesc, ACPI_GET_OBJECT_TYPE (ObjDesc)); /* Remove local reference to the object */ AcpiUtRemoveReference (ObjDesc); } } UnlockAndExit: (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); /* Save a handle to "_GPE", it is always present */ if (ACPI_SUCCESS (Status)) { Status = AcpiNsGetNode (NULL, "\\_GPE", ACPI_NS_NO_UPSEARCH, &AcpiGbl_FadtGpeDevice); } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiNsLookup * * PARAMETERS: ScopeInfo - Current scope info block * Pathname - Search pathname, in internal format * (as represented in the AML stream) * Type - Type associated with name * InterpreterMode - IMODE_LOAD_PASS2 => add name if not found * Flags - Flags describing the search restrictions * WalkState - Current state of the walk * ReturnNode - Where the Node is placed (if found * or created successfully) * * RETURN: Status * * DESCRIPTION: Find or enter the passed name in the name space. * Log an error if name not found in Exec mode. * * MUTEX: Assumes namespace is locked. * ******************************************************************************/ ACPI_STATUS AcpiNsLookup ( ACPI_GENERIC_STATE *ScopeInfo, char *Pathname, ACPI_OBJECT_TYPE Type, ACPI_INTERPRETER_MODE InterpreterMode, UINT32 Flags, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE **ReturnNode) { ACPI_STATUS Status; char *Path = Pathname; ACPI_NAMESPACE_NODE *PrefixNode; ACPI_NAMESPACE_NODE *CurrentNode = NULL; ACPI_NAMESPACE_NODE *ThisNode = NULL; UINT32 NumSegments; UINT32 NumCarats; ACPI_NAME SimpleName; ACPI_OBJECT_TYPE TypeToCheckFor; ACPI_OBJECT_TYPE ThisSearchType; UINT32 SearchParentFlag = ACPI_NS_SEARCH_PARENT; UINT32 LocalFlags; ACPI_FUNCTION_TRACE (NsLookup); if (!ReturnNode) { return_ACPI_STATUS (AE_BAD_PARAMETER); } LocalFlags = Flags & ~(ACPI_NS_ERROR_IF_FOUND | ACPI_NS_SEARCH_PARENT); *ReturnNode = ACPI_ENTRY_NOT_FOUND; AcpiGbl_NsLookupCount++; if (!AcpiGbl_RootNode) { return_ACPI_STATUS (AE_NO_NAMESPACE); } /* * Get the prefix scope. * A null scope means use the root scope */ if ((!ScopeInfo) || (!ScopeInfo->Scope.Node)) { ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "Null scope prefix, using root node (%p)\n", AcpiGbl_RootNode)); PrefixNode = AcpiGbl_RootNode; } else { PrefixNode = ScopeInfo->Scope.Node; if (ACPI_GET_DESCRIPTOR_TYPE (PrefixNode) != ACPI_DESC_TYPE_NAMED) { ACPI_ERROR ((AE_INFO, "%p is not a namespace node [%s]", PrefixNode, AcpiUtGetDescriptorName (PrefixNode))); return_ACPI_STATUS (AE_AML_INTERNAL); } if (!(Flags & ACPI_NS_PREFIX_IS_SCOPE)) { /* * This node might not be a actual "scope" node (such as a * Device/Method, etc.) It could be a Package or other object node. * Backup up the tree to find the containing scope node. */ while (!AcpiNsOpensScope (PrefixNode->Type) && PrefixNode->Type != ACPI_TYPE_ANY) { PrefixNode = AcpiNsGetParentNode (PrefixNode); } } } /* Save type TBD: may be no longer necessary */ TypeToCheckFor = Type; /* * Begin examination of the actual pathname */ if (!Pathname) { /* A Null NamePath is allowed and refers to the root */ NumSegments = 0; ThisNode = AcpiGbl_RootNode; Path = ""; ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "Null Pathname (Zero segments), Flags=%X\n", Flags)); } else { /* * Name pointer is valid (and must be in internal name format) * * Check for scope prefixes: * * As represented in the AML stream, a namepath consists of an * optional scope prefix followed by a name segment part. * * If present, the scope prefix is either a Root Prefix (in * which case the name is fully qualified), or one or more * Parent Prefixes (in which case the name's scope is relative * to the current scope). */ if (*Path == (UINT8) AML_ROOT_PREFIX) { /* Pathname is fully qualified, start from the root */ ThisNode = AcpiGbl_RootNode; SearchParentFlag = ACPI_NS_NO_UPSEARCH; /* Point to name segment part */ Path++; ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "Path is absolute from root [%p]\n", ThisNode)); } else { /* Pathname is relative to current scope, start there */ ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "Searching relative to prefix scope [%4.4s] (%p)\n", AcpiUtGetNodeName (PrefixNode), PrefixNode)); /* * Handle multiple Parent Prefixes (carat) by just getting * the parent node for each prefix instance. */ ThisNode = PrefixNode; NumCarats = 0; while (*Path == (UINT8) AML_PARENT_PREFIX) { /* Name is fully qualified, no search rules apply */ SearchParentFlag = ACPI_NS_NO_UPSEARCH; /* * Point past this prefix to the name segment * part or the next Parent Prefix */ Path++; /* Backup to the parent node */ NumCarats++; ThisNode = AcpiNsGetParentNode (ThisNode); if (!ThisNode) { /* Current scope has no parent scope */ ACPI_ERROR ((AE_INFO, "ACPI path has too many parent prefixes (^) - reached beyond root node")); return_ACPI_STATUS (AE_NOT_FOUND); } } if (SearchParentFlag == ACPI_NS_NO_UPSEARCH) { ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "Search scope is [%4.4s], path has %d carat(s)\n", AcpiUtGetNodeName (ThisNode), NumCarats)); } } /* * Determine the number of ACPI name segments in this pathname. * * The segment part consists of either: * - A Null name segment (0) * - A DualNamePrefix followed by two 4-byte name segments * - A MultiNamePrefix followed by a byte indicating the * number of segments and the segments themselves. * - A single 4-byte name segment * * Examine the name prefix opcode, if any, to determine the number of * segments. */ switch (*Path) { case 0: /* * Null name after a root or parent prefixes. We already * have the correct target node and there are no name segments. */ NumSegments = 0; Type = ThisNode->Type; ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "Prefix-only Pathname (Zero name segments), Flags=%X\n", Flags)); break; case AML_DUAL_NAME_PREFIX: /* More than one NameSeg, search rules do not apply */ SearchParentFlag = ACPI_NS_NO_UPSEARCH; /* Two segments, point to first name segment */ NumSegments = 2; Path++; ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "Dual Pathname (2 segments, Flags=%X)\n", Flags)); break; case AML_MULTI_NAME_PREFIX_OP: /* More than one NameSeg, search rules do not apply */ SearchParentFlag = ACPI_NS_NO_UPSEARCH; /* Extract segment count, point to first name segment */ Path++; NumSegments = (UINT32) (UINT8) *Path; Path++; ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "Multi Pathname (%d Segments, Flags=%X)\n", NumSegments, Flags)); break; default: /* * Not a Null name, no Dual or Multi prefix, hence there is * only one name segment and Pathname is already pointing to it. */ NumSegments = 1; ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "Simple Pathname (1 segment, Flags=%X)\n", Flags)); break; } ACPI_DEBUG_EXEC (AcpiNsPrintPathname (NumSegments, Path)); } /* * Search namespace for each segment of the name. Loop through and * verify (or add to the namespace) each name segment. * * The object type is significant only at the last name * segment. (We don't care about the types along the path, only * the type of the final target object.) */ ThisSearchType = ACPI_TYPE_ANY; CurrentNode = ThisNode; while (NumSegments && CurrentNode) { NumSegments--; if (!NumSegments) { /* * This is the last segment, enable typechecking */ ThisSearchType = Type; /* * Only allow automatic parent search (search rules) if the caller * requested it AND we have a single, non-fully-qualified NameSeg */ if ((SearchParentFlag != ACPI_NS_NO_UPSEARCH) && (Flags & ACPI_NS_SEARCH_PARENT)) { LocalFlags |= ACPI_NS_SEARCH_PARENT; } /* Set error flag according to caller */ if (Flags & ACPI_NS_ERROR_IF_FOUND) { LocalFlags |= ACPI_NS_ERROR_IF_FOUND; } } /* Extract one ACPI name from the front of the pathname */ ACPI_MOVE_32_TO_32 (&SimpleName, Path); /* Try to find the single (4 character) ACPI name */ Status = AcpiNsSearchAndEnter (SimpleName, WalkState, CurrentNode, InterpreterMode, ThisSearchType, LocalFlags, &ThisNode); if (ACPI_FAILURE (Status)) { if (Status == AE_NOT_FOUND) { /* Name not found in ACPI namespace */ ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "Name [%4.4s] not found in scope [%4.4s] %p\n", (char *) &SimpleName, (char *) &CurrentNode->Name, CurrentNode)); } *ReturnNode = ThisNode; return_ACPI_STATUS (Status); } /* * Sanity typecheck of the target object: * * If 1) This is the last segment (NumSegments == 0) * 2) And we are looking for a specific type * (Not checking for TYPE_ANY) * 3) Which is not an alias * 4) Which is not a local type (TYPE_SCOPE) * 5) And the type of target object is known (not TYPE_ANY) * 6) And target object does not match what we are looking for * * Then we have a type mismatch. Just warn and ignore it. */ if ((NumSegments == 0) && (TypeToCheckFor != ACPI_TYPE_ANY) && (TypeToCheckFor != ACPI_TYPE_LOCAL_ALIAS) && (TypeToCheckFor != ACPI_TYPE_LOCAL_METHOD_ALIAS) && (TypeToCheckFor != ACPI_TYPE_LOCAL_SCOPE) && (ThisNode->Type != ACPI_TYPE_ANY) && (ThisNode->Type != TypeToCheckFor)) { /* Complain about a type mismatch */ ACPI_WARNING ((AE_INFO, "NsLookup: Type mismatch on %4.4s (%s), searching for (%s)", ACPI_CAST_PTR (char, &SimpleName), AcpiUtGetTypeName (ThisNode->Type), AcpiUtGetTypeName (TypeToCheckFor))); } /* * If this is the last name segment and we are not looking for a * specific type, but the type of found object is known, use that type * to see if it opens a scope. */ if ((NumSegments == 0) && (Type == ACPI_TYPE_ANY)) { Type = ThisNode->Type; } /* Point to next name segment and make this node current */ Path += ACPI_NAME_SIZE; CurrentNode = ThisNode; } /* * Always check if we need to open a new scope */ if (!(Flags & ACPI_NS_DONT_OPEN_SCOPE) && (WalkState)) { /* * If entry is a type which opens a scope, push the new scope on the * scope stack. */ if (AcpiNsOpensScope (Type)) { Status = AcpiDsScopeStackPush (ThisNode, Type, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } } *ReturnNode = ThisNode; return_ACPI_STATUS (AE_OK); }