/****************************************************************************** * * Module Name: exprep - ACPI AML (p-code) execution - field prep utilities * $Revision: 1.144 $ * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2008, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * *****************************************************************************/ #define __EXPREP_C__ #include "acpi.h" #include "acinterp.h" #include "amlcode.h" #include "acnamesp.h" #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exprep") /* Local prototypes */ static UINT32 AcpiExDecodeFieldAccess ( ACPI_OPERAND_OBJECT *ObjDesc, UINT8 FieldFlags, UINT32 *ReturnByteAlignment); #ifdef ACPI_UNDER_DEVELOPMENT static UINT32 AcpiExGenerateAccess ( UINT32 FieldBitOffset, UINT32 FieldBitLength, UINT32 RegionLength); /******************************************************************************* * * FUNCTION: AcpiExGenerateAccess * * PARAMETERS: FieldBitOffset - Start of field within parent region/buffer * FieldBitLength - Length of field in bits * RegionLength - Length of parent in bytes * * RETURN: Field granularity (8, 16, 32 or 64) and * ByteAlignment (1, 2, 3, or 4) * * DESCRIPTION: Generate an optimal access width for fields defined with the * AnyAcc keyword. * * NOTE: Need to have the RegionLength in order to check for boundary * conditions (end-of-region). However, the RegionLength is a deferred * operation. Therefore, to complete this implementation, the generation * of this access width must be deferred until the region length has * been evaluated. * ******************************************************************************/ static UINT32 AcpiExGenerateAccess ( UINT32 FieldBitOffset, UINT32 FieldBitLength, UINT32 RegionLength) { UINT32 FieldByteLength; UINT32 FieldByteOffset; UINT32 FieldByteEndOffset; UINT32 AccessByteWidth; UINT32 FieldStartOffset; UINT32 FieldEndOffset; UINT32 MinimumAccessWidth = 0xFFFFFFFF; UINT32 MinimumAccesses = 0xFFFFFFFF; UINT32 Accesses; ACPI_FUNCTION_TRACE (ExGenerateAccess); /* Round Field start offset and length to "minimal" byte boundaries */ FieldByteOffset = ACPI_DIV_8 (ACPI_ROUND_DOWN (FieldBitOffset, 8)); FieldByteEndOffset = ACPI_DIV_8 (ACPI_ROUND_UP (FieldBitLength + FieldBitOffset, 8)); FieldByteLength = FieldByteEndOffset - FieldByteOffset; ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "Bit length %d, Bit offset %d\n", FieldBitLength, FieldBitOffset)); ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "Byte Length %d, Byte Offset %d, End Offset %d\n", FieldByteLength, FieldByteOffset, FieldByteEndOffset)); /* * Iterative search for the maximum access width that is both aligned * and does not go beyond the end of the region * * Start at ByteAcc and work upwards to QwordAcc max. (1,2,4,8 bytes) */ for (AccessByteWidth = 1; AccessByteWidth <= 8; AccessByteWidth <<= 1) { /* * 1) Round end offset up to next access boundary and make sure that * this does not go beyond the end of the parent region. * 2) When the Access width is greater than the FieldByteLength, we * are done. (This does not optimize for the perfectly aligned * case yet). */ if (ACPI_ROUND_UP (FieldByteEndOffset, AccessByteWidth) <= RegionLength) { FieldStartOffset = ACPI_ROUND_DOWN (FieldByteOffset, AccessByteWidth) / AccessByteWidth; FieldEndOffset = ACPI_ROUND_UP ((FieldByteLength + FieldByteOffset), AccessByteWidth) / AccessByteWidth; Accesses = FieldEndOffset - FieldStartOffset; ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "AccessWidth %d end is within region\n", AccessByteWidth)); ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "Field Start %d, Field End %d -- requires %d accesses\n", FieldStartOffset, FieldEndOffset, Accesses)); /* Single access is optimal */ if (Accesses <= 1) { ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "Entire field can be accessed with one operation of size %d\n", AccessByteWidth)); return_VALUE (AccessByteWidth); } /* * Fits in the region, but requires more than one read/write. * try the next wider access on next iteration */ if (Accesses < MinimumAccesses) { MinimumAccesses = Accesses; MinimumAccessWidth = AccessByteWidth; } } else { ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "AccessWidth %d end is NOT within region\n", AccessByteWidth)); if (AccessByteWidth == 1) { ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "Field goes beyond end-of-region!\n")); /* Field does not fit in the region at all */ return_VALUE (0); } /* * This width goes beyond the end-of-region, back off to * previous access */ ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "Backing off to previous optimal access width of %d\n", MinimumAccessWidth)); return_VALUE (MinimumAccessWidth); } } /* * Could not read/write field with one operation, * just use max access width */ ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "Cannot access field in one operation, using width 8\n")); return_VALUE (8); } #endif /* ACPI_UNDER_DEVELOPMENT */ /******************************************************************************* * * FUNCTION: AcpiExDecodeFieldAccess * * PARAMETERS: ObjDesc - Field object * FieldFlags - Encoded fieldflags (contains access bits) * ReturnByteAlignment - Where the byte alignment is returned * * RETURN: Field granularity (8, 16, 32 or 64) and * ByteAlignment (1, 2, 3, or 4) * * DESCRIPTION: Decode the AccessType bits of a field definition. * ******************************************************************************/ static UINT32 AcpiExDecodeFieldAccess ( ACPI_OPERAND_OBJECT *ObjDesc, UINT8 FieldFlags, UINT32 *ReturnByteAlignment) { UINT32 Access; UINT32 ByteAlignment; UINT32 BitLength; ACPI_FUNCTION_TRACE (ExDecodeFieldAccess); Access = (FieldFlags & AML_FIELD_ACCESS_TYPE_MASK); switch (Access) { case AML_FIELD_ACCESS_ANY: #ifdef ACPI_UNDER_DEVELOPMENT ByteAlignment = AcpiExGenerateAccess (ObjDesc->CommonField.StartFieldBitOffset, ObjDesc->CommonField.BitLength, 0xFFFFFFFF /* Temp until we pass RegionLength as parameter */); BitLength = ByteAlignment * 8; #endif ByteAlignment = 1; BitLength = 8; break; case AML_FIELD_ACCESS_BYTE: case AML_FIELD_ACCESS_BUFFER: /* ACPI 2.0 (SMBus Buffer) */ ByteAlignment = 1; BitLength = 8; break; case AML_FIELD_ACCESS_WORD: ByteAlignment = 2; BitLength = 16; break; case AML_FIELD_ACCESS_DWORD: ByteAlignment = 4; BitLength = 32; break; case AML_FIELD_ACCESS_QWORD: /* ACPI 2.0 */ ByteAlignment = 8; BitLength = 64; break; default: /* Invalid field access type */ ACPI_ERROR ((AE_INFO, "Unknown field access type %X", Access)); return_UINT32 (0); } if (ACPI_GET_OBJECT_TYPE (ObjDesc) == ACPI_TYPE_BUFFER_FIELD) { /* * BufferField access can be on any byte boundary, so the * ByteAlignment is always 1 byte -- regardless of any ByteAlignment * implied by the field access type. */ ByteAlignment = 1; } *ReturnByteAlignment = ByteAlignment; return_UINT32 (BitLength); } /******************************************************************************* * * FUNCTION: AcpiExPrepCommonFieldObject * * PARAMETERS: ObjDesc - The field object * FieldFlags - Access, LockRule, and UpdateRule. * The format of a FieldFlag is described * in the ACPI specification * FieldAttribute - Special attributes (not used) * FieldBitPosition - Field start position * FieldBitLength - Field length in number of bits * * RETURN: Status * * DESCRIPTION: Initialize the areas of the field object that are common * to the various types of fields. Note: This is very "sensitive" * code because we are solving the general case for field * alignment. * ******************************************************************************/ ACPI_STATUS AcpiExPrepCommonFieldObject ( ACPI_OPERAND_OBJECT *ObjDesc, UINT8 FieldFlags, UINT8 FieldAttribute, UINT32 FieldBitPosition, UINT32 FieldBitLength) { UINT32 AccessBitWidth; UINT32 ByteAlignment; UINT32 NearestByteAddress; ACPI_FUNCTION_TRACE (ExPrepCommonFieldObject); /* * Note: the structure being initialized is the * ACPI_COMMON_FIELD_INFO; No structure fields outside of the common * area are initialized by this procedure. */ ObjDesc->CommonField.FieldFlags = FieldFlags; ObjDesc->CommonField.Attribute = FieldAttribute; ObjDesc->CommonField.BitLength = FieldBitLength; /* * Decode the access type so we can compute offsets. The access type gives * two pieces of information - the width of each field access and the * necessary ByteAlignment (address granularity) of the access. * * For AnyAcc, the AccessBitWidth is the largest width that is both * necessary and possible in an attempt to access the whole field in one * I/O operation. However, for AnyAcc, the ByteAlignment is always one * byte. * * For all Buffer Fields, the ByteAlignment is always one byte. * * For all other access types (Byte, Word, Dword, Qword), the Bitwidth is * the same (equivalent) as the ByteAlignment. */ AccessBitWidth = AcpiExDecodeFieldAccess (ObjDesc, FieldFlags, &ByteAlignment); if (!AccessBitWidth) { return_ACPI_STATUS (AE_AML_OPERAND_VALUE); } /* Setup width (access granularity) fields */ ObjDesc->CommonField.AccessByteWidth = (UINT8) ACPI_DIV_8 (AccessBitWidth); /* 1, 2, 4, 8 */ ObjDesc->CommonField.AccessBitWidth = (UINT8) AccessBitWidth; /* * BaseByteOffset is the address of the start of the field within the * region. It is the byte address of the first *datum* (field-width data * unit) of the field. (i.e., the first datum that contains at least the * first *bit* of the field.) * * Note: ByteAlignment is always either equal to the AccessBitWidth or 8 * (Byte access), and it defines the addressing granularity of the parent * region or buffer. */ NearestByteAddress = ACPI_ROUND_BITS_DOWN_TO_BYTES (FieldBitPosition); ObjDesc->CommonField.BaseByteOffset = (UINT32) ACPI_ROUND_DOWN (NearestByteAddress, ByteAlignment); /* * StartFieldBitOffset is the offset of the first bit of the field within * a field datum. */ ObjDesc->CommonField.StartFieldBitOffset = (UINT8) (FieldBitPosition - ACPI_MUL_8 (ObjDesc->CommonField.BaseByteOffset)); /* * Does the entire field fit within a single field access element? (datum) * (i.e., without crossing a datum boundary) */ if ((ObjDesc->CommonField.StartFieldBitOffset + FieldBitLength) <= (UINT16) AccessBitWidth) { ObjDesc->Common.Flags |= AOPOBJ_SINGLE_DATUM; } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExPrepFieldValue * * PARAMETERS: Info - Contains all field creation info * * RETURN: Status * * DESCRIPTION: Construct an ACPI_OPERAND_OBJECT of type DefField and * connect it to the parent Node. * ******************************************************************************/ ACPI_STATUS AcpiExPrepFieldValue ( ACPI_CREATE_FIELD_INFO *Info) { ACPI_OPERAND_OBJECT *ObjDesc; ACPI_OPERAND_OBJECT *SecondDesc = NULL; UINT32 Type; ACPI_STATUS Status; ACPI_FUNCTION_TRACE (ExPrepFieldValue); /* Parameter validation */ if (Info->FieldType != ACPI_TYPE_LOCAL_INDEX_FIELD) { if (!Info->RegionNode) { ACPI_ERROR ((AE_INFO, "Null RegionNode")); return_ACPI_STATUS (AE_AML_NO_OPERAND); } Type = AcpiNsGetType (Info->RegionNode); if (Type != ACPI_TYPE_REGION) { ACPI_ERROR ((AE_INFO, "Needed Region, found type %X (%s)", Type, AcpiUtGetTypeName (Type))); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } } /* Allocate a new field object */ ObjDesc = AcpiUtCreateInternalObject (Info->FieldType); if (!ObjDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Initialize areas of the object that are common to all fields */ ObjDesc->CommonField.Node = Info->FieldNode; Status = AcpiExPrepCommonFieldObject (ObjDesc, Info->FieldFlags, Info->Attribute, Info->FieldBitPosition, Info->FieldBitLength); if (ACPI_FAILURE (Status)) { AcpiUtDeleteObjectDesc (ObjDesc); return_ACPI_STATUS (Status); } /* Initialize areas of the object that are specific to the field type */ switch (Info->FieldType) { case ACPI_TYPE_LOCAL_REGION_FIELD: ObjDesc->Field.RegionObj = AcpiNsGetAttachedObject (Info->RegionNode); /* An additional reference for the container */ AcpiUtAddReference (ObjDesc->Field.RegionObj); ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "RegionField: BitOff %X, Off %X, Gran %X, Region %p\n", ObjDesc->Field.StartFieldBitOffset, ObjDesc->Field.BaseByteOffset, ObjDesc->Field.AccessByteWidth, ObjDesc->Field.RegionObj)); break; case ACPI_TYPE_LOCAL_BANK_FIELD: ObjDesc->BankField.Value = Info->BankValue; ObjDesc->BankField.RegionObj = AcpiNsGetAttachedObject ( Info->RegionNode); ObjDesc->BankField.BankObj = AcpiNsGetAttachedObject ( Info->RegisterNode); /* An additional reference for the attached objects */ AcpiUtAddReference (ObjDesc->BankField.RegionObj); AcpiUtAddReference (ObjDesc->BankField.BankObj); ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "Bank Field: BitOff %X, Off %X, Gran %X, Region %p, BankReg %p\n", ObjDesc->BankField.StartFieldBitOffset, ObjDesc->BankField.BaseByteOffset, ObjDesc->Field.AccessByteWidth, ObjDesc->BankField.RegionObj, ObjDesc->BankField.BankObj)); /* * Remember location in AML stream of the field unit * opcode and operands -- since the BankValue * operands must be evaluated. */ SecondDesc = ObjDesc->Common.NextObject; SecondDesc->Extra.AmlStart = ACPI_CAST_PTR (ACPI_PARSE_OBJECT, Info->DataRegisterNode)->Named.Data; SecondDesc->Extra.AmlLength = ACPI_CAST_PTR (ACPI_PARSE_OBJECT, Info->DataRegisterNode)->Named.Length; break; case ACPI_TYPE_LOCAL_INDEX_FIELD: /* Get the Index and Data registers */ ObjDesc->IndexField.IndexObj = AcpiNsGetAttachedObject ( Info->RegisterNode); ObjDesc->IndexField.DataObj = AcpiNsGetAttachedObject ( Info->DataRegisterNode); if (!ObjDesc->IndexField.DataObj || !ObjDesc->IndexField.IndexObj) { ACPI_ERROR ((AE_INFO, "Null Index Object during field prep")); AcpiUtDeleteObjectDesc (ObjDesc); return_ACPI_STATUS (AE_AML_INTERNAL); } /* An additional reference for the attached objects */ AcpiUtAddReference (ObjDesc->IndexField.DataObj); AcpiUtAddReference (ObjDesc->IndexField.IndexObj); /* * April 2006: Changed to match MS behavior * * The value written to the Index register is the byte offset of the * target field in units of the granularity of the IndexField * * Previously, the value was calculated as an index in terms of the * width of the Data register, as below: * * ObjDesc->IndexField.Value = (UINT32) * (Info->FieldBitPosition / ACPI_MUL_8 ( * ObjDesc->Field.AccessByteWidth)); * * February 2006: Tried value as a byte offset: * ObjDesc->IndexField.Value = (UINT32) * ACPI_DIV_8 (Info->FieldBitPosition); */ ObjDesc->IndexField.Value = (UINT32) ACPI_ROUND_DOWN ( ACPI_DIV_8 (Info->FieldBitPosition), ObjDesc->IndexField.AccessByteWidth); ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "IndexField: BitOff %X, Off %X, Value %X, Gran %X, Index %p, Data %p\n", ObjDesc->IndexField.StartFieldBitOffset, ObjDesc->IndexField.BaseByteOffset, ObjDesc->IndexField.Value, ObjDesc->Field.AccessByteWidth, ObjDesc->IndexField.IndexObj, ObjDesc->IndexField.DataObj)); break; default: /* No other types should get here */ break; } /* * Store the constructed descriptor (ObjDesc) into the parent Node, * preserving the current type of that NamedObj. */ Status = AcpiNsAttachObject (Info->FieldNode, ObjDesc, AcpiNsGetType (Info->FieldNode)); ACPI_DEBUG_PRINT ((ACPI_DB_BFIELD, "Set NamedObj %p [%4.4s], ObjDesc %p\n", Info->FieldNode, AcpiUtGetNodeName (Info->FieldNode), ObjDesc)); /* Remove local reference to the object */ AcpiUtRemoveReference (ObjDesc); return_ACPI_STATUS (Status); }