/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern const struct fnsave_state x87_initial; extern const struct fxsave_state sse_initial; /* * Map an fnsave-formatted save area into an fxsave-formatted save area. * * Most fields are the same width, content and semantics. However * the tag word is compressed. */ static void fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx) { uint_t i, tagbits; fx->fx_fcw = fn->f_fcw; fx->fx_fsw = fn->f_fsw; /* * copy element by element (because of holes) */ for (i = 0; i < 8; i++) bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0], sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ /* * synthesize compressed tag bits */ fx->fx_fctw = 0; for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2) if ((tagbits & 3) != 3) fx->fx_fctw |= (1 << i); fx->fx_fop = fn->f_fop; #if defined(__amd64) fx->fx_rip = (uint64_t)fn->f_eip; fx->fx_rdp = (uint64_t)fn->f_dp; #else fx->fx_eip = fn->f_eip; fx->fx_cs = fn->f_cs; fx->__fx_ign0 = 0; fx->fx_dp = fn->f_dp; fx->fx_ds = fn->f_ds; fx->__fx_ign1 = 0; #endif } /* * Map from an fxsave-format save area to an fnsave-format save area. */ static void fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn) { uint_t i, top, tagbits; fn->f_fcw = fx->fx_fcw; fn->__f_ign0 = 0; fn->f_fsw = fx->fx_fsw; fn->__f_ign1 = 0; top = (fx->fx_fsw & FPS_TOP) >> 11; /* * copy element by element (because of holes) */ for (i = 0; i < 8; i++) bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0], sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ /* * synthesize uncompressed tag bits */ fn->f_ftw = 0; for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) { uint_t ibit, expo; const uint16_t *fpp; static const uint16_t zero[5] = { 0, 0, 0, 0, 0 }; if ((tagbits & 1) == 0) { fn->f_ftw |= 3 << (i << 1); /* empty */ continue; } /* * (tags refer to *physical* registers) */ fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0]; ibit = fpp[3] >> 15; expo = fpp[4] & 0x7fff; if (ibit && expo != 0 && expo != 0x7fff) continue; /* valid fp number */ if (bcmp(fpp, &zero, sizeof (zero))) fn->f_ftw |= 2 << (i << 1); /* NaN */ else fn->f_ftw |= 1 << (i << 1); /* fp zero */ } fn->f_fop = fx->fx_fop; fn->__f_ign2 = 0; #if defined(__amd64) fn->f_eip = (uint32_t)fx->fx_rip; fn->f_cs = U32CS_SEL; fn->f_dp = (uint32_t)fx->fx_rdp; fn->f_ds = UDS_SEL; #else fn->f_eip = fx->fx_eip; fn->f_cs = fx->fx_cs; fn->f_dp = fx->fx_dp; fn->f_ds = fx->fx_ds; #endif fn->__f_ign3 = 0; } /* * Map from an fpregset_t into an fxsave-format save area */ static void fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx) { #if defined(__amd64) bcopy(fp, fx, sizeof (*fx)); #else const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state; fnsave_to_fxsave((const struct fnsave_state *)fc, fx); fx->fx_mxcsr = fc->mxcsr; bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); #endif /* * avoid useless #gp exceptions - mask reserved bits */ fx->fx_mxcsr &= sse_mxcsr_mask; } /* * Map from an fxsave-format save area into a fpregset_t */ static void fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp) { #if defined(__amd64) bcopy(fx, fp, sizeof (*fx)); #else struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state; fxsave_to_fnsave(fx, (struct fnsave_state *)fc); fc->mxcsr = fx->fx_mxcsr; bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); #endif } #if defined(_SYSCALL32_IMPL) static void fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx) { const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; fnsave_to_fxsave((const struct fnsave_state *)fc, fx); /* * avoid useless #gp exceptions - mask reserved bits */ fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr; bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); } static void fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp) { struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; fxsave_to_fnsave(fx, (struct fnsave_state *)fc); fc->mxcsr = fx->fx_mxcsr; bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); } static void fpregset_nto32(const fpregset_t *src, fpregset32_t *dst) { fxsave_to_fpregset32((struct fxsave_state *)src, dst); dst->fp_reg_set.fpchip_state.status = src->fp_reg_set.fpchip_state.status; dst->fp_reg_set.fpchip_state.xstatus = src->fp_reg_set.fpchip_state.xstatus; } static void fpregset_32ton(const fpregset32_t *src, fpregset_t *dst) { fpregset32_to_fxsave(src, (struct fxsave_state *)dst); dst->fp_reg_set.fpchip_state.status = src->fp_reg_set.fpchip_state.status; dst->fp_reg_set.fpchip_state.xstatus = src->fp_reg_set.fpchip_state.xstatus; } #endif /* * Set floating-point registers from a native fpregset_t. */ void setfpregs(klwp_t *lwp, fpregset_t *fp) { struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; if (fpu->fpu_flags & FPU_EN) { if (!(fpu->fpu_flags & FPU_VALID)) { /* * FPU context is still active, release the * ownership. */ fp_free(fpu, 0); } #if !defined(__amd64) if (fp_kind == __FP_SSE) { #endif fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx); fpu->fpu_regs.kfpu_xstatus = fp->fp_reg_set.fpchip_state.xstatus; #if !defined(__amd64) } else bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn, sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); #endif fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status; fpu->fpu_flags |= FPU_VALID; /* * If we are changing the fpu_flags in the current context, * disable floating point (turn on CR0_TS bit) to track * FPU_VALID after clearing any errors (frstor chokes * otherwise) */ if (lwp == ttolwp(curthread)) { (void) fperr_reset(); fpdisable(); } } else { /* * If we are trying to change the FPU state of a thread which * hasn't yet initialized floating point, store the state in * the pcb and indicate that the state is valid. When the * thread enables floating point, it will use this state instead * of the default state. */ #if !defined(__amd64) if (fp_kind == __FP_SSE) { #endif fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx); fpu->fpu_regs.kfpu_xstatus = fp->fp_reg_set.fpchip_state.xstatus; #if !defined(__amd64) } else bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn, sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); #endif fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status; fpu->fpu_flags |= FPU_VALID; } } /* * Get floating-point registers into a native fpregset_t. */ void getfpregs(klwp_t *lwp, fpregset_t *fp) { struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; kpreempt_disable(); if (fpu->fpu_flags & FPU_EN) { /* * If we have FPU hw and the thread's pcb doesn't have * a valid FPU state then get the state from the hw. */ if (fpu_exists && ttolwp(curthread) == lwp && !(fpu->fpu_flags & FPU_VALID)) fp_save(fpu); /* get the current FPU state */ } /* * There are 3 possible cases we have to be aware of here: * * 1. FPU is enabled. FPU state is stored in the current LWP. * * 2. FPU is not enabled, and there have been no intervening /proc * modifications. Return initial FPU state. * * 3. FPU is not enabled, but a /proc consumer has modified FPU state. * FPU state is stored in the current LWP. */ if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) { /* * Cases 1 and 3. */ #if !defined(__amd64) if (fp_kind == __FP_SSE) { #endif fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp); fp->fp_reg_set.fpchip_state.xstatus = fpu->fpu_regs.kfpu_xstatus; #if !defined(__amd64) } else bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp, sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); #endif fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; } else { /* * Case 2. */ #if !defined(__amd64) if (fp_kind == __FP_SSE) { #endif fxsave_to_fpregset(&sse_initial, fp); fp->fp_reg_set.fpchip_state.xstatus = fpu->fpu_regs.kfpu_xstatus; #if !defined(__amd64) } else bcopy(&x87_initial, fp, sizeof (x87_initial)); #endif fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; } kpreempt_enable(); } #if defined(_SYSCALL32_IMPL) /* * Set floating-point registers from an fpregset32_t. */ void setfpregs32(klwp_t *lwp, fpregset32_t *fp) { fpregset_t fpregs; fpregset_32ton(fp, &fpregs); setfpregs(lwp, &fpregs); } /* * Get floating-point registers into an fpregset32_t. */ void getfpregs32(klwp_t *lwp, fpregset32_t *fp) { fpregset_t fpregs; getfpregs(lwp, &fpregs); fpregset_nto32(&fpregs, fp); } #endif /* _SYSCALL32_IMPL */ /* * Return the general registers */ void getgregs(klwp_t *lwp, gregset_t grp) { struct regs *rp = lwptoregs(lwp); #if defined(__amd64) struct pcb *pcb = &lwp->lwp_pcb; int thisthread = lwptot(lwp) == curthread; grp[REG_RDI] = rp->r_rdi; grp[REG_RSI] = rp->r_rsi; grp[REG_RDX] = rp->r_rdx; grp[REG_RCX] = rp->r_rcx; grp[REG_R8] = rp->r_r8; grp[REG_R9] = rp->r_r9; grp[REG_RAX] = rp->r_rax; grp[REG_RBX] = rp->r_rbx; grp[REG_RBP] = rp->r_rbp; grp[REG_R10] = rp->r_r10; grp[REG_R11] = rp->r_r11; grp[REG_R12] = rp->r_r12; grp[REG_R13] = rp->r_r13; grp[REG_R14] = rp->r_r14; grp[REG_R15] = rp->r_r15; grp[REG_FSBASE] = pcb->pcb_fsbase; grp[REG_GSBASE] = pcb->pcb_gsbase; if (thisthread) kpreempt_disable(); if (pcb->pcb_flags & RUPDATE_PENDING) { grp[REG_DS] = pcb->pcb_ds; grp[REG_ES] = pcb->pcb_es; grp[REG_FS] = pcb->pcb_fs; grp[REG_GS] = pcb->pcb_gs; } else { grp[REG_DS] = rp->r_ds; grp[REG_ES] = rp->r_es; grp[REG_FS] = rp->r_fs; grp[REG_GS] = rp->r_gs; } if (thisthread) kpreempt_enable(); grp[REG_TRAPNO] = rp->r_trapno; grp[REG_ERR] = rp->r_err; grp[REG_RIP] = rp->r_rip; grp[REG_CS] = rp->r_cs; grp[REG_SS] = rp->r_ss; grp[REG_RFL] = rp->r_rfl; grp[REG_RSP] = rp->r_rsp; #else bcopy(&rp->r_gs, grp, sizeof (gregset_t)); #endif } #if defined(_SYSCALL32_IMPL) void getgregs32(klwp_t *lwp, gregset32_t grp) { struct regs *rp = lwptoregs(lwp); struct pcb *pcb = &lwp->lwp_pcb; int thisthread = lwptot(lwp) == curthread; if (thisthread) kpreempt_disable(); if (pcb->pcb_flags & RUPDATE_PENDING) { grp[GS] = (uint16_t)pcb->pcb_gs; grp[FS] = (uint16_t)pcb->pcb_fs; grp[DS] = (uint16_t)pcb->pcb_ds; grp[ES] = (uint16_t)pcb->pcb_es; } else { grp[GS] = (uint16_t)rp->r_gs; grp[FS] = (uint16_t)rp->r_fs; grp[DS] = (uint16_t)rp->r_ds; grp[ES] = (uint16_t)rp->r_es; } if (thisthread) kpreempt_enable(); grp[EDI] = (greg32_t)rp->r_rdi; grp[ESI] = (greg32_t)rp->r_rsi; grp[EBP] = (greg32_t)rp->r_rbp; grp[ESP] = 0; grp[EBX] = (greg32_t)rp->r_rbx; grp[EDX] = (greg32_t)rp->r_rdx; grp[ECX] = (greg32_t)rp->r_rcx; grp[EAX] = (greg32_t)rp->r_rax; grp[TRAPNO] = (greg32_t)rp->r_trapno; grp[ERR] = (greg32_t)rp->r_err; grp[EIP] = (greg32_t)rp->r_rip; grp[CS] = (uint16_t)rp->r_cs; grp[EFL] = (greg32_t)rp->r_rfl; grp[UESP] = (greg32_t)rp->r_rsp; grp[SS] = (uint16_t)rp->r_ss; } void ucontext_32ton(const ucontext32_t *src, ucontext_t *dst) { mcontext_t *dmc = &dst->uc_mcontext; const mcontext32_t *smc = &src->uc_mcontext; bzero(dst, sizeof (*dst)); dst->uc_flags = src->uc_flags; dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link; bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask)); dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp; dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size; dst->uc_stack.ss_flags = src->uc_stack.ss_flags; dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS]; dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS]; dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES]; dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS]; dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI]; dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI]; dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP]; dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX]; dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX]; dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX]; dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX]; dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO]; dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR]; dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP]; dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS]; dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL]; dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP]; dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS]; /* * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set * otherwise there is no guarantee that anything in fpregs is valid. */ if (src->uc_flags & UC_FPU) fpregset_32ton(&src->uc_mcontext.fpregs, &dst->uc_mcontext.fpregs); } #endif /* _SYSCALL32_IMPL */ /* * Return the user-level PC. * If in a system call, return the address of the syscall trap. */ greg_t getuserpc() { greg_t upc = lwptoregs(ttolwp(curthread))->r_pc; uint32_t insn; if (curthread->t_sysnum == 0) return (upc); /* * We might've gotten here from sysenter (0xf 0x34), * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0). * * Go peek at the binary to figure it out.. */ if (fuword32((void *)(upc - 2), &insn) != -1 && (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f) return (upc - 2); return (upc - 7); } /* * Protect segment registers from non-user privilege levels and GDT selectors * other than USER_CS, USER_DS and lwp FS and GS values. If the segment * selector is non-null and not USER_CS/USER_DS, we make sure that the * TI bit is set to point into the LDT and that the RPL is set to 3. * * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we * also explicitly zero the top 16 bits since they may be coming from the * user's address space via setcontext(2) or /proc. */ /*ARGSUSED*/ static greg_t fix_segreg(greg_t sr, model_t datamodel) { switch (sr &= 0xffff) { #if defined(__amd64) /* * If lwp attempts to switch data model then force their * code selector to be null selector. */ case U32CS_SEL: if (datamodel == DATAMODEL_NATIVE) return (0); else return (sr); case UCS_SEL: if (datamodel == DATAMODEL_ILP32) return (0); #elif defined(__i386) case UCS_SEL: #endif /*FALLTHROUGH*/ case UDS_SEL: case LWPFS_SEL: case LWPGS_SEL: case 0: return (sr); default: break; } /* * Force it into the LDT in ring 3 for 32-bit processes, which by * default do not have an LDT, so that any attempt to use an invalid * selector will reference the (non-existant) LDT, and cause a #gp fault * for the process. * * 64-bit processes get the null gdt selector since they * are not allowed to have a private LDT. */ #if defined(__amd64) return (datamodel == DATAMODEL_ILP32 ? (sr | SEL_TI_LDT | SEL_UPL) : 0); #elif defined(__i386) return (sr | SEL_TI_LDT | SEL_UPL); #endif } /* * Set general registers. */ void setgregs(klwp_t *lwp, gregset_t grp) { struct regs *rp = lwptoregs(lwp); model_t datamodel = lwp_getdatamodel(lwp); #if defined(__amd64) struct pcb *pcb = &lwp->lwp_pcb; int thisthread = lwptot(lwp) == curthread; if (datamodel == DATAMODEL_NATIVE) { if (thisthread) (void) save_syscall_args(); /* copy the args */ rp->r_rdi = grp[REG_RDI]; rp->r_rsi = grp[REG_RSI]; rp->r_rdx = grp[REG_RDX]; rp->r_rcx = grp[REG_RCX]; rp->r_r8 = grp[REG_R8]; rp->r_r9 = grp[REG_R9]; rp->r_rax = grp[REG_RAX]; rp->r_rbx = grp[REG_RBX]; rp->r_rbp = grp[REG_RBP]; rp->r_r10 = grp[REG_R10]; rp->r_r11 = grp[REG_R11]; rp->r_r12 = grp[REG_R12]; rp->r_r13 = grp[REG_R13]; rp->r_r14 = grp[REG_R14]; rp->r_r15 = grp[REG_R15]; rp->r_trapno = grp[REG_TRAPNO]; rp->r_err = grp[REG_ERR]; rp->r_rip = grp[REG_RIP]; /* * Setting %cs or %ss to anything else is quietly but * quite definitely forbidden! */ rp->r_cs = UCS_SEL; rp->r_ss = UDS_SEL; rp->r_rsp = grp[REG_RSP]; if (thisthread) kpreempt_disable(); pcb->pcb_ds = UDS_SEL; pcb->pcb_es = UDS_SEL; /* * 64-bit processes -are- allowed to set their fsbase/gsbase * values directly, but only if they're using the segment * selectors that allow that semantic. * * (32-bit processes must use lwp_set_private().) */ pcb->pcb_fsbase = grp[REG_FSBASE]; pcb->pcb_gsbase = grp[REG_GSBASE]; pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel); pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel); /* * Ensure that we go out via update_sregs */ pcb->pcb_flags |= RUPDATE_PENDING; lwptot(lwp)->t_post_sys = 1; if (thisthread) kpreempt_enable(); #if defined(_SYSCALL32_IMPL) } else { rp->r_rdi = (uint32_t)grp[REG_RDI]; rp->r_rsi = (uint32_t)grp[REG_RSI]; rp->r_rdx = (uint32_t)grp[REG_RDX]; rp->r_rcx = (uint32_t)grp[REG_RCX]; rp->r_rax = (uint32_t)grp[REG_RAX]; rp->r_rbx = (uint32_t)grp[REG_RBX]; rp->r_rbp = (uint32_t)grp[REG_RBP]; rp->r_trapno = (uint32_t)grp[REG_TRAPNO]; rp->r_err = (uint32_t)grp[REG_ERR]; rp->r_rip = (uint32_t)grp[REG_RIP]; /* * The kernel uses %cs to determine if it is dealing with * another part of the kernel or with a userland application. * Specifically, it tests the privilege bits. For this reason, * we must prevent user apps from ending up with a NULL selector * in %cs. Instead, we'll use index 0 into the GDT but with the * privilege bits set to usermode. */ rp->r_cs = fix_segreg(grp[REG_CS], datamodel) | SEL_UPL; rp->r_ss = fix_segreg(grp[REG_DS], datamodel); rp->r_rsp = (uint32_t)grp[REG_RSP]; if (thisthread) kpreempt_disable(); pcb->pcb_ds = fix_segreg(grp[REG_DS], datamodel); pcb->pcb_es = fix_segreg(grp[REG_ES], datamodel); /* * (See fsbase/gsbase commentary above) */ pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel); pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel); /* * Ensure that we go out via update_sregs */ pcb->pcb_flags |= RUPDATE_PENDING; lwptot(lwp)->t_post_sys = 1; if (thisthread) kpreempt_enable(); #endif } /* * Only certain bits of the flags register can be modified. */ rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) | (grp[REG_RFL] & PSL_USERMASK); #elif defined(__i386) /* * Only certain bits of the flags register can be modified. */ grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK); /* * Copy saved registers from user stack. */ bcopy(grp, &rp->r_gs, sizeof (gregset_t)); rp->r_cs = fix_segreg(rp->r_cs, datamodel); rp->r_ss = fix_segreg(rp->r_ss, datamodel); rp->r_ds = fix_segreg(rp->r_ds, datamodel); rp->r_es = fix_segreg(rp->r_es, datamodel); rp->r_fs = fix_segreg(rp->r_fs, datamodel); rp->r_gs = fix_segreg(rp->r_gs, datamodel); #endif /* __i386 */ } /* * Determine whether eip is likely to have an interrupt frame * on the stack. We do this by comparing the address to the * range of addresses spanned by several well-known routines. */ extern void _interrupt(); extern void _allsyscalls(); extern void _cmntrap(); extern void fakesoftint(); extern size_t _interrupt_size; extern size_t _allsyscalls_size; extern size_t _cmntrap_size; extern size_t _fakesoftint_size; /* * Get a pc-only stacktrace. Used for kmem_alloc() buffer ownership tracking. * Returns MIN(current stack depth, pcstack_limit). */ int getpcstack(pc_t *pcstack, int pcstack_limit) { struct frame *fp = (struct frame *)getfp(); struct frame *nextfp, *minfp, *stacktop; int depth = 0; int on_intr; uintptr_t pc; if ((on_intr = CPU_ON_INTR(CPU)) != 0) stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); else stacktop = (struct frame *)curthread->t_stk; minfp = fp; pc = ((struct regs *)fp)->r_pc; while (depth < pcstack_limit) { nextfp = (struct frame *)fp->fr_savfp; pc = fp->fr_savpc; if (nextfp <= minfp || nextfp >= stacktop) { if (on_intr) { /* * Hop from interrupt stack to thread stack. */ stacktop = (struct frame *)curthread->t_stk; minfp = (struct frame *)curthread->t_stkbase; on_intr = 0; continue; } break; } pcstack[depth++] = (pc_t)pc; fp = nextfp; minfp = fp; } return (depth); } /* * The following ELF header fields are defined as processor-specific * in the V8 ABI: * * e_ident[EI_DATA] encoding of the processor-specific * data in the object file * e_machine processor identification * e_flags processor-specific flags associated * with the file */ /* * The value of at_flags reflects a platform's cpu module support. * at_flags is used to check for allowing a binary to execute and * is passed as the value of the AT_FLAGS auxiliary vector. */ int at_flags = 0; /* * Check the processor-specific fields of an ELF header. * * returns 1 if the fields are valid, 0 otherwise */ /*ARGSUSED2*/ int elfheadcheck( unsigned char e_data, Elf32_Half e_machine, Elf32_Word e_flags) { if (e_data != ELFDATA2LSB) return (0); #if defined(__amd64) if (e_machine == EM_AMD64) return (1); #endif return (e_machine == EM_386); } uint_t auxv_hwcap_include = 0; /* patch to enable unrecognized features */ uint_t auxv_hwcap_exclude = 0; /* patch for broken cpus, debugging */ #if defined(_SYSCALL32_IMPL) uint_t auxv_hwcap32_include = 0; /* ditto for 32-bit apps */ uint_t auxv_hwcap32_exclude = 0; /* ditto for 32-bit apps */ #endif /* * Gather information about the processor and place it into auxv_hwcap * so that it can be exported to the linker via the aux vector. * * We use this seemingly complicated mechanism so that we can ensure * that /etc/system can be used to override what the system can or * cannot discover for itself. */ void bind_hwcap(void) { uint_t cpu_hwcap_flags = cpuid_pass4(NULL); auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) & ~auxv_hwcap_exclude; #if defined(__amd64) /* * On AMD processors, sysenter just doesn't work at all * when the kernel is in long mode. On IA-32e processors * it does, but there's no real point in all the alternate * mechanism when syscall works on both. * * Besides, the kernel's sysenter handler is expecting a * 32-bit lwp ... */ auxv_hwcap &= ~AV_386_SEP; #endif if (auxv_hwcap_include || auxv_hwcap_exclude) cmn_err(CE_CONT, "?user ABI extensions: %b\n", auxv_hwcap, FMT_AV_386); #if defined(_SYSCALL32_IMPL) auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) & ~auxv_hwcap32_exclude; #if defined(__amd64) /* * If this is an amd64 architecture machine from Intel, then * syscall -doesn't- work in compatibility mode, only sysenter does. * * Sigh. */ if (!cpuid_syscall32_insn(NULL)) auxv_hwcap32 &= ~AV_386_AMD_SYSC; #endif if (auxv_hwcap32_include || auxv_hwcap32_exclude) cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n", auxv_hwcap32, FMT_AV_386); #endif } /* * sync_icache() - this is called * in proc/fs/prusrio.c. x86 has an unified cache and therefore * this is a nop. */ /* ARGSUSED */ void sync_icache(caddr_t addr, uint_t len) { /* Do nothing for now */ } /*ARGSUSED*/ void sync_data_memory(caddr_t va, size_t len) { /* Not implemented for this platform */ } int __ipltospl(int ipl) { return (ipltospl(ipl)); } /* * The panic code invokes panic_saveregs() to record the contents of a * regs structure into the specified panic_data structure for debuggers. */ void panic_saveregs(panic_data_t *pdp, struct regs *rp) { panic_nv_t *pnv = PANICNVGET(pdp); struct cregs creg; getcregs(&creg); #if defined(__amd64) PANICNVADD(pnv, "rdi", rp->r_rdi); PANICNVADD(pnv, "rsi", rp->r_rsi); PANICNVADD(pnv, "rdx", rp->r_rdx); PANICNVADD(pnv, "rcx", rp->r_rcx); PANICNVADD(pnv, "r8", rp->r_r8); PANICNVADD(pnv, "r9", rp->r_r9); PANICNVADD(pnv, "rax", rp->r_rax); PANICNVADD(pnv, "rbx", rp->r_rbx); PANICNVADD(pnv, "rbp", rp->r_rbp); PANICNVADD(pnv, "r10", rp->r_r10); PANICNVADD(pnv, "r10", rp->r_r10); PANICNVADD(pnv, "r11", rp->r_r11); PANICNVADD(pnv, "r12", rp->r_r12); PANICNVADD(pnv, "r13", rp->r_r13); PANICNVADD(pnv, "r14", rp->r_r14); PANICNVADD(pnv, "r15", rp->r_r15); PANICNVADD(pnv, "fsbase", rp->r_fsbase); PANICNVADD(pnv, "gsbase", rp->r_gsbase); PANICNVADD(pnv, "ds", rp->r_ds); PANICNVADD(pnv, "es", rp->r_es); PANICNVADD(pnv, "fs", rp->r_fs); PANICNVADD(pnv, "gs", rp->r_gs); PANICNVADD(pnv, "trapno", rp->r_trapno); PANICNVADD(pnv, "err", rp->r_err); PANICNVADD(pnv, "rip", rp->r_rip); PANICNVADD(pnv, "cs", rp->r_cs); PANICNVADD(pnv, "rflags", rp->r_rfl); PANICNVADD(pnv, "rsp", rp->r_rsp); PANICNVADD(pnv, "ss", rp->r_ss); PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3])); PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0])); PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3])); PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0])); #elif defined(__i386) PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs); PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs); PANICNVADD(pnv, "es", (uint32_t)rp->r_es); PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds); PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi); PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi); PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp); PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp); PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx); PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx); PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx); PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax); PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno); PANICNVADD(pnv, "err", (uint32_t)rp->r_err); PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip); PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs); PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl); PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp); PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss); PANICNVADD(pnv, "gdt", creg.cr_gdt); PANICNVADD(pnv, "idt", creg.cr_idt); #endif /* __i386 */ PANICNVADD(pnv, "ldt", creg.cr_ldt); PANICNVADD(pnv, "task", creg.cr_task); PANICNVADD(pnv, "cr0", creg.cr_cr0); PANICNVADD(pnv, "cr2", creg.cr_cr2); PANICNVADD(pnv, "cr3", creg.cr_cr3); if (creg.cr_cr4) PANICNVADD(pnv, "cr4", creg.cr_cr4); PANICNVSET(pdp, pnv); } #define TR_ARG_MAX 6 /* Max args to print, same as SPARC */ #if !defined(__amd64) /* * Given a return address (%eip), determine the likely number of arguments * that were pushed on the stack prior to its execution. We do this by * expecting that a typical call sequence consists of pushing arguments on * the stack, executing a call instruction, and then performing an add * on %esp to restore it to the value prior to pushing the arguments for * the call. We attempt to detect such an add, and divide the addend * by the size of a word to determine the number of pushed arguments. * * If we do not find such an add, we punt and return TR_ARG_MAX. It is not * possible to reliably determine if a function took no arguments (i.e. was * void) because assembler routines do not reliably perform an add on %esp * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is * safer than returning 0. */ static ulong_t argcount(uintptr_t eip) { const uint8_t *ins = (const uint8_t *)eip; ulong_t n; enum { M_MODRM_ESP = 0xc4, /* Mod/RM byte indicates %esp */ M_ADD_IMM32 = 0x81, /* ADD imm32 to r/m32 */ M_ADD_IMM8 = 0x83 /* ADD imm8 to r/m32 */ }; if (eip < KERNELBASE || ins[1] != M_MODRM_ESP) return (TR_ARG_MAX); switch (ins[0]) { case M_ADD_IMM32: n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24); break; case M_ADD_IMM8: n = ins[2]; break; default: return (TR_ARG_MAX); } n /= sizeof (long); return (MIN(n, TR_ARG_MAX)); } #endif /* !__amd64 */ /* * Print a stack backtrace using the specified frame pointer. We delay two * seconds before continuing, unless this is the panic traceback. Note * that the frame for the starting stack pointer value is omitted because * the corresponding %eip is not known. */ #if defined(__amd64) void traceback(caddr_t fpreg) { struct frame *fp = (struct frame *)fpreg; struct frame *nextfp; uintptr_t pc, nextpc; ulong_t off; char args[TR_ARG_MAX * 2 + 16], *sym; if (!panicstr) printf("traceback: %%fp = %p\n", (void *)fp); if ((uintptr_t)fp < KERNELBASE) goto out; pc = fp->fr_savpc; fp = (struct frame *)fp->fr_savfp; while ((uintptr_t)fp >= KERNELBASE) { /* * XX64 Until port is complete tolerate 8-byte aligned * frame pointers but flag with a warning so they can * be fixed. */ if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) { if (((uintptr_t)fp & (8 - 1)) == 0) { printf(" >> warning! 8-byte" " aligned %%fp = %p\n", (void *)fp); } else { printf( " >> mis-aligned %%fp = %p\n", (void *)fp); break; } } args[0] = '\0'; nextpc = (uintptr_t)fp->fr_savpc; nextfp = (struct frame *)fp->fr_savfp; if ((sym = kobj_getsymname(pc, &off)) != NULL) { printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp, mod_containing_pc((caddr_t)pc), sym, off, args); } else { printf("%016lx %lx (%s)\n", (uintptr_t)fp, pc, args); } pc = nextpc; fp = nextfp; } out: if (!panicstr) { printf("end of traceback\n"); DELAY(2 * MICROSEC); } } #elif defined(__i386) void traceback(caddr_t fpreg) { struct frame *fp = (struct frame *)fpreg; struct frame *nextfp, *minfp, *stacktop; uintptr_t pc, nextpc; cpu_t *cpu; /* * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'. */ char args[TR_ARG_MAX * 2 + 8], *p; int on_intr; ulong_t off; char *sym; if (!panicstr) printf("traceback: %%fp = %p\n", (void *)fp); /* * If we are panicking, all high-level interrupt information in * CPU was overwritten. panic_cpu has the correct values. */ kpreempt_disable(); /* prevent migration */ cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU; if ((on_intr = CPU_ON_INTR(cpu)) != 0) stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME)); else stacktop = (struct frame *)curthread->t_stk; kpreempt_enable(); if ((uintptr_t)fp < KERNELBASE) goto out; minfp = fp; /* Baseline minimum frame pointer */ pc = fp->fr_savpc; fp = (struct frame *)fp->fr_savfp; while ((uintptr_t)fp >= KERNELBASE) { ulong_t argc; long *argv; if (fp <= minfp || fp >= stacktop) { if (on_intr) { /* * Hop from interrupt stack to thread stack. */ stacktop = (struct frame *)curthread->t_stk; minfp = (struct frame *)curthread->t_stkbase; on_intr = 0; continue; } break; /* we're outside of the expected range */ } if ((uintptr_t)fp & (STACK_ALIGN - 1)) { printf(" >> mis-aligned %%fp = %p\n", (void *)fp); break; } nextpc = fp->fr_savpc; nextfp = (struct frame *)fp->fr_savfp; argc = argcount(nextpc); argv = (long *)((char *)fp + sizeof (struct frame)); args[0] = '\0'; p = args; while (argc-- > 0 && argv < (long *)stacktop) { p += snprintf(p, args + sizeof (args) - p, "%s%lx", (p == args) ? "" : ", ", *argv++); } if ((sym = kobj_getsymname(pc, &off)) != NULL) { printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp, mod_containing_pc((caddr_t)pc), sym, off, args); } else { printf("%08lx %lx (%s)\n", (uintptr_t)fp, pc, args); } minfp = fp; pc = nextpc; fp = nextfp; } out: if (!panicstr) { printf("end of traceback\n"); DELAY(2 * MICROSEC); } } #endif /* __i386 */ /* * Generate a stack backtrace from a saved register set. */ void traceregs(struct regs *rp) { traceback((caddr_t)rp->r_fp); } void exec_set_sp(size_t stksize) { klwp_t *lwp = ttolwp(curthread); lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize; } hrtime_t gethrtime_waitfree(void) { return (dtrace_gethrtime()); } hrtime_t gethrtime(void) { return (gethrtimef()); } hrtime_t gethrtime_unscaled(void) { return (gethrtimeunscaledf()); } void scalehrtime(hrtime_t *hrt) { scalehrtimef(hrt); } void gethrestime(timespec_t *tp) { gethrestimef(tp); } #if defined(__amd64) /* * Part of the implementation of hres_tick(); this routine is * easier in C than assembler .. called with the hres_lock held. * * XX64 Many of these timekeeping variables need to be extern'ed in a header */ #include #include extern int one_sec; extern timestruc_t hrestime; extern int max_hres_adj; void __adj_hrestime(void) { long long adj; if (hrestime_adj == 0) adj = 0; else if (hrestime_adj > 0) { if (hrestime_adj < max_hres_adj) adj = hrestime_adj; else adj = max_hres_adj; } else { if (hrestime_adj < -max_hres_adj) adj = -max_hres_adj; else adj = hrestime_adj; } timedelta -= adj; hrestime_adj = timedelta; hrestime.tv_nsec += adj; while (hrestime.tv_nsec >= NANOSEC) { one_sec++; hrestime.tv_sec++; hrestime.tv_nsec -= NANOSEC; } } #endif /* * Wrapper functions to maintain backwards compability */ int xcopyin(const void *uaddr, void *kaddr, size_t count) { return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED)); } int xcopyout(const void *kaddr, void *uaddr, size_t count) { return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED)); }