/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__xpv) #include #include #endif #include #include #include #include #ifdef TRAPTRACE #include #endif /* TRAPTRACE */ extern void audit_enterprom(int); extern void audit_exitprom(int); /* * Occassionally the kernel knows better whether to power-off or reboot. */ int force_shutdown_method = AD_UNKNOWN; /* * The panicbuf array is used to record messages and state: */ char panicbuf[PANICBUFSIZE]; /* * maxphys - used during physio * klustsize - used for klustering by swapfs and specfs */ int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ int klustsize = 56 * 1024; caddr_t p0_va; /* Virtual address for accessing physical page 0 */ /* * defined here, though unused on x86, * to make kstat_fr.c happy. */ int vac; void debug_enter(char *); extern void pm_cfb_check_and_powerup(void); extern void pm_cfb_rele(void); extern fastboot_info_t newkernel; /* * Machine dependent code to reboot. * "mdep" is interpreted as a character pointer; if non-null, it is a pointer * to a string to be used as the argument string when rebooting. * * "invoke_cb" is a boolean. It is set to true when mdboot() can safely * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when * we are in a normal shutdown sequence (interrupts are not blocked, the * system is not panic'ing or being suspended). */ /*ARGSUSED*/ void mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) { processorid_t bootcpuid = 0; static int is_first_quiesce = 1; static int is_first_reset = 1; int reset_status = 0; static char fallback_str[] = "Falling back to regular reboot.\n"; if (fcn == AD_FASTREBOOT && !newkernel.fi_valid) fcn = AD_BOOT; if (!panicstr) { kpreempt_disable(); if (fcn == AD_FASTREBOOT) { mutex_enter(&cpu_lock); if (CPU_ACTIVE(cpu_get(bootcpuid))) { affinity_set(bootcpuid); } mutex_exit(&cpu_lock); } else { affinity_set(CPU_CURRENT); } } if (force_shutdown_method != AD_UNKNOWN) fcn = force_shutdown_method; /* * XXX - rconsvp is set to NULL to ensure that output messages * are sent to the underlying "hardware" device using the * monitor's printf routine since we are in the process of * either rebooting or halting the machine. */ rconsvp = NULL; /* * Print the reboot message now, before pausing other cpus. * There is a race condition in the printing support that * can deadlock multiprocessor machines. */ if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) prom_printf("rebooting...\n"); if (IN_XPV_PANIC()) reset(); /* * We can't bring up the console from above lock level, so do it now */ pm_cfb_check_and_powerup(); /* make sure there are no more changes to the device tree */ devtree_freeze(); if (invoke_cb) (void) callb_execute_class(CB_CL_MDBOOT, NULL); /* * Clear any unresolved UEs from memory. */ page_retire_mdboot(); #if defined(__xpv) /* * XXPV Should probably think some more about how we deal * with panicing before it's really safe to panic. * On hypervisors, we reboot very quickly.. Perhaps panic * should only attempt to recover by rebooting if, * say, we were able to mount the root filesystem, * or if we successfully launched init(1m). */ if (panicstr && proc_init == NULL) (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); #endif /* * stop other cpus and raise our priority. since there is only * one active cpu after this, and our priority will be too high * for us to be preempted, we're essentially single threaded * from here on out. */ (void) spl6(); if (!panicstr) { mutex_enter(&cpu_lock); pause_cpus(NULL); mutex_exit(&cpu_lock); } /* * If the system is panicking, the preloaded kernel is valid, and * fastreboot_onpanic has been set, and the system has been up for * longer than fastreboot_onpanic_uptime (default to 10 minutes), * choose Fast Reboot. */ if (fcn == AD_BOOT && panicstr && newkernel.fi_valid && fastreboot_onpanic && (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) { fcn = AD_FASTREBOOT; } /* * Try to quiesce devices. */ if (is_first_quiesce) { /* * Clear is_first_quiesce before calling quiesce_devices() * so that if quiesce_devices() causes panics, it will not * be invoked again. */ is_first_quiesce = 0; quiesce_active = 1; quiesce_devices(ddi_root_node(), &reset_status); if (reset_status == -1) { if (fcn == AD_FASTREBOOT && !force_fastreboot) { prom_printf("Driver(s) not capable of fast " "reboot.\n"); prom_printf(fallback_str); fastreboot_capable = 0; fcn = AD_BOOT; } else if (fcn != AD_FASTREBOOT) fastreboot_capable = 0; } quiesce_active = 0; } /* * Try to reset devices. reset_leaves() should only be called * a) when there are no other threads that could be accessing devices, * and * b) on a system that's not capable of fast reboot (fastreboot_capable * being 0), or on a system where quiesce_devices() failed to * complete (quiesce_active being 1). */ if (is_first_reset && (!fastreboot_capable || quiesce_active)) { /* * Clear is_first_reset before calling reset_devices() * so that if reset_devices() causes panics, it will not * be invoked again. */ is_first_reset = 0; reset_leaves(); } /* Verify newkernel checksum */ if (fastreboot_capable && fcn == AD_FASTREBOOT && fastboot_cksum_verify(&newkernel) != 0) { fastreboot_capable = 0; prom_printf("Fast reboot: checksum failed for the new " "kernel.\n"); prom_printf(fallback_str); } (void) spl8(); if (fastreboot_capable && fcn == AD_FASTREBOOT) { /* * psm_shutdown is called within fast_reboot() */ fast_reboot(); } else { (*psm_shutdownf)(cmd, fcn); if (fcn == AD_HALT || fcn == AD_POWEROFF) halt((char *)NULL); else prom_reboot(""); } /*NOTREACHED*/ } /* mdpreboot - may be called prior to mdboot while root fs still mounted */ /*ARGSUSED*/ void mdpreboot(int cmd, int fcn, char *mdep) { if (fcn == AD_FASTREBOOT && !fastreboot_capable) { fcn = AD_BOOT; #ifdef __xpv cmn_err(CE_WARN, "Fast reboot is not supported on xVM"); #else cmn_err(CE_WARN, "Fast reboot is not supported on this platform"); #endif } if (fcn == AD_FASTREBOOT) { fastboot_load_kernel(mdep); if (!newkernel.fi_valid) fcn = AD_BOOT; } (*psm_preshutdownf)(cmd, fcn); } static void stop_other_cpus(void) { ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */ cpuset_t xcset; CPUSET_ALL_BUT(xcset, CPU->cpu_id); xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt); restore_int_flag(s); } /* * Machine dependent abort sequence handling */ void abort_sequence_enter(char *msg) { if (abort_enable == 0) { if (audit_active) audit_enterprom(0); return; } if (audit_active) audit_enterprom(1); debug_enter(msg); if (audit_active) audit_exitprom(1); } /* * Enter debugger. Called when the user types ctrl-alt-d or whenever * code wants to enter the debugger and possibly resume later. */ void debug_enter( char *msg) /* message to print, possibly NULL */ { if (dtrace_debugger_init != NULL) (*dtrace_debugger_init)(); if (msg) prom_printf("%s\n", msg); if (boothowto & RB_DEBUG) kmdb_enter(); if (dtrace_debugger_fini != NULL) (*dtrace_debugger_fini)(); } void reset(void) { extern void acpi_reset_system(); #if !defined(__xpv) ushort_t *bios_memchk; /* * Can't use psm_map_phys or acpi_reset_system before the hat is * initialized. */ if (khat_running) { bios_memchk = (ushort_t *)psm_map_phys(0x472, sizeof (ushort_t), PROT_READ | PROT_WRITE); if (bios_memchk) *bios_memchk = 0x1234; /* bios memory check disable */ if (options_dip != NULL && ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab")) { efi_reset(); } /* * The problem with using stubs is that we can call * acpi_reset_system only after the kernel is up and running. * * We should create a global state to keep track of how far * up the kernel is but for the time being we will depend on * bootops. bootops cleared in startup_end(). */ if (bootops == NULL) acpi_reset_system(); } pc_reset(); #else if (IN_XPV_PANIC()) { if (khat_running && bootops == NULL) { acpi_reset_system(); } pc_reset(); } (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); panic("HYPERVISOR_shutdown() failed"); #endif /*NOTREACHED*/ } /* * Halt the machine and return to the monitor */ void halt(char *s) { stop_other_cpus(); /* send stop signal to other CPUs */ if (s) prom_printf("(%s) \n", s); prom_exit_to_mon(); /*NOTREACHED*/ } /* * Initiate interrupt redistribution. */ void i_ddi_intr_redist_all_cpus() { } /* * XXX These probably ought to live somewhere else * XXX They are called from mem.c */ /* * Convert page frame number to an OBMEM page frame number * (i.e. put in the type bits -- zero for this implementation) */ pfn_t impl_obmem_pfnum(pfn_t pf) { return (pf); } #ifdef NM_DEBUG int nmi_test = 0; /* checked in intentry.s during clock int */ int nmtest = -1; nmfunc1(arg, rp) int arg; struct regs *rp; { printf("nmi called with arg = %x, regs = %x\n", arg, rp); nmtest += 50; if (arg == nmtest) { printf("ip = %x\n", rp->r_pc); return (1); } return (0); } #endif #include /* Hacked up initialization for initial kernel check out is HERE. */ /* The basic steps are: */ /* kernel bootfuncs definition/initialization for KADB */ /* kadb bootfuncs pointer initialization */ /* putchar/getchar (interrupts disabled) */ /* kadb bootfuncs pointer initialization */ int sysp_getchar() { int i; ulong_t s; if (cons_polledio == NULL) { /* Uh oh */ prom_printf("getchar called with no console\n"); for (;;) /* LOOP FOREVER */; } s = clear_int_flag(); i = cons_polledio->cons_polledio_getchar( cons_polledio->cons_polledio_argument); restore_int_flag(s); return (i); } void sysp_putchar(int c) { ulong_t s; /* * We have no alternative but to drop the output on the floor. */ if (cons_polledio == NULL || cons_polledio->cons_polledio_putchar == NULL) return; s = clear_int_flag(); cons_polledio->cons_polledio_putchar( cons_polledio->cons_polledio_argument, c); restore_int_flag(s); } int sysp_ischar() { int i; ulong_t s; if (cons_polledio == NULL || cons_polledio->cons_polledio_ischar == NULL) return (0); s = clear_int_flag(); i = cons_polledio->cons_polledio_ischar( cons_polledio->cons_polledio_argument); restore_int_flag(s); return (i); } int goany(void) { prom_printf("Type any key to continue "); (void) prom_getchar(); prom_printf("\n"); return (1); } static struct boot_syscalls kern_sysp = { sysp_getchar, /* unchar (*getchar)(); 7 */ sysp_putchar, /* int (*putchar)(); 8 */ sysp_ischar, /* int (*ischar)(); 9 */ }; #if defined(__xpv) int using_kern_polledio; #endif void kadb_uses_kernel() { /* * This routine is now totally misnamed, since it does not in fact * control kadb's I/O; it only controls the kernel's prom_* I/O. */ sysp = &kern_sysp; #if defined(__xpv) using_kern_polledio = 1; #endif } /* * the interface to the outside world */ /* * poll_port -- wait for a register to achieve a * specific state. Arguments are a mask of bits we care about, * and two sub-masks. To return normally, all the bits in the * first sub-mask must be ON, all the bits in the second sub- * mask must be OFF. If about seconds pass without the register * achieving the desired bit configuration, we return 1, else * 0. */ int poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) { int i; ushort_t maskval; for (i = 500000; i; i--) { maskval = inb(port) & mask; if (((maskval & onbits) == onbits) && ((maskval & offbits) == 0)) return (0); drv_usecwait(10); } return (1); } /* * set_idle_cpu is called from idle() when a CPU becomes idle. */ /*LINTED: static unused */ static uint_t last_idle_cpu; /*ARGSUSED*/ void set_idle_cpu(int cpun) { last_idle_cpu = cpun; (*psm_set_idle_cpuf)(cpun); } /* * unset_idle_cpu is called from idle() when a CPU is no longer idle. */ /*ARGSUSED*/ void unset_idle_cpu(int cpun) { (*psm_unset_idle_cpuf)(cpun); } /* * This routine is almost correct now, but not quite. It still needs the * equivalent concept of "hres_last_tick", just like on the sparc side. * The idea is to take a snapshot of the hi-res timer while doing the * hrestime_adj updates under hres_lock in locore, so that the small * interval between interrupt assertion and interrupt processing is * accounted for correctly. Once we have this, the code below should * be modified to subtract off hres_last_tick rather than hrtime_base. * * I'd have done this myself, but I don't have source to all of the * vendor-specific hi-res timer routines (grrr...). The generic hook I * need is something like "gethrtime_unlocked()", which would be just like * gethrtime() but would assume that you're already holding CLOCK_LOCK(). * This is what the GET_HRTIME() macro is for on sparc (although it also * serves the function of making time available without a function call * so you don't take a register window overflow while traps are disabled). */ void pc_gethrestime(timestruc_t *tp) { int lock_prev; timestruc_t now; int nslt; /* nsec since last tick */ int adj; /* amount of adjustment to apply */ loop: lock_prev = hres_lock; now = hrestime; nslt = (int)(gethrtime() - hres_last_tick); if (nslt < 0) { /* * nslt < 0 means a tick came between sampling * gethrtime() and hres_last_tick; restart the loop */ goto loop; } now.tv_nsec += nslt; if (hrestime_adj != 0) { if (hrestime_adj > 0) { adj = (nslt >> ADJ_SHIFT); if (adj > hrestime_adj) adj = (int)hrestime_adj; } else { adj = -(nslt >> ADJ_SHIFT); if (adj < hrestime_adj) adj = (int)hrestime_adj; } now.tv_nsec += adj; } while ((unsigned long)now.tv_nsec >= NANOSEC) { /* * We might have a large adjustment or have been in the * debugger for a long time; take care of (at most) four * of those missed seconds (tv_nsec is 32 bits, so * anything >4s will be wrapping around). However, * anything more than 2 seconds out of sync will trigger * timedelta from clock() to go correct the time anyway, * so do what we can, and let the big crowbar do the * rest. A similar correction while loop exists inside * hres_tick(); in all cases we'd like tv_nsec to * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing * user processes, but if tv_sec's a little behind for a * little while, that's OK; time still monotonically * increases. */ now.tv_nsec -= NANOSEC; now.tv_sec++; } if ((hres_lock & ~1) != lock_prev) goto loop; *tp = now; } void gethrestime_lasttick(timespec_t *tp) { int s; s = hr_clock_lock(); *tp = hrestime; hr_clock_unlock(s); } time_t gethrestime_sec(void) { timestruc_t now; gethrestime(&now); return (now.tv_sec); } /* * Initialize a kernel thread's stack */ caddr_t thread_stk_init(caddr_t stk) { ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); return (stk - SA(MINFRAME)); } /* * Initialize lwp's kernel stack. */ #ifdef TRAPTRACE /* * There's a tricky interdependency here between use of sysenter and * TRAPTRACE which needs recording to avoid future confusion (this is * about the third time I've re-figured this out ..) * * Here's how debugging lcall works with TRAPTRACE. * * 1 We're in userland with a breakpoint on the lcall instruction. * 2 We execute the instruction - the instruction pushes the userland * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel * via the call gate. * 3 The hardware raises a debug trap in kernel mode, the hardware * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. * 4 dbgtrap pushes the error code and trapno and calls cmntrap * 5 cmntrap finishes building a trap frame * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk * off the stack into the traptrace buffer. * * This means that the traptrace buffer contains the wrong values in * %esp and %ss, but everything else in there is correct. * * Here's how debugging sysenter works with TRAPTRACE. * * a We're in userland with a breakpoint on the sysenter instruction. * b We execute the instruction - the instruction pushes -nothing- * on the stack, but sets %cs, %eip, %ss, %esp to prearranged * values to take us to sys_sysenter, at the top of the lwp's * stack. * c goto 3 * * At this point, because we got into the kernel without the requisite * five pushes on the stack, if we didn't make extra room, we'd * end up with the TRACE_REGS macro fetching the saved %ss and %esp * values from negative (unmapped) stack addresses -- which really bites. * That's why we do the '-= 8' below. * * XXX Note that reading "up" lwp0's stack works because t0 is declared * right next to t0stack in locore.s */ #endif caddr_t lwp_stk_init(klwp_t *lwp, caddr_t stk) { caddr_t oldstk; struct pcb *pcb = &lwp->lwp_pcb; oldstk = stk; stk -= SA(sizeof (struct regs) + SA(MINFRAME)); #ifdef TRAPTRACE stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ #endif stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); bzero(stk, oldstk - stk); lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); /* * Arrange that the virtualized %fs and %gs GDT descriptors * have a well-defined initial state (present, ring 3 * and of type data). */ #if defined(__amd64) if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; else pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; #elif defined(__i386) pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; #endif /* __i386 */ lwp_installctx(lwp); return (stk); } /*ARGSUSED*/ void lwp_stk_fini(klwp_t *lwp) {} /* * If we're not the panic CPU, we wait in panic_idle for reboot. */ void panic_idle(void) { splx(ipltospl(CLOCK_LEVEL)); (void) setjmp(&curthread->t_pcb); dumpsys_helper(); #ifndef __xpv for (;;) i86_halt(); #else for (;;) ; #endif } /* * Stop the other CPUs by cross-calling them and forcing them to enter * the panic_idle() loop above. */ /*ARGSUSED*/ void panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) { processorid_t i; cpuset_t xcset; /* * In the case of a Xen panic, the hypervisor has already stopped * all of the CPUs. */ if (!IN_XPV_PANIC()) { (void) splzs(); CPUSET_ALL_BUT(xcset, cp->cpu_id); xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle); } for (i = 0; i < NCPU; i++) { if (i != cp->cpu_id && cpu[i] != NULL && (cpu[i]->cpu_flags & CPU_EXISTS)) cpu[i]->cpu_flags |= CPU_QUIESCED; } } /* * Platform callback following each entry to panicsys(). */ /*ARGSUSED*/ void panic_enter_hw(int spl) { /* Nothing to do here */ } /* * Platform-specific code to execute after panicstr is set: we invoke * the PSM entry point to indicate that a panic has occurred. */ /*ARGSUSED*/ void panic_quiesce_hw(panic_data_t *pdp) { psm_notifyf(PSM_PANIC_ENTER); cmi_panic_callback(); #ifdef TRAPTRACE /* * Turn off TRAPTRACE */ TRAPTRACE_FREEZE; #endif /* TRAPTRACE */ } /* * Platform callback prior to writing crash dump. */ /*ARGSUSED*/ void panic_dump_hw(int spl) { /* Nothing to do here */ } void * plat_traceback(void *fpreg) { #ifdef __xpv if (IN_XPV_PANIC()) return (xpv_traceback(fpreg)); #endif return (fpreg); } /*ARGSUSED*/ void plat_tod_fault(enum tod_fault_type tod_bad) {} /*ARGSUSED*/ int blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) { return (ENOTSUP); } /* * The underlying console output routines are protected by raising IPL in case * we are still calling into the early boot services. Once we start calling * the kernel console emulator, it will disable interrupts completely during * character rendering (see sysp_putchar, for example). Refer to the comments * and code in common/os/console.c for more information on these callbacks. */ /*ARGSUSED*/ int console_enter(int busy) { return (splzs()); } /*ARGSUSED*/ void console_exit(int busy, int spl) { splx(spl); } /* * Allocate a region of virtual address space, unmapped. * Stubbed out except on sparc, at least for now. */ /*ARGSUSED*/ void * boot_virt_alloc(void *addr, size_t size) { return (addr); } volatile unsigned long tenmicrodata; void tenmicrosec(void) { extern int gethrtime_hires; if (gethrtime_hires) { hrtime_t start, end; start = end = gethrtime(); while ((end - start) < (10 * (NANOSEC / MICROSEC))) { SMT_PAUSE(); end = gethrtime(); } } else { #if defined(__xpv) hrtime_t newtime; newtime = xpv_gethrtime() + 10000; /* now + 10 us */ while (xpv_gethrtime() < newtime) SMT_PAUSE(); #else /* __xpv */ int i; /* * Artificial loop to induce delay. */ for (i = 0; i < microdata; i++) tenmicrodata = microdata; #endif /* __xpv */ } } /* * get_cpu_mstate() is passed an array of timestamps, NCMSTATES * long, and it fills in the array with the time spent on cpu in * each of the mstates, where time is returned in nsec. * * No guarantee is made that the returned values in times[] will * monotonically increase on sequential calls, although this will * be true in the long run. Any such guarantee must be handled by * the caller, if needed. This can happen if we fail to account * for elapsed time due to a generation counter conflict, yet we * did account for it on a prior call (see below). * * The complication is that the cpu in question may be updating * its microstate at the same time that we are reading it. * Because the microstate is only updated when the CPU's state * changes, the values in cpu_intracct[] can be indefinitely out * of date. To determine true current values, it is necessary to * compare the current time with cpu_mstate_start, and add the * difference to times[cpu_mstate]. * * This can be a problem if those values are changing out from * under us. Because the code path in new_cpu_mstate() is * performance critical, we have not added a lock to it. Instead, * we have added a generation counter. Before beginning * modifications, the counter is set to 0. After modifications, * it is set to the old value plus one. * * get_cpu_mstate() will not consider the values of cpu_mstate * and cpu_mstate_start to be usable unless the value of * cpu_mstate_gen is both non-zero and unchanged, both before and * after reading the mstate information. Note that we must * protect against out-of-order loads around accesses to the * generation counter. Also, this is a best effort approach in * that we do not retry should the counter be found to have * changed. * * cpu_intracct[] is used to identify time spent in each CPU * mstate while handling interrupts. Such time should be reported * against system time, and so is subtracted out from its * corresponding cpu_acct[] time and added to * cpu_acct[CMS_SYSTEM]. */ void get_cpu_mstate(cpu_t *cpu, hrtime_t *times) { int i; hrtime_t now, start; uint16_t gen; uint16_t state; hrtime_t intracct[NCMSTATES]; /* * Load all volatile state under the protection of membar. * cpu_acct[cpu_mstate] must be loaded to avoid double counting * of (now - cpu_mstate_start) by a change in CPU mstate that * arrives after we make our last check of cpu_mstate_gen. */ now = gethrtime_unscaled(); gen = cpu->cpu_mstate_gen; membar_consumer(); /* guarantee load ordering */ start = cpu->cpu_mstate_start; state = cpu->cpu_mstate; for (i = 0; i < NCMSTATES; i++) { intracct[i] = cpu->cpu_intracct[i]; times[i] = cpu->cpu_acct[i]; } membar_consumer(); /* guarantee load ordering */ if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) times[state] += now - start; for (i = 0; i < NCMSTATES; i++) { if (i == CMS_SYSTEM) continue; times[i] -= intracct[i]; if (times[i] < 0) { intracct[i] += times[i]; times[i] = 0; } times[CMS_SYSTEM] += intracct[i]; scalehrtime(×[i]); } scalehrtime(×[CMS_SYSTEM]); } /* * This is a version of the rdmsr instruction that allows * an error code to be returned in the case of failure. */ int checked_rdmsr(uint_t msr, uint64_t *value) { if ((x86_feature & X86_MSR) == 0) return (ENOTSUP); *value = rdmsr(msr); return (0); } /* * This is a version of the wrmsr instruction that allows * an error code to be returned in the case of failure. */ int checked_wrmsr(uint_t msr, uint64_t value) { if ((x86_feature & X86_MSR) == 0) return (ENOTSUP); wrmsr(msr, value); return (0); } /* * The mem driver's usual method of using hat_devload() to establish a * temporary mapping will not work for foreign pages mapped into this * domain or for the special hypervisor-provided pages. For the foreign * pages, we often don't know which domain owns them, so we can't ask the * hypervisor to set up a new mapping. For the other pages, we don't have * a pfn, so we can't create a new PTE. For these special cases, we do a * direct uiomove() from the existing kernel virtual address. */ /*ARGSUSED*/ int plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) { #if defined(__xpv) void *va = (void *)(uintptr_t)uio->uio_loffset; off_t pageoff = uio->uio_loffset & PAGEOFFSET; size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), (size_t)uio->uio_iov->iov_len); if ((rw == UIO_READ && (va == HYPERVISOR_shared_info || va == xen_info)) || (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) return (uiomove(va, nbytes, rw, uio)); #endif return (ENOTSUP); } pgcnt_t num_phys_pages() { pgcnt_t npages = 0; struct memlist *mp; #if defined(__xpv) if (DOMAIN_IS_INITDOMAIN(xen_info)) return (xpv_nr_phys_pages()); #endif /* __xpv */ for (mp = phys_install; mp != NULL; mp = mp->next) npages += mp->size >> PAGESHIFT; return (npages); } /* cpu threshold for compressed dumps */ #ifdef _LP64 uint_t dump_plat_mincpu = DUMP_PLAT_X86_64_MINCPU; #else uint_t dump_plat_mincpu = DUMP_PLAT_X86_32_MINCPU; #endif int dump_plat_addr() { #ifdef __xpv pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; mem_vtop_t mem_vtop; int cnt; /* * On the hypervisor, we want to dump the page with shared_info on it. */ if (!IN_XPV_PANIC()) { mem_vtop.m_as = &kas; mem_vtop.m_va = HYPERVISOR_shared_info; mem_vtop.m_pfn = pfn; dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); cnt = 1; } else { cnt = dump_xpv_addr(); } return (cnt); #else return (0); #endif } void dump_plat_pfn() { #ifdef __xpv pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; if (!IN_XPV_PANIC()) dumpvp_write(&pfn, sizeof (pfn)); else dump_xpv_pfn(); #endif } /*ARGSUSED*/ int dump_plat_data(void *dump_cbuf) { #ifdef __xpv uint32_t csize; int cnt; if (!IN_XPV_PANIC()) { csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, PAGESIZE); dumpvp_write(&csize, sizeof (uint32_t)); dumpvp_write(dump_cbuf, csize); cnt = 1; } else { cnt = dump_xpv_data(dump_cbuf); } return (cnt); #else return (0); #endif } /* * Calculates a linear address, given the CS selector and PC values * by looking up the %cs selector process's LDT or the CPU's GDT. * proc->p_ldtlock must be held across this call. */ int linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) { user_desc_t *descrp; caddr_t baseaddr; uint16_t idx = SELTOIDX(rp->r_cs); ASSERT(rp->r_cs <= 0xFFFF); ASSERT(MUTEX_HELD(&p->p_ldtlock)); if (SELISLDT(rp->r_cs)) { /* * Currently 64 bit processes cannot have private LDTs. */ ASSERT(p->p_model != DATAMODEL_LP64); if (p->p_ldt == NULL) return (-1); descrp = &p->p_ldt[idx]; baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); /* * Calculate the linear address (wraparound is not only ok, * it's expected behavior). The cast to uint32_t is because * LDT selectors are only allowed in 32-bit processes. */ *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + rp->r_pc); } else { #ifdef DEBUG descrp = &CPU->cpu_gdt[idx]; baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); /* GDT-based descriptors' base addresses should always be 0 */ ASSERT(baseaddr == 0); #endif *linearp = (caddr_t)(uintptr_t)rp->r_pc; } return (0); } /* * The implementation of dtrace_linear_pc is similar to the that of * linear_pc, above, but here we acquire p_ldtlock before accessing * p_ldt. This implementation is used by the pid provider; we prefix * it with "dtrace_" to avoid inducing spurious tracing events. */ int dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) { user_desc_t *descrp; caddr_t baseaddr; uint16_t idx = SELTOIDX(rp->r_cs); ASSERT(rp->r_cs <= 0xFFFF); if (SELISLDT(rp->r_cs)) { /* * Currently 64 bit processes cannot have private LDTs. */ ASSERT(p->p_model != DATAMODEL_LP64); mutex_enter(&p->p_ldtlock); if (p->p_ldt == NULL) { mutex_exit(&p->p_ldtlock); return (-1); } descrp = &p->p_ldt[idx]; baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); mutex_exit(&p->p_ldtlock); /* * Calculate the linear address (wraparound is not only ok, * it's expected behavior). The cast to uint32_t is because * LDT selectors are only allowed in 32-bit processes. */ *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + rp->r_pc); } else { #ifdef DEBUG descrp = &CPU->cpu_gdt[idx]; baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); /* GDT-based descriptors' base addresses should always be 0 */ ASSERT(baseaddr == 0); #endif *linearp = (caddr_t)(uintptr_t)rp->r_pc; } return (0); }