/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include typedef struct dtrace_invop_hdlr { int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t); struct dtrace_invop_hdlr *dtih_next; } dtrace_invop_hdlr_t; dtrace_invop_hdlr_t *dtrace_invop_hdlr; int dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax) { dtrace_invop_hdlr_t *hdlr; int rval; for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) { if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0) return (rval); } return (0); } void dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) { dtrace_invop_hdlr_t *hdlr; hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); hdlr->dtih_func = func; hdlr->dtih_next = dtrace_invop_hdlr; dtrace_invop_hdlr = hdlr; } void dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) { dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL; for (;;) { if (hdlr == NULL) panic("attempt to remove non-existent invop handler"); if (hdlr->dtih_func == func) break; prev = hdlr; hdlr = hdlr->dtih_next; } if (prev == NULL) { ASSERT(dtrace_invop_hdlr == hdlr); dtrace_invop_hdlr = hdlr->dtih_next; } else { ASSERT(dtrace_invop_hdlr != hdlr); prev->dtih_next = hdlr->dtih_next; } kmem_free(hdlr, sizeof (dtrace_invop_hdlr_t)); } int dtrace_getipl(void) { return (CPU->cpu_pri); } /*ARGSUSED*/ void dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) { #ifdef __amd64 extern uintptr_t toxic_addr; extern size_t toxic_size; (*func)(0, _userlimit); if (hole_end > hole_start) (*func)(hole_start, hole_end); (*func)(toxic_addr, toxic_addr + toxic_size); #else extern void *device_arena_contains(void *, size_t, size_t *); caddr_t vaddr; size_t len; for (vaddr = (caddr_t)kernelbase; vaddr < (caddr_t)KERNEL_TEXT; vaddr += len) { len = (caddr_t)KERNEL_TEXT - vaddr; vaddr = device_arena_contains(vaddr, len, &len); if (vaddr == NULL) break; (*func)((uintptr_t)vaddr, (uintptr_t)vaddr + len); } #endif (*func)(0, _userlimit); } static int dtrace_xcall_func(dtrace_xcall_t func, void *arg) { (*func)(arg); return (0); } /*ARGSUSED*/ void dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) { cpuset_t set; CPUSET_ZERO(set); if (cpu == DTRACE_CPUALL) { CPUSET_ALL(set); } else { CPUSET_ADD(set, cpu); } kpreempt_disable(); xc_sync((xc_arg_t)func, (xc_arg_t)arg, 0, X_CALL_HIPRI, set, (xc_func_t)dtrace_xcall_func); kpreempt_enable(); } void dtrace_sync_func(void) {} void dtrace_sync(void) { dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); } int (*dtrace_pid_probe_ptr)(struct regs *); int (*dtrace_return_probe_ptr)(struct regs *); void dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid) { krwlock_t *rwp; proc_t *p = curproc; extern void trap(struct regs *, caddr_t, processorid_t); if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) { if (curthread->t_cred != p->p_cred) { cred_t *oldcred = curthread->t_cred; /* * DTrace accesses t_cred in probe context. t_cred * must always be either NULL, or point to a valid, * allocated cred structure. */ curthread->t_cred = crgetcred(); crfree(oldcred); } } if (rp->r_trapno == T_DTRACE_RET) { uint8_t step = curthread->t_dtrace_step; uint8_t ret = curthread->t_dtrace_ret; uintptr_t npc = curthread->t_dtrace_npc; if (curthread->t_dtrace_ast) { aston(curthread); curthread->t_sig_check = 1; } /* * Clear all user tracing flags. */ curthread->t_dtrace_ft = 0; /* * If we weren't expecting to take a return probe trap, kill * the process as though it had just executed an unassigned * trap instruction. */ if (step == 0) { tsignal(curthread, SIGILL); return; } /* * If we hit this trap unrelated to a return probe, we're * just here to reset the AST flag since we deferred a signal * until after we logically single-stepped the instruction we * copied out. */ if (ret == 0) { rp->r_pc = npc; return; } /* * We need to wait until after we've called the * dtrace_return_probe_ptr function pointer to set %pc. */ rwp = &CPU->cpu_ft_lock; rw_enter(rwp, RW_READER); if (dtrace_return_probe_ptr != NULL) (void) (*dtrace_return_probe_ptr)(rp); rw_exit(rwp); rp->r_pc = npc; } else if (rp->r_trapno == T_BPTFLT) { uint8_t instr, instr2; caddr_t linearpc; rwp = &CPU->cpu_ft_lock; /* * The DTrace fasttrap provider uses the breakpoint trap * (int 3). We let DTrace take the first crack at handling * this trap; if it's not a probe that DTrace knowns about, * we call into the trap() routine to handle it like a * breakpoint placed by a conventional debugger. */ rw_enter(rwp, RW_READER); if (dtrace_pid_probe_ptr != NULL && (*dtrace_pid_probe_ptr)(rp) == 0) { rw_exit(rwp); return; } rw_exit(rwp); if (dtrace_linear_pc(rp, p, &linearpc) != 0) { trap(rp, addr, cpuid); return; } /* * If the instruction that caused the breakpoint trap doesn't * look like an int 3 anymore, it may be that this tracepoint * was removed just after the user thread executed it. In * that case, return to user land to retry the instuction. * Note that we assume the length of the instruction to retry * is 1 byte because that's the length of FASTTRAP_INSTR. * We check for r_pc > 0 and > 2 so that we don't have to * deal with segment wraparound. */ if (rp->r_pc > 0 && fuword8(linearpc - 1, &instr) == 0 && instr != FASTTRAP_INSTR && (instr != 3 || (rp->r_pc >= 2 && (fuword8(linearpc - 2, &instr2) != 0 || instr2 != 0xCD)))) { rp->r_pc--; return; } trap(rp, addr, cpuid); } else { trap(rp, addr, cpuid); } } void dtrace_safe_synchronous_signal(void) { kthread_t *t = curthread; struct regs *rp = lwptoregs(ttolwp(t)); size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; ASSERT(t->t_dtrace_on); /* * If we're not in the range of scratch addresses, we're not actually * tracing user instructions so turn off the flags. If the instruction * we copied out caused a synchonous trap, reset the pc back to its * original value and turn off the flags. */ if (rp->r_pc < t->t_dtrace_scrpc || rp->r_pc > t->t_dtrace_astpc + isz) { t->t_dtrace_ft = 0; } else if (rp->r_pc == t->t_dtrace_scrpc || rp->r_pc == t->t_dtrace_astpc) { rp->r_pc = t->t_dtrace_pc; t->t_dtrace_ft = 0; } } int dtrace_safe_defer_signal(void) { kthread_t *t = curthread; struct regs *rp = lwptoregs(ttolwp(t)); size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; ASSERT(t->t_dtrace_on); /* * If we're not in the range of scratch addresses, we're not actually * tracing user instructions so turn off the flags. */ if (rp->r_pc < t->t_dtrace_scrpc || rp->r_pc > t->t_dtrace_astpc + isz) { t->t_dtrace_ft = 0; return (0); } /* * If we've executed the original instruction, but haven't performed * the jmp back to t->t_dtrace_npc or the clean up of any registers * used to emulate %rip-relative instructions in 64-bit mode, do that * here and take the signal right away. We detect this condition by * seeing if the program counter is the range [scrpc + isz, astpc). */ if (t->t_dtrace_astpc - rp->r_pc < t->t_dtrace_astpc - t->t_dtrace_scrpc - isz) { #ifdef __amd64 /* * If there is a scratch register and we're on the * instruction immediately after the modified instruction, * restore the value of that scratch register. */ if (t->t_dtrace_reg != 0 && rp->r_pc == t->t_dtrace_scrpc + isz) { switch (t->t_dtrace_reg) { case REG_RAX: rp->r_rax = t->t_dtrace_regv; break; case REG_RCX: rp->r_rcx = t->t_dtrace_regv; break; case REG_R8: rp->r_r8 = t->t_dtrace_regv; break; case REG_R9: rp->r_r9 = t->t_dtrace_regv; break; } } #endif rp->r_pc = t->t_dtrace_npc; t->t_dtrace_ft = 0; return (0); } /* * Otherwise, make sure we'll return to the kernel after executing * the copied out instruction and defer the signal. */ if (!t->t_dtrace_step) { ASSERT(rp->r_pc < t->t_dtrace_astpc); rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc; t->t_dtrace_step = 1; } t->t_dtrace_ast = 1; return (1); } /* * Additional artificial frames for the machine type. For i86pc, we're already * accounted for, so return 0. On the hypervisor, we have an additional frame * (xen_callback_handler). */ int dtrace_mach_aframes(void) { #ifdef __xpv return (1); #else return (0); #endif }