/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PCIEX_BDF_OFFSET_DELTA 4 #define PCIEX_REG_FUNC_SHIFT (PCI_REG_FUNC_SHIFT + PCIEX_BDF_OFFSET_DELTA) #define PCIEX_REG_DEV_SHIFT (PCI_REG_DEV_SHIFT + PCIEX_BDF_OFFSET_DELTA) #define PCIEX_REG_BUS_SHIFT (PCI_REG_BUS_SHIFT + PCIEX_BDF_OFFSET_DELTA) #define SUCCESS 0 int pcitool_debug = 0; /* * Offsets of BARS in config space. First entry of 0 means config space. * Entries here correlate to pcitool_bars_t enumerated type. */ static uint8_t pci_bars[] = { 0x0, PCI_CONF_BASE0, PCI_CONF_BASE1, PCI_CONF_BASE2, PCI_CONF_BASE3, PCI_CONF_BASE4, PCI_CONF_BASE5, PCI_CONF_ROM }; /* Max offset allowed into config space for a particular device. */ static uint64_t max_cfg_size = PCI_CONF_HDR_SIZE; static uint64_t pcitool_swap_endian(uint64_t data, int size); static int pcitool_pciex_cfg_access(dev_info_t *dip, pcitool_reg_t *prg, boolean_t write_flag); static int pcitool_cfg_access(dev_info_t *dip, pcitool_reg_t *prg, boolean_t write_flag); static int pcitool_io_access(dev_info_t *dip, pcitool_reg_t *prg, boolean_t write_flag); static int pcitool_mem_access(dev_info_t *dip, pcitool_reg_t *prg, uint64_t virt_addr, boolean_t write_flag); static uint64_t pcitool_map(uint64_t phys_addr, size_t size, size_t *num_pages); static void pcitool_unmap(uint64_t virt_addr, size_t num_pages); /* Extern decalrations */ extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t, int *); int pcitool_init(dev_info_t *dip, boolean_t is_pciex) { int instance = ddi_get_instance(dip); /* Create pcitool nodes for register access and interrupt routing. */ if (ddi_create_minor_node(dip, PCI_MINOR_REG, S_IFCHR, PCIHP_AP_MINOR_NUM(instance, PCI_TOOL_REG_MINOR_NUM), DDI_NT_REGACC, 0) != DDI_SUCCESS) { return (DDI_FAILURE); } if (ddi_create_minor_node(dip, PCI_MINOR_INTR, S_IFCHR, PCIHP_AP_MINOR_NUM(instance, PCI_TOOL_INTR_MINOR_NUM), DDI_NT_INTRCTL, 0) != DDI_SUCCESS) { ddi_remove_minor_node(dip, PCI_MINOR_REG); return (DDI_FAILURE); } if (is_pciex) max_cfg_size = PCIE_CONF_HDR_SIZE; return (DDI_SUCCESS); } void pcitool_uninit(dev_info_t *dip) { ddi_remove_minor_node(dip, PCI_MINOR_INTR); ddi_remove_minor_node(dip, PCI_MINOR_REG); } /* Return the number of interrupts on a pci bus. */ static int pcitool_intr_get_max_ino(uint32_t *arg, int mode) { uint32_t num_intr = APIC_MAX_VECTOR; if (ddi_copyout(&num_intr, arg, sizeof (uint32_t), mode) != DDI_SUCCESS) return (EFAULT); else return (SUCCESS); } /*ARGSUSED*/ static int pcitool_set_intr(dev_info_t *dip, void *arg, int mode) { ddi_intr_handle_impl_t info_hdl; pcitool_intr_set_t iset; uint32_t old_cpu; int ret, result; int rval = SUCCESS; if (ddi_copyin(arg, &iset, sizeof (pcitool_intr_set_t), mode) != DDI_SUCCESS) return (EFAULT); if (iset.ino > APIC_MAX_VECTOR) { rval = EINVAL; iset.status = PCITOOL_INVALID_INO; goto done_set_intr; } iset.status = PCITOOL_SUCCESS; if ((old_cpu = pci_get_cpu_from_vecirq(iset.ino, IS_VEC)) == -1) { iset.status = PCITOOL_IO_ERROR; rval = EINVAL; goto done_set_intr; } old_cpu &= ~PSMGI_CPU_USER_BOUND; /* * For this locally-declared and used handle, ih_private will contain a * CPU value, not an ihdl_plat_t as used for global interrupt handling. */ info_hdl.ih_vector = iset.ino; info_hdl.ih_private = (void *)(uintptr_t)iset.cpu_id; ret = (*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_SET_CPU, &result); iset.drvr_version = PCITOOL_DRVR_VERSION; if (ret != PSM_SUCCESS) { switch (result) { case EIO: /* Error making the change */ rval = EIO; iset.status = PCITOOL_IO_ERROR; break; case ENXIO: /* Couldn't convert vector to irq */ rval = EINVAL; iset.status = PCITOOL_INVALID_INO; break; case EINVAL: /* CPU out of range */ rval = EINVAL; iset.status = PCITOOL_INVALID_CPUID; break; } } /* Return original CPU. */ iset.cpu_id = old_cpu; done_set_intr: if (ddi_copyout(&iset, arg, sizeof (pcitool_intr_set_t), mode) != DDI_SUCCESS) rval = EFAULT; return (rval); } /* It is assumed that dip != NULL */ static void pcitool_get_intr_dev_info(dev_info_t *dip, pcitool_intr_dev_t *devs) { (void) strncpy(devs->driver_name, ddi_driver_name(dip), MAXMODCONFNAME-1); devs->driver_name[MAXMODCONFNAME] = '\0'; (void) ddi_pathname(dip, devs->path); devs->dev_inst = ddi_get_instance(dip); } /*ARGSUSED*/ static int pcitool_get_intr(dev_info_t *dip, void *arg, int mode) { /* Array part isn't used here, but oh well... */ pcitool_intr_get_t partial_iget; pcitool_intr_get_t *iget = &partial_iget; size_t iget_kmem_alloc_size = 0; uint8_t num_devs_ret; int copyout_rval; int rval = SUCCESS; int circ; int i; ddi_intr_handle_impl_t info_hdl; apic_get_intr_t intr_info; /* Read in just the header part, no array section. */ if (ddi_copyin(arg, &partial_iget, PCITOOL_IGET_SIZE(0), mode) != DDI_SUCCESS) return (EFAULT); /* Validate argument. */ if (partial_iget.ino > APIC_MAX_VECTOR) { partial_iget.status = PCITOOL_INVALID_INO; partial_iget.num_devs_ret = 0; rval = EINVAL; goto done_get_intr; } num_devs_ret = partial_iget.num_devs_ret; intr_info.avgi_dip_list = NULL; intr_info.avgi_req_flags = PSMGI_REQ_CPUID | PSMGI_REQ_NUM_DEVS | PSMGI_INTRBY_VEC; /* * For this locally-declared and used handle, ih_private will contain a * pointer to apic_get_intr_t, not an ihdl_plat_t as used for * global interrupt handling. */ info_hdl.ih_private = &intr_info; info_hdl.ih_vector = partial_iget.ino; /* Caller wants device information returned. */ if (num_devs_ret > 0) { intr_info.avgi_req_flags |= PSMGI_REQ_GET_DEVS; /* * Allocate room. * If num_devs_ret == 0 iget remains pointing to partial_iget. */ iget_kmem_alloc_size = PCITOOL_IGET_SIZE(num_devs_ret); iget = kmem_alloc(iget_kmem_alloc_size, KM_SLEEP); /* Read in whole structure to verify there's room. */ if (ddi_copyin(arg, iget, iget_kmem_alloc_size, mode) != SUCCESS) { /* Be consistent and just return EFAULT here. */ kmem_free(iget, iget_kmem_alloc_size); return (EFAULT); } } bzero(iget, PCITOOL_IGET_SIZE(num_devs_ret)); iget->ino = info_hdl.ih_vector; /* * Lock device tree branch from the pci root nexus on down if info will * be extracted from dips returned from the tree. */ if (intr_info.avgi_req_flags & PSMGI_REQ_GET_DEVS) { ndi_devi_enter(dip, &circ); } /* Call psm_intr_ops(PSM_INTR_OP_GET_INTR) to get information. */ if ((rval = (*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_GET_INTR, NULL)) != PSM_SUCCESS) { iget->status = PCITOOL_IO_ERROR; iget->num_devs_ret = 0; rval = EINVAL; goto done_get_intr; } /* * Fill in the pcitool_intr_get_t to be returned, * with the CPU, num_devs_ret and num_devs. */ iget->cpu_id = intr_info.avgi_cpu_id & ~PSMGI_CPU_USER_BOUND; /* Number of devices returned by apic. */ iget->num_devs = intr_info.avgi_num_devs; /* Device info was returned. */ if (intr_info.avgi_req_flags & PSMGI_REQ_GET_DEVS) { /* * num devs returned is num devs ret by apic, * space permitting. */ iget->num_devs_ret = min(num_devs_ret, intr_info.avgi_num_devs); /* * Loop thru list of dips and extract driver, name and instance. * Fill in the pcitool_intr_dev_t's with this info. */ for (i = 0; i < iget->num_devs_ret; i++) pcitool_get_intr_dev_info(intr_info.avgi_dip_list[i], &iget->dev[i]); /* Free kmem_alloc'ed memory of the apic_get_intr_t */ kmem_free(intr_info.avgi_dip_list, intr_info.avgi_num_devs * sizeof (dev_info_t *)); } done_get_intr: if (intr_info.avgi_req_flags & PSMGI_REQ_GET_DEVS) { ndi_devi_exit(dip, circ); } iget->drvr_version = PCITOOL_DRVR_VERSION; copyout_rval = ddi_copyout(iget, arg, PCITOOL_IGET_SIZE(num_devs_ret), mode); if (iget_kmem_alloc_size > 0) kmem_free(iget, iget_kmem_alloc_size); if (copyout_rval != DDI_SUCCESS) rval = EFAULT; return (rval); } /* * Main function for handling interrupt CPU binding requests and queries. * Need to implement later */ /*ARGSUSED*/ int pcitool_intr_admn(dev_info_t *dip, void *arg, int cmd, int mode) { int rval; switch (cmd) { /* Associate a new CPU with a given vector */ case PCITOOL_DEVICE_SET_INTR: rval = pcitool_set_intr(dip, arg, mode); break; case PCITOOL_DEVICE_GET_INTR: rval = pcitool_get_intr(dip, arg, mode); break; case PCITOOL_DEVICE_NUM_INTR: rval = pcitool_intr_get_max_ino(arg, mode); break; default: rval = ENOTSUP; } return (rval); } /* * A note about ontrap handling: * * X86 systems on which this module was tested return FFs instead of bus errors * when accessing devices with invalid addresses. Ontrap handling, which * gracefully handles kernel bus errors, is installed anyway, in case future * X86 platforms require it. */ /* * Perform register accesses on the nexus device itself. * No explicit PCI nexus device for X86, so not applicable. */ /*ARGSUSED*/ int pcitool_bus_reg_ops(dev_info_t *dip, void *arg, int cmd, int mode) { return (ENOTSUP); } /* Swap endianness. */ static uint64_t pcitool_swap_endian(uint64_t data, int size) { typedef union { uint64_t data64; uint8_t data8[8]; } data_split_t; data_split_t orig_data; data_split_t returned_data; int i; orig_data.data64 = data; returned_data.data64 = 0; for (i = 0; i < size; i++) { returned_data.data8[i] = orig_data.data8[size - 1 - i]; } return (returned_data.data64); } /* * Access device. prg is modified. * * Extended config space is available only through memory-mapped access. * Standard config space on pci express devices is available either way, * so do it memory-mapped here too, for simplicity. */ /*ARGSUSED*/ static int pcitool_pciex_cfg_access(dev_info_t *dip, pcitool_reg_t *prg, boolean_t write_flag) { int rval = SUCCESS; uint64_t virt_addr; size_t num_virt_pages; prg->status = PCITOOL_SUCCESS; prg->phys_addr = ddi_prop_get_int64(DDI_DEV_T_ANY, dip, 0, "ecfga-base-address", 0); if (prg->phys_addr == 0) { prg->status = PCITOOL_IO_ERROR; return (EIO); } prg->phys_addr += prg->offset + ((prg->bus_no << PCIEX_REG_BUS_SHIFT) | (prg->dev_no << PCIEX_REG_DEV_SHIFT) | (prg->func_no << PCIEX_REG_FUNC_SHIFT)); virt_addr = pcitool_map(prg->phys_addr, PCITOOL_ACC_ATTR_SIZE(prg->acc_attr), &num_virt_pages); if (virt_addr == NULL) { prg->status = PCITOOL_IO_ERROR; return (EIO); } rval = pcitool_mem_access(dip, prg, virt_addr, write_flag); pcitool_unmap(virt_addr, num_virt_pages); return (rval); } /* Access device. prg is modified. */ /*ARGSUSED*/ static int pcitool_cfg_access(dev_info_t *dip, pcitool_reg_t *prg, boolean_t write_flag) { int size = PCITOOL_ACC_ATTR_SIZE(prg->acc_attr); boolean_t big_endian = PCITOOL_ACC_IS_BIG_ENDIAN(prg->acc_attr); int rval = SUCCESS; uint64_t local_data; /* * NOTE: there is no way to verify whether or not the address is valid. * The put functions return void and the get functions return ff on * error. */ prg->status = PCITOOL_SUCCESS; if (write_flag) { if (big_endian) { local_data = pcitool_swap_endian(prg->data, size); } else { local_data = prg->data; } switch (size) { case 1: (*pci_putb_func)(prg->bus_no, prg->dev_no, prg->func_no, prg->offset, local_data); break; case 2: (*pci_putw_func)(prg->bus_no, prg->dev_no, prg->func_no, prg->offset, local_data); break; case 4: (*pci_putl_func)(prg->bus_no, prg->dev_no, prg->func_no, prg->offset, local_data); break; default: rval = ENOTSUP; prg->status = PCITOOL_INVALID_SIZE; break; } } else { switch (size) { case 1: local_data = (*pci_getb_func)(prg->bus_no, prg->dev_no, prg->func_no, prg->offset); break; case 2: local_data = (*pci_getw_func)(prg->bus_no, prg->dev_no, prg->func_no, prg->offset); break; case 4: local_data = (*pci_getl_func)(prg->bus_no, prg->dev_no, prg->func_no, prg->offset); break; default: rval = ENOTSUP; prg->status = PCITOOL_INVALID_SIZE; break; } if (rval == SUCCESS) { if (big_endian) { prg->data = pcitool_swap_endian(local_data, size); } else { prg->data = local_data; } } } prg->phys_addr = 0; /* Config space is not memory mapped on X86. */ return (rval); } /*ARGSUSED*/ static int pcitool_io_access(dev_info_t *dip, pcitool_reg_t *prg, boolean_t write_flag) { int port = (int)prg->phys_addr; size_t size = PCITOOL_ACC_ATTR_SIZE(prg->acc_attr); boolean_t big_endian = PCITOOL_ACC_IS_BIG_ENDIAN(prg->acc_attr); int rval = SUCCESS; on_trap_data_t otd; uint64_t local_data; /* * on_trap works like setjmp. * * A non-zero return here means on_trap has returned from an error. * * A zero return here means that on_trap has just returned from setup. */ if (on_trap(&otd, OT_DATA_ACCESS)) { no_trap(); if (pcitool_debug) prom_printf( "pcitool_mem_access: on_trap caught an error...\n"); prg->status = PCITOOL_INVALID_ADDRESS; return (EFAULT); } if (write_flag) { if (big_endian) { local_data = pcitool_swap_endian(prg->data, size); } else { local_data = prg->data; } if (pcitool_debug) prom_printf("Writing %ld byte(s) to port 0x%x\n", size, port); switch (size) { case 1: outb(port, (uint8_t)local_data); break; case 2: outw(port, (uint16_t)local_data); break; case 4: outl(port, (uint32_t)local_data); break; default: rval = ENOTSUP; prg->status = PCITOOL_INVALID_SIZE; break; } } else { if (pcitool_debug) prom_printf("Reading %ld byte(s) from port 0x%x\n", size, port); switch (size) { case 1: local_data = inb(port); break; case 2: local_data = inw(port); break; case 4: local_data = inl(port); break; default: rval = ENOTSUP; prg->status = PCITOOL_INVALID_SIZE; break; } if (rval == SUCCESS) { if (big_endian) { prg->data = pcitool_swap_endian(local_data, size); } else { prg->data = local_data; } } } no_trap(); return (rval); } /*ARGSUSED*/ static int pcitool_mem_access(dev_info_t *dip, pcitool_reg_t *prg, uint64_t virt_addr, boolean_t write_flag) { size_t size = PCITOOL_ACC_ATTR_SIZE(prg->acc_attr); boolean_t big_endian = PCITOOL_ACC_IS_BIG_ENDIAN(prg->acc_attr); int rval = DDI_SUCCESS; on_trap_data_t otd; uint64_t local_data; /* * on_trap works like setjmp. * * A non-zero return here means on_trap has returned from an error. * * A zero return here means that on_trap has just returned from setup. */ if (on_trap(&otd, OT_DATA_ACCESS)) { no_trap(); if (pcitool_debug) prom_printf( "pcitool_mem_access: on_trap caught an error...\n"); prg->status = PCITOOL_INVALID_ADDRESS; return (EFAULT); } if (write_flag) { if (big_endian) { local_data = pcitool_swap_endian(prg->data, size); } else { local_data = prg->data; } switch (size) { case 1: *((uint8_t *)(uintptr_t)virt_addr) = local_data; break; case 2: *((uint16_t *)(uintptr_t)virt_addr) = local_data; break; case 4: *((uint32_t *)(uintptr_t)virt_addr) = local_data; break; case 8: *((uint64_t *)(uintptr_t)virt_addr) = local_data; break; default: rval = ENOTSUP; prg->status = PCITOOL_INVALID_SIZE; break; } } else { switch (size) { case 1: local_data = *((uint8_t *)(uintptr_t)virt_addr); break; case 2: local_data = *((uint16_t *)(uintptr_t)virt_addr); break; case 4: local_data = *((uint32_t *)(uintptr_t)virt_addr); break; case 8: local_data = *((uint64_t *)(uintptr_t)virt_addr); break; default: rval = ENOTSUP; prg->status = PCITOOL_INVALID_SIZE; break; } if (rval == SUCCESS) { if (big_endian) { prg->data = pcitool_swap_endian(local_data, size); } else { prg->data = local_data; } } } no_trap(); return (rval); } /* * Map up to 2 pages which contain the address we want to access. * * Mapping should span no more than 8 bytes. With X86 it is possible for an * 8 byte value to start on a 4 byte boundary, so it can cross a page boundary. * We'll never have to map more than two pages. */ static uint64_t pcitool_map(uint64_t phys_addr, size_t size, size_t *num_pages) { uint64_t page_base = phys_addr & ~MMU_PAGEOFFSET; uint64_t offset = phys_addr & MMU_PAGEOFFSET; void *virt_base; uint64_t returned_addr; if (pcitool_debug) prom_printf("pcitool_map: Called with PA:0x%p\n", (uint8_t *)(uintptr_t)phys_addr); *num_pages = 1; /* Desired mapping would span more than two pages. */ if ((offset + size) > (MMU_PAGESIZE * 2)) { if (pcitool_debug) prom_printf("boundary violation: " "offset:0x%" PRIx64 ", size:%ld, pagesize:0x%lx\n", offset, (uintptr_t)size, (uintptr_t)MMU_PAGESIZE); return (NULL); } else if ((offset + size) > MMU_PAGESIZE) { (*num_pages)++; } /* Get page(s) of virtual space. */ virt_base = vmem_alloc(heap_arena, ptob(*num_pages), VM_NOSLEEP); if (virt_base == NULL) { if (pcitool_debug) prom_printf("Couldn't get virtual base address.\n"); return (NULL); } if (pcitool_debug) prom_printf("Got base virtual address:0x%p\n", virt_base); /* Now map the allocated virtual space to the physical address. */ hat_devload(kas.a_hat, virt_base, mmu_ptob(*num_pages), mmu_btop(page_base), PROT_READ | PROT_WRITE | HAT_STRICTORDER, HAT_LOAD_LOCK); returned_addr = ((uintptr_t)(virt_base)) + offset; if (pcitool_debug) prom_printf("pcitool_map: returning VA:0x%p\n", (void *)(uintptr_t)returned_addr); return (returned_addr); } /* Unmap the mapped page(s). */ static void pcitool_unmap(uint64_t virt_addr, size_t num_pages) { void *base_virt_addr = (void *)(uintptr_t)(virt_addr & ~MMU_PAGEOFFSET); hat_unload(kas.a_hat, base_virt_addr, ptob(num_pages), HAT_UNLOAD_UNLOCK); vmem_free(heap_arena, base_virt_addr, ptob(num_pages)); } /* Perform register accesses on PCI leaf devices. */ int pcitool_dev_reg_ops(dev_info_t *dip, void *arg, int cmd, int mode) { boolean_t write_flag = B_FALSE; int rval = 0; pcitool_reg_t prg; uint8_t size; uint64_t base_addr; uint64_t virt_addr; size_t num_virt_pages; switch (cmd) { case (PCITOOL_DEVICE_SET_REG): write_flag = B_TRUE; /*FALLTHRU*/ case (PCITOOL_DEVICE_GET_REG): if (pcitool_debug) prom_printf("pci_dev_reg_ops set/get reg\n"); if (ddi_copyin(arg, &prg, sizeof (pcitool_reg_t), mode) != DDI_SUCCESS) { if (pcitool_debug) prom_printf("Error reading arguments\n"); return (EFAULT); } if (prg.barnum >= (sizeof (pci_bars) / sizeof (pci_bars[0]))) { prg.status = PCITOOL_OUT_OF_RANGE; rval = EINVAL; goto done_reg; } if (pcitool_debug) prom_printf("raw bus:0x%x, dev:0x%x, func:0x%x\n", prg.bus_no, prg.dev_no, prg.func_no); /* Validate address arguments of bus / dev / func */ if (((prg.bus_no & (PCI_REG_BUS_M >> PCI_REG_BUS_SHIFT)) != prg.bus_no) || ((prg.dev_no & (PCI_REG_DEV_M >> PCI_REG_DEV_SHIFT)) != prg.dev_no) || ((prg.func_no & (PCI_REG_FUNC_M >> PCI_REG_FUNC_SHIFT)) != prg.func_no)) { prg.status = PCITOOL_INVALID_ADDRESS; rval = EINVAL; goto done_reg; } size = PCITOOL_ACC_ATTR_SIZE(prg.acc_attr); /* Proper config space desired. */ if (prg.barnum == 0) { if (pcitool_debug) prom_printf( "config access: offset:0x%" PRIx64 ", " "phys_addr:0x%" PRIx64 "\n", prg.offset, prg.phys_addr); if (prg.offset >= max_cfg_size) { prg.status = PCITOOL_OUT_OF_RANGE; rval = EINVAL; goto done_reg; } /* * Access device. prg is modified. * First, check for AMD northbridges for I/O access * (This fix will move in future to pcitool user-land) * Next, check for PCIe devices and do * memory-mapped access * Lastly, check for PCI devices and do I/O access */ if (prg.bus_no == 0 && prg.dev_no == 0x18) { if (cpuid_getvendor(CPU) == X86_VENDOR_AMD) rval = pcitool_cfg_access(dip, &prg, write_flag); } else if (max_cfg_size == PCIE_CONF_HDR_SIZE) rval = pcitool_pciex_cfg_access(dip, &prg, write_flag); else rval = pcitool_cfg_access(dip, &prg, write_flag); if (pcitool_debug) prom_printf( "config access: data:0x%" PRIx64 "\n", prg.data); /* IO/ MEM/ MEM64 space. */ } else { pcitool_reg_t prg2; bcopy(&prg, &prg2, sizeof (pcitool_reg_t)); /* * Translate BAR number into offset of the BAR in * the device's config space. */ prg2.offset = pci_bars[prg2.barnum]; prg2.acc_attr = PCITOOL_ACC_ATTR_SIZE_4 | PCITOOL_ACC_ATTR_ENDN_LTL; if (pcitool_debug) prom_printf( "barnum:%d, bar_offset:0x%" PRIx64 "\n", prg2.barnum, prg2.offset); /* * Get Bus Address Register (BAR) from config space. * prg2.offset is the offset into config space of the * BAR desired. prg.status is modified on error. */ rval = pcitool_cfg_access(dip, &prg2, B_FALSE); if (rval != SUCCESS) { if (pcitool_debug) prom_printf("BAR access failed\n"); prg.status = prg2.status; goto done_reg; } /* * Reference proper PCI space based on the BAR. * If 64 bit MEM space, need to load other half of the * BAR first. */ if (pcitool_debug) prom_printf("bar returned is 0x%" PRIx64 "\n", prg2.data); if (!prg2.data) { if (pcitool_debug) prom_printf("BAR data == 0\n"); rval = EINVAL; prg.status = PCITOOL_INVALID_ADDRESS; goto done_reg; } if (prg2.data == 0xffffffff) { if (pcitool_debug) prom_printf("BAR data == -1\n"); rval = EINVAL; prg.status = PCITOOL_INVALID_ADDRESS; goto done_reg; } /* * BAR has bits saying this space is IO space, unless * this is the ROM address register. */ if (((PCI_BASE_SPACE_M & prg2.data) == PCI_BASE_SPACE_IO) && (prg2.offset != PCI_CONF_ROM)) { if (pcitool_debug) prom_printf("IO space\n"); prg2.data &= PCI_BASE_IO_ADDR_M; prg.phys_addr = prg2.data + prg.offset; rval = pcitool_io_access(dip, &prg, write_flag); if ((rval != SUCCESS) && (pcitool_debug)) prom_printf("IO access failed\n"); goto done_reg; /* * BAR has bits saying this space is 64 bit memory * space, unless this is the ROM address register. * * The 64 bit address stored in two BAR cells is not * necessarily aligned on an 8-byte boundary. * Need to keep the first 4 bytes read, * and do a separate read of the high 4 bytes. */ } else if ((PCI_BASE_TYPE_ALL & prg2.data) && (prg2.offset != PCI_CONF_ROM)) { uint32_t low_bytes = (uint32_t)(prg2.data & ~PCI_BASE_TYPE_ALL); /* * Don't try to read the next 4 bytes * past the end of BARs. */ if (prg2.offset >= PCI_CONF_BASE5) { prg.status = PCITOOL_OUT_OF_RANGE; rval = EIO; goto done_reg; } /* * Access device. * prg2.status is modified on error. */ prg2.offset += 4; rval = pcitool_cfg_access(dip, &prg2, B_FALSE); if (rval != SUCCESS) { prg.status = prg2.status; goto done_reg; } if (prg2.data == 0xffffffff) { prg.status = PCITOOL_INVALID_ADDRESS; prg.status = EFAULT; goto done_reg; } prg2.data = (prg2.data << 32) + low_bytes; if (pcitool_debug) prom_printf( "64 bit mem space. " "64-bit bar is 0x%" PRIx64 "\n", prg2.data); /* Mem32 space, including ROM */ } else { if (prg2.offset == PCI_CONF_ROM) { if (pcitool_debug) prom_printf( "Additional ROM " "checking\n"); /* Can't write to ROM */ if (write_flag) { prg.status = PCITOOL_ROM_WRITE; rval = EIO; goto done_reg; /* ROM disabled for reading */ } else if (!(prg2.data & 0x00000001)) { prg.status = PCITOOL_ROM_DISABLED; rval = EIO; goto done_reg; } } if (pcitool_debug) prom_printf("32 bit mem space\n"); } /* Common code for all IO/MEM range spaces. */ base_addr = prg2.data; if (pcitool_debug) prom_printf( "addr portion of bar is 0x%" PRIx64 ", " "base=0x%" PRIx64 ", " "offset:0x%" PRIx64 "\n", prg2.data, base_addr, prg.offset); /* * Use offset provided by caller to index into * desired space, then access. * Note that prg.status is modified on error. */ prg.phys_addr = base_addr + prg.offset; virt_addr = pcitool_map(prg.phys_addr, size, &num_virt_pages); if (virt_addr == NULL) { prg.status = PCITOOL_IO_ERROR; rval = EIO; goto done_reg; } rval = pcitool_mem_access(dip, &prg, virt_addr, write_flag); pcitool_unmap(virt_addr, num_virt_pages); } done_reg: if (ddi_copyout(&prg, arg, sizeof (pcitool_reg_t), mode) != DDI_SUCCESS) { if (pcitool_debug) prom_printf("Error returning arguments.\n"); rval = EFAULT; } break; default: rval = ENOTTY; break; } return (rval); }