/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #ifndef _SYS_XDF_H #define _SYS_XDF_H #pragma ident "%Z%%M% %I% %E% SMI" #ifdef __cplusplus extern "C" { #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define BLKIF_RING_SIZE __RING_SIZE((blkif_sring_t *)NULL, PAGESIZE) /* * VBDs have standard 512 byte blocks * A single blkif_request can transfer up to 11 pages of data, 1 page/segment */ #define XB_BSIZE DEV_BSIZE #define XB_BMASK (XB_BSIZE - 1) #define XB_BSHIFT 9 #define XB_DTOB(bn) ((bn) << XB_BSHIFT) #define XB_MAX_SEGLEN (8 * XB_BSIZE) #define XB_SEGOFFSET (XB_MAX_SEGLEN - 1) #define XB_MAX_XFER (XB_MAX_SEGLEN * BLKIF_MAX_SEGMENTS_PER_REQUEST) #define XB_MAXPHYS (XB_MAX_XFER * BLKIF_RING_SIZE) /* * blkif status */ enum xdf_state { /* * initial state */ XD_UNKNOWN, /* * ring and evtchn alloced, xenbus state changed to * XenbusStateInitialised, wait for backend to connect */ XD_INIT, /* * backend's xenbus state has changed to XenbusStateConnected, * this is the only state allowing I/Os */ XD_READY, /* * vbd interface close request received from backend, no more I/O * requestis allowed to be put into ring buffer, while interrupt handler * is allowed to run to finish any outstanding I/O request, disconnect * process is kicked off by changing xenbus state to XenbusStateClosed */ XD_CLOSING, /* * disconnection process finished, both backend and frontend's * xenbus state has been changed to XenbusStateClosed, can be detached */ XD_CLOSED, /* * disconnection process finished, frontend is suspended */ XD_SUSPEND }; /* * 16 paritions + fdisk */ #define XDF_PSHIFT 6 #define XDF_PMASK ((1 << XDF_PSHIFT) - 1) #define XDF_PEXT (1 << XDF_PSHIFT) #define XDF_MINOR(i, m) (((i) << XDF_PSHIFT) | (m)) #define XDF_INST(m) ((m) >> XDF_PSHIFT) #define XDF_PART(m) ((m) & XDF_PMASK) /* * one blkif_request_t will have one corresponding ge_slot_t * where we save those grant table refs used in this blkif_request_t * * the id of this ge_slot_t will also be put into 'id' field in * each blkif_request_t when sent out to the ring buffer. */ typedef struct ge_slot { list_node_t link; domid_t oeid; struct v_req *vreq; int isread; grant_ref_t ghead; int ngrefs; grant_ref_t ge[BLKIF_MAX_SEGMENTS_PER_REQUEST]; } ge_slot_t; /* * vbd I/O request * * An instance of this structure is bound to each buf passed to * the driver's strategy by setting the pointer into bp->av_back. * The id of this vreq will also be put into 'id' field in each * blkif_request_t when sent out to the ring buffer for one DMA * window of this buf. * * Vreq mainly contains DMA information for this buf. In one vreq/buf, * there could be more than one DMA window, each of which will be * mapped to one blkif_request_t/ge_slot_t. Ge_slot_t contains all grant * table entry information for this buf. The ge_slot_t for current DMA * window is pointed to by v_gs in vreq. * * So, grant table entries will only be alloc'ed when the DMA window is * about to be transferred via blkif_request_t to the ring buffer. And * they will be freed right after the blkif_response_t is seen. By this * means, we can make use of grant table entries more efficiently. */ typedef struct v_req { list_node_t v_link; int v_status; buf_t *v_buf; ddi_dma_handle_t v_dmahdl; ddi_dma_cookie_t v_dmac; uint_t v_ndmacs; uint_t v_dmaw; uint_t v_ndmaws; uint_t v_nslots; ge_slot_t *v_gs; uint64_t v_blkno; ddi_acc_handle_t v_align; caddr_t v_abuf; ddi_dma_handle_t v_memdmahdl; uint8_t v_flush_diskcache; } v_req_t; /* * Status set and checked in vreq->v_status by vreq_setup() * * These flags will help us to continue the vreq setup work from last failure * point, instead of starting from scrath after each failure. */ #define VREQ_INIT 0x0 #define VREQ_INIT_DONE 0x1 #define VREQ_DMAHDL_ALLOCED 0x2 #define VREQ_MEMDMAHDL_ALLOCED 0x3 #define VREQ_DMAMEM_ALLOCED 0x4 #define VREQ_DMABUF_BOUND 0x5 #define VREQ_GS_ALLOCED 0x6 #define VREQ_DMAWIN_DONE 0x7 /* * virtual block device per-instance softstate */ typedef struct xdf { dev_info_t *xdf_dip; domid_t xdf_peer; /* otherend's dom ID */ xendev_ring_t *xdf_xb_ring; /* I/O ring buffer */ ddi_acc_handle_t xdf_xb_ring_hdl; /* access handler for ring buffer */ list_t xdf_vreq_act; /* active vreq list */ list_t xdf_gs_act; /* active grant table slot list */ buf_t *xdf_f_act; /* active buf list head */ buf_t *xdf_l_act; /* active buf list tail */ enum xdf_state xdf_status; /* status of this virtual disk */ ulong_t xdf_vd_open[OTYPCNT]; ulong_t xdf_vd_lyropen[XDF_PEXT]; ulong_t xdf_vd_exclopen; kmutex_t xdf_dev_lk; /* mutex lock for I/O path */ kmutex_t xdf_cb_lk; /* mutex lock for event handling path */ kcondvar_t xdf_dev_cv; /* cv used in I/O path */ uint_t xdf_xdev_info; /* disk info from backend xenstore */ diskaddr_t xdf_xdev_nblocks; /* total size in block */ kstat_t *xdf_xdev_iostat; cmlb_handle_t xdf_vd_lbl; ddi_softintr_t xdf_softintr_id; timeout_id_t xdf_timeout_id; struct gnttab_free_callback xdf_gnt_callback; int xdf_feature_barrier; int xdf_flush_supported; int xdf_wce; char *xdf_flush_mem; char *xdf_cache_flush_block; #ifdef DEBUG int xdf_dmacallback_num; #endif } xdf_t; #define BP2VREQ(bp) ((v_req_t *)((bp)->av_back)) /* * VBD I/O requests must be aligned on a 512-byte boundary and specify * a transfer size which is a mutiple of 512-bytes */ #define ALIGNED_XFER(bp) \ ((((uintptr_t)((bp)->b_un.b_addr) & XB_BMASK) == 0) && \ (((bp)->b_bcount & XB_BMASK) == 0)) #define U_INVAL(u) (((u)->uio_loffset & (offset_t)(XB_BMASK)) || \ ((u)->uio_iov->iov_len & (offset_t)(XB_BMASK))) /* wrap pa_to_ma() for xdf to run in dom0 */ #define PATOMA(addr) (DOMAIN_IS_INITDOMAIN(xen_info) ? addr : pa_to_ma(addr)) #define XD_IS_RO(vbd) ((vbd)->xdf_xdev_info & VDISK_READONLY) #define XD_IS_CD(vbd) ((vbd)->xdf_xdev_info & VDISK_CDROM) #define XD_IS_RM(vbd) ((vbd)->xdf_xdev_info & VDISK_REMOVABLE) #define IS_READ(bp) ((bp)->b_flags & B_READ) #define IS_ERROR(bp) ((bp)->b_flags & B_ERROR) #define XDF_UPDATE_IO_STAT(vdp, bp) \ if ((vdp)->xdf_xdev_iostat != NULL) { \ kstat_io_t *kip = KSTAT_IO_PTR((vdp)->xdf_xdev_iostat); \ size_t n_done = (bp)->b_bcount - (bp)->b_resid; \ if ((bp)->b_flags & B_READ) { \ kip->reads++; \ kip->nread += n_done; \ } else { \ kip->writes++; \ kip->nwritten += n_done; \ } \ } extern int xdfdebug; #ifdef DEBUG #define DPRINTF(flag, args) {if (xdfdebug & (flag)) prom_printf args; } #define SETDMACBON(vbd) {(vbd)->xdf_dmacallback_num++; } #define SETDMACBOFF(vbd) {(vbd)->xdf_dmacallback_num--; } #define ISDMACBON(vbd) ((vbd)->xdf_dmacallback_num > 0) #else #define DPRINTF(flag, args) #define SETDMACBON(vbd) #define SETDMACBOFF(vbd) #define ISDMACBON(vbd) #endif /* DEBUG */ #define DDI_DBG 0x1 #define DMA_DBG 0x2 #define INTR_DBG 0x8 #define IO_DBG 0x10 #define IOCTL_DBG 0x20 #define SUSRES_DBG 0x40 #define LBL_DBG 0x80 #ifdef __cplusplus } #endif #endif /* _SYS_XDF_H */