/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #ifndef _SYS_DTRACE_H #define _SYS_DTRACE_H #pragma ident "%Z%%M% %I% %E% SMI" #ifdef __cplusplus extern "C" { #endif /* * DTrace Dynamic Tracing Software: Kernel Interfaces * * Note: The contents of this file are private to the implementation of the * Solaris system and DTrace subsystem and are subject to change at any time * without notice. Applications and drivers using these interfaces will fail * to run on future releases. These interfaces should not be used for any * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). * Please refer to the "Solaris Dynamic Tracing Guide" for more information. */ #ifndef _ASM #include #include #include #include #include #include #include /* * DTrace Universal Constants and Typedefs */ #define DTRACE_CPUALL -1 /* all CPUs */ #define DTRACE_IDNONE 0 /* invalid probe identifier */ #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ #define DTRACE_PROVNONE 0 /* invalid provider identifier */ #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ #define DTRACE_ARGNONE -1 /* invalid argument index */ #define DTRACE_PROVNAMELEN 64 #define DTRACE_MODNAMELEN 64 #define DTRACE_FUNCNAMELEN 128 #define DTRACE_NAMELEN 64 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) #define DTRACE_ARGTYPELEN 128 typedef uint32_t dtrace_id_t; /* probe identifier */ typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ typedef uint16_t dtrace_actkind_t; /* action kind */ typedef int64_t dtrace_optval_t; /* option value */ typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ typedef enum dtrace_probespec { DTRACE_PROBESPEC_NONE = -1, DTRACE_PROBESPEC_PROVIDER = 0, DTRACE_PROBESPEC_MOD, DTRACE_PROBESPEC_FUNC, DTRACE_PROBESPEC_NAME } dtrace_probespec_t; /* * DTrace Intermediate Format (DIF) * * The following definitions describe the DTrace Intermediate Format (DIF), a * a RISC-like instruction set and program encoding used to represent * predicates and actions that can be bound to DTrace probes. The constants * below defining the number of available registers are suggested minimums; the * compiler should use DTRACEIOC_CONF to dynamically obtain the number of * registers provided by the current DTrace implementation. */ #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ #define DIF_OP_OR 1 /* or r1, r2, rd */ #define DIF_OP_XOR 2 /* xor r1, r2, rd */ #define DIF_OP_AND 3 /* and r1, r2, rd */ #define DIF_OP_SLL 4 /* sll r1, r2, rd */ #define DIF_OP_SRL 5 /* srl r1, r2, rd */ #define DIF_OP_SUB 6 /* sub r1, r2, rd */ #define DIF_OP_ADD 7 /* add r1, r2, rd */ #define DIF_OP_MUL 8 /* mul r1, r2, rd */ #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ #define DIF_OP_SREM 11 /* srem r1, r2, rd */ #define DIF_OP_UREM 12 /* urem r1, r2, rd */ #define DIF_OP_NOT 13 /* not r1, rd */ #define DIF_OP_MOV 14 /* mov r1, rd */ #define DIF_OP_CMP 15 /* cmp r1, r2 */ #define DIF_OP_TST 16 /* tst r1 */ #define DIF_OP_BA 17 /* ba label */ #define DIF_OP_BE 18 /* be label */ #define DIF_OP_BNE 19 /* bne label */ #define DIF_OP_BG 20 /* bg label */ #define DIF_OP_BGU 21 /* bgu label */ #define DIF_OP_BGE 22 /* bge label */ #define DIF_OP_BGEU 23 /* bgeu label */ #define DIF_OP_BL 24 /* bl label */ #define DIF_OP_BLU 25 /* blu label */ #define DIF_OP_BLE 26 /* ble label */ #define DIF_OP_BLEU 27 /* bleu label */ #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ #define DIF_OP_LDUB 31 /* ldub [r1], rd */ #define DIF_OP_LDUH 32 /* lduh [r1], rd */ #define DIF_OP_LDUW 33 /* lduw [r1], rd */ #define DIF_OP_LDX 34 /* ldx [r1], rd */ #define DIF_OP_RET 35 /* ret rd */ #define DIF_OP_NOP 36 /* nop */ #define DIF_OP_SETX 37 /* setx intindex, rd */ #define DIF_OP_SETS 38 /* sets strindex, rd */ #define DIF_OP_SCMP 39 /* scmp r1, r2 */ #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ #define DIF_OP_LDGS 41 /* ldgs var, rd */ #define DIF_OP_STGS 42 /* stgs var, rs */ #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ #define DIF_OP_LDTS 44 /* ldts var, rd */ #define DIF_OP_STTS 45 /* stts var, rs */ #define DIF_OP_SRA 46 /* sra r1, r2, rd */ #define DIF_OP_CALL 47 /* call subr, rd */ #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ #define DIF_OP_POPTS 50 /* popts */ #define DIF_OP_FLUSHTS 51 /* flushts */ #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ #define DIF_OP_STGAA 54 /* stgaa var, rs */ #define DIF_OP_STTAA 55 /* sttaa var, rs */ #define DIF_OP_LDLS 56 /* ldls var, rd */ #define DIF_OP_STLS 57 /* stls var, rs */ #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ #define DIF_OP_STB 60 /* stb r1, [rd] */ #define DIF_OP_STH 61 /* sth r1, [rd] */ #define DIF_OP_STW 62 /* stw r1, [rd] */ #define DIF_OP_STX 63 /* stx r1, [rd] */ #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ #define DIF_OP_ULDX 70 /* uldx [r1], rd */ #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ #define DIF_OP_RLDX 77 /* rldx [r1], rd */ #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ #define DIF_STROFF_MAX 0xffff /* highest string table offset */ #define DIF_REGISTER_MAX 0xff /* highest register number */ #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ #define DIF_VAR_ARGS 0x0000 /* arguments array */ #define DIF_VAR_REGS 0x0001 /* registers array */ #define DIF_VAR_UREGS 0x0002 /* user registers array */ #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ #define DIF_VAR_ID 0x0105 /* probe ID */ #define DIF_VAR_ARG0 0x0106 /* first argument */ #define DIF_VAR_ARG1 0x0107 /* second argument */ #define DIF_VAR_ARG2 0x0108 /* third argument */ #define DIF_VAR_ARG3 0x0109 /* fourth argument */ #define DIF_VAR_ARG4 0x010a /* fifth argument */ #define DIF_VAR_ARG5 0x010b /* sixth argument */ #define DIF_VAR_ARG6 0x010c /* seventh argument */ #define DIF_VAR_ARG7 0x010d /* eighth argument */ #define DIF_VAR_ARG8 0x010e /* ninth argument */ #define DIF_VAR_ARG9 0x010f /* tenth argument */ #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ #define DIF_VAR_CALLER 0x0111 /* caller */ #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ #define DIF_VAR_PROBENAME 0x0115 /* probe name */ #define DIF_VAR_PID 0x0116 /* process ID */ #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ #define DIF_VAR_UCALLER 0x011c /* user-level caller */ #define DIF_VAR_PPID 0x011d /* parent process ID */ #define DIF_VAR_UID 0x011e /* process user ID */ #define DIF_VAR_GID 0x011f /* process group ID */ #define DIF_VAR_ERRNO 0x0120 /* thread errno */ #define DIF_SUBR_RAND 0 #define DIF_SUBR_MUTEX_OWNED 1 #define DIF_SUBR_MUTEX_OWNER 2 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 #define DIF_SUBR_MUTEX_TYPE_SPIN 4 #define DIF_SUBR_RW_READ_HELD 5 #define DIF_SUBR_RW_WRITE_HELD 6 #define DIF_SUBR_RW_ISWRITER 7 #define DIF_SUBR_COPYIN 8 #define DIF_SUBR_COPYINSTR 9 #define DIF_SUBR_SPECULATION 10 #define DIF_SUBR_PROGENYOF 11 #define DIF_SUBR_STRLEN 12 #define DIF_SUBR_COPYOUT 13 #define DIF_SUBR_COPYOUTSTR 14 #define DIF_SUBR_ALLOCA 15 #define DIF_SUBR_BCOPY 16 #define DIF_SUBR_COPYINTO 17 #define DIF_SUBR_MSGDSIZE 18 #define DIF_SUBR_MSGSIZE 19 #define DIF_SUBR_GETMAJOR 20 #define DIF_SUBR_GETMINOR 21 #define DIF_SUBR_DDI_PATHNAME 22 #define DIF_SUBR_STRJOIN 23 #define DIF_SUBR_LLTOSTR 24 #define DIF_SUBR_BASENAME 25 #define DIF_SUBR_DIRNAME 26 #define DIF_SUBR_CLEANPATH 27 #define DIF_SUBR_STRCHR 28 #define DIF_SUBR_STRRCHR 29 #define DIF_SUBR_STRSTR 30 #define DIF_SUBR_STRTOK 31 #define DIF_SUBR_SUBSTR 32 #define DIF_SUBR_INDEX 33 #define DIF_SUBR_RINDEX 34 #define DIF_SUBR_HTONS 35 #define DIF_SUBR_HTONL 36 #define DIF_SUBR_HTONLL 37 #define DIF_SUBR_NTOHS 38 #define DIF_SUBR_NTOHL 39 #define DIF_SUBR_NTOHLL 40 #define DIF_SUBR_MAX 40 /* max subroutine value */ typedef uint32_t dif_instr_t; #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) #define DIF_INSTR_RD(i) ((i) & 0xff) #define DIF_INSTR_RS(i) ((i) & 0xff) #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) #define DIF_INSTR_FMT(op, r1, r2, d) \ (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) #define DIF_INSTR_NOP (DIF_OP_NOP << 24) #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) #define DIF_REG_R0 0 /* %r0 is always set to zero */ /* * A DTrace Intermediate Format Type (DIF Type) is used to represent the types * of variables, function and associative array arguments, and the return type * for each DIF object (shown below). It contains a description of the type, * its size in bytes, and a module identifier. */ typedef struct dtrace_diftype { uint8_t dtdt_kind; /* type kind (see below) */ uint8_t dtdt_ckind; /* type kind in CTF */ uint8_t dtdt_flags; /* type flags (see below) */ uint8_t dtdt_pad; /* reserved for future use */ uint32_t dtdt_size; /* type size in bytes (unless string) */ } dtrace_diftype_t; #define DIF_TYPE_CTF 0 /* type is a CTF type */ #define DIF_TYPE_STRING 1 /* type is a D string */ #define DIF_TF_BYREF 0x1 /* type is passed by reference */ /* * A DTrace Intermediate Format variable record is used to describe each of the * variables referenced by a given DIF object. It contains an integer variable * identifier along with variable scope and properties, as shown below. The * size of this structure must be sizeof (int) aligned. */ typedef struct dtrace_difv { uint32_t dtdv_name; /* variable name index in dtdo_strtab */ uint32_t dtdv_id; /* variable reference identifier */ uint8_t dtdv_kind; /* variable kind (see below) */ uint8_t dtdv_scope; /* variable scope (see below) */ uint16_t dtdv_flags; /* variable flags (see below) */ dtrace_diftype_t dtdv_type; /* variable type (see above) */ } dtrace_difv_t; #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ /* * DTrace Actions * * The upper byte determines the class of the action; the low bytes determines * the specific action within that class. The classes of actions are as * follows: * * [ no class ] <= May record process- or kernel-related data * DTRACEACT_PROC <= Only records process-related data * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes * DTRACEACT_KERNEL <= Only records kernel-related data * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel * DTRACEACT_SPECULATIVE <= Speculation-related action * DTRACEACT_AGGREGATION <= Aggregating action */ #define DTRACEACT_NONE 0 /* no action */ #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ #define DTRACEACT_EXIT 2 /* exit() action */ #define DTRACEACT_PRINTF 3 /* printf() action */ #define DTRACEACT_PRINTA 4 /* printa() action */ #define DTRACEACT_LIBACT 5 /* library-controlled action */ #define DTRACEACT_PROC 0x0100 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) #define DTRACEACT_USYM (DTRACEACT_PROC + 3) #define DTRACEACT_UMOD (DTRACEACT_PROC + 4) #define DTRACEACT_UADDR (DTRACEACT_PROC + 5) #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) #define DTRACEACT_PROC_CONTROL 0x0300 #define DTRACEACT_KERNEL 0x0400 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) #define DTRACEACT_SPECULATIVE 0x0600 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) #define DTRACEACT_CLASS(x) ((x) & 0xff00) #define DTRACEACT_ISDESTRUCTIVE(x) \ (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) #define DTRACEACT_ISSPECULATIVE(x) \ (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) #define DTRACEACT_ISPRINTFLIKE(x) \ ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) /* * DTrace Aggregating Actions * * These are functions f(x) for which the following is true: * * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) * * where x_n is a set of arbitrary data. Aggregating actions are in their own * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow * for easier processing of the aggregation argument and data payload for a few * aggregating actions (notably: quantize(), lquantize(), and ustack()). */ #define DTRACEACT_AGGREGATION 0x0700 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) #define DTRACEACT_ISAGG(x) \ (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) #define DTRACE_QUANTIZE_NBUCKETS \ (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) #define DTRACE_LQUANTIZE_STEPSHIFT 48 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) #define DTRACE_LQUANTIZE_LEVELSHIFT 32 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) #define DTRACE_LQUANTIZE_BASESHIFT 0 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX #define DTRACE_LQUANTIZE_STEP(x) \ (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ DTRACE_LQUANTIZE_STEPSHIFT) #define DTRACE_LQUANTIZE_LEVELS(x) \ (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ DTRACE_LQUANTIZE_LEVELSHIFT) #define DTRACE_LQUANTIZE_BASE(x) \ (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ DTRACE_LQUANTIZE_BASESHIFT) #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) #define DTRACE_USTACK_ARG(x, y) \ ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) #ifndef _LP64 #ifndef _LITTLE_ENDIAN #define DTRACE_PTR(type, name) uint32_t name##pad; type *name #else #define DTRACE_PTR(type, name) type *name; uint32_t name##pad #endif #else #define DTRACE_PTR(type, name) type *name #endif /* * DTrace Object Format (DOF) * * DTrace programs can be persistently encoded in the DOF format so that they * may be embedded in other programs (for example, in an ELF file) or in the * dtrace driver configuration file for use in anonymous tracing. The DOF * format is versioned and extensible so that it can be revised and so that * internal data structures can be modified or extended compatibly. All DOF * structures use fixed-size types, so the 32-bit and 64-bit representations * are identical and consumers can use either data model transparently. * * The file layout is structured as follows: * * +---------------+-------------------+----- ... ----+---- ... ------+ * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | * | (file header) | (section headers) | section data | section data | * +---------------+-------------------+----- ... ----+---- ... ------+ * |<------------ dof_hdr.dofh_loadsz --------------->| | * |<------------ dof_hdr.dofh_filesz ------------------------------->| * * The file header stores meta-data including a magic number, data model for * the instrumentation, data encoding, and properties of the DIF code within. * The header describes its own size and the size of the section headers. By * convention, an array of section headers follows the file header, and then * the data for all loadable sections and unloadable sections. This permits * consumer code to easily download the headers and all loadable data into the * DTrace driver in one contiguous chunk, omitting other extraneous sections. * * The section headers describe the size, offset, alignment, and section type * for each section. Sections are described using a set of #defines that tell * the consumer what kind of data is expected. Sections can contain links to * other sections by storing a dof_secidx_t, an index into the section header * array, inside of the section data structures. The section header includes * an entry size so that sections with data arrays can grow their structures. * * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which * are represented themselves as a collection of related DOF sections. This * permits us to change the set of sections associated with a DIFO over time, * and also permits us to encode DIFOs that contain different sets of sections. * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a * section of type DOF_SECT_DIFOHDR. This section's data is then an array of * dof_secidx_t's which in turn denote the sections associated with this DIFO. * * This loose coupling of the file structure (header and sections) to the * structure of the DTrace program itself (ECB descriptions, action * descriptions, and DIFOs) permits activities such as relocation processing * to occur in a single pass without having to understand D program structure. * * Finally, strings are always stored in ELF-style string tables along with a * string table section index and string table offset. Therefore strings in * DOF are always arbitrary-length and not bound to the current implementation. */ #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ typedef struct dof_hdr { uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ uint32_t dofh_flags; /* file attribute flags (if any) */ uint32_t dofh_hdrsize; /* size of file header in bytes */ uint32_t dofh_secsize; /* size of section header in bytes */ uint32_t dofh_secnum; /* number of section headers */ uint64_t dofh_secoff; /* file offset of section headers */ uint64_t dofh_loadsz; /* file size of loadable portion */ uint64_t dofh_filesz; /* file size of entire DOF file */ uint64_t dofh_pad; /* reserved for future use */ } dof_hdr_t; #define DOF_ID_MAG0 0 /* first byte of magic number */ #define DOF_ID_MAG1 1 /* second byte of magic number */ #define DOF_ID_MAG2 2 /* third byte of magic number */ #define DOF_ID_MAG3 3 /* fourth byte of magic number */ #define DOF_ID_MODEL 4 /* DOF data model (see below) */ #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ #define DOF_MAG_MAG1 'D' #define DOF_MAG_MAG2 'O' #define DOF_MAG_MAG3 'F' #define DOF_MAG_STRING "\177DOF" #define DOF_MAG_STRLEN 4 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ #define DOF_MODEL_ILP32 1 #define DOF_MODEL_LP64 2 #ifdef _LP64 #define DOF_MODEL_NATIVE DOF_MODEL_LP64 #else #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 #endif #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ #define DOF_ENCODE_LSB 1 #define DOF_ENCODE_MSB 2 #ifdef _BIG_ENDIAN #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB #else #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB #endif #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ typedef uint32_t dof_secidx_t; /* section header table index type */ typedef uint32_t dof_stridx_t; /* string table index type */ #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ typedef struct dof_sec { uint32_t dofs_type; /* section type (see below) */ uint32_t dofs_align; /* section data memory alignment */ uint32_t dofs_flags; /* section flags (if any) */ uint32_t dofs_entsize; /* size of section entry (if table) */ uint64_t dofs_offset; /* offset of section data within file */ uint64_t dofs_size; /* size of section data in bytes */ } dof_sec_t; #define DOF_SECT_NONE 0 /* null section */ #define DOF_SECT_COMMENTS 1 /* compiler comments */ #define DOF_SECT_SOURCE 2 /* D program source code */ #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ #define DOF_SECT_STRTAB 8 /* string table */ #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ #define DOF_SECT_PROBES 16 /* dof_probe_t array */ #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ #define DOF_SECT_INTTAB 19 /* uint64_t array */ #define DOF_SECT_UTSNAME 20 /* struct utsname */ #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ #define DOF_SECF_LOAD 1 /* section should be loaded */ typedef struct dof_ecbdesc { dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ uint32_t dofe_pad; /* reserved for future use */ uint64_t dofe_uarg; /* user-supplied library argument */ } dof_ecbdesc_t; typedef struct dof_probedesc { dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ dof_stridx_t dofp_provider; /* provider string */ dof_stridx_t dofp_mod; /* module string */ dof_stridx_t dofp_func; /* function string */ dof_stridx_t dofp_name; /* name string */ uint32_t dofp_id; /* probe identifier (or zero) */ } dof_probedesc_t; typedef struct dof_actdesc { dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ uint32_t dofa_ntuple; /* number of subsequent tuple actions */ uint64_t dofa_arg; /* kind-specific argument */ uint64_t dofa_uarg; /* user-supplied argument */ } dof_actdesc_t; typedef struct dof_difohdr { dtrace_diftype_t dofd_rtype; /* return type for this fragment */ dof_secidx_t dofd_links[1]; /* variable length array of indices */ } dof_difohdr_t; typedef struct dof_relohdr { dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ } dof_relohdr_t; typedef struct dof_relodesc { dof_stridx_t dofr_name; /* string name of relocation symbol */ uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ uint64_t dofr_offset; /* byte offset for relocation */ uint64_t dofr_data; /* additional type-specific data */ } dof_relodesc_t; #define DOF_RELO_NONE 0 /* empty relocation entry */ #define DOF_RELO_SETX 1 /* relocate setx value */ typedef struct dof_optdesc { uint32_t dofo_option; /* option identifier */ dof_secidx_t dofo_strtab; /* string table, if string option */ uint64_t dofo_value; /* option value or string index */ } dof_optdesc_t; typedef uint32_t dof_attr_t; /* encoded stability attributes */ #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) typedef struct dof_provider { dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ dof_stridx_t dofpv_name; /* provider name string */ dof_attr_t dofpv_provattr; /* provider attributes */ dof_attr_t dofpv_modattr; /* module attributes */ dof_attr_t dofpv_funcattr; /* function attributes */ dof_attr_t dofpv_nameattr; /* name attributes */ dof_attr_t dofpv_argsattr; /* args attributes */ dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ } dof_provider_t; typedef struct dof_probe { uint64_t dofpr_addr; /* probe base address or offset */ dof_stridx_t dofpr_func; /* probe function string */ dof_stridx_t dofpr_name; /* probe name string */ dof_stridx_t dofpr_nargv; /* native argument type strings */ dof_stridx_t dofpr_xargv; /* translated argument type strings */ uint32_t dofpr_argidx; /* index of first argument mapping */ uint32_t dofpr_offidx; /* index of first offset entry */ uint8_t dofpr_nargc; /* native argument count */ uint8_t dofpr_xargc; /* translated argument count */ uint16_t dofpr_noffs; /* number of offset entries for probe */ uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ uint16_t dofpr_pad1; /* reserved for future use */ uint32_t dofpr_pad2; /* reserved for future use */ } dof_probe_t; typedef struct dof_xlator { dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ dof_stridx_t dofxl_argv; /* input parameter type strings */ uint32_t dofxl_argc; /* input parameter list length */ dof_stridx_t dofxl_type; /* output type string name */ dof_attr_t dofxl_attr; /* output stability attributes */ } dof_xlator_t; typedef struct dof_xlmember { dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ dof_stridx_t dofxm_name; /* member name */ dtrace_diftype_t dofxm_type; /* member type */ } dof_xlmember_t; typedef struct dof_xlref { dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ uint32_t dofxr_member; /* index of referenced dof_xlmember */ uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ } dof_xlref_t; /* * DTrace Intermediate Format Object (DIFO) * * A DIFO is used to store the compiled DIF for a D expression, its return * type, and its string and variable tables. The string table is a single * buffer of character data into which sets instructions and variable * references can reference strings using a byte offset. The variable table * is an array of dtrace_difv_t structures that describe the name and type of * each variable and the id used in the DIF code. This structure is described * above in the DIF section of this header file. The DIFO is used at both * user-level (in the library) and in the kernel, but the structure is never * passed between the two: the DOF structures form the only interface. As a * result, the definition can change depending on the presence of _KERNEL. */ typedef struct dtrace_difo { dif_instr_t *dtdo_buf; /* instruction buffer */ uint64_t *dtdo_inttab; /* integer table (optional) */ char *dtdo_strtab; /* string table (optional) */ dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ uint_t dtdo_len; /* length of instruction buffer */ uint_t dtdo_intlen; /* length of integer table */ uint_t dtdo_strlen; /* length of string table */ uint_t dtdo_varlen; /* length of variable table */ dtrace_diftype_t dtdo_rtype; /* return type */ uint_t dtdo_refcnt; /* owner reference count */ uint_t dtdo_destructive; /* invokes destructive subroutines */ #ifndef _KERNEL dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ dof_relodesc_t *dtdo_ureltab; /* user relocations */ struct dt_node **dtdo_xlmtab; /* translator references */ uint_t dtdo_krelen; /* length of krelo table */ uint_t dtdo_urelen; /* length of urelo table */ uint_t dtdo_xlmlen; /* length of translator table */ #endif } dtrace_difo_t; /* * DTrace Enabling Description Structures * * When DTrace is tracking the description of a DTrace enabling entity (probe, * predicate, action, ECB, record, etc.), it does so in a description * structure. These structures all end in "desc", and are used at both * user-level and in the kernel -- but (with the exception of * dtrace_probedesc_t) they are never passed between them. Typically, * user-level will use the description structures when assembling an enabling. * It will then distill those description structures into a DOF object (see * above), and send it into the kernel. The kernel will again use the * description structures to create a description of the enabling as it reads * the DOF. When the description is complete, the enabling will be actually * created -- turning it into the structures that represent the enabling * instead of merely describing it. Not surprisingly, the description * structures bear a strong resemblance to the DOF structures that act as their * conduit. */ struct dtrace_predicate; typedef struct dtrace_probedesc { dtrace_id_t dtpd_id; /* probe identifier */ char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ char dtpd_name[DTRACE_NAMELEN]; /* probe name */ } dtrace_probedesc_t; typedef struct dtrace_repldesc { dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ } dtrace_repldesc_t; typedef struct dtrace_preddesc { dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ } dtrace_preddesc_t; typedef struct dtrace_actdesc { dtrace_difo_t *dtad_difo; /* pointer to DIF object */ struct dtrace_actdesc *dtad_next; /* next action */ dtrace_actkind_t dtad_kind; /* kind of action */ uint32_t dtad_ntuple; /* number in tuple */ uint64_t dtad_arg; /* action argument */ uint64_t dtad_uarg; /* user argument */ int dtad_refcnt; /* reference count */ } dtrace_actdesc_t; typedef struct dtrace_ecbdesc { dtrace_actdesc_t *dted_action; /* action description(s) */ dtrace_preddesc_t dted_pred; /* predicate description */ dtrace_probedesc_t dted_probe; /* probe description */ uint64_t dted_uarg; /* library argument */ int dted_refcnt; /* reference count */ } dtrace_ecbdesc_t; /* * DTrace Metadata Description Structures * * DTrace separates the trace data stream from the metadata stream. The only * metadata tokens placed in the data stream are enabled probe identifiers * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order * to determine the structure of the data, DTrace consumers pass the token to * the kernel, and receive in return a corresponding description of the enabled * probe (via the dtrace_eprobedesc structure) or the aggregation (via the * dtrace_aggdesc structure). Both of these structures are expressed in terms * of record descriptions (via the dtrace_recdesc structure) that describe the * exact structure of the data. Some record descriptions may also contain a * format identifier; this additional bit of metadata can be retrieved from the * kernel, for which a format description is returned via the dtrace_fmtdesc * structure. Note that all four of these structures must be bitness-neutral * to allow for a 32-bit DTrace consumer on a 64-bit kernel. */ typedef struct dtrace_recdesc { dtrace_actkind_t dtrd_action; /* kind of action */ uint32_t dtrd_size; /* size of record */ uint32_t dtrd_offset; /* offset in ECB's data */ uint16_t dtrd_alignment; /* required alignment */ uint16_t dtrd_format; /* format, if any */ uint64_t dtrd_arg; /* action argument */ uint64_t dtrd_uarg; /* user argument */ } dtrace_recdesc_t; typedef struct dtrace_eprobedesc { dtrace_epid_t dtepd_epid; /* enabled probe ID */ dtrace_id_t dtepd_probeid; /* probe ID */ uint64_t dtepd_uarg; /* library argument */ uint32_t dtepd_size; /* total size */ int dtepd_nrecs; /* number of records */ dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ } dtrace_eprobedesc_t; typedef struct dtrace_aggdesc { DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ int dtagd_flags; /* not filled in by kernel */ dtrace_aggid_t dtagd_id; /* aggregation ID */ dtrace_epid_t dtagd_epid; /* enabled probe ID */ uint32_t dtagd_size; /* size in bytes */ int dtagd_nrecs; /* number of records */ uint32_t dtagd_pad; /* explicit padding */ dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ } dtrace_aggdesc_t; typedef struct dtrace_fmtdesc { DTRACE_PTR(char, dtfd_string); /* format string */ int dtfd_length; /* length of format string */ uint16_t dtfd_format; /* format identifier */ } dtrace_fmtdesc_t; #define DTRACE_SIZEOF_EPROBEDESC(desc) \ (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) #define DTRACE_SIZEOF_AGGDESC(desc) \ (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) /* * DTrace Option Interface * * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections * in a DOF image. The dof_optdesc structure contains an option identifier and * an option value. The valid option identifiers are found below; the mapping * between option identifiers and option identifying strings is maintained at * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the * following are potentially valid option values: all positive integers, zero * and negative one. Some options (notably "bufpolicy" and "bufresize") take * predefined tokens as their values; these are defined with * DTRACEOPT_{option}_{token}. */ #define DTRACEOPT_BUFSIZE 0 /* buffer size */ #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ #define DTRACEOPT_SPECSIZE 4 /* speculation size */ #define DTRACEOPT_NSPEC 5 /* number of speculations */ #define DTRACEOPT_STRSIZE 6 /* string size */ #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ #define DTRACEOPT_CPU 8 /* CPU to trace */ #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ #define DTRACEOPT_STATUSRATE 17 /* status rate */ #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ #define DTRACEOPT_MAX 27 /* number of options */ #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ /* * DTrace Buffer Interface * * In order to get a snapshot of the principal or aggregation buffer, * user-level passes a buffer description to the kernel with the dtrace_bufdesc * structure. This describes which CPU user-level is interested in, and * where user-level wishes the kernel to snapshot the buffer to (the * dtbd_data field). The kernel uses the same structure to pass back some * information regarding the buffer: the size of data actually copied out, the * number of drops, the number of errors, and the offset of the oldest record. * If the buffer policy is a "switch" policy, taking a snapshot of the * principal buffer has the additional effect of switching the active and * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has * the additional effect of switching the active and inactive buffers. */ typedef struct dtrace_bufdesc { uint64_t dtbd_size; /* size of buffer */ uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ uint32_t dtbd_errors; /* number of errors */ uint64_t dtbd_drops; /* number of drops */ DTRACE_PTR(char, dtbd_data); /* data */ uint64_t dtbd_oldest; /* offset of oldest record */ } dtrace_bufdesc_t; /* * DTrace Status * * The status of DTrace is relayed via the dtrace_status structure. This * structure contains members to count drops other than the capacity drops * available via the buffer interface (see above). This consists of dynamic * drops (including capacity dynamic drops, rinsing drops and dirty drops), and * speculative drops (including capacity speculative drops, drops due to busy * speculative buffers and drops due to unavailable speculative buffers). * Additionally, the status structure contains a field to indicate the number * of "fill"-policy buffers have been filled and a boolean field to indicate * that exit() has been called. If the dtst_exiting field is non-zero, no * further data will be generated until tracing is stopped (at which time any * enablings of the END action will be processed); if user-level sees that * this field is non-zero, tracing should be stopped as soon as possible. */ typedef struct dtrace_status { uint64_t dtst_dyndrops; /* dynamic drops */ uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ uint64_t dtst_specdrops; /* speculative drops */ uint64_t dtst_specdrops_busy; /* spec drops due to busy */ uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ uint64_t dtst_errors; /* total errors */ uint64_t dtst_filled; /* number of filled bufs */ uint64_t dtst_stkstroverflows; /* stack string tab overflows */ uint64_t dtst_dblerrors; /* errors in ERROR probes */ char dtst_killed; /* non-zero if killed */ char dtst_exiting; /* non-zero if exit() called */ char dtst_pad[6]; /* pad out to 64-bit align */ } dtrace_status_t; /* * DTrace Configuration * * User-level may need to understand some elements of the kernel DTrace * configuration in order to generate correct DIF. This information is * conveyed via the dtrace_conf structure. */ typedef struct dtrace_conf { uint_t dtc_difversion; /* supported DIF version */ uint_t dtc_difintregs; /* # of DIF integer registers */ uint_t dtc_diftupregs; /* # of DIF tuple registers */ uint_t dtc_ctfmodel; /* CTF data model */ uint_t dtc_pad[8]; /* reserved for future use */ } dtrace_conf_t; /* * DTrace Faults * * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; * constants at or above DTRACEFLT_LIBRARY indicate faults in probe * postprocessing at user-level. Probe processing faults induce an ERROR * probe and are replicated in unistd.d to allow users' ERROR probes to decode * the error condition using thse symbolic labels. */ #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ #define DTRACEFLT_BADADDR 1 /* Bad address */ #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ #define DTRACEFLT_ILLOP 3 /* Illegal operation */ #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ #define DTRACEFLT_UPRIV 7 /* Illegal user access */ #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ #define DTRACEFLT_BADSTACK 9 /* Bad stack */ #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ /* * DTrace Argument Types * * Because it would waste both space and time, argument types do not reside * with the probe. In order to determine argument types for args[X] * variables, the D compiler queries for argument types on a probe-by-probe * basis. (This optimizes for the common case that arguments are either not * used or used in an untyped fashion.) Typed arguments are specified with a * string of the type name in the dtragd_native member of the argument * description structure. Typed arguments may be further translated to types * of greater stability; the provider indicates such a translated argument by * filling in the dtargd_xlate member with the string of the translated type. * Finally, the provider may indicate which argument value a given argument * maps to by setting the dtargd_mapping member -- allowing a single argument * to map to multiple args[X] variables. */ typedef struct dtrace_argdesc { dtrace_id_t dtargd_id; /* probe identifier */ int dtargd_ndx; /* arg number (-1 iff none) */ int dtargd_mapping; /* value mapping */ char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ } dtrace_argdesc_t; /* * DTrace Stability Attributes * * Each DTrace provider advertises the name and data stability of each of its * probe description components, as well as its architectural dependencies. * The D compiler can query the provider attributes (dtrace_pattr_t below) in * order to compute the properties of an input program and report them. */ typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ typedef uint8_t dtrace_class_t; /* architectural dependency class */ #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ #define DTRACE_CLASS_COMMON 5 /* common to all systems */ #define DTRACE_CLASS_MAX 5 /* maximum valid class */ #define DTRACE_PRIV_NONE 0x0000 #define DTRACE_PRIV_KERNEL 0x0001 #define DTRACE_PRIV_USER 0x0002 #define DTRACE_PRIV_PROC 0x0004 #define DTRACE_PRIV_OWNER 0x0008 #define DTRACE_PRIV_ZONEOWNER 0x0010 #define DTRACE_PRIV_ALL \ (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) typedef struct dtrace_ppriv { uint32_t dtpp_flags; /* privilege flags */ uid_t dtpp_uid; /* user ID */ zoneid_t dtpp_zoneid; /* zone ID */ } dtrace_ppriv_t; typedef struct dtrace_attribute { dtrace_stability_t dtat_name; /* entity name stability */ dtrace_stability_t dtat_data; /* entity data stability */ dtrace_class_t dtat_class; /* entity data dependency */ } dtrace_attribute_t; typedef struct dtrace_pattr { dtrace_attribute_t dtpa_provider; /* provider attributes */ dtrace_attribute_t dtpa_mod; /* module attributes */ dtrace_attribute_t dtpa_func; /* function attributes */ dtrace_attribute_t dtpa_name; /* name attributes */ dtrace_attribute_t dtpa_args; /* args[] attributes */ } dtrace_pattr_t; typedef struct dtrace_providerdesc { char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ dtrace_pattr_t dtvd_attr; /* stability attributes */ dtrace_ppriv_t dtvd_priv; /* privileges required */ } dtrace_providerdesc_t; /* * DTrace Pseudodevice Interface * * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace * pseudodevice driver. These ioctls comprise the user-kernel interface to * DTrace. */ #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ /* * DTrace Helpers * * In general, DTrace establishes probes in processes and takes actions on * processes without knowing their specific user-level structures. Instead of * existing in the framework, process-specific knowledge is contained by the * enabling D program -- which can apply process-specific knowledge by making * appropriate use of DTrace primitives like copyin() and copyinstr() to * operate on user-level data. However, there may exist some specific probes * of particular semantic relevance that the application developer may wish to * explicitly export. For example, an application may wish to export a probe * at the point that it begins and ends certain well-defined transactions. In * addition to providing probes, programs may wish to offer assistance for * certain actions. For example, in highly dynamic environments (e.g., Java), * it may be difficult to obtain a stack trace in terms of meaningful symbol * names (the translation from instruction addresses to corresponding symbol * names may only be possible in situ); these environments may wish to define * a series of actions to be applied in situ to obtain a meaningful stack * trace. * * These two mechanisms -- user-level statically defined tracing and assisting * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified * via DOF, but unlike enabling DOF, helper DOF may contain definitions of * providers, probes and their arguments. If a helper wishes to provide * action assistance, probe descriptions and corresponding DIF actions may be * specified in the helper DOF. For such helper actions, however, the probe * description describes the specific helper: all DTrace helpers have the * provider name "dtrace" and the module name "helper", and the name of the * helper is contained in the function name (for example, the ustack() helper * is named "ustack"). Any helper-specific name may be contained in the name * (for example, if a helper were to have a constructor, it might be named * "dtrace:helper::init"). Helper actions are only called when the * action that they are helping is taken. Helper actions may only return DIF * expressions, and may only call the following subroutines: * * alloca() <= Allocates memory out of the consumer's scratch space * bcopy() <= Copies memory to scratch space * copyin() <= Copies memory from user-level into consumer's scratch * copyinto() <= Copies memory into a specific location in scratch * copyinstr() <= Copies a string into a specific location in scratch * * Helper actions may only access the following built-in variables: * * curthread <= Current kthread_t pointer * tid <= Current thread identifier * pid <= Current process identifier * ppid <= Parent process identifier * uid <= Current user ID * gid <= Current group ID * execname <= Current executable name * zonename <= Current zone name * * Helper actions may not manipulate or allocate dynamic variables, but they * may have clause-local and statically-allocated global variables. The * helper action variable state is specific to the helper action -- variables * used by the helper action may not be accessed outside of the helper * action, and the helper action may not access variables that like outside * of it. Helper actions may not load from kernel memory at-large; they are * restricting to loading current user state (via copyin() and variants) and * scratch space. As with probe enablings, helper actions are executed in * program order. The result of the helper action is the result of the last * executing helper expression. * * Helpers -- composed of either providers/probes or probes/actions (or both) * -- are added by opening the "helper" minor node, and issuing an ioctl(2) * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This * encapsulates the name and base address of the user-level library or * executable publishing the helpers and probes as well as the DOF that * contains the definitions of those helpers and probes. * * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy * helpers and should no longer be used. No other ioctls are valid on the * helper minor node. */ #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ typedef struct dof_helper { char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ uint64_t dofhp_addr; /* base address of object */ uint64_t dofhp_dof; /* address of helper DOF */ } dof_helper_t; #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ #define DTRACEMNR_HELPER "helper" /* node for helpers */ #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ #define DTRACEMNRN_HELPER 1 /* minor for helpers */ #define DTRACEMNRN_CLONE 2 /* first clone minor */ #ifdef _KERNEL /* * DTrace Provider API * * The following functions are implemented by the DTrace framework and are * used to implement separate in-kernel DTrace providers. Common functions * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are * defined in uts//dtrace/dtrace_asm.s or uts//dtrace/dtrace_isa.c. * * The provider API has two halves: the API that the providers consume from * DTrace, and the API that providers make available to DTrace. * * 1 Framework-to-Provider API * * 1.1 Overview * * The Framework-to-Provider API is represented by the dtrace_pops structure * that the provider passes to the framework when registering itself. This * structure consists of the following members: * * dtps_provide() <-- Provide all probes, all modules * dtps_provide_module() <-- Provide all probes in specified module * dtps_enable() <-- Enable specified probe * dtps_disable() <-- Disable specified probe * dtps_suspend() <-- Suspend specified probe * dtps_resume() <-- Resume specified probe * dtps_getargdesc() <-- Get the argument description for args[X] * dtps_getargval() <-- Get the value for an argX or args[X] variable * dtps_usermode() <-- Find out if the probe was fired in user mode * dtps_destroy() <-- Destroy all state associated with this probe * * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) * * 1.2.1 Overview * * Called to indicate that the provider should provide all probes. If the * specified description is non-NULL, dtps_provide() is being called because * no probe matched a specified probe -- if the provider has the ability to * create custom probes, it may wish to create a probe that matches the * specified description. * * 1.2.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is a pointer to a probe description that the provider may * wish to consider when creating custom probes. The provider is expected to * call back into the DTrace framework via dtrace_probe_create() to create * any necessary probes. dtps_provide() may be called even if the provider * has made available all probes; the provider should check the return value * of dtrace_probe_create() to handle this case. Note that the provider need * not implement both dtps_provide() and dtps_provide_module(); see * "Arguments and Notes" for dtrace_register(), below. * * 1.2.3 Return value * * None. * * 1.2.4 Caller's context * * dtps_provide() is typically called from open() or ioctl() context, but may * be called from other contexts as well. The DTrace framework is locked in * such a way that providers may not register or unregister. This means that * the provider may not call any DTrace API that affects its registration with * the framework, including dtrace_register(), dtrace_unregister(), * dtrace_invalidate(), and dtrace_condense(). However, the context is such * that the provider may (and indeed, is expected to) call probe-related * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), * and dtrace_probe_arg(). * * 1.3 void dtps_provide_module(void *arg, struct modctl *mp) * * 1.3.1 Overview * * Called to indicate that the provider should provide all probes in the * specified module. * * 1.3.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is a pointer to a modctl structure that indicates the * module for which probes should be created. * * 1.3.3 Return value * * None. * * 1.3.4 Caller's context * * dtps_provide_module() may be called from open() or ioctl() context, but * may also be called from a module loading context. mod_lock is held, and * the DTrace framework is locked in such a way that providers may not * register or unregister. This means that the provider may not call any * DTrace API that affects its registration with the framework, including * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and * dtrace_condense(). However, the context is such that the provider may (and * indeed, is expected to) call probe-related DTrace routines, including * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note * that the provider need not implement both dtps_provide() and * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), * below. * * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg) * * 1.4.1 Overview * * Called to enable the specified probe. * * 1.4.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the probe to be enabled. The third * argument is the probe argument as passed to dtrace_probe_create(). * dtps_enable() will be called when a probe transitions from not being * enabled at all to having one or more ECB. The number of ECBs associated * with the probe may change without subsequent calls into the provider. * When the number of ECBs drops to zero, the provider will be explicitly * told to disable the probe via dtps_disable(). dtrace_probe() should never * be called for a probe identifier that hasn't been explicitly enabled via * dtps_enable(). * * 1.4.3 Return value * * None. * * 1.4.4 Caller's context * * The DTrace framework is locked in such a way that it may not be called * back into at all. cpu_lock is held. mod_lock is not held and may not * be acquired. * * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) * * 1.5.1 Overview * * Called to disable the specified probe. * * 1.5.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the probe to be disabled. The third * argument is the probe argument as passed to dtrace_probe_create(). * dtps_disable() will be called when a probe transitions from being enabled * to having zero ECBs. dtrace_probe() should never be called for a probe * identifier that has been explicitly enabled via dtps_disable(). * * 1.5.3 Return value * * None. * * 1.5.4 Caller's context * * The DTrace framework is locked in such a way that it may not be called * back into at all. cpu_lock is held. mod_lock is not held and may not * be acquired. * * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) * * 1.6.1 Overview * * Called to suspend the specified enabled probe. This entry point is for * providers that may need to suspend some or all of their probes when CPUs * are being powered on or when the boot monitor is being entered for a * prolonged period of time. * * 1.6.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the probe to be suspended. The * third argument is the probe argument as passed to dtrace_probe_create(). * dtps_suspend will only be called on an enabled probe. Providers that * provide a dtps_suspend entry point will want to take roughly the action * that it takes for dtps_disable. * * 1.6.3 Return value * * None. * * 1.6.4 Caller's context * * Interrupts are disabled. The DTrace framework is in a state such that the * specified probe cannot be disabled or destroyed for the duration of * dtps_suspend(). As interrupts are disabled, the provider is afforded * little latitude; the provider is expected to do no more than a store to * memory. * * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) * * 1.7.1 Overview * * Called to resume the specified enabled probe. This entry point is for * providers that may need to resume some or all of their probes after the * completion of an event that induced a call to dtps_suspend(). * * 1.7.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the probe to be resumed. The * third argument is the probe argument as passed to dtrace_probe_create(). * dtps_resume will only be called on an enabled probe. Providers that * provide a dtps_resume entry point will want to take roughly the action * that it takes for dtps_enable. * * 1.7.3 Return value * * None. * * 1.7.4 Caller's context * * Interrupts are disabled. The DTrace framework is in a state such that the * specified probe cannot be disabled or destroyed for the duration of * dtps_resume(). As interrupts are disabled, the provider is afforded * little latitude; the provider is expected to do no more than a store to * memory. * * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, * dtrace_argdesc_t *desc) * * 1.8.1 Overview * * Called to retrieve the argument description for an args[X] variable. * * 1.8.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the current probe. The third * argument is the probe argument as passed to dtrace_probe_create(). The * fourth argument is a pointer to the argument description. This * description is both an input and output parameter: it contains the * index of the desired argument in the dtargd_ndx field, and expects * the other fields to be filled in upon return. If there is no argument * corresponding to the specified index, the dtargd_ndx field should be set * to DTRACE_ARGNONE. * * 1.8.3 Return value * * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping * members of the dtrace_argdesc_t structure are all output values. * * 1.8.4 Caller's context * * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and * the DTrace framework is locked in such a way that providers may not * register or unregister. This means that the provider may not call any * DTrace API that affects its registration with the framework, including * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and * dtrace_condense(). * * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, * int argno, int aframes) * * 1.9.1 Overview * * Called to retrieve a value for an argX or args[X] variable. * * 1.9.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the current probe. The third * argument is the probe argument as passed to dtrace_probe_create(). The * fourth argument is the number of the argument (the X in the example in * 1.9.1). The fifth argument is the number of stack frames that were used * to get from the actual place in the code that fired the probe to * dtrace_probe() itself, the so-called artificial frames. This argument may * be used to descend an appropriate number of frames to find the correct * values. If this entry point is left NULL, the dtrace_getarg() built-in * function is used. * * 1.9.3 Return value * * The value of the argument. * * 1.9.4 Caller's context * * This is called from within dtrace_probe() meaning that interrupts * are disabled. No locks should be taken within this entry point. * * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) * * 1.10.1 Overview * * Called to determine if the probe was fired in a user context. * * 1.10.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the current probe. The third * argument is the probe argument as passed to dtrace_probe_create(). This * entry point must not be left NULL for providers whose probes allow for * mixed mode tracing, that is to say those probes that can fire during * kernel- _or_ user-mode execution * * 1.10.3 Return value * * A boolean value. * * 1.10.4 Caller's context * * This is called from within dtrace_probe() meaning that interrupts * are disabled. No locks should be taken within this entry point. * * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) * * 1.11.1 Overview * * Called to destroy the specified probe. * * 1.11.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_register(). The * second argument is the identifier of the probe to be destroyed. The third * argument is the probe argument as passed to dtrace_probe_create(). The * provider should free all state associated with the probe. The framework * guarantees that dtps_destroy() is only called for probes that have either * been disabled via dtps_disable() or were never enabled via dtps_enable(). * Once dtps_disable() has been called for a probe, no further call will be * made specifying the probe. * * 1.11.3 Return value * * None. * * 1.11.4 Caller's context * * The DTrace framework is locked in such a way that it may not be called * back into at all. mod_lock is held. cpu_lock is not held, and may not be * acquired. * * * 2 Provider-to-Framework API * * 2.1 Overview * * The Provider-to-Framework API provides the mechanism for the provider to * register itself with the DTrace framework, to create probes, to lookup * probes and (most importantly) to fire probes. The Provider-to-Framework * consists of: * * dtrace_register() <-- Register a provider with the DTrace framework * dtrace_unregister() <-- Remove a provider's DTrace registration * dtrace_invalidate() <-- Invalidate the specified provider * dtrace_condense() <-- Remove a provider's unenabled probes * dtrace_attached() <-- Indicates whether or not DTrace has attached * dtrace_probe_create() <-- Create a DTrace probe * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name * dtrace_probe_arg() <-- Return the probe argument for a specific probe * dtrace_probe() <-- Fire the specified probe * * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, * dtrace_provider_id_t *idp) * * 2.2.1 Overview * * dtrace_register() registers the calling provider with the DTrace * framework. It should generally be called by DTrace providers in their * attach(9E) entry point. * * 2.2.2 Arguments and Notes * * The first argument is the name of the provider. The second argument is a * pointer to the stability attributes for the provider. The third argument * is the privilege flags for the provider, and must be some combination of: * * DTRACE_PRIV_NONE <= All users may enable probes from this provider * * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may * enable probes from this provider * * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may * enable probes from this provider * * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL * may enable probes from this provider * * DTRACE_PRIV_OWNER <= This flag places an additional constraint on * the privilege requirements above. These probes * require either (a) a user ID matching the user * ID of the cred passed in the fourth argument * or (b) the PRIV_PROC_OWNER privilege. * * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on * the privilege requirements above. These probes * require either (a) a zone ID matching the zone * ID of the cred passed in the fourth argument * or (b) the PRIV_PROC_ZONE privilege. * * Note that these flags designate the _visibility_ of the probes, not * the conditions under which they may or may not fire. * * The fourth argument is the credential that is associated with the * provider. This argument should be NULL if the privilege flags don't * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the * framework stashes the uid and zoneid represented by this credential * for use at probe-time, in implicit predicates. These limit visibility * of the probes to users and/or zones which have sufficient privilege to * access them. * * The fifth argument is a DTrace provider operations vector, which provides * the implementation for the Framework-to-Provider API. (See Section 1, * above.) This must be non-NULL, and each member must be non-NULL. The * exceptions to this are (1) the dtps_provide() and dtps_provide_module() * members (if the provider so desires, _one_ of these members may be left * NULL -- denoting that the provider only implements the other) and (2) * the dtps_suspend() and dtps_resume() members, which must either both be * NULL or both be non-NULL. * * The sixth argument is a cookie to be specified as the first argument for * each function in the Framework-to-Provider API. This argument may have * any value. * * The final argument is a pointer to dtrace_provider_id_t. If * dtrace_register() successfully completes, the provider identifier will be * stored in the memory pointed to be this argument. This argument must be * non-NULL. * * 2.2.3 Return value * * On success, dtrace_register() returns 0 and stores the new provider's * identifier into the memory pointed to by the idp argument. On failure, * dtrace_register() returns an errno: * * EINVAL The arguments passed to dtrace_register() were somehow invalid. * This may because a parameter that must be non-NULL was NULL, * because the name was invalid (either empty or an illegal * provider name) or because the attributes were invalid. * * No other failure code is returned. * * 2.2.4 Caller's context * * dtrace_register() may induce calls to dtrace_provide(); the provider must * hold no locks across dtrace_register() that may also be acquired by * dtrace_provide(). cpu_lock and mod_lock must not be held. * * 2.3 int dtrace_unregister(dtrace_provider_t id) * * 2.3.1 Overview * * Unregisters the specified provider from the DTrace framework. It should * generally be called by DTrace providers in their detach(9E) entry point. * * 2.3.2 Arguments and Notes * * The only argument is the provider identifier, as returned from a * successful call to dtrace_register(). As a result of calling * dtrace_unregister(), the DTrace framework will call back into the provider * via the dtps_destroy() entry point. Once dtrace_unregister() successfully * completes, however, the DTrace framework will no longer make calls through * the Framework-to-Provider API. * * 2.3.3 Return value * * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() * returns an errno: * * EBUSY There are currently processes that have the DTrace pseudodevice * open, or there exists an anonymous enabling that hasn't yet * been claimed. * * No other failure code is returned. * * 2.3.4 Caller's context * * Because a call to dtrace_unregister() may induce calls through the * Framework-to-Provider API, the caller may not hold any lock across * dtrace_register() that is also acquired in any of the Framework-to- * Provider API functions. Additionally, mod_lock may not be held. * * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) * * 2.4.1 Overview * * Invalidates the specified provider. All subsequent probe lookups for the * specified provider will fail, but its probes will not be removed. * * 2.4.2 Arguments and note * * The only argument is the provider identifier, as returned from a * successful call to dtrace_register(). In general, a provider's probes * always remain valid; dtrace_invalidate() is a mechanism for invalidating * an entire provider, regardless of whether or not probes are enabled or * not. Note that dtrace_invalidate() will _not_ prevent already enabled * probes from firing -- it will merely prevent any new enablings of the * provider's probes. * * 2.5 int dtrace_condense(dtrace_provider_id_t id) * * 2.5.1 Overview * * Removes all the unenabled probes for the given provider. This function is * not unlike dtrace_unregister(), except that it doesn't remove the * provider just as many of its associated probes as it can. * * 2.5.2 Arguments and Notes * * As with dtrace_unregister(), the sole argument is the provider identifier * as returned from a successful call to dtrace_register(). As a result of * calling dtrace_condense(), the DTrace framework will call back into the * given provider's dtps_destroy() entry point for each of the provider's * unenabled probes. * * 2.5.3 Return value * * Currently, dtrace_condense() always returns 0. However, consumers of this * function should check the return value as appropriate; its behavior may * change in the future. * * 2.5.4 Caller's context * * As with dtrace_unregister(), the caller may not hold any lock across * dtrace_condense() that is also acquired in the provider's entry points. * Also, mod_lock may not be held. * * 2.6 int dtrace_attached() * * 2.6.1 Overview * * Indicates whether or not DTrace has attached. * * 2.6.2 Arguments and Notes * * For most providers, DTrace makes initial contact beyond registration. * That is, once a provider has registered with DTrace, it waits to hear * from DTrace to create probes. However, some providers may wish to * proactively create probes without first being told by DTrace to do so. * If providers wish to do this, they must first call dtrace_attached() to * determine if DTrace itself has attached. If dtrace_attached() returns 0, * the provider must not make any other Provider-to-Framework API call. * * 2.6.3 Return value * * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. * * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, * const char *func, const char *name, int aframes, void *arg) * * 2.7.1 Overview * * Creates a probe with specified module name, function name, and name. * * 2.7.2 Arguments and Notes * * The first argument is the provider identifier, as returned from a * successful call to dtrace_register(). The second, third, and fourth * arguments are the module name, function name, and probe name, * respectively. Of these, module name and function name may both be NULL * (in which case the probe is considered to be unanchored), or they may both * be non-NULL. The name must be non-NULL, and must point to a non-empty * string. * * The fifth argument is the number of artificial stack frames that will be * found on the stack when dtrace_probe() is called for the new probe. These * artificial frames will be automatically be pruned should the stack() or * stackdepth() functions be called as part of one of the probe's ECBs. If * the parameter doesn't add an artificial frame, this parameter should be * zero. * * The final argument is a probe argument that will be passed back to the * provider when a probe-specific operation is called. (e.g., via * dtps_enable(), dtps_disable(), etc.) * * Note that it is up to the provider to be sure that the probe that it * creates does not already exist -- if the provider is unsure of the probe's * existence, it should assure its absence with dtrace_probe_lookup() before * calling dtrace_probe_create(). * * 2.7.3 Return value * * dtrace_probe_create() always succeeds, and always returns the identifier * of the newly-created probe. * * 2.7.4 Caller's context * * While dtrace_probe_create() is generally expected to be called from * dtps_provide() and/or dtps_provide_module(), it may be called from other * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. * * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, * const char *func, const char *name) * * 2.8.1 Overview * * Looks up a probe based on provdider and one or more of module name, * function name and probe name. * * 2.8.2 Arguments and Notes * * The first argument is the provider identifier, as returned from a * successful call to dtrace_register(). The second, third, and fourth * arguments are the module name, function name, and probe name, * respectively. Any of these may be NULL; dtrace_probe_lookup() will return * the identifier of the first probe that is provided by the specified * provider and matches all of the non-NULL matching criteria. * dtrace_probe_lookup() is generally used by a provider to be check the * existence of a probe before creating it with dtrace_probe_create(). * * 2.8.3 Return value * * If the probe exists, returns its identifier. If the probe does not exist, * return DTRACE_IDNONE. * * 2.8.4 Caller's context * * While dtrace_probe_lookup() is generally expected to be called from * dtps_provide() and/or dtps_provide_module(), it may also be called from * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. * * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) * * 2.9.1 Overview * * Returns the probe argument associated with the specified probe. * * 2.9.2 Arguments and Notes * * The first argument is the provider identifier, as returned from a * successful call to dtrace_register(). The second argument is a probe * identifier, as returned from dtrace_probe_lookup() or * dtrace_probe_create(). This is useful if a probe has multiple * provider-specific components to it: the provider can create the probe * once with provider-specific state, and then add to the state by looking * up the probe based on probe identifier. * * 2.9.3 Return value * * Returns the argument associated with the specified probe. If the * specified probe does not exist, or if the specified probe is not provided * by the specified provider, NULL is returned. * * 2.9.4 Caller's context * * While dtrace_probe_arg() is generally expected to be called from * dtps_provide() and/or dtps_provide_module(), it may also be called from * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. * * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) * * 2.10.1 Overview * * The epicenter of DTrace: fires the specified probes with the specified * arguments. * * 2.10.2 Arguments and Notes * * The first argument is a probe identifier as returned by * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth * arguments are the values to which the D variables "arg0" through "arg4" * will be mapped. * * dtrace_probe() should be called whenever the specified probe has fired -- * however the provider defines it. * * 2.10.3 Return value * * None. * * 2.10.4 Caller's context * * dtrace_probe() may be called in virtually any context: kernel, user, * interrupt, high-level interrupt, with arbitrary adaptive locks held, with * dispatcher locks held, with interrupts disabled, etc. The only latitude * that must be afforded to DTrace is the ability to make calls within * itself (and to its in-kernel subroutines) and the ability to access * arbitrary (but mapped) memory. On some platforms, this constrains * context. For example, on UltraSPARC, dtrace_probe() cannot be called * from any context in which TL is greater than zero. dtrace_probe() may * also not be called from any routine which may be called by dtrace_probe() * -- which includes functions in the DTrace framework and some in-kernel * DTrace subroutines. All such functions "dtrace_"; providers that * instrument the kernel arbitrarily should be sure to not instrument these * routines. */ typedef struct dtrace_pops { void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec); void (*dtps_provide_module)(void *arg, struct modctl *mp); void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, dtrace_argdesc_t *desc); uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, int argno, int aframes); int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); } dtrace_pops_t; typedef uintptr_t dtrace_provider_id_t; extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); extern int dtrace_unregister(dtrace_provider_id_t); extern int dtrace_condense(dtrace_provider_id_t); extern void dtrace_invalidate(dtrace_provider_id_t); extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *, const char *, const char *); extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, const char *, const char *, int, void *); extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); /* * DTrace Meta Provider API * * The following functions are implemented by the DTrace framework and are * used to implement meta providers. Meta providers plug into the DTrace * framework and are used to instantiate new providers on the fly. At * present, there is only one type of meta provider and only one meta * provider may be registered with the DTrace framework at a time. The * sole meta provider type provides user-land static tracing facilities * by taking meta probe descriptions and adding a corresponding provider * into the DTrace framework. * * 1 Framework-to-Provider * * 1.1 Overview * * The Framework-to-Provider API is represented by the dtrace_mops structure * that the meta provider passes to the framework when registering itself as * a meta provider. This structure consists of the following members: * * dtms_create_probe() <-- Add a new probe to a created provider * dtms_provide_pid() <-- Create a new provider for a given process * dtms_remove_pid() <-- Remove a previously created provider * * 1.2 void dtms_create_probe(void *arg, void *parg, * dtrace_helper_probedesc_t *probedesc); * * 1.2.1 Overview * * Called by the DTrace framework to create a new probe in a provider * created by this meta provider. * * 1.2.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_meta_register(). * The second argument is the provider cookie for the associated provider; * this is obtained from the return value of dtms_provide_pid(). The third * argument is the helper probe description. * * 1.2.3 Return value * * None * * 1.2.4 Caller's context * * dtms_create_probe() is called from either ioctl() or module load context. * The DTrace framework is locked in such a way that meta providers may not * register or unregister. This means that the meta provider cannot call * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is * such that the provider may (and is expected to) call provider-related * DTrace provider APIs including dtrace_probe_create(). * * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, * pid_t pid) * * 1.3.1 Overview * * Called by the DTrace framework to instantiate a new provider given the * description of the provider and probes in the mprov argument. The * meta provider should call dtrace_register() to insert the new provider * into the DTrace framework. * * 1.3.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_meta_register(). * The second argument is a pointer to a structure describing the new * helper provider. The third argument is the process identifier for * process associated with this new provider. Note that the name of the * provider as passed to dtrace_register() should be the contatenation of * the dtmpb_provname member of the mprov argument and the processs * identifier as a string. * * 1.3.3 Return value * * The cookie for the provider that the meta provider creates. This is * the same value that it passed to dtrace_register(). * * 1.3.4 Caller's context * * dtms_provide_pid() is called from either ioctl() or module load context. * The DTrace framework is locked in such a way that meta providers may not * register or unregister. This means that the meta provider cannot call * dtrace_meta_register() or dtrace_meta_unregister(). However, the context * is such that the provider may -- and is expected to -- call * provider-related DTrace provider APIs including dtrace_register(). * * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, * pid_t pid) * * 1.4.1 Overview * * Called by the DTrace framework to remove a provider that had previously * been instantiated via the dtms_provide_pid() entry point. The meta * provider need not remove the provider immediately, but this entry * point indicates that the provider should be removed as soon as possible * using the dtrace_unregister() API. * * 1.4.2 Arguments and notes * * The first argument is the cookie as passed to dtrace_meta_register(). * The second argument is a pointer to a structure describing the helper * provider. The third argument is the process identifier for process * associated with this new provider. * * 1.4.3 Return value * * None * * 1.4.4 Caller's context * * dtms_remove_pid() is called from either ioctl() or exit() context. * The DTrace framework is locked in such a way that meta providers may not * register or unregister. This means that the meta provider cannot call * dtrace_meta_register() or dtrace_meta_unregister(). However, the context * is such that the provider may -- and is expected to -- call * provider-related DTrace provider APIs including dtrace_unregister(). */ typedef struct dtrace_helper_probedesc { char *dthpb_mod; /* probe module */ char *dthpb_func; /* probe function */ char *dthpb_name; /* probe name */ uint64_t dthpb_base; /* base address */ uint32_t *dthpb_offs; /* offsets array */ uint32_t *dthpb_enoffs; /* is-enabled offsets array */ uint32_t dthpb_noffs; /* offsets count */ uint32_t dthpb_nenoffs; /* is-enabled offsets count */ uint8_t *dthpb_args; /* argument mapping array */ uint8_t dthpb_xargc; /* translated argument count */ uint8_t dthpb_nargc; /* native argument count */ char *dthpb_xtypes; /* translated types strings */ char *dthpb_ntypes; /* native types strings */ } dtrace_helper_probedesc_t; typedef struct dtrace_helper_provdesc { char *dthpv_provname; /* provider name */ dtrace_pattr_t dthpv_pattr; /* stability attributes */ } dtrace_helper_provdesc_t; typedef struct dtrace_mops { void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); } dtrace_mops_t; typedef uintptr_t dtrace_meta_provider_id_t; extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, dtrace_meta_provider_id_t *); extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); /* * DTrace Kernel Hooks * * The following functions are implemented by the base kernel and form a set of * hooks used by the DTrace framework. DTrace hooks are implemented in either * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a * uts//os/dtrace_subr.c corresponding to each hardware platform. */ typedef enum dtrace_vtime_state { DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ } dtrace_vtime_state_t; extern dtrace_vtime_state_t dtrace_vtime_active; extern void dtrace_vtime_switch(kthread_t *next); extern void dtrace_vtime_enable_tnf(void); extern void dtrace_vtime_disable_tnf(void); extern void dtrace_vtime_enable(void); extern void dtrace_vtime_disable(void); struct regs; extern int (*dtrace_pid_probe_ptr)(struct regs *); extern int (*dtrace_return_probe_ptr)(struct regs *); extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); extern void dtrace_fasttrap_fork(proc_t *, proc_t *); typedef uintptr_t dtrace_icookie_t; typedef void (*dtrace_xcall_t)(void *); extern dtrace_icookie_t dtrace_interrupt_disable(void); extern void dtrace_interrupt_enable(dtrace_icookie_t); extern void dtrace_membar_producer(void); extern void dtrace_membar_consumer(void); extern void (*dtrace_cpu_init)(processorid_t); extern void (*dtrace_modload)(struct modctl *); extern void (*dtrace_modunload)(struct modctl *); extern void (*dtrace_helpers_cleanup)(); extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); extern void (*dtrace_cpustart_init)(); extern void (*dtrace_cpustart_fini)(); extern void (*dtrace_kreloc_init)(); extern void (*dtrace_kreloc_fini)(); extern void (*dtrace_debugger_init)(); extern void (*dtrace_debugger_fini)(); extern dtrace_cacheid_t dtrace_predcache_id; extern hrtime_t dtrace_gethrtime(void); extern void dtrace_sync(void); extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); extern void dtrace_vpanic(const char *, __va_list); extern void dtrace_panic(const char *, ...); extern int dtrace_safe_defer_signal(void); extern void dtrace_safe_synchronous_signal(void); extern int dtrace_mach_aframes(void); #if defined(__i386) || defined(__amd64) extern int dtrace_instr_size(uchar_t *instr); extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t)); extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t)); extern void dtrace_invop_callsite(void); #endif #ifdef __sparc extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); extern void dtrace_getfsr(uint64_t *); #endif #define DTRACE_CPUFLAG_ISSET(flag) \ (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag)) #define DTRACE_CPUFLAG_SET(flag) \ (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag)) #define DTRACE_CPUFLAG_CLEAR(flag) \ (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag)) #endif /* _KERNEL */ #endif /* _ASM */ #if defined(__i386) || defined(__amd64) #define DTRACE_INVOP_PUSHL_EBP 1 #define DTRACE_INVOP_POPL_EBP 2 #define DTRACE_INVOP_LEAVE 3 #define DTRACE_INVOP_NOP 4 #define DTRACE_INVOP_RET 5 #endif #ifdef __cplusplus } #endif #endif /* _SYS_DTRACE_H */