/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include int pci_config_setup(dev_info_t *dip, ddi_acc_handle_t *handle) { caddr_t cfgaddr; ddi_device_acc_attr_t attr; attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; /* Check for fault management capabilities */ if (DDI_FM_ACC_ERR_CAP(ddi_fm_capable(dip))) { attr.devacc_attr_version = DDI_DEVICE_ATTR_V1; attr.devacc_attr_access = DDI_FLAGERR_ACC; } return (ddi_regs_map_setup(dip, 0, &cfgaddr, 0, 0, &attr, handle)); } void pci_config_teardown(ddi_acc_handle_t *handle) { ddi_regs_map_free(handle); } uint8_t pci_config_get8(ddi_acc_handle_t handle, off_t offset) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; return (ddi_get8(handle, (uint8_t *)cfgaddr)); } uint16_t pci_config_get16(ddi_acc_handle_t handle, off_t offset) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; return (ddi_get16(handle, (uint16_t *)cfgaddr)); } uint32_t pci_config_get32(ddi_acc_handle_t handle, off_t offset) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; return (ddi_get32(handle, (uint32_t *)cfgaddr)); } uint64_t pci_config_get64(ddi_acc_handle_t handle, off_t offset) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; return (ddi_get64(handle, (uint64_t *)cfgaddr)); } void pci_config_put8(ddi_acc_handle_t handle, off_t offset, uint8_t value) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; ddi_put8(handle, (uint8_t *)cfgaddr, value); } void pci_config_put16(ddi_acc_handle_t handle, off_t offset, uint16_t value) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; ddi_put16(handle, (uint16_t *)cfgaddr, value); } void pci_config_put32(ddi_acc_handle_t handle, off_t offset, uint32_t value) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; ddi_put32(handle, (uint32_t *)cfgaddr, value); } void pci_config_put64(ddi_acc_handle_t handle, off_t offset, uint64_t value) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; ddi_put64(handle, (uint64_t *)cfgaddr, value); } /* * We need to separate the old interfaces from the new ones and leave them * in here for a while. Previous versions of the OS defined the new interfaces * to the old interfaces. This way we can fix things up so that we can * eventually remove these interfaces. * e.g. A 3rd party module/driver using pci_config_get8 and built against S10 * or earlier will actually have a reference to pci_config_getb in the binary. */ #ifdef _ILP32 uint8_t pci_config_getb(ddi_acc_handle_t handle, off_t offset) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; return (ddi_get8(handle, (uint8_t *)cfgaddr)); } uint16_t pci_config_getw(ddi_acc_handle_t handle, off_t offset) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; return (ddi_get16(handle, (uint16_t *)cfgaddr)); } uint32_t pci_config_getl(ddi_acc_handle_t handle, off_t offset) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; return (ddi_get32(handle, (uint32_t *)cfgaddr)); } uint64_t pci_config_getll(ddi_acc_handle_t handle, off_t offset) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; return (ddi_get64(handle, (uint64_t *)cfgaddr)); } void pci_config_putb(ddi_acc_handle_t handle, off_t offset, uint8_t value) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; ddi_put8(handle, (uint8_t *)cfgaddr, value); } void pci_config_putw(ddi_acc_handle_t handle, off_t offset, uint16_t value) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; ddi_put16(handle, (uint16_t *)cfgaddr, value); } void pci_config_putl(ddi_acc_handle_t handle, off_t offset, uint32_t value) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; ddi_put32(handle, (uint32_t *)cfgaddr, value); } void pci_config_putll(ddi_acc_handle_t handle, off_t offset, uint64_t value) { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; ddi_put64(handle, (uint64_t *)cfgaddr, value); } #endif /* _ILP32 */ /*ARGSUSED*/ int pci_report_pmcap(dev_info_t *dip, int cap, void *arg) { return (DDI_SUCCESS); } /* * Note about saving and restoring config space. * PCI devices have only upto 256 bytes of config space while PCI Express * devices can have upto 4k config space. In case of PCI Express device, * we save all 4k config space and restore it even if it doesn't make use * of all 4k. But some devices don't respond to reads to non-existent * registers within the config space. To avoid any panics, we use ddi_peek * to do the reads. A bit mask is used to indicate which words of the * config space are accessible. While restoring the config space, only those * readable words are restored. We do all this in 32 bit size words. */ #define INDEX_SHIFT 3 #define BITMASK 0x7 static uint32_t pci_save_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf, pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp); static void pci_restore_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf, pci_cap_save_desc_t *cap_descp, uint32_t elements); static uint32_t pci_generic_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t nwords); static uint32_t pci_msi_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t notused); static uint32_t pci_pcix_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t notused); static uint32_t pci_pcie_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t notused); static void pci_fill_buf(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t nwords); static uint32_t cap_walk_and_save(ddi_acc_handle_t confhdl, uint32_t *regbuf, pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp, int xspace); static void pci_pmcap_check(ddi_acc_handle_t confhdl, uint32_t *regbuf, uint16_t pmcap_offset); /* * Table below specifies the number of registers to be saved for each PCI * capability. pci_generic_save saves the number of words specified in the * table. Any special considerations will be taken care by the capability * specific save function e.g. use pci_msi_save to save registers associated * with MSI capability. PCI_UNKNOWN_SIZE indicates that number of registers * to be saved is variable and will be determined by the specific save function. * Currently we save/restore all the registers associated with the capability * including read only registers. Regsiters are saved and restored in 32 bit * size words. */ static pci_cap_entry_t pci_cap_table[] = { {PCI_CAP_ID_PM, PCI_PMCAP_NDWORDS, pci_generic_save}, {PCI_CAP_ID_AGP, PCI_AGP_NDWORDS, pci_generic_save}, {PCI_CAP_ID_SLOT_ID, PCI_SLOTID_NDWORDS, pci_generic_save}, {PCI_CAP_ID_MSI_X, PCI_MSIX_NDWORDS, pci_generic_save}, {PCI_CAP_ID_MSI, PCI_CAP_SZUNKNOWN, pci_msi_save}, {PCI_CAP_ID_PCIX, PCI_CAP_SZUNKNOWN, pci_pcix_save}, {PCI_CAP_ID_PCI_E, PCI_CAP_SZUNKNOWN, pci_pcie_save}, /* * {PCI_CAP_ID_cPCI_CRC, 0, NULL}, * {PCI_CAP_ID_VPD, 0, NULL}, * {PCI_CAP_ID_cPCI_HS, 0, NULL}, * {PCI_CAP_ID_PCI_HOTPLUG, 0, NULL}, * {PCI_CAP_ID_AGP_8X, 0, NULL}, * {PCI_CAP_ID_SECURE_DEV, 0, NULL}, */ {PCI_CAP_NEXT_PTR_NULL, 0, NULL} }; /* * Save the configuration registers for cdip as a property * so that it persists after detach/uninitchild. */ int pci_save_config_regs(dev_info_t *dip) { ddi_acc_handle_t confhdl; pci_config_header_state_t *chsp; pci_cap_save_desc_t *pci_cap_descp; int ret; uint32_t i, ncaps, nwords; uint32_t *regbuf, *p; uint8_t *maskbuf; size_t maskbufsz, regbufsz, capbufsz; #ifdef __sparc ddi_acc_hdl_t *hp; #else ddi_device_acc_attr_t attr; caddr_t cfgaddr; #endif off_t offset = 0; uint8_t cap_ptr, cap_id; int pcie = 0; uint16_t status; PMD(PMD_SX, ("pci_save_config_regs %s:%d\n", ddi_driver_name(dip), ddi_get_instance(dip))) #ifdef __sparc if (pci_config_setup(dip, &confhdl) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d can't get config handle", ddi_driver_name(dip), ddi_get_instance(dip)); return (DDI_FAILURE); } #else /* Set up cautious config access handle */ attr.devacc_attr_version = DDI_DEVICE_ATTR_V1; attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; attr.devacc_attr_access = DDI_CAUTIOUS_ACC; if (ddi_regs_map_setup(dip, 0, &cfgaddr, 0, 0, &attr, &confhdl) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d can't setup cautious config handle", ddi_driver_name(dip), ddi_get_instance(dip)); return (DDI_FAILURE); } #endif /* * Determine if it implements capabilities */ status = pci_config_get16(confhdl, PCI_CONF_STAT); if (!(status & 0x10)) { goto no_cap; } /* * Determine if it is a pci express device. If it is, save entire * 4k config space treating it as a array of 32 bit integers. * If it is not, do it in a usual PCI way. */ cap_ptr = pci_config_get8(confhdl, PCI_BCNF_CAP_PTR); /* * Walk the capabilities searching for pci express capability */ while (cap_ptr != PCI_CAP_NEXT_PTR_NULL) { cap_id = pci_config_get8(confhdl, cap_ptr + PCI_CAP_ID); if (cap_id == PCI_CAP_ID_PCI_E) { pcie = 1; break; } cap_ptr = pci_config_get8(confhdl, cap_ptr + PCI_CAP_NEXT_PTR); } no_cap: if (pcie) { /* PCI express device. Can have data in all 4k space */ regbuf = (uint32_t *)kmem_zalloc((size_t)PCIE_CONF_HDR_SIZE, KM_SLEEP); p = regbuf; /* * Allocate space for mask. * mask size is 128 bytes (4096 / 4 / 8 ) */ maskbufsz = (size_t)((PCIE_CONF_HDR_SIZE/ sizeof (uint32_t)) >> INDEX_SHIFT); maskbuf = (uint8_t *)kmem_zalloc(maskbufsz, KM_SLEEP); #ifdef __sparc hp = impl_acc_hdl_get(confhdl); #endif for (i = 0; i < (PCIE_CONF_HDR_SIZE / sizeof (uint32_t)); i++) { #ifdef __sparc ret = ddi_peek32(dip, (int32_t *)(hp->ah_addr + offset), (int32_t *)p); if (ret == DDI_SUCCESS) { #else /* * ddi_peek doesn't work on x86, so we use cautious pci * config access instead. */ *p = pci_config_get32(confhdl, offset); if (*p != -1) { #endif /* it is readable register. set the bit */ maskbuf[i >> INDEX_SHIFT] |= (uint8_t)(1 << (i & BITMASK)); } p++; offset += sizeof (uint32_t); } if ((ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS_MASK, (uchar_t *)maskbuf, maskbufsz)) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "couldn't create %s property while" "saving config space for %s@%d\n", SAVED_CONFIG_REGS_MASK, ddi_driver_name(dip), ddi_get_instance(dip)); } else if ((ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS, (uchar_t *)regbuf, (size_t)PCIE_CONF_HDR_SIZE)) != DDI_PROP_SUCCESS) { (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS_MASK); cmn_err(CE_WARN, "%s%d can't update prop %s", ddi_driver_name(dip), ddi_get_instance(dip), SAVED_CONFIG_REGS); } kmem_free(maskbuf, (size_t)maskbufsz); kmem_free(regbuf, (size_t)PCIE_CONF_HDR_SIZE); } else { regbuf = (uint32_t *)kmem_zalloc((size_t)PCI_CONF_HDR_SIZE, KM_SLEEP); chsp = (pci_config_header_state_t *)regbuf; chsp->chs_command = pci_config_get16(confhdl, PCI_CONF_COMM); chsp->chs_header_type = pci_config_get8(confhdl, PCI_CONF_HEADER); if ((chsp->chs_header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE) chsp->chs_bridge_control = pci_config_get16(confhdl, PCI_BCNF_BCNTRL); chsp->chs_cache_line_size = pci_config_get8(confhdl, PCI_CONF_CACHE_LINESZ); chsp->chs_latency_timer = pci_config_get8(confhdl, PCI_CONF_LATENCY_TIMER); if ((chsp->chs_header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE) { chsp->chs_sec_latency_timer = pci_config_get8(confhdl, PCI_BCNF_LATENCY_TIMER); } chsp->chs_base0 = pci_config_get32(confhdl, PCI_CONF_BASE0); chsp->chs_base1 = pci_config_get32(confhdl, PCI_CONF_BASE1); chsp->chs_base2 = pci_config_get32(confhdl, PCI_CONF_BASE2); chsp->chs_base3 = pci_config_get32(confhdl, PCI_CONF_BASE3); chsp->chs_base4 = pci_config_get32(confhdl, PCI_CONF_BASE4); chsp->chs_base5 = pci_config_get32(confhdl, PCI_CONF_BASE5); /* * Allocate maximum space required for capability descriptions. * The maximum number of capabilties saved is the number of * capabilities listed in the pci_cap_table. */ ncaps = (sizeof (pci_cap_table) / sizeof (pci_cap_entry_t)); capbufsz = ncaps * sizeof (pci_cap_save_desc_t); pci_cap_descp = (pci_cap_save_desc_t *)kmem_zalloc( capbufsz, KM_SLEEP); p = (uint32_t *)((caddr_t)regbuf + sizeof (pci_config_header_state_t)); nwords = pci_save_caps(confhdl, p, pci_cap_descp, &ncaps); regbufsz = sizeof (pci_config_header_state_t) + nwords * sizeof (uint32_t); if ((ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS, (uchar_t *)regbuf, regbufsz)) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "%s%d can't update prop %s", ddi_driver_name(dip), ddi_get_instance(dip), SAVED_CONFIG_REGS); } else if (ncaps) { ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS_CAPINFO, (uchar_t *)pci_cap_descp, ncaps * sizeof (pci_cap_save_desc_t)); if (ret != DDI_PROP_SUCCESS) (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS); } kmem_free(regbuf, (size_t)PCI_CONF_HDR_SIZE); kmem_free(pci_cap_descp, capbufsz); } pci_config_teardown(&confhdl); if (ret != DDI_PROP_SUCCESS) return (DDI_FAILURE); return (DDI_SUCCESS); } /* * Saves registers associated with PCI capabilities. * Returns number of 32 bit words saved. * Number of capabilities saved is returned in ncapsp. */ static uint32_t pci_save_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf, pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp) { return (cap_walk_and_save(confhdl, regbuf, cap_descp, ncapsp, 0)); } static uint32_t cap_walk_and_save(ddi_acc_handle_t confhdl, uint32_t *regbuf, pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp, int xspace) { pci_cap_entry_t *pci_cap_entp; uint16_t cap_id, offset, status; uint32_t words_saved = 0, nwords = 0; uint16_t cap_ptr = PCI_CAP_NEXT_PTR_NULL; *ncapsp = 0; /* * Determine if it implements capabilities */ status = pci_config_get16(confhdl, PCI_CONF_STAT); if (!(status & 0x10)) { return (words_saved); } if (!xspace) cap_ptr = pci_config_get8(confhdl, PCI_BCNF_CAP_PTR); /* * Walk the capabilities */ while (cap_ptr != PCI_CAP_NEXT_PTR_NULL) { cap_id = CAP_ID(confhdl, cap_ptr, xspace); /* Search for this cap id in our table */ if (!xspace) pci_cap_entp = pci_cap_table; while (pci_cap_entp->cap_id != PCI_CAP_NEXT_PTR_NULL && pci_cap_entp->cap_id != cap_id) pci_cap_entp++; offset = cap_ptr; cap_ptr = NEXT_CAP(confhdl, cap_ptr, xspace); /* * If this cap id is not found in the table, there is nothing * to save. */ if (pci_cap_entp->cap_id == PCI_CAP_NEXT_PTR_NULL) continue; if (pci_cap_entp->cap_save_func) { if ((nwords = pci_cap_entp->cap_save_func(confhdl, offset, regbuf, pci_cap_entp->cap_ndwords))) { cap_descp->cap_nregs = nwords; cap_descp->cap_offset = offset; cap_descp->cap_id = cap_id; regbuf += nwords; cap_descp++; words_saved += nwords; (*ncapsp)++; } } } return (words_saved); } static void pci_fill_buf(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t nwords) { int i; for (i = 0; i < nwords; i++) { *regbuf = pci_config_get32(confhdl, cap_ptr); regbuf++; cap_ptr += 4; } } static uint32_t pci_generic_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t nwords) { pci_fill_buf(confhdl, cap_ptr, regbuf, nwords); return (nwords); } /*ARGSUSED*/ static uint32_t pci_msi_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t notused) { uint32_t nwords = PCI_MSI_MIN_WORDS; uint16_t msi_ctrl; /* Figure out how many registers to be saved */ msi_ctrl = pci_config_get16(confhdl, cap_ptr + PCI_MSI_CTRL); /* If 64 bit address capable add one word */ if (msi_ctrl & PCI_MSI_64BIT_MASK) nwords++; /* If per vector masking capable, add two more words */ if (msi_ctrl & PCI_MSI_PVM_MASK) nwords += 2; pci_fill_buf(confhdl, cap_ptr, regbuf, nwords); return (nwords); } /*ARGSUSED*/ static uint32_t pci_pcix_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t notused) { uint32_t nwords = PCI_PCIX_MIN_WORDS; uint16_t pcix_command; /* Figure out how many registers to be saved */ pcix_command = pci_config_get16(confhdl, cap_ptr + PCI_PCIX_COMMAND); /* If it is version 1 or version 2, add 4 words */ if (((pcix_command & PCI_PCIX_VER_MASK) == PCI_PCIX_VER_1) || ((pcix_command & PCI_PCIX_VER_MASK) == PCI_PCIX_VER_2)) nwords += 4; pci_fill_buf(confhdl, cap_ptr, regbuf, nwords); return (nwords); } /*ARGSUSED*/ static uint32_t pci_pcie_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t notused) { return (0); } static void pci_pmcap_check(ddi_acc_handle_t confhdl, uint32_t *regbuf, uint16_t pmcap_offset) { uint16_t pmcsr; uint16_t pmcsr_offset = pmcap_offset + PCI_PMCSR; uint32_t *saved_pmcsrp = (uint32_t *)((caddr_t)regbuf + PCI_PMCSR); /* * Copy the power state bits from the PMCSR to our saved copy. * This is to make sure that we don't change the D state when * we restore config space of the device. */ pmcsr = pci_config_get16(confhdl, pmcsr_offset); (*saved_pmcsrp) &= ~PCI_PMCSR_STATE_MASK; (*saved_pmcsrp) |= (pmcsr & PCI_PMCSR_STATE_MASK); } static void pci_restore_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf, pci_cap_save_desc_t *cap_descp, uint32_t elements) { int i, j; uint16_t offset; for (i = 0; i < (elements / sizeof (pci_cap_save_desc_t)); i++) { offset = cap_descp->cap_offset; if (cap_descp->cap_id == PCI_CAP_ID_PM) pci_pmcap_check(confhdl, regbuf, offset); for (j = 0; j < cap_descp->cap_nregs; j++) { pci_config_put32(confhdl, offset, *regbuf); regbuf++; offset += 4; } cap_descp++; } } /* * Restore config_regs from a single devinfo node. */ int pci_restore_config_regs(dev_info_t *dip) { ddi_acc_handle_t confhdl; pci_config_header_state_t *chs_p; pci_cap_save_desc_t *cap_descp; uint32_t elements, i; uint8_t *maskbuf; uint32_t *regbuf, *p; off_t offset = 0; if (pci_config_setup(dip, &confhdl) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d can't get config handle", ddi_driver_name(dip), ddi_get_instance(dip)); return (DDI_FAILURE); } if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS_MASK, (uchar_t **)&maskbuf, &elements) == DDI_PROP_SUCCESS) { if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS, (uchar_t **)®buf, &elements) != DDI_PROP_SUCCESS) { goto restoreconfig_err; } ASSERT(elements == PCIE_CONF_HDR_SIZE); /* pcie device and has 4k config space saved */ p = regbuf; for (i = 0; i < PCIE_CONF_HDR_SIZE / sizeof (uint32_t); i++) { /* If the word is readable then restore it */ if (maskbuf[i >> INDEX_SHIFT] & (uint8_t)(1 << (i & BITMASK))) pci_config_put32(confhdl, offset, *p); p++; offset += sizeof (uint32_t); } ddi_prop_free(regbuf); ddi_prop_free(maskbuf); if (ndi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS_MASK) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "%s%d can't remove prop %s", ddi_driver_name(dip), ddi_get_instance(dip), SAVED_CONFIG_REGS_MASK); } } else { if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS, (uchar_t **)®buf, &elements) != DDI_PROP_SUCCESS) { pci_config_teardown(&confhdl); return (DDI_SUCCESS); } chs_p = (pci_config_header_state_t *)regbuf; pci_config_put16(confhdl, PCI_CONF_COMM, chs_p->chs_command); if ((chs_p->chs_header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE) { pci_config_put16(confhdl, PCI_BCNF_BCNTRL, chs_p->chs_bridge_control); } pci_config_put8(confhdl, PCI_CONF_CACHE_LINESZ, chs_p->chs_cache_line_size); pci_config_put8(confhdl, PCI_CONF_LATENCY_TIMER, chs_p->chs_latency_timer); if ((chs_p->chs_header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE) pci_config_put8(confhdl, PCI_BCNF_LATENCY_TIMER, chs_p->chs_sec_latency_timer); pci_config_put32(confhdl, PCI_CONF_BASE0, chs_p->chs_base0); pci_config_put32(confhdl, PCI_CONF_BASE1, chs_p->chs_base1); pci_config_put32(confhdl, PCI_CONF_BASE2, chs_p->chs_base2); pci_config_put32(confhdl, PCI_CONF_BASE3, chs_p->chs_base3); pci_config_put32(confhdl, PCI_CONF_BASE4, chs_p->chs_base4); pci_config_put32(confhdl, PCI_CONF_BASE5, chs_p->chs_base5); if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS_CAPINFO, (uchar_t **)&cap_descp, &elements) == DDI_PROP_SUCCESS) { /* * PCI capability related regsiters are saved. * Restore them based on the description. */ p = (uint32_t *)((caddr_t)regbuf + sizeof (pci_config_header_state_t)); pci_restore_caps(confhdl, p, cap_descp, elements); ddi_prop_free(cap_descp); } ddi_prop_free(regbuf); } /* * Make sure registers are flushed */ (void) pci_config_get32(confhdl, PCI_CONF_BASE5); if (ndi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "%s%d can't remove prop %s", ddi_driver_name(dip), ddi_get_instance(dip), SAVED_CONFIG_REGS); } pci_config_teardown(&confhdl); return (DDI_SUCCESS); restoreconfig_err: ddi_prop_free(maskbuf); if (ndi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS_MASK) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "%s%d can't remove prop %s", ddi_driver_name(dip), ddi_get_instance(dip), SAVED_CONFIG_REGS_MASK); } pci_config_teardown(&confhdl); return (DDI_FAILURE); } /*ARGSUSED*/ static int pci_lookup_pmcap(dev_info_t *dip, ddi_acc_handle_t conf_hdl, uint16_t *pmcap_offsetp) { uint8_t cap_ptr; uint8_t cap_id; uint8_t header_type; uint16_t status; header_type = pci_config_get8(conf_hdl, PCI_CONF_HEADER); header_type &= PCI_HEADER_TYPE_M; /* we don't deal with bridges, etc here */ if (header_type != PCI_HEADER_ZERO) { return (DDI_FAILURE); } status = pci_config_get16(conf_hdl, PCI_CONF_STAT); if ((status & PCI_STAT_CAP) == 0) { return (DDI_FAILURE); } cap_ptr = pci_config_get8(conf_hdl, PCI_CONF_CAP_PTR); /* * Walk the capabilities searching for a PM entry. */ while (cap_ptr != PCI_CAP_NEXT_PTR_NULL) { cap_id = pci_config_get8(conf_hdl, cap_ptr + PCI_CAP_ID); if (cap_id == PCI_CAP_ID_PM) { break; } cap_ptr = pci_config_get8(conf_hdl, cap_ptr + PCI_CAP_NEXT_PTR); } if (cap_ptr == PCI_CAP_NEXT_PTR_NULL) { return (DDI_FAILURE); } *pmcap_offsetp = cap_ptr; return (DDI_SUCCESS); } /* * Do common pci-specific suspend actions: * - enable wakeup if appropriate for the device * - put device in lowest D-state that supports wakeup, or D3 if none * - turn off bus mastering in control register * For lack of per-dip storage (parent private date is pretty busy) * we use properties to store the necessary context * To avoid grotting through pci config space on every suspend, * we leave the prop in existence after resume, cause we know that * the detach framework code will dispose of it for us. */ typedef struct pci_pm_context { int ppc_flags; uint16_t ppc_cap_offset; /* offset in config space to pm cap */ uint16_t ppc_pmcsr; /* need this too */ uint16_t ppc_suspend_level; } pci_pm_context_t; #define SAVED_PM_CONTEXT "pci-pm-context" /* values for ppc_flags */ #define PPCF_NOPMCAP 1 /* * Handle pci-specific suspend processing * PM CSR and PCI CMD are saved by pci_save_config_regs(). * If device can wake up system via PME, enable it to do so * Set device power level to lowest that can generate PME, or D3 if none can * Turn off bus master enable in pci command register */ #if defined(__x86) extern int acpi_ddi_setwake(dev_info_t *dip, int level); #endif int pci_post_suspend(dev_info_t *dip) { pci_pm_context_t *p; uint16_t pmcap, pmcsr, pcicmd; uint_t length; int ret; int fromprop = 1; /* source of memory *p */ ddi_acc_handle_t hdl; PMD(PMD_SX, ("pci_post_suspend %s:%d\n", ddi_driver_name(dip), ddi_get_instance(dip))) if (pci_save_config_regs(dip) != DDI_SUCCESS) { return (DDI_FAILURE); } if (pci_config_setup(dip, &hdl) != DDI_SUCCESS) { return (DDI_FAILURE); } if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_PM_CONTEXT, (uchar_t **)&p, &length) != DDI_PROP_SUCCESS) { p = (pci_pm_context_t *)kmem_zalloc(sizeof (*p), KM_SLEEP); fromprop = 0; if (pci_lookup_pmcap(dip, hdl, &p->ppc_cap_offset) != DDI_SUCCESS) { p->ppc_flags |= PPCF_NOPMCAP; ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, SAVED_PM_CONTEXT, (uchar_t *)p, sizeof (pci_pm_context_t)); if (ret != DDI_PROP_SUCCESS) { (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_PM_CONTEXT); ret = DDI_FAILURE; } else { ret = DDI_SUCCESS; } kmem_free(p, sizeof (*p)); pci_config_teardown(&hdl); return (DDI_SUCCESS); } /* * Upon suspend, set the power level to the lowest that can * wake the system. If none can, then set to lowest. * XXX later we will need to check policy to see if this * XXX device has had wakeup disabled */ pmcap = pci_config_get16(hdl, p->ppc_cap_offset + PCI_PMCAP); if ((pmcap & PCI_PMCAP_D3COLD_PME) != 0) p->ppc_suspend_level = (PCI_PMCSR_PME_EN | PCI_PMCSR_D3HOT); else if ((pmcap & (PCI_PMCAP_D3HOT_PME | PCI_PMCAP_D2_PME)) != 0) p->ppc_suspend_level = PCI_PMCSR_PME_EN | PCI_PMCSR_D2; else if ((pmcap & PCI_PMCAP_D1_PME) != 0) p->ppc_suspend_level = PCI_PMCSR_PME_EN | PCI_PMCSR_D1; else if ((pmcap & PCI_PMCAP_D0_PME) != 0) p->ppc_suspend_level = PCI_PMCSR_PME_EN | PCI_PMCSR_D0; else p->ppc_suspend_level = PCI_PMCSR_D3HOT; /* * we defer updating the property to catch the saved * register values as well */ } /* If we set this in kmem_zalloc'd memory, we already returned above */ if ((p->ppc_flags & PPCF_NOPMCAP) != 0) { ddi_prop_free(p); pci_config_teardown(&hdl); return (DDI_SUCCESS); } /* * Turn off (Bus) Master Enable, since acpica will be turning off * bus master aribitration */ pcicmd = pci_config_get16(hdl, PCI_CONF_COMM); pcicmd &= ~PCI_COMM_ME; pci_config_put16(hdl, PCI_CONF_COMM, pcicmd); /* * set pm csr */ pmcsr = pci_config_get16(hdl, p->ppc_cap_offset + PCI_PMCSR); p->ppc_pmcsr = pmcsr; pmcsr &= (PCI_PMCSR_STATE_MASK); pmcsr |= (PCI_PMCSR_PME_STAT | p->ppc_suspend_level); pci_config_put16(hdl, p->ppc_cap_offset + PCI_PMCSR, pmcsr); #if defined(__x86) /* * Arrange for platform wakeup enabling */ if ((p->ppc_suspend_level & PCI_PMCSR_PME_EN) != 0) { int retval; retval = acpi_ddi_setwake(dip, 3); /* XXX 3 for now */ if (retval) { PMD(PMD_SX, ("pci_post_suspend, setwake %s@%s rets " "%x\n", PM_NAME(dip), PM_ADDR(dip), retval)); } } #endif /* * Push out saved register values */ ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, SAVED_PM_CONTEXT, (uchar_t *)p, sizeof (pci_pm_context_t)); if (ret == DDI_PROP_SUCCESS) { if (fromprop) ddi_prop_free(p); else kmem_free(p, sizeof (*p)); pci_config_teardown(&hdl); return (DDI_SUCCESS); } /* Failed; put things back the way we found them */ (void) pci_restore_config_regs(dip); if (fromprop) ddi_prop_free(p); else kmem_free(p, sizeof (*p)); (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_PM_CONTEXT); pci_config_teardown(&hdl); return (DDI_FAILURE); } /* * The inverse of pci_post_suspend; handle pci-specific resume processing * First, turn device back on, then restore config space. */ int pci_pre_resume(dev_info_t *dip) { ddi_acc_handle_t hdl; pci_pm_context_t *p; /* E_FUNC_SET_NOT_USED */ uint16_t pmcap, pmcsr; int flags; uint_t length; clock_t drv_usectohz(clock_t microsecs); #if defined(__x86) uint16_t suspend_level; #endif PMD(PMD_SX, ("pci_pre_resume %s:%d\n", ddi_driver_name(dip), ddi_get_instance(dip))) if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_PM_CONTEXT, (uchar_t **)&p, &length) != DDI_PROP_SUCCESS) { return (DDI_FAILURE); } flags = p->ppc_flags; pmcap = p->ppc_cap_offset; pmcsr = p->ppc_pmcsr; #if defined(__x86) suspend_level = p->ppc_suspend_level; #endif ddi_prop_free(p); if ((flags & PPCF_NOPMCAP) != 0) goto done; #if defined(__x86) /* * Turn platform wake enable back off */ if ((suspend_level & PCI_PMCSR_PME_EN) != 0) { int retval; retval = acpi_ddi_setwake(dip, 0); /* 0 for now */ if (retval) { PMD(PMD_SX, ("pci_pre_resume, setwake %s@%s rets " "%x\n", PM_NAME(dip), PM_ADDR(dip), retval)); } } #endif if (pci_config_setup(dip, &hdl) != DDI_SUCCESS) { return (DDI_FAILURE); } pci_config_put16(hdl, pmcap + PCI_PMCSR, pmcsr); delay(drv_usectohz(10000)); /* PCI PM spec D3->D0 (10ms) */ pci_config_teardown(&hdl); done: (void) pci_restore_config_regs(dip); /* fudges D-state! */ return (DDI_SUCCESS); }