/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 1998-2003 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include /* * Tunable parameters: * * ftrace_atboot - whether to start fast tracing at boot. * ftrace_nent - size of the per-CPU event ring buffer. */ int ftrace_atboot = 0; int ftrace_nent = FTRACE_NENT; /* * The current overall state of the ftrace subsystem. * If FTRACE_READY is set, then tracing can be enabled. * If FTRACE_ENABLED is set, tracing is enabled on the set of CPUs * which are currently FTRACE_READY. */ static int ftrace_state = 0; /* * Protects assignments to: * ftrace_state * cpu[N]->cpu_ftrace.ftd_state * cpu[N]->cpu_ftrace.ftd_cur * cpu[N]->cpu_ftrace.ftd_first * cpu[N]->cpu_ftrace.ftd_last * Does _not_ protect readers of cpu[N]->cpu_ftrace.ftd_state. * Does not protect reading the FTRACE_READY bit in ftrace_state, * since non-READY to READY is a stable transition. This is used * to ensure ftrace_init() has been called. */ static kmutex_t ftrace_lock; /* * Check whether a CPU is installed. */ #define IS_CPU(i) (cpu[i] != NULL) static void ftrace_cpu_init(int cpuid) { ftrace_data_t *ftd; /* * This can be called with "cpu[cpuid]->cpu_flags & CPU_EXISTS" * being false - e.g. when a CPU is DR'ed in. */ ASSERT(MUTEX_HELD(&ftrace_lock)); ASSERT(IS_CPU(cpuid)); ftd = &cpu[cpuid]->cpu_ftrace; if (ftd->ftd_state & FTRACE_READY) return; /* * We don't allocate the buffers until the first time * ftrace_cpu_start() is called, so that they're not * allocated if ftrace is never enabled. */ ftd->ftd_state |= FTRACE_READY; ASSERT(!(ftd->ftd_state & FTRACE_ENABLED)); } /* * Only called from cpu_unconfigure() (and cpu_configure() on error). * At this point, cpu[cpuid] is about to be freed and NULLed out, * so we'd better clean up after ourselves. */ static void ftrace_cpu_fini(int cpuid) { ftrace_data_t *ftd; ASSERT(MUTEX_HELD(&ftrace_lock)); ASSERT(IS_CPU(cpuid)); ASSERT((cpu[cpuid]->cpu_flags & CPU_POWEROFF) != 0); ftd = &cpu[cpuid]->cpu_ftrace; if (!(ftd->ftd_state & FTRACE_READY)) return; /* * Do not free mutex and the the trace buffer once they are * allocated. A thread, preempted from the now powered-off CPU * may be holding the mutex and in the middle of adding a trace * record. */ } static void ftrace_cpu_start(int cpuid) { ftrace_data_t *ftd; ASSERT(MUTEX_HELD(&ftrace_lock)); ASSERT(IS_CPU(cpuid)); ASSERT(ftrace_state & FTRACE_ENABLED); ftd = &cpu[cpuid]->cpu_ftrace; if (ftd->ftd_state & FTRACE_READY) { if (ftd->ftd_first == NULL) { ftrace_record_t *ptrs; mutex_init(&ftd->ftd_mutex, NULL, MUTEX_DEFAULT, NULL); mutex_exit(&ftrace_lock); ptrs = kmem_zalloc(ftrace_nent * sizeof (ftrace_record_t), KM_SLEEP); mutex_enter(&ftrace_lock); ftd->ftd_first = ptrs; ftd->ftd_last = ptrs + (ftrace_nent - 1); ftd->ftd_cur = ptrs; membar_producer(); } ftd->ftd_state |= FTRACE_ENABLED; } } static void ftrace_cpu_stop(int cpuid) { ASSERT(MUTEX_HELD(&ftrace_lock)); ASSERT(IS_CPU(cpuid)); cpu[cpuid]->cpu_ftrace.ftd_state &= ~(FTRACE_ENABLED); } /* * Hook for DR. */ /*ARGSUSED*/ int ftrace_cpu_setup(cpu_setup_t what, int id, void *arg) { if (!(ftrace_state & FTRACE_READY)) return (0); switch (what) { case CPU_CONFIG: mutex_enter(&ftrace_lock); ftrace_cpu_init(id); if (ftrace_state & FTRACE_ENABLED) ftrace_cpu_start(id); mutex_exit(&ftrace_lock); break; case CPU_UNCONFIG: mutex_enter(&ftrace_lock); ftrace_cpu_fini(id); mutex_exit(&ftrace_lock); break; default: break; } return (0); } void ftrace_init(void) { int i; ASSERT(!(ftrace_state & FTRACE_READY)); mutex_init(&ftrace_lock, NULL, MUTEX_DEFAULT, NULL); mutex_enter(&ftrace_lock); for (i = 0; i < NCPU; i++) { if (IS_CPU(i)) { /* should have been kmem_zalloc()'ed */ ASSERT(cpu[i]->cpu_ftrace.ftd_state == 0); ASSERT(cpu[i]->cpu_ftrace.ftd_first == NULL); ASSERT(cpu[i]->cpu_ftrace.ftd_last == NULL); ASSERT(cpu[i]->cpu_ftrace.ftd_cur == NULL); } } if (ftrace_nent < 1) { mutex_exit(&ftrace_lock); return; } for (i = 0; i < NCPU; i++) if (IS_CPU(i)) ftrace_cpu_init(i); ftrace_state |= FTRACE_READY; mutex_enter(&cpu_lock); register_cpu_setup_func(ftrace_cpu_setup, NULL); mutex_exit(&cpu_lock); mutex_exit(&ftrace_lock); if (ftrace_atboot) (void) ftrace_start(); } int ftrace_start(void) { int i, was_enabled = 0; if (ftrace_state & FTRACE_READY) { mutex_enter(&ftrace_lock); was_enabled = ((ftrace_state & FTRACE_ENABLED) != 0); ftrace_state |= FTRACE_ENABLED; for (i = 0; i < NCPU; i++) if (IS_CPU(i)) ftrace_cpu_start(i); mutex_exit(&ftrace_lock); } return (was_enabled); } int ftrace_stop(void) { int i, was_enabled = 0; if (ftrace_state & FTRACE_READY) { mutex_enter(&ftrace_lock); if (ftrace_state & FTRACE_ENABLED) { was_enabled = 1; for (i = 0; i < NCPU; i++) if (IS_CPU(i)) ftrace_cpu_stop(i); ftrace_state &= ~(FTRACE_ENABLED); } mutex_exit(&ftrace_lock); } return (was_enabled); } void ftrace_0(char *str) { ftrace_record_t *r; struct cpu *cp = CPU; ftrace_data_t *ftd = &cp->cpu_ftrace; if (mutex_tryenter(&ftd->ftd_mutex) == 0) { if (CPU_ON_INTR(cp)) return; else mutex_enter(&ftd->ftd_mutex); } r = ftd->ftd_cur; r->ftr_event = str; r->ftr_thread = curthread; r->ftr_tick = gethrtime_unscaled(); r->ftr_caller = caller(); if (r++ == ftd->ftd_last) r = ftd->ftd_first; ftd->ftd_cur = r; mutex_exit(&ftd->ftd_mutex); } void ftrace_1(char *str, ulong_t arg1) { ftrace_record_t *r; struct cpu *cp = CPU; ftrace_data_t *ftd = &cp->cpu_ftrace; if (mutex_tryenter(&ftd->ftd_mutex) == 0) { if (CPU_ON_INTR(cp)) return; else mutex_enter(&ftd->ftd_mutex); } r = ftd->ftd_cur; r->ftr_event = str; r->ftr_thread = curthread; r->ftr_tick = gethrtime_unscaled(); r->ftr_caller = caller(); r->ftr_data1 = arg1; if (r++ == ftd->ftd_last) r = ftd->ftd_first; ftd->ftd_cur = r; mutex_exit(&ftd->ftd_mutex); } void ftrace_2(char *str, ulong_t arg1, ulong_t arg2) { ftrace_record_t *r; struct cpu *cp = CPU; ftrace_data_t *ftd = &cp->cpu_ftrace; if (mutex_tryenter(&ftd->ftd_mutex) == 0) { if (CPU_ON_INTR(cp)) return; else mutex_enter(&ftd->ftd_mutex); } r = ftd->ftd_cur; r->ftr_event = str; r->ftr_thread = curthread; r->ftr_tick = gethrtime_unscaled(); r->ftr_caller = caller(); r->ftr_data1 = arg1; r->ftr_data2 = arg2; if (r++ == ftd->ftd_last) r = ftd->ftd_first; ftd->ftd_cur = r; mutex_exit(&ftd->ftd_mutex); } void ftrace_3(char *str, ulong_t arg1, ulong_t arg2, ulong_t arg3) { ftrace_record_t *r; struct cpu *cp = CPU; ftrace_data_t *ftd = &cp->cpu_ftrace; if (mutex_tryenter(&ftd->ftd_mutex) == 0) { if (CPU_ON_INTR(cp)) return; else mutex_enter(&ftd->ftd_mutex); } r = ftd->ftd_cur; r->ftr_event = str; r->ftr_thread = curthread; r->ftr_tick = gethrtime_unscaled(); r->ftr_caller = caller(); r->ftr_data1 = arg1; r->ftr_data2 = arg2; r->ftr_data3 = arg3; if (r++ == ftd->ftd_last) r = ftd->ftd_first; ftd->ftd_cur = r; mutex_exit(&ftd->ftd_mutex); } void ftrace_3_notick(char *str, ulong_t arg1, ulong_t arg2, ulong_t arg3) { ftrace_record_t *r; struct cpu *cp = CPU; ftrace_data_t *ftd = &cp->cpu_ftrace; if (mutex_tryenter(&ftd->ftd_mutex) == 0) { if (CPU_ON_INTR(cp)) return; else mutex_enter(&ftd->ftd_mutex); } r = ftd->ftd_cur; r->ftr_event = str; r->ftr_thread = curthread; r->ftr_tick = 0; r->ftr_caller = caller(); r->ftr_data1 = arg1; r->ftr_data2 = arg2; r->ftr_data3 = arg3; if (r++ == ftd->ftd_last) r = ftd->ftd_first; ftd->ftd_cur = r; mutex_exit(&ftd->ftd_mutex); }